1
|
Brücker L, Kretschmer V, May-Simera HL. The entangled relationship between cilia and actin. Int J Biochem Cell Biol 2020; 129:105877. [PMID: 33166678 DOI: 10.1016/j.biocel.2020.105877] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/23/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
Primary cilia are microtubule-based sensory cell organelles that are vital for tissue and organ development. They act as an antenna, receiving and transducing signals, enabling communication between cells. Defects in ciliogenesis result in severe genetic disorders collectively termed ciliopathies. In recent years, the importance of the direct and indirect involvement of actin regulators in ciliogenesis came into focus as it was shown that F-actin polymerisation impacts ciliation. The ciliary basal body was further identified as both a microtubule and actin organising centre. In the current review, we summarize recent studies on F-actin in and around primary cilia, focusing on different actin regulators and their effect on ciliogenesis, from the initial steps of basal body positioning and regulation of ciliary assembly and disassembly. Since primary cilia are also involved in several intracellular signalling pathways such as planar cell polarity (PCP), subsequently affecting actin rearrangements, the multiple effectors of this pathway are highlighted in more detail with a focus on the feedback loops connecting actin networks and cilia proteins. Finally, we elucidate the role of actin regulators in the development of ciliopathy symptoms and cancer.
Collapse
Affiliation(s)
- Lena Brücker
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Viola Kretschmer
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany
| | - Helen Louise May-Simera
- Cilia Cell Biology, Institute of Molecular Physiology, Johannes-Gutenberg University, Mainz, Germany.
| |
Collapse
|
2
|
Nie J, Mahato S, Zelhof AC. The actomyosin machinery is required for Drosophila retinal lumen formation. PLoS Genet 2014; 10:e1004608. [PMID: 25233220 PMCID: PMC4168998 DOI: 10.1371/journal.pgen.1004608] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Accepted: 07/15/2014] [Indexed: 12/13/2022] Open
Abstract
Multicellular tubes consist of polarized cells wrapped around a central lumen and are essential structures underlying many developmental and physiological functions. In Drosophila compound eyes, each ommatidium forms a luminal matrix, the inter-rhabdomeral space, to shape and separate the key phototransduction organelles, the rhabdomeres, for proper visual perception. In an enhancer screen to define mechanisms of retina lumen formation, we identified Actin5C as a key molecule. Our results demonstrate that the disruption of lumen formation upon the reduction of Actin5C is not linked to any discernible defect in microvillus formation, the rhabdomere terminal web (RTW), or the overall morphogenesis and basal extension of the rhabdomere. Second, the failure of proper lumen formation is not the result of previously identified processes of retinal lumen formation: Prominin localization, expansion of the apical membrane, or secretion of the luminal matrix. Rather, the phenotype observed with Actin5C is phenocopied upon the decrease of the individual components of non-muscle myosin II (MyoII) and its upstream activators. In photoreceptor cells MyoII localizes to the base of the rhabdomeres, overlapping with the actin filaments of the RTW. Consistent with the well-established roll of actomyosin-mediated cellular contraction, reduction of MyoII results in reduced distance between apical membranes as measured by a decrease in lumen diameter. Together, our results indicate the actomyosin machinery coordinates with the localization of apical membrane components and the secretion of an extracellular matrix to overcome apical membrane adhesion to initiate and expand the retinal lumen. Biological tubes are integral units of tissues and organs such as lung, kidney, and the cardiovascular system. The fundamental design of tubes involves a central lumen wrapped by a sheet of cells. To function properly, the tubes require a precise genetic control over their creation, the diametric growth and maintenance of the lumen during development. In the fruit fly, Drosophila melanogaster, the photoreceptor cells of the eye form a tubular structure. The formation of the retinal lumen is critical for separating and positioning the light sensing organelles of each photoreceptor cell to achieve visual sensitivity. In an effort to investigate the mechanisms of Drosophila retinal lumen formation, we identified a contractile machinery that was present at the apical portion of photoreceptor cells. Our data is consistent with the idea that a contractile force contributes to the initial separation of the juxtaposed apical membranes and subsequent enlargement of the luminal space. Our work suggests that building a biological tube requires not only an extrinsic pushing force provided by the growing central lumen, but also a cell intrinsic pulling force powered by contraction of cells lining the lumen. Our findings expand and demonstrate the coordination of several molecular mechanisms to generate a tube.
Collapse
Affiliation(s)
- Jing Nie
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Simpla Mahato
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Andrew C. Zelhof
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
- * E-mail:
| |
Collapse
|
3
|
Cross species analysis of Prominin reveals a conserved cellular role in invertebrate and vertebrate photoreceptor cells. Dev Biol 2012; 371:312-20. [DOI: 10.1016/j.ydbio.2012.08.024] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 08/13/2012] [Accepted: 08/23/2012] [Indexed: 12/25/2022]
|
4
|
Corless JM. Cone outer segments: a biophysical model of membrane dynamics, shape retention, and lamella formation. Biophys J 2012; 102:2697-705. [PMID: 22735519 DOI: 10.1016/j.bpj.2012.04.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 04/25/2012] [Accepted: 04/30/2012] [Indexed: 10/28/2022] Open
Abstract
An hypothesis is developed to explain how the unique, right circular conical geometry of cone outer segments (COSs) in Xenopus laevis and other lower vertebrates is maintained during the cycle of axial shortening by apical phagocytosis and axial elongation via the addition of new basal lamellae. Extension of a new basal evagination (BE) applies radial (lateral) traction to membrane and cytoplasmic domains, achieving two coupled effects. 1), The bilayer domain is locally stretched/dilated, creating an entropic driving force that draws membrane components into the BE from the COS's distributed bilayer phase, i.e., plasmalemma and older lamellae (membrane recycling). Membrane proteins, e.g., opsins, are carried passively in this advective, bilayer-driven process. 2), With BE stretching, hydrostatic pressure within the BE cytoplasm is reduced slightly with respect to that of the axonemal cytoplasmic reservoir, allowing cytoplasmic flow into the BE. Attendant lowering of the reservoir's hydrostatic pressure facilitates the subsequent transfer of cytoplasm from lamellar domains to the reservoir (cytoplasmic recycling). The geometry of the BE reflects the membrane/cytoplasm ratio needed for its construction, and essentially specifies the ratio of components recycled from older lamellae. Length and taper angle of the COS reflect the ratio of recycled/new components constructing a new BE. The model also integrates the trajectories and dynamics of lamella open margin lattice components. Although not fully evaluated, the initial model has been assessed against the relevant literature, and three experimental predictions are derived.
Collapse
Affiliation(s)
- Joseph M Corless
- Department of Cell Biology, Duke University School of Medicine, Durham, North Carolina, USA.
| |
Collapse
|
5
|
Cook T, Zelhof A, Mishra M, Nie J. 800 facets of retinal degeneration. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2011; 100:331-68. [PMID: 21377630 DOI: 10.1016/b978-0-12-384878-9.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In today's world of genomics and large computational analyses, rapid progress has been made in identifying genes associated with human retinal diseases. Nevertheless, before significant advances toward effective therapeutic intervention is made, a clearer understanding of the molecular and cellular role of these gene products in normal and diseased photoreceptor cell biology is required. Given the complexity of the vertebrate retina, these advancements are unlikely to be revealed in isolated human cell lines, but instead, will require the use of numerous model systems. Here, we describe several parallels between vertebrate and invertebrate photoreceptor cell biology that are beginning to emerge and advocate the use of Drosophila melanogaster as a powerful genetic model system for uncovering molecular mechanisms of human retinal pathologies, in particular photoreceptor neurodegeneration.
Collapse
Affiliation(s)
- T Cook
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | | |
Collapse
|
6
|
Abstract
While the functions of many of the proteins located in or associated with the photoreceptor cilia are poorly understood, disruption of the function of these proteins may result in a wide variety of phenotypes ranging from isolated retinal degeneration to more pleiotropic phenotypes. Systemic findings include neurosensory hearing loss, developmental delay, situs-inversus, infertility, disorders of limb and digit development, obesity, kidney disease, liver disease, and respiratory disease. The concept of "retinal ciliopathies" brings to attention the importance of further molecular analysis of this organelle as well as provides a potential common target for therapies for these disorders. The retinal ciliopathies include retinitis pigmentosa, macular degeneration, cone-dystrophy, cone-rod dystrophy, Leber congenital amaurosis, as well as retinal degenerations associated with Usher syndrome, primary ciliary dyskinesia, Senior-Loken syndrome, Joubert syndrome, Bardet-Biedl syndrome, Laurence-Moon syndrome, McKusick-Kaufman syndrome, and Biemond syndrome. Mutations for these disorders have been found in retinitis pigmentosa-1 (RP1), retinitis pigmentosa GTPase regulator (RPGR), retinitis pigmentosa GTPase regulator interacting protein (RPGR-IP), as well as the Usher, Bardet-Biedl, and nephronophthisis genes. Other systemic disorders associated with retinal degenerations that may also involve ciliary abnormalities include: Alstrom, Edwards-Sethi, Ellis-van Creveld, Jeune, Meckel-Gruber, Orofaciodigital Type 9, and Gurrieri syndromes. Understanding these conditions as ciliopathies may help the ophthalmologist to recognize associations between seemingly unrelated diseases and have a high degree of suspicion that a systemic finding may be present.
Collapse
Affiliation(s)
- N A Adams
- The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, Maryland 21287, USA.
| | | | | |
Collapse
|
7
|
Richard M, Grawe F, Knust E. DPATJ plays a role in retinal morphogenesis and protects against light-dependent degeneration of photoreceptor cells in theDrosophila eye. Dev Dyn 2006; 235:895-907. [PMID: 16245332 DOI: 10.1002/dvdy.20595] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The establishment of apicobasal polarity in epithelial cells is a prerequisite for their function. Drosophila photoreceptor cells derive from epithelial cells, and their apical membranes undergo elaborate differentiation during pupal development, forming photosensitive rhabdomeres and associated stalk membranes. Crumbs (Crb), a transmembrane protein involved in the maintenance of epithelial polarity in the embryo, defines the stalk as a subdomain of the apical membrane. Crb organizes a complex composed of several PDZ domain-containing proteins, including DPATJ (formerly known as Discs lost). Taking advantage of a DPATJ mutant line in which only a truncated form of the protein is synthesized, we demonstrate that DPATJ is necessary for the stability of the Crb complex at the stalk membrane and is crucial for stalk membrane development and rhabdomere maintenance during late pupal stages. Moreover, DPATJ protects against light-induced photoreceptor degeneration.
Collapse
Affiliation(s)
- Mélisande Richard
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | |
Collapse
|
8
|
Dalal JS, Jinks RN, Cacciatore C, Greenberg RM, Battelle BA. Limulus opsins: diurnal regulation of expression. Vis Neurosci 2004; 20:523-34. [PMID: 14977331 DOI: 10.1017/s095252380320506x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Much has been learned from studies of Limulus photoreceptors about the role of the circadian clock and light in the removal of photosensitive membrane. However, little is known in this animal about mechanisms regulating photosensitive membrane renewal, including the synthesis of proteins in, and associated with, the photosensitive membrane. To begin to understand renewal, this study examines diurnal changes in the levels of mRNAs encoding opsin, the integral membrane protein component of visual pigment, and the relative roles of light and the circadian clock in producing these changes. We show that at least two distinct opsin genes encoding very similar proteins are expressed in both the lateral and ventral eyes, and that during the day and night in the lateral eye, the average level of mRNA encoding opsinl is consistently higher than that encoding opsin2. Northern blot assays showed further that total opsin mRNA in the lateral eyes of animals maintained under natural illumination increases during the afternoon (9 & 12 h after sunrise) in the light and falls at night in the dark. This diurnal change occurs whether or not the eyes receive input from the circadian clock, but it is eliminated in eyes maintained in the dark. Thus, it is regulated by light and darkness, not by the circadian clock, with light stimulating an increase in opsin mRNA levels. The rise in opsin mRNA levels observed under natural illumination was seasonal; it occurred during the summer but not the spring and fall. However, a significant increase in opsin mRNA levels could be achieved in the fall by exposing lateral eyes to 3 h of natural illumination followed by 9 h of artificial light. The diurnal regulation of opsin mRNA levels contrasts sharply with the circadian regulation of visual arrestin mRNA levels (Battelle et al., 2000). Thus, in Limulus, distinctly different mechanisms regulate the levels of mRNA encoding two proteins critical for the photoresponse.
Collapse
Affiliation(s)
- Jasbir S Dalal
- Whitney Laboratory and Department of Neuroscience, University of Florida, St. Augustine 32080, USA
| | | | | | | | | |
Collapse
|
9
|
Mears AJ, Kondo M, Swain PK, Takada Y, Bush RA, Saunders TL, Sieving PA, Swaroop A. Nrl is required for rod photoreceptor development. Nat Genet 2001; 29:447-52. [PMID: 11694879 DOI: 10.1038/ng774] [Citation(s) in RCA: 646] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The protein neural retina leucine zipper (Nrl) is a basic motif-leucine zipper transcription factor that is preferentially expressed in rod photoreceptors. It acts synergistically with Crx to regulate rhodopsin transcription. Missense mutations in human NRL have been associated with autosomal dominant retinitis pigmentosa. Here we report that deletion of Nrl in mice results in the complete loss of rod function and super-normal cone function, mediated by S cones. The photoreceptors in the Nrl-/- retina have cone-like nuclear morphology and short, sparse outer segments with abnormal disks. Analysis of retinal gene expression confirms the apparent functional transformation of rods into S cones in the Nrl-/- retina. On the basis of these findings, we postulate that Nrl acts as a 'molecular switch' during rod-cell development by directly modulating rod-specific genes while simultaneously inhibiting the S-cone pathway through the activation of Nr2e3.
Collapse
Affiliation(s)
- A J Mears
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, Michigan 48105, USA
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Abstract
The elegant architecture of photoreceptor cells in the retina is dependent on organization of the actin cytoskeleton during eye development. But what drives this organization? In an equally elegant Perspective, Colley explains new findings in fruit flies (Chang and Ready) that point to the photopigment rhodopsin and its signaling molecule the Rho GTPase Drac1 as the orchestrators of actin organization and the consequent assembly of the sensory membrane in the photoreceptor cell.
Collapse
Affiliation(s)
- N J Colley
- Department of Ophthalmology and Visual Sciences, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
11
|
Chang HY, Ready DF. Rescue of photoreceptor degeneration in rhodopsin-null Drosophila mutants by activated Rac1. Science 2000; 290:1978-80. [PMID: 11110667 DOI: 10.1126/science.290.5498.1978] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Rhodopsin is essential for photoreceptor morphogenesis; photoreceptors lacking rhodopsin degenerate in humans, mice, and Drosophila. Here we report that transgenic expression of a dominant-active Drosophila Rho guanosine triphosphatase, Drac1, rescued photoreceptor morphogenesis in rhodopsin-null mutants; expression of dominant-negative Drac1 resulted in a phenotype similar to that seen in rhodopsin-null mutants. Drac1 was localized in a specialization of the photoreceptor cortical actin cytoskeleton, which was lost in rhodopsin-null mutants. Thus, rhodopsin appears to organize the actin cytoskeleton through Drac1, contributing a structural support essential for photoreceptor morphogenesis.
Collapse
Affiliation(s)
- H Y Chang
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | |
Collapse
|
12
|
Clarke G, Goldberg AF, Vidgen D, Collins L, Ploder L, Schwarz L, Molday LL, Rossant J, Szél A, Molday RS, Birch DG, McInnes RR. Rom-1 is required for rod photoreceptor viability and the regulation of disk morphogenesis. Nat Genet 2000; 25:67-73. [PMID: 10802659 DOI: 10.1038/75621] [Citation(s) in RCA: 118] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The homologous membrane proteins Rom-1 and peripherin-2 are localized to the disk rims of photoreceptor outer segments (OSs), where they associate as tetramers and larger oligomers. Disk rims are thought to be critical for disk morphogenesis, OS renewal and the maintenance of OS structure, but the molecules which regulate these processes are unknown. Although peripherin-2 is known to be required for OS formation (because Prph2-/- mice do not form OSs; ref. 6), and mutations in RDS (the human homologue of Prph2) cause retinal degeneration, the relationship of Rom-1 to these processes is uncertain. Here we show that Rom1-/- mice form OSs in which peripherin-2 homotetramers are localized to the disk rims, indicating that peripherin-2 alone is sufficient for both disk and OS morphogenesis. The disks produced in Rom1-/- mice were large, rod OSs were highly disorganized (a phenotype which largely normalized with age) and rod photoreceptors died slowly by apoptosis. Furthermore, the maximal photoresponse of Rom1-/- rod photoreceptors was lower than that of controls. We conclude that Rom-1 is required for the regulation of disk morphogenesis and the viability of mammalian rod photoreceptors, and that mutations in human ROM1 may cause recessive photoreceptor degeneration.
Collapse
Affiliation(s)
- G Clarke
- Program in Developmental Biology, The Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Sung CH, Tai AW. Rhodopsin trafficking and its role in retinal dystrophies. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 195:215-67. [PMID: 10603577 DOI: 10.1016/s0074-7696(08)62706-0] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We review the sorting/targeting steps involved in the delivery of rhodopsin to the outer segment compartment of highly polarized photoreceptor cells. The transport of rhodopsin includes (1) the sorting/budding of rhodopsin-containing vesicles at the trans-Golgi network, (2) the directional translocation of rhodopsin-bearing vesicles through the inner segment, and (3) the delivery of rhodopsin across the connecting cilium to the outer segment. Several independent lines of evidence suggest that the carboxyl-terminal, cytoplasmic tail of rhodopsin is involved in the post-Golgi trafficking of rhodopsin. Inappropriate subcellular targeting of naturally occurring rhodopsin mutants in vivo leads to photoreceptor cell death. Thus, the genes encoding mutations in the cellular components involved in photoreceptor protein transport are likely candidate genes for retinal dystrophies.
Collapse
Affiliation(s)
- C H Sung
- Department of Cell Biology and Anatomy, Margaret M. Dyson Vision Research Institute, Weill Medical College of Cornell University, New York, New York 10021, USA.
| | | |
Collapse
|
14
|
De Velasco B, Martinez JM, Ochoa GH, Miller AM, Clark YM, Matsumoto B, Robles LJ. Identification and immunolocalization of actin cytoskeletal components in light- and dark-adapted octopus retinas. Exp Eye Res 1999; 68:725-37. [PMID: 10375436 DOI: 10.1006/exer.1999.0654] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Photoreceptors in the octopus retina are of the rhabdomeric type, with rhabdomeres arising from the plasma membrane on opposite sides of the cylindrical outer segment. Each rhabdomere microvillus has an actin filament core, but other actin-binding proteins have not been identified. We used immunoblotting techniques to identify actin-binding proteins in octopus retinal extracts and immunofluorescence microscopy to localize the same proteins in fixed tissue. Antibodies directed against alpha-actinin and vinculin recognized single protein bands on immunoblots of octopus retinal extract with molecular weights comparable to the same proteins in other tissues. Anti-filamin identified two closely spaced bands similar in molecular weight to filamin in other species. Antibodies to the larger of the Drosophila ninaC gene products, p174, identified two bands lower in molecular weight than p174. Anti-villin localized a band that was significantly less in molecular weight than villin found in other cells. Epifluorescence and confocal microscopy were used to map the location of the same actin-binding proteins in dark- and light-adapted octopus photoreceptors and other retinal cells. Antibodies to most of the actin-binding proteins showed heavy staining of the photoreceptor proximal/supportive cell region accompanied by rhabdom membrane and rhabdom tip staining, although subtle differences were detected with individual antibodies. In dark-adapted retinas anti-alpha-actinin stained the photoreceptor proximal/supportive cell region where an extensive junctional complex joins these two cell types, but in the light, immunoreactivity extended above the junctional complex into the rhabdom bases. Most antibodies densely stained the rhabdom tips but anti-villin exhibited a striated pattern of localization at the tips. We believe that the actin-binding proteins identified in the octopus retina may play a significant role in the formation of new rhabdomere microvilli in the dark. We speculate that these proteins and actin remain associated with an avillar membrane that connects opposing sets of rhabdomeres in light-adapted retinas. Association of these cytoskeletal proteins with the avillar membrane would constitute a pool of proteins that could be recruited for rapid microvillus formation from the previously avillar region.
Collapse
Affiliation(s)
- B De Velasco
- Biology Department, California State University, Dominguez Hills, 1000 East Victoria Street, Carson, CA, 90747, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Wes PD, Xu XZ, Li HS, Chien F, Doberstein SK, Montell C. Termination of phototransduction requires binding of the NINAC myosin III and the PDZ protein INAD. Nat Neurosci 1999; 2:447-53. [PMID: 10321249 DOI: 10.1038/8116] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many of the proteins that are critical for Drosophila phototransduction assemble into a signaling complex, signalplex, through association with the PDZ-domain protein INAD. Some of these proteins depend on INAD for proper subcellular localization to the phototransducing organelle, the rhabdomere, making it difficult to assess any physiological function of this signaling complex independent of localization. Here we demonstrated that INAD bound directly to the NINAC myosin III, yet the subcellular localization of NINAC was normal in inaD mutants. Nevertheless, the INAD binding site was sufficient to target a heterologous protein to the rhabdomeres. Disruption of the NINAC/INAD interaction delayed termination of the photoreceptor response. Thus one role of this signaling complex is in rapid deactivation of the photoresponse.
Collapse
Affiliation(s)
- P D Wes
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | | | | | |
Collapse
|
16
|
Mermall V, Post PL, Mooseker MS. Unconventional myosins in cell movement, membrane traffic, and signal transduction. Science 1998; 279:527-33. [PMID: 9438839 DOI: 10.1126/science.279.5350.527] [Citation(s) in RCA: 524] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the past few years genetic, biochemical, and cytolocalization data have implicated members of the myosin superfamily of actin-based molecular motors in a variety of cellular functions including membrane trafficking, cell movements, and signal transduction. The importance of myosins is illustrated by the identification of myosin genes as targets for disease-causing mutations. The task at hand is to decipher how the multitude of myosins function at both the molecular and cellular level-a task facilitated by our understanding of myosin structure and function in muscle.
Collapse
Affiliation(s)
- V Mermall
- Department of Biology, Yale University 342 KBT, New Haven, CT 06520, USA
| | | | | |
Collapse
|
17
|
Taylor A, Shang F, Obin M. Relationships between stress, protein damage, nutrition, and age-related eye diseases. Mol Aspects Med 1997; 18:305-414. [PMID: 9578986 DOI: 10.1016/s0098-2997(95)00049-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- A Taylor
- Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA 02111, USA.
| | | | | |
Collapse
|
18
|
|
19
|
Hallett MA, Delaat JL, Arikawa K, Schlamp CL, Kong F, Williams DS. Distribution of guanylate cyclase within photoreceptor outer segments. J Cell Sci 1996; 109 ( Pt 7):1803-12. [PMID: 8832403 DOI: 10.1242/jcs.109.7.1803] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Guanylate cyclases play an essential role in the recovery of vertebrate photoreceptor cells after light activation. Here, we have investigated how one such guanylate cyclase, RetGC-1, is distributed within light- and dark-adapted rod photoreceptor cells. Guanylate cyclase activity partitioned with the photoreceptor outer segment (OS) cytoskeleton in a light-sensitive manner. RetGC-1 was found to bind actin filaments in actin blot overlays, suggesting a mechanism for its association with the OS cytoskeleton. In retinal sections, this enzyme was immunodetected only in the OSs, where it appeared to be distributed throughout the disk membranes.
Collapse
Affiliation(s)
- M A Hallett
- School of Optometry, Indiana University, Bloomington 47405, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hicks JL, Liu X, Williams DS. Role of the ninaC proteins in photoreceptor cell structure: ultrastructure of ninaC deletion mutants and binding to actin filaments. CELL MOTILITY AND THE CYTOSKELETON 1996; 35:367-79. [PMID: 8956007 DOI: 10.1002/(sici)1097-0169(1996)35:4<367::aid-cm8>3.0.co;2-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The ninaC proteins are found in Drosophila photoreceptor cells. Their primary sequences suggest they are kinase/myosin chimeras, but their myosin head-like domain is the most divergent amongst all the myosin-like proteins described to date. To investigate possible roles of the ninaC proteins in cell structure, we examined the ultrastructure of the photoreceptor cells in various ninaC mutants, and tested the ability of the proteins to interact with actin filaments in a myosin-like manner. In flies lacking the larger ninaC protein, p174, an ultrastructural phenotype was evident before eclosion. The axial actin cytoskeleton of the rhabdomeral microvilli appeared either fragmented or as an isolated structure, without linkage to the microvillar membrane. Deletion of the myosin head-like domain or the calmodulin-binding domain of p174 resulted in a similar abnormal cytoskeleton. Breakdown of the rhabdomeres followed, although at different rates depending on the deletion. Lack of the smaller protein, p132, per se did not result in photoreceptor degeneration, but in older flies there was an abnormal accumulation of multivesicular bodies. Moreover, the presence of p132 retarded the degeneration that occurs in the absence of p174, even though the p132 remained outside the rhabdomere. Biochemical studies showed that both ninaC proteins bind actin filaments and cosediment with actin filaments in an ATP-sensitive manner. These results outline structural roles for the ninaC proteins, and are consistent with the notion, suggested by their amino acid sequences, that the proteins are actin-based mechanoenzymes.
Collapse
Affiliation(s)
- J L Hicks
- School of Optometry, Indiana University, Bloomington, USA
| | | | | |
Collapse
|
21
|
Abstract
Analysis of the light-induced changes of cytosolic Ca2+ ([Ca2+]i) in photoreceptor cells has been taken a step further with two recently published studies. In one, changes in [Ca2+]i were measured in single detached rod outer segments from Gecko in response to various light intensities. The advances of the other are embodied in its employment of transgenic Drosophila, whose photoreceptors express a visual pigment that is insensitive to the wavelength of light used in the fluorescence imaging of [Ca2+]i. These studies provide a better basis for understanding the regulation of Ca(2+)-mediated events in photoreceptor cells.
Collapse
Affiliation(s)
- D S Williams
- Laboratory of Cell Biology, School of Optometry, Indiana University, Bloomington 47405, USA
| |
Collapse
|
22
|
Abstract
The rhabdomeral microvilli in the eyes of invertebrates have a cytoskeletal core (Saibil, 1982; Blest et al., 1982a, b, 1983) of actin (de Couet et al., 1984; Arikawa et al., 1990; Williams, 1991; Caiman & Chamberlain, 1992) which might be involved in phototransduction. Tsukita et al. (1988) suggested that light stimulation triggers the breakdown of the microvillar actin filament complex and that this may play a role in phototransduction. To test their suggestion, we pressure-injected phalloidin into Limulus ventral photoreceptors to prevent actin depolymerization (Cooper, J.A., 1987) and tested to see if this blocked phototransduction. We have previously shown that injected rho-damine-phalloidin brightly labels the microvillar actin filaments in living Limulus ventral photoreceptors for several hours (Feng et al., 1994). In the experiments reported here, phalloidin unconjugated with fluorophore was used, and the final concentration in the cell after many small injections from a pipette containing 10 mg/ml phalloidin was estimated to be 1 mg/ml (1.2 mM). This concentration is 100 times higher than that used in an extracted cellular preparation to stabilize actin (Biegel & Pachter, 1992). Fig. 1 shows that the responses to steps of light at different intensities are normal 1 h after phalloidin injection. Similar results were obtained in two other cells.
Collapse
Affiliation(s)
- J Feng
- Department of Physiology, University of Connecticut Health Center, Farmington 06030
| | | |
Collapse
|
23
|
Feng JJ, Carson JH, Morgan F, Walz B, Fein A. Three-dimensional organization of endoplasmic reticulum in the ventral photoreceptors of Limulus. J Comp Neurol 1994; 341:172-83. [PMID: 8163722 DOI: 10.1002/cne.903410204] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Living Limulus ventral photoreceptor cells were injected with long chain lipophilic carbocyanine fluorescent dyes to label the endoplasmic reticulum (ER). The purpose of this study was to examine the continuity, dynamic changes, and structure of the ER in the living cell, using laser scanning confocal microscopy and three-dimensional image reconstruction. In this highly polarized neuron, three lines of evidence indicate that the ER is a continuous network extending throughout both lobes of the cell. First, injection of DiO or DiI results in the labeling of ER throughout both lobes of the cell. Second, three-dimensional image reconstruction of the optical sections reveals a dispersed membrane meshwork which may be the structure that serves to interconnect the ER in the two lobes. Third, in cells fixed before dye injection, the pattern of labeling was similar to that in living cells, indicating that vesicle transport was not responsible for the spread of dye throughout the cell. The overall organization of the ER in the photoreceptor cell is relatively stable; however, the fine structure changes over time. This dynamic process appears to represent continual reorganization of the intracellular membranes in the cell. Three morphological types of ER were observed. The ER of the light-sensitive lobe, identified by coinjection of rhodamine-phalloidin to label the microvillar actin, is characterized by a concentration of stratiform membranes interconnected by thin tubular cross-bridges. The perinuclear ER is characterized by a tangle of convoluted tubules sometimes terminating in bulbous structures. Finally, there is a fine tubular reticulum dispersed throughout the cell.
Collapse
Affiliation(s)
- J J Feng
- Department of Physiology, University of Connecticut Health Center, Farmington 06032
| | | | | | | | | |
Collapse
|
24
|
Azarian SM, Schlamp CL, Williams DS. Characterization of calpain II in the retina and photoreceptor outer segments. J Cell Sci 1993; 105 ( Pt 3):787-98. [PMID: 8408304 DOI: 10.1242/jcs.105.3.787] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Calpain II was purified to apparent homogeneity from bovine neural retinas. It was found to be biochemically similar to brain calpain II, purified by the same procedure, with respect to: subunit mobility in SDS-polyacrylamide gel electrophoresis; Ca2+ sensitivity; inhibition by calpeptin and other cysteine protease inhibitors; and optimal pH. Semithin cryosections were immuno-labeled with antibodies specific for the catalytic subunit of calpain II. Calpain II was detected in most layers of the retina, with the most pronounced label present in the plexiform layers (synaptic regions) and the photoreceptor outer segments. In dark-adapted retinas, the label was distributed throughout the outer segments. In light-adapted retinas, outer segment labeling was concentrated in the connecting cilium, and the inner segments were labeled. A partially pure preparation of calpain II from isolated rod outer segments was found to have the same biochemical characteristics as calpain II prepared in the same way from the whole retina. The enzyme was distributed fairly evenly between the cytosolic and cytoskeletal fractions of isolated rod outer segments. Immunoblots of the rod outer segment cytoskeleton were used to determine the susceptibility of known components of the actin-based cytoskeleton to proteolysis by calpain II in vitro. Actin was not proteolyzed at all, alpha-actinin was only slowly degraded, but myosin II heavy chain was rapidly proteolyzed. Actin filaments have been shown previously to be associated with myosin II and alpha-actinin in a small domain within the connecting cilium, where they play an essential role in the morphogenesis of new disk membranes. The localization of calpain II in the connecting cilium after light exposure, combined with the in vitro proteolysis of myosin II, suggests that calpain II could be involved in light-dependent regulation of disk membrane morphogenesis by proteolysis of myosin II.
Collapse
Affiliation(s)
- S M Azarian
- Laboratory of Cell Biology, School of Optometry, Indiana University, Bloomington 47405
| | | | | |
Collapse
|
25
|
Affiliation(s)
- P A Hargrave
- Department of Ophthalmology, School of Medicine, University of Florida, Gainesville 32610
| | | |
Collapse
|
26
|
Pagh-Roehl K, Wang E, Burnside B. Shortening of the calycal process actin cytoskeleton is correlated with myoid elongation in teleost rods. Exp Eye Res 1992; 55:735-46. [PMID: 1478283 DOI: 10.1016/0014-4835(92)90178-u] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Light activates the elongation of rods within teleost retinas. Rod cell elongation is mediated by actin-dependent length changes of the myoid portion of the inner segment. The actin cytoskeleton of the inner segment consists of filament bundles, which run parallel to the long axis of the rod, from the calycal processes, through the ellipsoid and into the myoid. In isolated rod inner/outer segments (RIS-ROS), myoid elongation was found to occur in the absence of net polymerization of actin into filaments. Outgrowth of actin filaments within the myoid was counterbalanced by a shortening of actin filaments within the calycal processes. In this study, we have further examined light-activated modifications of the rod cytoskeleton using rhodamine-phalloidin to stain actin filaments within retinal cryosections as well as in isolated RIS-ROS. In RIS-ROS isolated from dark-adapted green sunfish, the phalloidin-stained calycal processes appeared as long, brush-like structures, averaging 4.2 microns in length. In light-cultured RIS-ROS populations, the calycal process actin cytoskeleton shortened from 4.2 microns to 1.7 microns. In control, dark-cultured populations, RIS-ROS that did not elongate maintained long calycal process actin cytoskeletons. However, in cases where dark-cultured RIS-ROS did elongate, despite the absence of a light stimulus, myoid elongation was accompanied by a shortening of the calycal process actin cytoskeleton, suggesting that the two events are correlated with one another. In light-adapted green sunfish and in light-cultured retinas from green sunfish and the Midas cichlid, the calycal process cytoskeleton of intact rods shortened by 40-60%. Within the two-tiered retina of green sunfish, shortening of the calycal process cytoskeleton, from 5.1 microns to 2.1-3.1 microns, was only evident in the shorter, inner tier of rods. The calycal process actin cytoskeleton did not appear to shorten within the longer, outer tier of rods; here, stained processes were short, averaging 2.3 microns in length, within dark-adapted retinas. Using scanning and transmission electron microscopy, we present evidence to suggest that the plasmalemmal surface of the calycal processes shortens along with the cytoskeletal actin core. We conclude that calycal processes of teleost rods are dynamic structures which shorten during light-activated myoid elongation.
Collapse
Affiliation(s)
- K Pagh-Roehl
- Department of Molecular and Cell Biology, University of California, Berkeley 94720
| | | | | |
Collapse
|
27
|
Schraermeyer U, Rack M, Stieve H. Isolation of the rhabdomeral microvillar cytoskeleton of the crayfish (Orconectes limosus) photoreceptor by a crosslinking reagent. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. B, COMPARATIVE BIOCHEMISTRY 1992; 102:43-8. [PMID: 1526132 DOI: 10.1016/0305-0491(92)90270-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
1. Rhabdomeral microvilli of photoreceptor cells of invertebrates contain a labile central cytoskeleton. For stabilization of the rhabdomeral cytoskeleton of the crayfish Orconectes limosus the crosslinking reagent suberic acid bis (N-hydroxysuccinimide ester) was used. 2. It was found that this crosslinking reagent can be successfully used to stabilize and isolate the microvillar cytoskeleton of crayfish photoreceptors. 3. After detergent treatment cytosolic proteins and the cell membranes were removed. 4. By the combined use of crosslinker and detergent the accessibility of antibodies or other markers to the microvillar cytoskeleton is possible. 5. This method may be useful, because at present little is known about the proteins associated with the central filament of invertebrate photoreceptors.
Collapse
Affiliation(s)
- U Schraermeyer
- Institut für Biologie II (Zoologie), RWTH Aachen, Germany
| | | | | |
Collapse
|
28
|
Abstract
The unconventional myosins form a large and diverse group of molecular motors. The number of known unconventional myosins is increasing rapidly and in the past year alone two new classes have been identified. Substantial progress has been made towards characterizing the properties and functions of these motor proteins, which have been hypothesized to play fundamental roles in processes such as cell locomotion, phagocytosis and vesicle transport.
Collapse
Affiliation(s)
- R E Cheney
- Department of Biology, Yale University, New Haven, Connecticut 06511
| | | |
Collapse
|