1
|
|
2
|
Sigg MA, Menchen T, Lee C, Johnson J, Jungnickel MK, Choksi SP, Garcia G, Busengdal H, Dougherty GW, Pennekamp P, Werner C, Rentzsch F, Florman HM, Krogan N, Wallingford JB, Omran H, Reiter JF. Evolutionary Proteomics Uncovers Ancient Associations of Cilia with Signaling Pathways. Dev Cell 2018; 43:744-762.e11. [PMID: 29257953 DOI: 10.1016/j.devcel.2017.11.014] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 09/18/2017] [Accepted: 11/17/2017] [Indexed: 12/19/2022]
Abstract
Cilia are organelles specialized for movement and signaling. To infer when during evolution signaling pathways became associated with cilia, we characterized the proteomes of cilia from sea urchins, sea anemones, and choanoflagellates. We identified 437 high-confidence ciliary candidate proteins conserved in mammals and discovered that Hedgehog and G-protein-coupled receptor pathways were linked to cilia before the origin of bilateria and transient receptor potential (TRP) channels before the origin of animals. We demonstrated that candidates not previously implicated in ciliary biology localized to cilia and further investigated ENKUR, a TRP channel-interacting protein identified in the cilia of all three organisms. ENKUR localizes to motile cilia and is required for patterning the left-right axis in vertebrates. Moreover, mutation of ENKUR causes situs inversus in humans. Thus, proteomic profiling of cilia from diverse eukaryotes defines a conserved ciliary proteome, reveals ancient connections to signaling, and uncovers a ciliary protein that underlies development and human disease.
Collapse
Affiliation(s)
- Monika Abedin Sigg
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Tabea Menchen
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Chanjae Lee
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Jeffery Johnson
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA
| | - Melissa K Jungnickel
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Semil P Choksi
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Galo Garcia
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA
| | - Henriette Busengdal
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Gerard W Dougherty
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Petra Pennekamp
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Claudius Werner
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Fabian Rentzsch
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen 5008, Norway
| | - Harvey M Florman
- Department of Cell and Developmental Biology, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Nevan Krogan
- Gladstone Institute of Cardiovascular Disease and Gladstone Institute of Virology and Immunology, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | - John B Wallingford
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology and Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX 78712, USA
| | - Heymut Omran
- Department of General Pediatrics, University Children's Hospital Muenster, Muenster 48149, Germany
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, University of California, San Francisco, CA 94158, USA.
| |
Collapse
|
3
|
Prevo B, Scholey JM, Peterman EJG. Intraflagellar transport: mechanisms of motor action, cooperation, and cargo delivery. FEBS J 2017; 284:2905-2931. [PMID: 28342295 PMCID: PMC5603355 DOI: 10.1111/febs.14068] [Citation(s) in RCA: 142] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/20/2017] [Accepted: 03/23/2017] [Indexed: 02/06/2023]
Abstract
Intraflagellar transport (IFT) is a form of motor-dependent cargo transport that is essential for the assembly, maintenance, and length control of cilia, which play critical roles in motility, sensory reception, and signal transduction in virtually all eukaryotic cells. During IFT, anterograde kinesin-2 and retrograde IFT dynein motors drive the bidirectional transport of IFT trains that deliver cargo, for example, axoneme precursors such as tubulins as well as molecules of the signal transduction machinery, to their site of assembly within the cilium. Following its discovery in Chlamydomonas, IFT has emerged as a powerful model system for studying general principles of motor-dependent cargo transport and we now appreciate the diversity that exists in the mechanism of IFT within cilia of different cell types. The absence of heterotrimeric kinesin-2 function, for example, causes a complete loss of both IFT and cilia in Chlamydomonas, but following its loss in Caenorhabditis elegans, where its primary function is loading the IFT machinery into cilia, homodimeric kinesin-2-driven IFT persists and assembles a full-length cilium. Generally, heterotrimeric kinesin-2 and IFT dynein motors are thought to play widespread roles as core IFT motors, whereas homodimeric kinesin-2 motors are accessory motors that mediate different functions in a broad range of cilia, in some cases contributing to axoneme assembly or the delivery of signaling molecules but in many other cases their ciliary functions, if any, remain unknown. In this review, we focus on mechanisms of motor action, motor cooperation, and motor-dependent cargo delivery during IFT.
Collapse
Affiliation(s)
- Bram Prevo
- Department of Cellular & Molecular Medicine, University of California San Diego, CA, USA
- Ludwig Institute for Cancer Research, San Diego, CA, USA
| | - Jonathan M Scholey
- Department of Molecular & Cell Biology, University of California Davis, CA, USA
| | - Erwin J G Peterman
- Department of Physics and Astronomy and LaserLaB Amsterdam, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Su YH. Telling left from right: Left-right asymmetric controls in sea urchins. Genesis 2014; 52:269-78. [DOI: 10.1002/dvg.22739] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/20/2013] [Accepted: 12/31/2013] [Indexed: 12/30/2022]
Affiliation(s)
- Yi-Hsien Su
- Institute of Cellular and Organismic Biology; Academia Sinica; Nankang Taipei Taiwan
| |
Collapse
|
5
|
Jin Y, Yaguchi S, Shiba K, Yamada L, Yaguchi J, Shibata D, Sawada H, Inaba K. Glutathione transferase theta in apical ciliary tuft regulates mechanical reception and swimming behavior of Sea Urchin Embryos. Cytoskeleton (Hoboken) 2013; 70:453-70. [PMID: 23907936 PMCID: PMC3812683 DOI: 10.1002/cm.21127] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2013] [Revised: 07/13/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022]
Abstract
An apical tuft, which is observed in a wide range of embryos/larvae of marine invertebrates, is composed of a group of cilia that are longer and less motile than the abundant lateral cilia covering the rest of the embryonic surface. Although the apical tuft has been thought to function as a sensory organ, its molecular composition and roles are poorly understood. Here, we identified a glutathione transferase theta (GSTT) as an abundant and specific component of the apical tuft in sea urchin embryos. The expression of GSTT mRNA increases and becomes limited to the animal plate of the mesenchyme blastula, gastrula, and prism larva. Electron microscopy and tandem mass spectrometry demonstrated that the apical tuft contains almost every axonemal component for ciliary motility. Low concentrations of an inhibitor of glutathione transferase bromosulphophthalein (BSP) induce bending of apical tuft, suggesting that GSTT regulates motility of apical tuft cilia. Embryos treated with BSP swim with normal velocity and trajectories but show less efficiency of changing direction when they collide with an object. These results suggest that GSTT in the apical tuft plays an important role in the mechanical reception for the motility regulation of lateral motile cilia in sea urchin embryos.
Collapse
Affiliation(s)
- Yinhua Jin
- Shimoda Marine Research Center, University of Tsukuba, Shimoda, Shizuoka, 415-0025, Japan
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Armstrong AF, Blackburn HN, Allen JD. A Novel Report of Hatching Plasticity in the Phylum Echinodermata. Am Nat 2013; 181:264-72. [DOI: 10.1086/668829] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Abstract
The cilium is a complex organelle, the assembly of which requires the coordination of motor-driven intraflagellar transport (IFT), membrane trafficking and selective import of cilium-specific proteins through a barrier at the ciliary transition zone. Recent findings provide insights into how cilia assemble and disassemble in synchrony with the cell cycle and how the balance of ciliary assembly and disassembly determines the steady-state ciliary length, with the inherent length-dependence of IFT rendering the ciliary assembly rate a decreasing function of length. As cilia are important in sensing and processing developmental signals and directing the flow of fluids such as mucus, defects in ciliogenesis and length control are likely to underlie a range of cilium-related human diseases.
Collapse
|
8
|
Prulière G, Cosson J, Chevalier S, Sardet C, Chenevert J. Atypical protein kinase C controls sea urchin ciliogenesis. Mol Biol Cell 2011; 22:2042-53. [PMID: 21508313 PMCID: PMC3113769 DOI: 10.1091/mbc.e10-10-0844] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The distribution and function of aPKC are examined during sea urchin ciliogenesis. The kinase concentrates in a ring at the transition zone between the basal body and the elongating axoneme. Inhibition of aPKC results in mislocalization of the kinase and defective ciliogenesis. Thus aPKC controls the growth of motile cilia in invertebrate embryos. The atypical protein kinase C (aPKC) is part of the conserved aPKC/PAR6/PAR3 protein complex, which regulates many cell polarity events, including the formation of a primary cilium at the apical surface of epithelial cells. Cilia are highly organized, conserved, microtubule-based structures involved in motility, sensory processes, signaling, and cell polarity. We examined the distribution and function of aPKC in the sea urchin embryo, which forms a swimming blastula covered with motile cilia. We found that in the early embryo aPKC is uniformly cortical and becomes excluded from the vegetal pole during unequal cleavages at the 8- to 64-cell stages. During the blastula and gastrula stages the kinase localizes at the base of cilia, forming a ring at the transition zone between the basal body and the elongating axoneme. A dose-dependent and reversible inhibition of aPKC results in mislocalization of the kinase, defective ciliogenesis, and lack of swimming. Thus, as in the primary cilium of differentiated mammalian cells, aPKC controls the growth of motile cilia in invertebrate embryos. We suggest that aPKC might function to phosphorylate kinesin and so activate the transport of intraflagellar vesicles.
Collapse
Affiliation(s)
- Gérard Prulière
- Observatoire Océanologique, Biologie du Développement, Université Pierre et Marie Curie and CNRS, Villefranche-sur-Mer, France.
| | | | | | | | | |
Collapse
|
9
|
Yaguchi S, Yaguchi J, Wei Z, Shiba K, Angerer LM, Inaba K. ankAT-1 is a novel gene mediating the apical tuft formation in the sea urchin embryo. Dev Biol 2010; 348:67-75. [PMID: 20875818 PMCID: PMC2976814 DOI: 10.1016/j.ydbio.2010.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 09/16/2010] [Accepted: 09/16/2010] [Indexed: 10/19/2022]
Abstract
In sea urchin embryos, the apical tuft forms within the neurogenic animal plate. When FoxQ2, one of the earliest factors expressed specifically in the animal plate by early blastula stage, is knocked down, the structure of the apical tuft is altered. To determine the basis of this phenotype, we identified FoxQ2-dependent genes using microarray analysis. The most strongly down-regulated gene in FoxQ2 morphants encodes a protein with ankyrin repeats region in its N-terminal domain. We named this gene ankAT-1, Ankyrin-containing gene specific for Apical Tuft. Initially its expression in the animal pole region of very early blastula stage embryos is FoxQ2-independent but becomes FoxQ2-dependent beginning at mesenchyme blastula stage and continuing in the animal plate of 3-day larvae. Furthermore, like FoxQ2, this gene is expressed throughout the expanded apical tuft region that forms in embryos lacking nuclear β-catenin. When AnkAT-1 is knocked-down by injecting a morpholino, the cilia at the animal plate in the resulting embryos are much shorter and their motility is less than that of motile cilia in other ectoderm cells, and remains similar to that of long apical tuft cilia. We conclude that AnkAT-1 is involved in regulating the length of apical tuft cilia.
Collapse
Affiliation(s)
- Shunsuke Yaguchi
- Shimoda Marine Research Center, University of Tsukuba, 5-10-1 Shimoda, Shizuoka, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
In addition to their classic role in cell motility, certain cilia have sensory or signaling functions. In sea urchin embryos, short motile cilia randomly propel the early embryo, while a group of long, immotile cilia appear later, coincident with directional swimming and localized within a region that gives rise to the larval nervous system. Motile cilia can be selectively removed by treatment with a novel derivative of dillapiol, leaving the putative sensory cilia for comparative investigation and a gently deciliated embryo ready for studies of regeneration signaling.
Collapse
Affiliation(s)
- Raymond E. Stephens
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118
| |
Collapse
|
11
|
Abstract
Sea urchin embryos swim by ciliary movement. Hypertonic shock causes deciliation and loss of motility. Within 2-4 h, cilia regenerate and the embryos swim again. Regeneration of cilia occurs multiple times. The adenylate kinase (AK) activity of isolated cilia was studied. A 130-kDa Sp-AK isozyme, present in sperm flagella, is also present in embryonic cilia. AK activity is responsible for approximately 93% of nonmitochondrial ATP regeneration from ADP in embryonic cilia. This is unlike sea urchin sperm flagella, where approximately 31% of the nonmitochondrial ATP regeneration is from the 130-kDa Sp-AK isozyme and approximately 69% from the flagellar creatine kinase (Sp-CK). Embryos were deciliated 1-3 times and after a 2-h period of regeneration the major ciliary axonemal proteins such as the tubulins appeared constant in amount. However, a moderate decrease in ATPase activity, and a large decrease of total AK activity, were measured. The decrease in AK activity paralleled the decrease in embryo swimming velocity. Embryos were deciliated once and cilia regeneration followed for 4 h. ATPase activity recovered to control levels by 3 h, but AK activity and swimming velocity remained lower than in controls. Detergent solubility data and kinetic experiments indicate that, in addition to the 130-kDa Sp-AK, there is at least one additional AK isozyme in embryonic cilia. Analysis of the S. purpuratus genome indicates five AK isozymes in addition to the 130-kDa Sp-AK isozyme. Decreased swimming velocity of embryos with regenerated cilia suggests that regenerated cilia are not as functionally perfect as naturally grown cilia.
Collapse
Affiliation(s)
- Masashi Kinukawa
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California San Diego, La Jolla, California 92093-0202, USA.
| | | |
Collapse
|
12
|
Morris RL, Hoffman MP, Obar RA, McCafferty SS, Gibbons IR, Leone AD, Cool J, Allgood EL, Musante AM, Judkins KM, Rossetti BJ, Rawson AP, Burgess DR. Analysis of cytoskeletal and motility proteins in the sea urchin genome assembly. Dev Biol 2006; 300:219-37. [PMID: 17027957 PMCID: PMC2590651 DOI: 10.1016/j.ydbio.2006.08.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Revised: 08/18/2006] [Accepted: 08/22/2006] [Indexed: 11/30/2022]
Abstract
The sea urchin embryo is a classical model system for studying the role of the cytoskeleton in such events as fertilization, mitosis, cleavage, cell migration and gastrulation. We have conducted an analysis of gene models derived from the Strongylocentrotus purpuratus genome assembly and have gathered strong evidence for the existence of multiple gene families encoding cytoskeletal proteins and their regulators in sea urchin. While many cytoskeletal genes have been cloned from sea urchin with sequences already existing in public databases, genome analysis reveals a significantly higher degree of diversity within certain gene families. Furthermore, genes are described corresponding to homologs of cytoskeletal proteins not previously documented in sea urchins. To illustrate the varying degree of sequence diversity that exists within cytoskeletal gene families, we conducted an analysis of genes encoding actins, specific actin-binding proteins, myosins, tubulins, kinesins, dyneins, specific microtubule-associated proteins, and intermediate filaments. We conducted ontological analysis of select genes to better understand the relatedness of urchin cytoskeletal genes to those of other deuterostomes. We analyzed developmental expression (EST) data to confirm the existence of select gene models and to understand their differential expression during various stages of early development.
Collapse
Affiliation(s)
- R L Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Setter PW, Malvey-Dorn E, Steffen W, Stephens RE, Linck RW. Tektin interactions and a model for molecular functions. Exp Cell Res 2006; 312:2880-96. [PMID: 16831421 DOI: 10.1016/j.yexcr.2006.05.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2006] [Revised: 05/25/2006] [Accepted: 05/28/2006] [Indexed: 10/24/2022]
Abstract
Tektins from echinoderm flagella were analyzed for microheterogeneity, self-associations and association with tubulin, resulting in a general model of tektin filament structure and function applicable to most eukaryotic cilia and flagella. Using a new antibody to tektin consensus peptide RPNVELCRD, well-characterized chain-specific antibodies and quantitative gel densitometry, tektins A, B and C were found to be present in equimolar amounts in Sarkosyl-urea-stable filaments. In addition, two isoforms of tektin A are present in half-molar ratios to tektins B and C. Cross-linking of AB filaments indicates in situ nearest neighbor associations of tektin A1B and A2B heterodimers, -trimers, -tetramers and higher oligomers. Soluble purified tektin C is cross-linked as homodimers, trimers and tetramers, but not higher oligomers. Tektin filaments associate with both loosely bound and tightly bound tubulin, and with the latter in a 1:1 molar ratio, implying a specific, periodic association of tightly bound tubulin along the tektin axis. Similarly, in tektin-containing Sarkosyl-stable protofilament ribbons, two polypeptides ( approximately 67/73 kDa, homologues of rib72, efhc1 and efhc2) are present in equimolar ratios to each other and to individual tektins, co-fractionating with loosely bound tubulin. These results suggest a super-coiled arrangement of tektin filaments, the organization of which has important implications for the evolution, assembly and functions of cilia and flagella.
Collapse
Affiliation(s)
- Peter W Setter
- Department of Genetics, Cell Biology and Development, University of Minnesota, 321 Church St., Minneapolis, MN 55455, USA
| | | | | | | | | |
Collapse
|
14
|
Morris RL, English CN, Lou JE, Dufort FJ, Nordberg J, Terasaki M, Hinkle B. Redistribution of the kinesin-II subunit KAP from cilia to nuclei during the mitotic and ciliogenic cycles in sea urchin embryos. Dev Biol 2004; 274:56-69. [PMID: 15355788 DOI: 10.1016/j.ydbio.2004.06.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2004] [Revised: 06/17/2004] [Accepted: 06/18/2004] [Indexed: 11/25/2022]
Abstract
KAP is the non-motor subunit of the heteromeric plus-end directed microtubule (MT) motor protein kinesin-II essential for normal cilia formation. Studies in Chlamydomonas have demonstrated that kinesin-II drives the anterograde intraflagellar transport (IFT) of protein complexes along ciliary axonemes. We used a green fluorescent protein (GFP) chimera of KAP, KAP-GFP, to monitor movements of this kinesin-II subunit in cells of sea urchin blastulae where cilia are retracted and rebuilt with each mitosis. As expected if involved in IFT, KAP-GFP localized to apical cytoplasm, basal bodies, and cilia and became concentrated on basal bodies of newly forming cilia. Surprisingly, after ciliary retraction early in mitosis, KAP-GFP moved into nuclei before nuclear envelope breakdown, was again present in nuclei after nuclear envelope reformation, and only decreased in nuclei as ciliogenesis reinitiated. Nuclear transport of KAP-GFP could be due to a putative nuclear localization signal and nuclear export signals identified in the sea urchin KAP primary sequence. Our observation of a protein involved in IFT being imported into the nucleus after ciliary retraction and again after nuclear envelope reformation suggests KAP115 may serve as a signal to the nucleus to reinitiate cilia formation during sea urchin development.
Collapse
Affiliation(s)
- Robert L Morris
- Department of Biology, Wheaton College, Norton, MA 02766, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
|
16
|
Abstract
It has been a decade since a novel form of microtubule (MT)-based motility, i.e., intraflagellar transport (IFT), was discovered in Chlamydomonas flagella. Subsequent research has supported the hypothesis that IFT is required for the assembly and maintenance of all cilia and flagella and that its underlying mechanism involves the transport of nonmembrane-bound macromolecular protein complexes (IFT particles) along axonemal MTs beneath the ciliary membrane. IFT requires the action of the anterograde kinesin-II motors and the retrograde IFT-dynein motors to transport IFT particles in opposite directions along the MT polymer lattice from the basal body to the tip of the axoneme and back again. A rich diversity of biological processes has been shown to depend upon IFT, including flagellar length control, cell swimming, mating and feeding, photoreception, animal development, sensory perception, chemosensory behavior, and lifespan control. These processes reflect the varied roles of cilia and flagella in motility and sensory signaling.
Collapse
Affiliation(s)
- Jonathan M Scholey
- Center for Genetics and Development, Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
| |
Collapse
|
17
|
Casano C, Gianguzza F, Roccheri MC, Di Giorgi R, Maenza L, Ragusa MA. Hsp40 is involved in cilia regeneration in sea urchin embryos. J Histochem Cytochem 2004; 51:1581-7. [PMID: 14623926 DOI: 10.1177/002215540305101202] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In a previous paper we demonstrated that, in Paracentrotus lividus embryos, deciliation represents a specific kind of stress that induces an increase in the levels of an acidic protein of about 40 kD (p40). Here we report that deciliation also induces an increase in Hsp40 chaperone levels and enhancement of its ectodermal localization. We suggest that Hsp40 might play a chaperoning role in cilia regeneration.
Collapse
Affiliation(s)
- Caterina Casano
- Dipartimento di Biologia Cellulare e dello Sviluppo Alberto Monroy, Palermo, Italy.
| | | | | | | | | | | |
Collapse
|
18
|
Dubruille R, Laurençon A, Vandaele C, Shishido E, Coulon-Bublex M, Swoboda P, Couble P, Kernan M, Durand B. Drosophila regulatory factor X is necessary for ciliated sensory neuron differentiation. Development 2002; 129:5487-98. [PMID: 12403718 DOI: 10.1242/dev.00148] [Citation(s) in RCA: 126] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Ciliated neurons play an important role in sensory perception in many animals. Modified cilia at dendrite endings serve as sites of sensory signal capture and transduction. We describe Drosophila mutations that affect the transcription factor RFX and genetic rescue experiments that demonstrate its central role in sensory cilium differentiation. Rfx mutant flies show defects in chemosensory and mechanosensory behaviors but have normal phototaxis, consistent with Rfx expression in ciliated sensory neurons and neuronal precursors but not in photoreceptors. The mutant behavioral phenotypes are correlated with abnormal function and structure of neuronal cilia, as shown by the loss of sensory transduction and by defects in ciliary morphology and ultrastructure. These results identify Rfx as an essential regulator of ciliated sensory neuron differentiation in Drosophila.
Collapse
Affiliation(s)
- Raphaelle Dubruille
- Centre de Génétique Moléculaire et Cellulaire, CNRS UMR-5534, Université Claude Bernard Lyon-1, 69622 Villeurbanne, France
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Staver JM, Strathmann RR. Evolution of fast development of planktonic embryos to early swimming. THE BIOLOGICAL BULLETIN 2002; 203:58-69. [PMID: 12200256 DOI: 10.2307/1543458] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Planktonic embryos of marine animals swim at an early stage and age. Although natural selection has apparently favored rapid development of structures for swimming, taxa have not converged on the same, minimal time from first cell division to first swimming. Comparisons of 34 species with planktonic embryos in 10 phyla revealed factors that account for variation in time to swimming. Time to first swimming correlated significantly with time from first to second cleavage (first cell cycle) in analyses of all embryos sampled and separately within the Spiralia and Echinodermata. Time to first swimming also correlated significantly with egg diameter in some clades, but not in all. Correlations between egg diameter and cell cycle duration were low except for the three species of Urochordata. Development to a feeding or nonfeeding larva did not affect time to first swimming beyond effects attributable to egg size. Time to first swimming did not correlate with type of locomotion developed (uniciliated cells, multiciliated cells, or muscle). Nonetheless, differences in locomotion are associated with changes in cell cycle durations prior to swimming. The ratios of time to first swimming and time for first cell cycle suggests that allocation of time to multiplication of cells versus differentiation of cells is resolved differently in species with different types of locomotion.
Collapse
Affiliation(s)
- Jennifer M Staver
- Friday Harbor Laboratories and Department of Zoology, University of Washington, 620 University Road, Friday Harbor, Washington 98250, USA
| | | |
Collapse
|
20
|
Stephens RE. Ciliary protein turnover continues in the presence of inhibitors of golgi function: evidence for membrane protein pools and unconventional intracellular membrane dynamics. ACTA ACUST UNITED AC 2001; 289:335-49. [PMID: 11351321 DOI: 10.1002/jez.1015] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The intimate association of the Golgi apparatus with cilia suggests a functional alliance. To explore the relationship between the synthesis and processing of membrane constituents and the turnover or regeneration of cilia, parallel cultures of gastrula-stage sea urchin embryos were pulse-chase labeled with (3)H-leucine in the presence of monensin, brefeldin A, or colchicine. Steady-state labeled cilia were isolated, and the embryos were allowed to regenerate cilia, which were then isolated after the equivalent of two normal regeneration times. Regeneration was absent in colchicine, minimal in monensin, and inhibited about 40% by brefeldin A. Both monensin and brefeldin A effectively inhibited the post-translational processing of prominent phosphatidylinositoylated and palmitoylated membrane proteins and the axoneme-associated transmembrane Spec3 protein, yet most other membrane plus matrix and 9+2 axonemal proteins were labeled to levels indistinguishable from untreated controls. However, total protein analysis of the membrane plus matrix fractions showed a substantial increase in glycoproteins and the calsequestrin-like protein ECaSt/PDI after treatment at steady-state with all three inhibitors and after regeneration in brefeldin A. Other constituents of this compartment, such as membrane-associated tubulin, calmodulin, and a 53-kDa calcium-binding protein, were unchanged. Therefore, inhibition of Golgi function via three different mechanisms left 9+2 protein turnover undiminished but resulted in an accumulation, in the cilium, of already-processed membrane pool constituents and a normally ER-resident protein. A disproportionate elevation of HSP70 suggests that a novel stress response may be involved in inhibiting ciliary regeneration or promoting glycoprotein augmentation.
Collapse
Affiliation(s)
- R E Stephens
- Department of Physiology and Biophysics, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| |
Collapse
|
21
|
Ersfeld K, Gull K. Targeting of cytoskeletal proteins to the flagellum of Trypanosoma brucei. J Cell Sci 2001; 114:141-148. [PMID: 11112698 DOI: 10.1242/jcs.114.1.141] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic flagellum represents one of the most complex macromolecular structures found in any organism and contains more than 250 proteins. Due to the relative ease of genetic manipulation the flagellum of Trypanosoma brucei has emerged as an accessible model system to study the morphogenesis and dynamics of this organelle. We have recently started to characterise the mechanisms by which components of the cytoskeletal fraction of the flagellum, such as the axoneme, the paraflagellar rod and the flagellar attachment zone, are targeted by proteins synthesised in the cytoplasm and assembled. Here, we present the identification of a novel actin-related protein as a component of the axoneme. We show that this protein shares the tripeptid motif histidine-leucine-alanine (HLA) with one of the major proteins of the paraflagellar rod, PFRA. Building on previous work from this lab which showed that a deletion comprising this motif abolished targeting of PFRA to the flagellum we demonstrate in this study that the deletion of the tripeptid motif is sufficient to achieve mistargeting both of the PFRA and the actin-related protein. We propose that this motif represents an essential part of a flagellar targeting machinery in trypanosomes and possibly in other flagellated organisms.
Collapse
Affiliation(s)
- K Ersfeld
- School of Biological Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK.
| | | |
Collapse
|
22
|
Swoboda P, Adler HT, Thomas JH. The RFX-type transcription factor DAF-19 regulates sensory neuron cilium formation in C. elegans. Mol Cell 2000; 5:411-21. [PMID: 10882127 DOI: 10.1016/s1097-2765(00)80436-0] [Citation(s) in RCA: 252] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Many types of sensory neurons contain modified cilia where sensory signal transduction occurs. We report that the C. elegans gene daf-19 encodes an RFX-type transcription factor that is expressed specifically in all ciliated sensory neurons. Loss of daf-19 function causes the absence of cilia, resulting in severe sensory defects. Several genes that function in all ciliated sensory neurons have an RFX target site in their promoters and require daf-19 function. Several other genes that function in subsets of ciliated sensory neurons do not have an RFX target site and are not daf-19 dependent. These results suggest that expression of the shared components of sensory cilia is activated by daf-19, whereas cell-type-specific expression occurs independently of daf-19.
Collapse
Affiliation(s)
- P Swoboda
- Department of Genetics, University of Washington, Seattle 98195, USA.
| | | | | |
Collapse
|
23
|
Stephens RE, Lemieux NA. Molecular chaperones in cilia and flagella: implications for protein turnover. CELL MOTILITY AND THE CYTOSKELETON 1999; 44:274-83. [PMID: 10602256 DOI: 10.1002/(sici)1097-0169(199912)44:4<274::aid-cm5>3.0.co;2-o] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The mechanisms of protein incorporation and turnover in 9+2 ciliary axonemes are not known. Previous reports of an HSP70-related protein, first in Chlamydomonas flagella and then in sea urchin embryonic cilia, suggested a potential role in protein transport or incorporation. The present study further explores this and other chaperones in axonemes from a representative range of organisms. Two-dimensional gel electrophoresis proved identity between the sea urchin ciliary 78 kDa HSP and a constitutive cytoplasmic HSP70 cognate (pI = 5.71). When isolated flagella from mature sea urchin sperm were analyzed, the same total amount and distribution of 78 kDa protein as in cilia were found. Antigens of similar size were detected in ctenophore comb plate, molluscan gill, and rabbit tracheal cilia. Absent from sea urchin sperm flagella, TCP-1alpha was detected in sea urchin embryonic and rabbit tracheal cilia; the latter also contained HSP90, detected by two distinct antibodies. Tracheal cilia were shown to undergo axonemal protein turnover while tracheal cells mainly synthesized ciliary proteins. TCP-1alpha progressively appeared in regenerating embryonic cilia only as their growth slowed, suggesting a regulatory role in incorporation or turnover. These results demonstrate that chaperones are widely distributed ciliary and flagellar components, potentially related to axonemal protein dynamics.
Collapse
Affiliation(s)
- R E Stephens
- Department of Physiology, Boston University School of Medicine, Boston, Massachusetts 02118, USA.
| | | |
Collapse
|
24
|
Signor D, Wedaman KP, Rose LS, Scholey JM. Two heteromeric kinesin complexes in chemosensory neurons and sensory cilia of Caenorhabditis elegans. Mol Biol Cell 1999; 10:345-60. [PMID: 9950681 PMCID: PMC25173 DOI: 10.1091/mbc.10.2.345] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/1998] [Accepted: 11/23/1998] [Indexed: 11/11/2022] Open
Abstract
Chemosensation in the nervous system of the nematode Caenorhabditis elegans depends on sensory cilia, whose assembly and maintenance requires the transport of components such as axonemal proteins and signal transduction machinery to their site of incorporation into ciliary structures. Members of the heteromeric kinesin family of microtubule motors are prime candidates for playing key roles in these transport events. Here we describe the molecular characterization and partial purification of two heteromeric kinesin complexes from C. elegans, heterotrimeric CeKinesin-II and dimeric CeOsm-3. Transgenic worms expressing green fluorescent protein driven by endogenous heteromeric kinesin promoters reveal that both CeKinesin-II and CeOsm-3 are expressed in amphid, inner labial, and phasmid chemosensory neurons. Additionally, immunolocalization experiments on fixed worms show an intense concentration of CeKinesin-II and CeOsm-3 polypeptides in the ciliated endings of these chemosensory neurons and a punctate localization pattern in the corresponding cell bodies and dendrites. These results, together with the phenotypes of known mutants in the pathway of sensory ciliary assembly, suggest that CeKinesin-II and CeOsm-3 drive the transport of ciliary components required for sequential steps in the assembly of chemosensory cilia.
Collapse
Affiliation(s)
- D Signor
- Section of Molecular and Cellular Biology, University of California at Davis, Davis, California 95616, USA
| | | | | | | |
Collapse
|
25
|
Casano C, Roccheri MC, Onorato K, Cascino D, Gianguzza F. Deciliation: A stressful event for Paracentrotus lividus embryos. Biochem Biophys Res Commun 1998; 248:628-34. [PMID: 9703977 DOI: 10.1006/bbrc.1998.9032] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this report, by using mono- and two-dimensional electrophoretic analysis, we demonstrate that deciliation on sea urchin embryos induces a stress response. Deciliation indeed causes not only the activation of ciliary subroutine, but also a transient decrease of bulk protein synthesis. This decrease is in agreement with our previous results on heat shock response in sea urchin, although deciliation does not induce the expression of the same main hsp set. We were able to characterize one main deciliation-stress protein of 40 kDa whose expression is transiently induced by deciliation and whose localisation is likely to be nuclear.
Collapse
Affiliation(s)
- C Casano
- Dipartimento di Biologia Cellulare e dello Sviluppo A. Monroy, Università di Palermo, Italy
| | | | | | | | | |
Collapse
|
26
|
Stephens RE. Synthesis and turnover of embryonic sea urchin ciliary proteins during selective inhibition of tubulin synthesis and assembly. Mol Biol Cell 1997; 8:2187-98. [PMID: 9362062 PMCID: PMC25701 DOI: 10.1091/mbc.8.11.2187] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/1997] [Accepted: 08/20/1997] [Indexed: 02/05/2023] Open
Abstract
When ciliogenesis first occurs in sea urchin embryos, the major building block proteins, tubulin and dynein, exist in substantial pools, but most 9 + 2 architectural proteins must be synthesized de novo. Pulse-chase labeling with [3H]leucine demonstrates that these proteins are coordinately up-regulated in response to deciliation so that regeneration ensues and the tubulin and dynein pools are replenished. Protein labeling and incorporation into already-assembled cilia is high, indicating constitutive ciliary gene expression and steady-state turnover. To determine whether either the synthesis of tubulin or the size of its available pool is coupled to the synthesis or turnover of the other 9 + 2 proteins in some feedback manner, fully-ciliated mid- or late-gastrula stage Strongylocentrotus droebachiensis embryos were pulse labeled in the presence of colchicine or taxol at concentrations that block ciliary growth. As a consequence of tubulin autoregulation mediated by increased free tubulin, no labeling of ciliary tubulin occurred in colchicine-treated embryos. However, most other proteins were labeled and incorporated into steady-state cilia at near-control levels in the presence of colchicine or taxol. With taxol, tubulin was labeled as well. An axoneme-associated 78 kDa cognate of the molecular chaperone HSP70 correlated with length during regeneration; neither colchicine nor taxol influenced the association of this protein in steady-state cilia. These data indicate that 1) ciliary protein synthesis and turnover is independent of tubulin synthesis or tubulin pool size; 2) steady-state incorporation of labeled proteins cannot be due to formation or elongation of cilia; 3) substantial tubulin exchange takes place in fully-motile cilia; and 4) chaperone presence and association in steady-state cilia is independent of background ciliogenesis, tubulin synthesis, and tubulin assembly state.
Collapse
Affiliation(s)
- R E Stephens
- Department of Physiology, Boston University School of Medicine, Massachusetts 02118, USA
| |
Collapse
|
27
|
Morris RL, Scholey JM. Heterotrimeric kinesin-II is required for the assembly of motile 9+2 ciliary axonemes on sea urchin embryos. J Cell Biol 1997; 138:1009-22. [PMID: 9281580 PMCID: PMC2136763 DOI: 10.1083/jcb.138.5.1009] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/1996] [Revised: 07/18/1997] [Indexed: 02/05/2023] Open
Abstract
Heterotrimeric kinesin-II is a plus end- directed microtubule (MT) motor protein consisting of distinct heterodimerized motor subunits associated with an accessory subunit. To probe the intracellular transport functions of kinesin-II, we microinjected fertilized sea urchin eggs with an anti-kinesin-II monoclonal antibody, and we observed a dramatic inhibition of ciliogenesis at the blastula stage characterized by the assembly of short, paralyzed, 9+0 ciliary axonemes that lack central pair MTs. Control embryos show no such defect and form swimming blastulae with normal, motile, 9+2 cilia that contain kinesin-II as detected by Western blotting. Injection of anti-kinesin-II into one blastomere of a two-cell embryo leads to the development of chimeric blastulae covered on one side with short, paralyzed cilia, and on the other with normal, beating cilia. We observed a unimodal length distribution of short cilia on anti-kinesin-II-injected embryos corresponding to the first mode of the trimodal distribution of ciliary lengths observed for control embryos. This short mode may represent a default ciliary assembly intermediate. We hypothesize that kinesin-II functions during ciliogenesis to deliver ciliary components that are required for elongation of the assembly intermediate and for formation of stable central pair MTs. Thus, kinesin-II plays a critical role in embryonic development by supporting the maturation of nascent cilia to generate long motile organelles capable of producing the propulsive forces required for swimming and feeding.
Collapse
Affiliation(s)
- R L Morris
- Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA
| | | |
Collapse
|