1
|
Wang M, Cheng J, Xu W, Zhu D, Zhang W, Wen Y, Guan W, Jia J, Lu Z. Self-cleaning electrode for stable synthesis of alkaline-earth metal peroxides. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01815-x. [PMID: 39468360 DOI: 10.1038/s41565-024-01815-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024]
Abstract
Alkaline-earth metal peroxides (MO2, M = Ca, Sr, Ba) represent a category of versatile and clean solid oxidizers, while the synthesis process usually consumes excessive hydrogen peroxide (H2O2). Here we discover that H2O2 synthesized via two-electron electrochemical oxygen reduction (2e- ORR) on the electrode surface can be efficiently and durably consumed to produce high-purity MO2 in an alkaline environment. The crucial factor lies in the in-time detachment of in situ-generated MO2 from the self-cleaning electrode, where the solid products spontaneously detach from the electrode to solve the block issue. The self-cleaning electrode is achieved by constructing micro-/nanostructure of a highly active catalyst with appropriate surface modification. In experiments, an unprecedented accumulated selectivity (~99%) and durability (>1,000 h, 50 mA cm-2) are achieved for electrochemical synthesis of MO2. Moreover, the comparability of CaO2 and H2O2 for tetracycline degradation with hydrodynamic cavitation is validated in terms of their close efficacies (degradation efficiency of 87.9% and 93.6% for H2O2 and CaO2, respectively).
Collapse
Affiliation(s)
- Minli Wang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinhuan Cheng
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Wenwen Xu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Dandan Zhu
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China
| | - Wuyong Zhang
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Yingjie Wen
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
| | - Wanbing Guan
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai, China.
| | - Zhiyi Lu
- Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Advanced Fuel Cells and Electrolyzers Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
Pei Z, Montagne K, Namiki A, Shinohara M, Ushida T, Furukawa KS. Printable oxygen-generating biodegradable scaffold for thicker tissue-engineered medical products. Artif Organs 2024; 48:402-407. [PMID: 38282554 DOI: 10.1111/aor.14713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/15/2023] [Accepted: 01/03/2024] [Indexed: 01/30/2024]
Abstract
BACKGROUND Due to the increasing demand to generate thick and vascularized tissue-engineered constructs, novel strategies are currently being developed. An effective example is the fabrication of a 3D scaffold containing oxygen-releasing biomaterials to solve the limitations of gas diffusion and transport within transplanted tissues or devices. METHODS In this study, we developed a biodegradable scaffold made of polycaprolactone (PCL) mixed with oxygen-generating calcium peroxide (CPO) to design new structures for regenerative tissue using a 3D printer capable of forming arbitrarily shapes. RESULTS AND CONCLUSION When osteoblast progenitor cells (MC3T3-E1 cells) were cultured under hypoxic conditions on scaffolds fabricated with this technique, it was shown that cell death was reduced by the new scaffolds. Therefore, the results suggest that 3D-printed scaffolds made from biodegradable oxygen-releasing materials may be useful for tissue engineering and regeneration.
Collapse
Affiliation(s)
- Zihan Pei
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Kevin Montagne
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Ayaka Namiki
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
| | - Makoto Shinohara
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Takashi Ushida
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| | - Katsuko S Furukawa
- Department of Bioengineering, The University of Tokyo, Tokyo, Japan
- Department of Mechanical Engineering, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Yu S, Liu C, Sui M, Wei H, Cheng H, Chen Y, Zhu Y, Wang H, Ma P, Wang L, Li T. Magnetic-acoustic actuated spinous microrobot for enhanced degradation of organic pollutants. ULTRASONICS SONOCHEMISTRY 2024; 102:106714. [PMID: 38113586 PMCID: PMC10772293 DOI: 10.1016/j.ultsonch.2023.106714] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/20/2023] [Accepted: 12/01/2023] [Indexed: 12/21/2023]
Abstract
A growing interest in the development of efficient strategies for the removal of organic pollutants from polluted water is emerging. As such, artificial micro/nano machines performing excellent water purification tasks have recently attracted more research attention of scientists. Hereby a spinous Fe3O4@PPy microrobot is presented that towards an efficient organic pollutant removal by enhancing Fenton-like reaction. The microrobot is fabricated by wrapping polypyrrole (PPy) on a spiny magnetic template prepared from sunflowers pollen. Modulating the sound pressure and frequency of the ultrasonic field enables the Fe3O4@PPy microrobot to present multimode motion, such as violent eruption-like motion caused by local cavitation (ELM), march-like unific motion (MLM), and typhoon-like rotation toward the center gathered motion (TLM). This multimode motion achieves the sufficient locomotion of microrobots in three-dimensional space and effective contact with organic pollutants in polluted water. Furthermore, a 5.2-fold increase in the degradation rate of methylene blue has been realized using Fe3O4@PPy microrobots under low-concentration hydrogen peroxide conditions. Also, the magnetically controlled recovery of microrobots from water after the completion of the degradation task has been demonstrated. The magnetic-acoustic actuated spinous microrobot can be extrapolated to other catalytic microrobot, developing a new strategy for an easier implementation and recovery of microrobot in real applications of water purification.
Collapse
Affiliation(s)
- Shimin Yu
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Chenlu Liu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Mingyang Sui
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haiqiang Wei
- The Twelfth Oil Production Plant of Changqing Oilfield Company, Qingyang 745400, China
| | - Haoyuan Cheng
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yujing Chen
- College of Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanhe Zhu
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Haocheng Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China
| | - Penglei Ma
- College of Engineering, Ocean University of China, Qingdao 266100, China.
| | - Lin Wang
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
| | - Tianlong Li
- State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China; Chongqing Research Institute of HIT, Chongqing 401151, China.
| |
Collapse
|
4
|
Müller-Heupt LK, Eckelt A, Eckelt J, Groß J, Opatz T, Kommerein N. An In Vitro Study of Local Oxygen Therapy as Adjunctive Antimicrobial Therapeutic Option for Patients with Periodontitis. Antibiotics (Basel) 2023; 12:990. [PMID: 37370309 DOI: 10.3390/antibiotics12060990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/25/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Periodontitis is a common global disease caused by bacterial dysbiosis leading to tissue destruction, and it is strongly associated with anaerobic bacterial colonization. Therapeutic strategies such as oxygen therapy have been developed to positively influence the dysbiotic microbiota, and the use of oxygen-releasing substances may offer an added benefit of avoiding systemic effects commonly associated with antibiotics taken orally or hyperbaric oxygen therapy. Therefore, the oxygen release of calcium peroxide (CaO2) was measured using a dissolved oxygen meter, and CaO2 solutions were prepared by dissolving autoclaved CaO2 in sterile filtered and deionized water. The effects of CaO2 on planktonic bacterial growth and metabolic activity, as well as on biofilms of Streptococcus oralis and Porphyromonas gingivalis, were investigated through experiments conducted under anaerobic conditions. The objective of this study was to investigate the potential of CaO2 as an antimicrobial agent for the treatment of periodontitis. Results showed that CaO2 selectively inhibited the growth and viability of P. gingivalis (p < 0.001) but had little effect on S. oralis (p < 0.01), indicating that CaO2 has the potential to selectively affect both planktonic bacteria and mono-species biofilms of P. gingivalis. The results of this study suggest that CaO2 could be a promising antimicrobial agent with selective activity for the treatment of periodontitis.
Collapse
Affiliation(s)
- Lena Katharina Müller-Heupt
- Department of Oral and Maxillofacial Surgery, University Medical Center Mainz, Augustusplatz 2, 55131 Mainz, Germany
| | - Anja Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - John Eckelt
- WEE-Solve GmbH, Auf der Burg 6, 55130 Mainz, Germany
| | - Jonathan Groß
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Nadine Kommerein
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Carl-Neuberg-Straße 1, 30625 Hannover, Germany
| |
Collapse
|
5
|
Pütz E, Tutzschky I, Frerichs H, Tremel W. In situ generation of H 2O 2 using CaO 2 as peroxide storage depot for haloperoxidase mimicry with surface-tailored Bi-doped mesoporous CeO 2 nanozymes. NANOSCALE 2023; 15:5209-5218. [PMID: 36285584 DOI: 10.1039/d2nr02575b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Designing the size, morphology and interfacial charge of catalyst particles at the nanometer scale can enhance their performance. We demonstrate this with nanoceria which is a functional mimic of haloperoxidases, a group of enzymes that halogenates organic substrates in the presence of hydrogen peroxide. These reactions in aqueous solution require the presence of H2O2. We demonstrate in situ generation of H2O2 from a CaO2 reservoir in polyether sulfone (PES) and poly(vinylidene fluoride) (PVDF) polymer beads, which circumvents the external addition of H2O2 and expands the scope of applications for haloperoxidase reactions. The catalytic activity of nanoceria was enhanced significantly by Bi3+ substitution. Bi-doped mesoporous ceria nanoparticles with tunable surface properties were prepared by changing the reaction time. Increasing reaction time increases the surface area SBET of the mesoporous Bi0.2Ce0.8O1.9 nanoparticles and the Ce3+/Ce4+ ratio, which is associated with the ζ-potential. In this way, the catalytic activity of nanoceria could be tuned in a straightforward manner. H2O2 required for the reaction was released steadily over a long period of time from a CaO2 storage depot incorporated in polyether sulfone (PES) and poly(vinylidene fluoride) (PVDF) beads together with Bi0.2Ce0.8O1.9 particles, which may be used as precision fillers and templates for biological applications. The spheres are prepared as a dry powder with no surface functionalization or coatings. They are inert, chemically stable, and safe for handling. The feasibility of this approach was demonstrated using a haloperoxidase assay.
Collapse
Affiliation(s)
- Eva Pütz
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Ina Tutzschky
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Hajo Frerichs
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| | - Wolfgang Tremel
- Johannes Gutenberg-Universität Mainz, Department Chemie, Duesbergweg 10-14, D-55128 Mainz, Germany.
| |
Collapse
|
6
|
Wang J, Xu J, Lu M, Shangguan Y, Liu X. Mechanism of dielectric barrier plasma technology to improve the quantity and quality of short chain fatty acids in anaerobic fermentation of cyanobacteria. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 155:65-76. [PMID: 36347162 DOI: 10.1016/j.wasman.2022.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/01/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The recycling of high value carbon resources from cyanobacteria has become a research hotspot. This work investigated the possibility of dielectric barrier discharge (DBD) plasma pretreatment to improve the anaerobic fermentation performance of cyanobacteria. The maximum accumulations of short-chain fatty acids (SCFAs) and acetic acid in DBD group were 3.30 and 1.49 times of that in control group. The physical effects of DBD plasma and the oxidative stress response of cyanobacteria cells could improve the solubilization of cyanobacteria polymer. The destruction of humus by DBD plasma can reduce the negative impact of humus on the early stage of anaerobic fermentation, thus facilitating the rapid start of anaerobic fermentation. The contents of Bacteroidetes, Firmicutes and Chloroflexi in DBD group were higher than those in control group, while the content of Proteobacteria was on the contrary, which was conducive to the hydrolysis and acidification process. The decrease of Methanosaeta sp. and Methanosarcina sp. abundance in DBD group might be another reason for the increase of acetic acid ratio. Under the joint action of plasma chemical oxidation and microbial degradation, the degradation effect of microcystin-LR in the anaerobic fermentation supernatant of DBD group was better than that of the control group, which was conducive to the recycling of cyanobacteria anaerobic fermentation supernatant. Therefore, DBD pretreatment was conductive to recycling valuable carbon source from cyanobacteria and can be further developed as a potential new pretreatment technology.
Collapse
Affiliation(s)
- Jie Wang
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China
| | - Junli Xu
- School of Ecology and Environment, Yellow River Conservancy Technical Institute, No. 1 Dongjing Road, Kaifeng, 475004, Henan Province, China
| | - Ming Lu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China
| | - Yuyi Shangguan
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China
| | - Xingguo Liu
- Fishery Machinery and Instrument Research Institute of Chinese Academy of Fishery Sciences, 63 Chifeng Road, Shanghai 200092, China.
| |
Collapse
|
7
|
Rajesh Banu J, Gunasekaran M, Kumar V, Bhatia SK, Kumar G. Enhanced biohydrogen generation through calcium peroxide engendered efficient ultrasonic disintegration of waste activated sludge in low temperature environment. BIORESOURCE TECHNOLOGY 2022; 365:128164. [PMID: 36283675 DOI: 10.1016/j.biortech.2022.128164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 10/14/2022] [Accepted: 10/15/2022] [Indexed: 06/16/2023]
Abstract
Waste activated sludge is a renewable source for biohydrogen production, whereas the presence of complex biopolymers limits the hydrolysis step during this process, and thus pretreatment is required to disintegrate the sludge biomass. In this study, the feasibility of utilizing waste activated sludge to produce biohydrogen by improving the solubilization by means of thermo CaO2 engendered sonication disintegration (TCP-US) was studied. The optimized condition for extracellular polymeric substance (EPS) dissociation was obtained at the CaO2 dosage of 0.05 g/g SS at 70 °C. The maximum disintegration after EPS removal was achieved at the sonic specific energy input of 1612.8 kJ/kg TS with the maximum solubilization and SS reduction of 23.7% and 18.14%, respectively, which was higher than the US alone pretreatment. Thus, this solubilization yields higher biohydrogen production of 114.3 mLH2/gCOD in TCP-US sample.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus Tirunelveli, Tamilnadu 627007 India
| | - Vinod Kumar
- School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, United Kingdom
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
8
|
Rastinfard A, Dalisson B, Barralet J. Aqueous decomposition behavior of solid peroxides: Effect of pH and buffer composition on oxygen and hydrogen peroxide formation. Acta Biomater 2022; 145:390-402. [PMID: 35405328 DOI: 10.1016/j.actbio.2022.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 12/11/2022]
Abstract
The ability of solid peroxides to provide sustained release of both oxygen and hydrogen peroxide makes them potentially suitable for oxygen release or antibacterial applications. Most recent reports using solid peroxides to augment oxygen levels do so by compounding solid peroxide powders in polymers to retard the aqueous decomposition. Compounds with peroxidase activity may be added to reduce hydrogen peroxide toxicity. Peroxides are rarely pure and are mixed with oxide and themselves decompose to form hydroxides in water. Therefore, even if buffering strategies are used, locally the pH at the surface of aqueously immersed peroxide particles is inevitably alkaline. Since pH affects the decomposition of peroxides and hydrogen peroxide stability, this study compared for the first-time the aqueous decomposition products of hydrogen and inorganic peroxides that are in use or have been used for medical applications of have been evaluated preclinically; calcium peroxide (CaO2), magnesium peroxide (MgO2), zinc peroxide (ZnO2), sodium percarbonate (Na2CO3.1.5H2O2) and hydrogen peroxide (H2O2). Since plasma can be approximated to be carbonate buffered phosphate solution, we maintained pH using carbonate and phosphate buffers and compared results with citrate buffers. For a given peroxide compound, we identified not only a strong effect of pH but also of buffer composition on the extent to which oxygen and hydrogen peroxide formation occurred. The influence of buffer composition was not previously appreciated, thereby establishing in vitro parameters for better design of intentional release of specific decomposition species. STATEMENT OF SIGNIFICANCE: This paper compares for the first time the aqueous decomposition products oxygen and hydrogen peroxide of solid peroxy compounds of metal cations, (calcium, magnesium, sodium and zinc) across a pH range that could feasibly be found in the body, (pH 5,7, 9) either physiologically or pathologically. We find that in addition to pH, buffer composition is also a critically important factor, making translation from in vitro models challenging. Cytotoxicity was related to hydrogen peroxide release, alkalinity and in the case of zinc peroxide to the cation itself. In vitro and preclinical studies generally report release data from polymer-peroxide composites and rarely compare peroxides with one another. Together our data provide guidance for oxygen and ROS delivery from these inorganic materials.
Collapse
|
9
|
Wang C, Wei W, Dai X, Ni BJ. Calcium peroxide significantly enhances volatile solids destruction in aerobic sludge digestion through improving sludge biodegradability. BIORESOURCE TECHNOLOGY 2022; 346:126655. [PMID: 34979280 DOI: 10.1016/j.biortech.2021.126655] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/23/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
This work put up a novel strategy of applying calcium peroxide (CaO2) in aerobic sludge digestion and provided insights into such system. The degradation percentage of sludge and total inorganic nitrogen production in the digesters with CaO2 at 0.02 g/g-VS-WAS increased by 25.8% and 18.8% of control. CaO2 addition allowed various key microbes related to organics degradation to accumulate in the system. Moreover, the modelling and chemical (i.e., excitation emission matrix (EEM) fluorescence and fourier transformation spectroscopy (FTIR)) analyses revealed that CaO2 addition enhanced sludge biodegradability with more release of biodegradable organics and increased degradation of recalcitrant organics, which can be transformed into biodegradable organics with the action of CaO2. Subsequent transformation test indicated that CaO2 enabled to promote hydrolysis and catabolism of biodegradable substrates in sludge. Further investigations on function mechanism suggested that CaO2 carried on positive action for sludge aerobic digestion mainly through the enhancement by ·OH.
Collapse
Affiliation(s)
- Chen Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, Centre for Technology in Water and Wastewater, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
10
|
Zhu Y, Qin J, Zhang S, Radian A, Long M. Solid peroxides in Fenton-like reactions at near neutral pHs: Superior performance of MgO 2 on the accelerated reduction of ferric species. CHEMOSPHERE 2021; 270:128639. [PMID: 33268091 DOI: 10.1016/j.chemosphere.2020.128639] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/26/2020] [Accepted: 10/13/2020] [Indexed: 06/12/2023]
Abstract
Fenton-like reactions at near neutral pHs are limited by the slow reduction of ferric species. Enhancing generation of from solid peroxides is a promising strategy to accelerate the rate-limiting step. Herein, the H2O2 release and Fenton-like reactions of four solid peroxides, MgO2, CaO2, ZnO2 and urea hydrogen peroxide (UHP), were investigated. Results indicated that UHP can release H2O2 instantly and show a similar behavior as H2O2 in the Fenton-like reactions. MgO2 released H2O2 quickly in phosphate buffered solutions, which was comparable to CaO2 but faster than ZnO2. Metal peroxides induced higher initial phenol degradation rates than UHP and H2O2 when the same theoretic H2O2 dosages and Fe(III)-EDTA were used. MgO2 displayed a superior performance for phenol degradation at pH 5, resulting in more than 93% phenol reduction at 1.5 h. According to kinetic analyses, the generation rate of in the MgO2 system was 18 and 3.4 times higher than those in ZnO2 and CaO2 systems, respectively. The addition of MgO2 significantly promoted H2O2 based Fenton-like reactions by increasing production of , and the mixture of MgO2 and H2O2 had an improved utilization efficiency of active oxygen than the MgO2 system. The findings suggested the critical roles of metal peroxides in favoring Fenton-like reactions and inspired strategies to simultaneously accelerate Fenton-like reactions and improve utilization efficiency of active oxygen.
Collapse
Affiliation(s)
- Yitong Zhu
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Jiaolong Qin
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Shuqi Zhang
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion-Israel Institute of Technology, Technion City, Haifa, 32000, Israel
| | - Mingce Long
- School of Environmental Science and Engineering, Key Laboratory of Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China.
| |
Collapse
|
11
|
Xu Q, Huang QS, Wei W, Sun J, Dai X, Ni BJ. Improving the treatment of waste activated sludge using calcium peroxide. WATER RESEARCH 2020; 187:116440. [PMID: 32980604 DOI: 10.1016/j.watres.2020.116440] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The treatment and disposal of waste activated sludge (WAS) has become one of the major challenges for the wastewater treatment plants (WWTPs) due to large output, high treatment costs and enriched substantial emerging contaminants (ECs). Therefore, reducing sludge volume, recovering energy and resource from WAS, and removing ECs and decreasing environmental risk have gained increasing attentions. Calcium peroxide (CaO2), a versatile and safe peroxide, has been widely applied in terms of WAS treatment including sludge dewatering, anaerobic sludge digestion and anaerobic sludge fermentation due to its specific properties such as generating free radicals and alkali, etc., providing supports for sludge reduction, recycling, and risk mitigation. This review outlines comprehensively the recent progresses and breakthroughs of CaO2 in the fields of sludge treatment. In particular, the relevant mechanisms of CaO2 enhancing WAS dewaterability, methane production from anaerobic digestion, short-chain fatty acids (SCFA) and hydrogen production from anaerobic fermentation, and the removal of ECs in WAS and role of experiment parameters are systematically elucidated and discussed, respectively. Finally, the knowledge gaps and opportunities in CaO2-based sludge treatment technologies that need to be focused in the future are prospected. The review presented can supply a theoretical basis and technical reference for the application of CaO2 for improving the treatment of WAS.
Collapse
Affiliation(s)
- Qiuxiang Xu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.
| | - Qi-Su Huang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Wei Wei
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Jing Sun
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China
| | - Bing-Jie Ni
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, P.R. China.
| |
Collapse
|
12
|
Zheng M, Daniels KD, Park M, Nienhauser AB, Clevenger EC, Li Y, Snyder SA. Attenuation of pharmaceutically active compounds in aqueous solution by UV/CaO 2 process: Influencing factors, degradation mechanism and pathways. WATER RESEARCH 2019; 164:114922. [PMID: 31382152 DOI: 10.1016/j.watres.2019.114922] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 07/17/2019] [Accepted: 07/26/2019] [Indexed: 06/10/2023]
Abstract
As freshwater sources continue to be influenced by wastewater effluents, there is a dire need to develop advanced water treatment processes capable of treating the wastewater-derived contaminants, especially for pharmaceutically active compounds (PhACs). Ultraviolet light (UV) combined with calcium peroxide (CaO2) as an advanced oxidation process (AOP) to attenuate five widespread PhACs (carbamazepine (CBZ), primidone (PMD), phenobarbital (PBB), thiamphenicol (TAP) and florfenicol (FF)) was investigated in this paper. The degradation of these compounds followed pseudo-first-order kinetics (R2 > 0.96). The optimum CaO2 dosage was 0.1 g L-1 and lower initial contaminants concentration was beneficial to their degradation. The UV/CaO2 treatment of test PhACs was attributed to the combination of UV/H2O2 and UV-base-photolysis (UV/Ca(OH)2), and the degradation mechanism was recognized as both UV direct photolysis and indirect photolysis caused by reactive radicals (•OH, triplet states of dissolved organic matter (3DOM*), and 1O2). Furthermore, the tentative transformation pathways of the five PhACs were proposed based on the detected intermediates and the degradation mechanisms. The final products of inorganic carbon and nitrogen indicate UV/CaO2 treatment can significantly mineralize test PhACs. Also, the CaO2 addition significantly reduced the energy consumption of UV irradiation according to electrical energy per order. The effective removal of CBZ and PMD in a secondary wastewater effluent by UV/CaO2 treatment demonstrates the potential use of this AOP technology in advanced treatment of wastewater-derived PhACs.
Collapse
Affiliation(s)
- Ming Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China.
| | - Kevin D Daniels
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA; Hazen and Sawyer, 1400 E. Southern Ave, Tempe, AZ, 85282, USA.
| | - Minkyu Park
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA.
| | - Alec Brockway Nienhauser
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA.
| | - Erica C Clevenger
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA.
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Shane A Snyder
- Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ85721-0011, USA; Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore.
| |
Collapse
|
13
|
Akhavan-Kharazian N, Izadi-Vasafi H. Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications. Int J Biol Macromol 2019; 133:881-891. [PMID: 31028810 DOI: 10.1016/j.ijbiomac.2019.04.159] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 04/22/2019] [Accepted: 04/22/2019] [Indexed: 01/21/2023]
Abstract
In order to improve mechanical properties and biomedical behavior of chitosan-based polymeric films, the effect of nanocrystalline cellulose (NCC) and calcium peroxide (CP) particles on the properties of polymeric films based on chitosan (CS) and gelatin (GL) were investigated in this study. The films were characterized by Fourier-transform infrared (FTIR), tensile, swelling, water vapor transmission rate (WVTR), antibacterial, oxygen release and cell culture tests. FTIR results indicated that hydrogen bonding has been formed between functional groups of the constituents. The mechanical results showed that the combination of both CP and NCC had better results in improving the mechanical properties of the films. The WVTR and swelling results indicated that CP and NCC particles reduced the amount of WVTR and swelling of the samples. By Adding CP to the film composition, the antibacterial activity of the films against E. coli bacteria increased. The oxygen release for the films containing CP has its maximum value during the first day and it approaches a constant value for 10 days. The MTT assay results revealed that the growth of the human fibroblast cells was increased during 7 days, showing that the chitosan-based films containing CP and NCC had no toxicity and never cause cell death.
Collapse
Affiliation(s)
- Neda Akhavan-Kharazian
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran
| | - Hossein Izadi-Vasafi
- Department of Polymer Engineering, Shahreza Branch, Islamic Azad University, Shahreza, Iran.
| |
Collapse
|
14
|
Zheng M, Li Y, Ping Q, Wang L. MP-UV/CaO 2 as a pretreatment method for the removal of carbamazepine and primidone in waste activated sludge and improving the solubilization of sludge. WATER RESEARCH 2019; 151:158-169. [PMID: 30594084 DOI: 10.1016/j.watres.2018.11.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/29/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
Medium-pressure ultraviolet light (MP-UV) combined with calcium peroxide (CaO2) as a pretreatment technology for removing carbamazepine (CBZ) and primidone (PMD) in waste active sludge (WAS) and improving the solubilization of sludge were investigated. CBZ and PMD were effectively removed and the removal fitted pseudo-first kinetics under MP-UV/CaO2 treatment with R2 > 0.97. The higher CaO2 dosage and lower initial volatile suspended solids (VSS) concentration were conductive to the removal of CBZ and PMD. Of the CaO2 hydrolysates, Ca(OH)2 played a more important role than H2O2 during MP-UV/CaO2 treatment. The removal of the target compounds was attributed to direct photolysis and indirect photolysis caused by •OH, 3DOM*, and 1O2, in which •OH played a vital role with > 62.2% contribution to the overall degradation rate. A model predicting the steady concentration of •OH in WAS ([VSS] ≈ 8.6 g L-1) under MP-UV/CaO2 treatment with CaO2 dosage ranging from 0 to 0.5 g g-1-VSS was proposed and validated. Moreover, major intermediates of CBZ and PMD were detected and the probable transformation pathways during MP-UV/CaO2 treatment were proposed. In addition, MP-UV/CaO2 promoted the sludge solubilization effectively. Considering both the pharmaceutical degradation and sludge solubilization, the optimum operation condition with 0.2 g-CaO2 g-1-VSS combined with 7 h MP-UV irradiation is recommended. Under this condition, more than 92.3% of CBZ and 90.3% of PMD were removed, and soluble chemical oxygen demand (SCOD) increased by 657% and 13.6% compared with sole 10 h CaO2 (0.2 g g-1-VSS) treatment and 7 h MP-UV treatment, respectively.
Collapse
Affiliation(s)
- Ming Zheng
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Qian Ping
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China
| |
Collapse
|
15
|
Xue Y, Sui Q, Brusseau ML, Zhang X, Qiu Z, Lyu S. Insight on the generation of reactive oxygen species in the CaO 2/Fe(II) Fenton system and the hydroxyl radical advancing strategy. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2018; 353:657-665. [PMID: 31467481 PMCID: PMC6715144 DOI: 10.1016/j.cej.2018.07.124] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Calcium peroxide (CaO2) is a stable hydrogen peroxide (H2O2) carrier, and the CaO2/Fe(II) system has been applied for treatment of various pollutants. It is commonly reported in the literature that hydroxyl radical (HO●) and superoxide radical anions (O2 ●-) are the two main reactive oxygen species (ROSs) generated in the CaO2/Fe(II) system. However, many of the reported results were deduced from degradation performance rather than specific testing of radical generation. Thus, the specific generation of ROSs and the influence of system conditions on ROSs yield is still unclear. To our knowledge, this is the first study specifically focusing on the generation of HO● and O2 ●- in the CaO2/Fe(II) system. Experimental conditions were optimized to investigate the production of HO● and O2 ●-. The results showed the influences of CaO2, Fe(II), and solution pH on HO● and O2 ●- generation, and the HO● generation efficiency was reported for the first time. In addition, the ROSs generation pathways in the CaO2/Fe(II) system were elucidated. A strategy for enhancing HO● yield is developed, based on the continuously dosing Fe(II). This proposed strategy has implications for the effective application of in situ chemical oxidation employing CaO2/Fe(II) for groundwater remediation.
Collapse
Affiliation(s)
- Yunfei Xue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mark L. Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, Tucson, AZ 85721, United States
| | - Xiang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaofu Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lyu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
16
|
Pan Y, Su H, Zhu Y, Vafaei Molamahmood H, Long M. CaO 2 based Fenton-like reaction at neutral pH: Accelerated reduction of ferric species and production of superoxide radicals. WATER RESEARCH 2018; 145:731-740. [PMID: 30216867 DOI: 10.1016/j.watres.2018.09.020] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 06/08/2023]
Abstract
One challenge in H2O2 based Fenton-like reaction is to break through the limitation of slow reduction of ferric species (FeIII). Present work describes a dramatic acceleration of Fenton-like reaction at neutral pH by using calcium peroxide (CaO2) as a source of hydrogen peroxide (H2O2) and EDTA as a chelating agent of ferric ions. In an optimized condition, phenol degradation in the H2O2 system displayed an initial latent time of 60 min, while phenol can be degraded immediately and removed completely in 30 min in the CaO2 system. Visual MINTEQ analyses indicated Fe-EDTA- was the active species in the reaction. The contribution of 1O2 in CaO2 system was excluded by the poor selectivity in phenol conversion and the comparable 1O2-TEMP EPR signals in both CaO2 and H2O2 systems. Kinetic analyses using chloroform as the probe of O2·- suggested the high production rate of O2·-, which is four orders of magnitude higher than that in H2O2 system. The mechanism of the accelerated CaO2 based Fenton-like reactions was featured by that two electrons coming from CaO2 can be utilized to promote reduction of FeIII: an inner sphere electron transfer takes place to reduce FeIII-EDTA and produce O2·-, and subsequently O2·- provides an electron to reduce another FeIII-EDTA. The revealed intrinsic reducibility in CaO2 based Fenton-like reaction represents a new strategy to break through the well-known rate limiting step of FeIII reduction in Fenton-like reaction and facilitate the removal of organic pollutants at neutral pHs, and also indicates a promising source of O2·- for diverse applications.
Collapse
Affiliation(s)
- Yue Pan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hanrui Su
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yitong Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hamed Vafaei Molamahmood
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mingce Long
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Key Laboratory for Thin Film and Microfabrication Technology (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
17
|
Morikawa CK. Generation of hydroxyl radicals by Fe-polyphenol-activated CaO 2 as a potential treatment for soil-borne diseases. Sci Rep 2018; 8:9752. [PMID: 29950675 PMCID: PMC6021405 DOI: 10.1038/s41598-018-28078-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 06/08/2018] [Indexed: 11/17/2022] Open
Abstract
An Fe-polyphenol catalyst was recently developed using anhydrous iron (III) chloride and coffee grounds as raw materials. The present study aims to test the application of this Fe-polyphenol catalyst with two hydrogen peroxide (H2O2) sources in soil as a new method for controlling the soil-borne disease caused by Ralstonia solanacearum and to test the hypothesis that hydroxyl radicals are involved in the catalytic process. Tomato cv. Momotaro was used as the test species. The results showed that powdered CaO2 (16% W/W) is a more effective H2O2 source for controlling bacterial wilt disease than liquid H2O2 (35% W/W) when applied with an Fe-polyphenol catalyst. An electron paramagnetic resonance spin trapping method using a 5,5-dimethyl-1-pyrroline-N-oxide (DMPO) assay and Fe-caffeic acid and Fe-chlorogenic acid complexes as models showed that these organometallic complexes react with the H2O2 released by CaO2, producing hydroxyl radicals in a manner that is consistent with the proposed catalytic process. The application of Fe-polyphenol with powdered CaO2 to soil could be a new environmentally friendly method for controlling soil-borne diseases.
Collapse
Affiliation(s)
- Cláudio Kendi Morikawa
- National Agriculture and Food Research Organization, Division of Vegetable Pest Management and Functional Analysis, Institute of Vegetable and Floriculture Science, 514-2392, Ano, Kusawa 360, Mie, Tsu, Japan.
| |
Collapse
|
18
|
Zhang X, Gu X, Lu S, Brusseau ML, Xu M, Fu X, Qiu Z, Sui Q. Application of ascorbic acid to enhance trichloroethene degradation by Fe(III)-activated calcium peroxide. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2017; 325:188-198. [PMID: 29104449 PMCID: PMC5665388 DOI: 10.1016/j.cej.2017.05.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The enhancement effect of an environmentally friendly reducing agent, ascorbic acid (AA), on trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) was evaluated. The addition of AA accelerated the transformation of Fe(III) to Fe(II), and the complexation of Fe(III)/Fe(II) with AA and its products alleviated the precipitation of dissolved iron. These impacts enhanced the generation of reactive oxygen species (ROSs). Investigation of ROSs using chemical probe tests, electron paramagnetic resonance (EPR) tests, and radical scavenger tests strongly confirm large production of hydroxyl radicals (HO•) that is responsible for TCE degradation. The generation of Cl- from the degraded TCE was complete in the enhanced CP/Fe(III)/AA system. The investigation of solution matrix effects showed that the TCE degradation rate decreases with the increase in solution pH, while Cl-, SO42- and NO3- anions have minor impact. Conversely, HCO3- significantly inhibited TCE degradation due to pH elevation and HO• scavenging. The results of experiments performed using actual groundwater indicated that an increase in reagent doses are required for effective TCE removal. In summary, the potential effectiveness of the CP/Fe(III)/AA oxidation system for remediation of TCE contaminated groundwater has been demonstrated. Additional research is needed to develop the system for practical implementation.
Collapse
Affiliation(s)
- Xiang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaogang Gu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Mark L. Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721, United States
| | - Minhui Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaori Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaofu Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
19
|
Lu S, Zhang X, Xue Y. Application of calcium peroxide in water and soil treatment: A review. JOURNAL OF HAZARDOUS MATERIALS 2017; 337:163-177. [PMID: 28525879 DOI: 10.1016/j.jhazmat.2017.04.064] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 03/31/2017] [Accepted: 04/26/2017] [Indexed: 06/07/2023]
Abstract
Calcium peroxide (CP) has been progressively applied in terms of environmental protection due to its certain physical and chemical properties. This review focuses on the latest progresses in the applications of CP in water and soil treatment, including wastewater treatment, surface water restoration and groundwater and soil remediation. The stability of CP makes it an effective solid phase to supply H2O2 and O2 for aerobic biodegradation and chemical degradation of contaminants in water and soil. CP has exerted great performance in the removal of dyes, chlorinated hydrocarbons, petroleum hydrocarbons, pesticides, heavy metals and various other contaminants. The research progress in the encapsulation technologies of CP with other materials and the preparation of CP nanoparticles were also presented in this review. Based on the summarized research progresses, the perspective of CP application in the future was proposed.
Collapse
Affiliation(s)
- Shuguang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| | - Xiang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Yunfei Xue
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
20
|
Chen Z, Zhang W, Wang D, Ma T, Bai R, Yu D. Enhancement of waste activated sludge dewaterability using calcium peroxide pre-oxidation and chemical re-flocculation. WATER RESEARCH 2016; 103:170-181. [PMID: 27450355 DOI: 10.1016/j.watres.2016.07.018] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 07/06/2016] [Accepted: 07/10/2016] [Indexed: 05/25/2023]
Abstract
The effects of combined calcium peroxide (CaO2) oxidation with chemical re-flocculation on dewatering performance and physicochemical properties of waste activated sludge was investigated in this study. The evolutions of extracellular polymeric substances (EPS) distribution, composition and morphological properties were analyzed to unravel the sludge conditioning mechanism. It was found that sludge filtration performance was enhanced by calcium peroxide oxidation with the optimal dosage of 20 mg/gTSS. However, this enhancement was not observed at lower dosages due to the absence of oxidation and the performance deteriorated at higher dosages because of the release of excess EPS, mainly as protein-like substances. The variation in soluble EPS (SEPS) component can be fitted well with pseudo-zero-order kinetic model under CaO2 treatment. At the same time, extractable EPS content (SEPS and loosely bound EPS (LB-EPS)) were dramatically increased, indicating sludge flocs were effectively broken and their structure became looser after CaO2 addition. The sludge floc structure was reconstructed and sludge dewaterability was significantly enhanced using chemical re-flocculation (polyaluminium chloride (PACl), ferric iron (FeCl3) and polyacrylamide (PAM)). The inorganic coagulants performed better in improving sludge filtration dewatering performance and reducing cake moisture content than organic polymer, since they could act as skeleton builders and decrease the sludge compressibility.
Collapse
Affiliation(s)
- Zhan Chen
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China.
| | - Dongsheng Wang
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China; State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Teng Ma
- School of Environmental Studies, China University of Geosciences, Wuhan 430074, Hubei, China
| | - Runying Bai
- School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China
| | - Dezhong Yu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, 430073 Hubei, China
| |
Collapse
|
21
|
Kaewdee P, Chandet N, Rujijanagul G, Randorn C. Multicatalytic properties of nanoparticle CaO2 synthesized by a novel, simple and economical method for wastewater treatment. CATAL COMMUN 2016. [DOI: 10.1016/j.catcom.2016.06.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
22
|
ZHANG X, GU X, LU S, MIAO Z, XU M, FU X, DANISH M, Brusseau ML, QIU Z, SUI Q. Enhanced degradation of trichloroethene by calcium peroxide activated with Fe(III) in the presence of citric acid. FRONTIERS OF ENVIRONMENTAL SCIENCE & ENGINEERING 2016; 10:502-512. [PMID: 28959499 PMCID: PMC5613293 DOI: 10.1007/s11783-016-0838-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Trichloroethene (TCE) degradation by Fe(III)-activated calcium peroxide (CP) in the presence of citric acid (CA) in aqueous solution was investigated. The results demonstrated that the presence of CA enhanced TCE degradation significantly by increasing the concentration of soluble Fe(III) and promoting H2O2 generation. The generation of HO• and O2-• in both the CP/Fe(III) and CP/Fe(III)/CA systems was confirmed with chemical probes. The results of radical scavenging tests showed that TCE degradation was due predominantly o direct oxidation by HO•, while O2-• strengthened the generation of HO• by promoting Fe(III) transformation in the CP/Fe(III)/CA system. Acidic pH conditions were favorable for TCE degradation, and the TCE degradation rate decreased with increasing pH. The presence of Cl-, HCO3-, and humic acid (HA) inhibited TCE degradation to different extents for the CP/Fe(III)/CA system. Analysis of Cl- production suggested that TCE degradation in the CP/Fe(III)/CA system occurred through a dechlorination process. In summary, this study provided detailed information for the application of CA-enhanced Fe(III)-activated calcium peroxide for treating TCE contaminated groundwater.
Collapse
Affiliation(s)
- Xiang ZHANG
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaogang GU
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang LU
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
- Corresponding author: Tel: +86 21 64250709, Fax: +86 21 64252737, (S. Lu)
| | - Zhouwei MIAO
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Minhui XU
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaori FU
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Muhammad DANISH
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Mark L. Brusseau
- Soil, Water and Environmental Science Department, School of Earth and Environmental Sciences, The University of Arizona, 429 Shantz Building, Tucson, AZ 85721, United States
| | - Zhaofu QIU
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian SUI
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
23
|
Qian Y, Zhang J, Zhang Y, Chen J, Zhou X. Degradation of 2,4-dichlorophenol by nanoscale calcium peroxide: Implication for groundwater remediation. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.04.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Li Y, Wang J, Zhang A, Wang L. Enhancing the quantity and quality of short-chain fatty acids production from waste activated sludge using CaO2 as an additive. WATER RESEARCH 2015; 83:84-93. [PMID: 26141424 DOI: 10.1016/j.watres.2015.06.021] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/11/2015] [Accepted: 06/12/2015] [Indexed: 05/25/2023]
Abstract
The effect of calcium peroxide (CaO2) addition on anaerobic fermentation of waste activated sludge (WAS) was investigated. The lab-scale experiments were conducted at 35 °C with CaO2 doses ranging from 0.05 to 0.3 g/g VSS. The performances of hydrolysis and acidification of WAS were significantly enhanced by CaO2 addition, whereas the production of methane was inhibited. Maximum total short-chain fatty acids (TSCFA) production (284 mg COD/g VSS) occurred at a CaO2 dose of 0.2 g/g VSS and fermentation time of 7 d, which was 3.9 times higher than the control tests. Further, CaO2 addition led to the conversion of other SCFAs to acetic acid. Acetic acid comprised 60.2% of TSCFA with the addition of 0.2 g CaO2/g VSS compared with 45.1% in the control tests. The mechanism of improved SCFAs generation was analyzed from the view of both chemical and biological effects. Chemical effect facilitated the disintegration of WAS, and improved the activities of both hydrolytic enzymes and acid-forming enzymes. Illumina MiSeq sequencing analysis revealed that bacteria within phylum Firmicutes increased significantly due to CaO2 addition, which played an important role in the hydrolysis and acidification of WAS. In addition, CaO2 oxidized most refractory organic contaminants, which were difficult to biodegrade under the ordinary anaerobic condition. Hydroxyl radicals were the most abundant reactive oxygen species released by CaO2, which played a key role in the removal of refractory organic compounds. We developed a promising technology to produce a valuable carbon source from WAS.
Collapse
Affiliation(s)
- Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Jie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lin Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
25
|
Cook CA, Hahn KC, Morrissette-McAlmon JBF, Grayson WL. Oxygen delivery from hyperbarically loaded microtanks extends cell viability in anoxic environments. Biomaterials 2015; 52:376-84. [PMID: 25818444 PMCID: PMC4955786 DOI: 10.1016/j.biomaterials.2015.02.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/01/2015] [Accepted: 02/06/2015] [Indexed: 11/15/2022]
Abstract
Oxygen diffusion limitations within nascent tissue engineered (TE) grafts lead to the development of hypoxic regions, cell death, and graft failure. Previous efforts have been made to deliver oxygen within TE scaffolds, including peroxide-doping, perfluorocarbons, and hyperbaric oxygen therapy, to mitigate these effects and help maintain post transplantation cell viability, but these have suffered from significant drawbacks. Here we present a novel approach utilizing polymeric hollow-core microspheres that can be hyperbarically loaded with oxygen and subsequently provide prolonged oxygen delivery. These oxygen carriers are termed, microtanks. With an interest in orthopedic applications, we combined microtanks within polycaprolactone to form solid phase constructs with oxygen delivery capabilities. The mathematical laws governing oxygen delivery from microtank-loaded constructs are developed along with empirical validation. Constructs achieved periods of oxygen delivery out to 6 days, which was shown to prolong the survival of human adipose derived stem cells (hASCs) and human umbilical vein endothelial cells (HUVECs) as well as to enhance their cellular morphology under anoxic conditions. The results of this study suggest the microtank approach may be a feasible means of maintaining cell viability in TE scaffolds during the critical period of vascularization in vivo.
Collapse
Affiliation(s)
- Colin A Cook
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathryn C Hahn
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Justin B F Morrissette-McAlmon
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Warren L Grayson
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA; Department of Material Sciences & Engineering, Johns Hopkins University, School of Engineering, Baltimore, MD, USA.
| |
Collapse
|
26
|
Zhang A, Wang J, Li Y. Performance of calcium peroxide for removal of endocrine-disrupting compounds in waste activated sludge and promotion of sludge solubilization. WATER RESEARCH 2015; 71:125-139. [PMID: 25613412 DOI: 10.1016/j.watres.2015.01.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 12/09/2014] [Accepted: 01/02/2015] [Indexed: 06/04/2023]
Abstract
Removal of six phenolic endocrine disrupting compounds (EDCs) (estrone, 17β-estradiol, 17α-ethinylestradiol, estriol, bisphenol A, and 4-nonylphenols) from waste activated sludge (WAS) was investigated using calcium peroxide (CaO2) oxidation. Effects of initial pH and CaO2 dosage were investigated. The impacts of CaO2 treatment on sludge solubilization and anaerobic digestion were also evaluated. Specifically, the role of reactive oxygen species (ROS) in EDC degradation during CaO2 oxidation was tested. Effects of 6 metal ions contained in the sludge matrix on EDC degradation were also evaluated. The results showed that CaO2 treatment can be a promising technology for EDC removal and facilitating sludge reuse. The EDC removal efficiencies increased with the increase in CaO2 dosage. At CaO2 doses of more than 0.34 g per gram of total solid (g g(-1) TS), more than 50% of EDCs were removed in a wide pH range of 2-12. Higher removal efficiencies were achieved at initial pH values of 12 and 2. The products of EDCs during CaO2 oxidation had less estrogenic activity than the originals. Under the conditions of neutral pH and CaO2 dosage = 0.34 g g(-1) TS, the sludge solubilization can be improved by increasing the soluble total organic carbon (STOC) and volatile suspended solids (VSS) reduction by 25% and 27% in 7 d, respectively; the volatile fatty acid (VFA) production was enhanced by 96% in the 15 d following anaerobic digestion. The ROS released by CaO2 are the main factors contributing to EDC removal, among which, hydroxyl radicals (OH) play the most important role. Metal ions contained in the sludge matrix also affected EDC removal. For most cases, Fe, Cu, and Zn had positive effects; Mn and Ag had negative effects; and Mg had an insignificant effect on EDC removal.
Collapse
Affiliation(s)
- Ai Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jie Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Yongmei Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
27
|
Zhang X, Gu X, Lu S, Miao Z, Xu M, Fu X, Qiu Z, Sui Q. Degradation of trichloroethylene in aqueous solution by calcium peroxide activated with ferrous ion. JOURNAL OF HAZARDOUS MATERIALS 2015; 284:253-260. [PMID: 25463240 DOI: 10.1016/j.jhazmat.2014.11.030] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
The application of calcium peroxide (CaO2) activated with ferrous ion to stimulate the degradation of trichloroethylene (TCE) was investigated. The experimental results showed that TCE could be completely degraded in 5 min at a CaO2/Fe(II)/TCE molar ratio of 4/8/1. Probe compound tests demonstrated the presence of reactive oxygen species HO· and O2(-·) in CaO2/Fe(II) system, while scavenging tests indicated that HO· was the dominant active species responsible for TCE removal, and O2(-·) could promote TCE degradation in CaO2/Fe(II) system. In addition, the influences of initial solution pH and solution matrix were evaluated. It suggested that the elevation of initial solution pH suppressed TCE degradation. Cl(-) had significant scavenging effect on TCE removal, whereas HCO3(-) of high concentration showed favorable function. The influences of NO3(-) and SO4(2-) could be negligible, while natural organic matter (NOM) had a negative effect on TCE removal at a relatively high concentration. The results demonstrated that the technique of CaO2 activated with ferrous ion is a highly promising technique in in situ chemical oxidation (ISCO) remediation in TCE contaminated sites.
Collapse
Affiliation(s)
- Xiang Zhang
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaogang Gu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Shuguang Lu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China.
| | - Zhouwei Miao
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Minhui Xu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaori Fu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Zhaofu Qiu
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Lingampalli SR, Gautam UK. Room temperature conversion of metal oxides (MO, M = Zn, Cd and Mg) to peroxides: insight into a novel, scalable and recyclable synthesis leading to their lowest decomposition temperatures. CrystEngComm 2014. [DOI: 10.1039/c3ce42276c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Lin Z, Chen H, Lin JM. Peroxide induced ultra-weak chemiluminescence and its application in analytical chemistry. Analyst 2013; 138:5182-93. [PMID: 23837186 DOI: 10.1039/c3an00910f] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Chemiluminescence (CL), as a sensitive, rapid, and facile analytical method, has been widely applied in environmental monitoring, clinical diagnosis and food safety. Recently, the main challenge and research interest in the CL study have been focused on exploring new CL systems and obtaining new insight into the interaction between CL reagents. The peroxide induced ultra-weak CL reactions are some new arising systems that have received great attention and have been successfully applied in many fields. The peroxide includes hydrogen peroxide, peroxynitrite, peroxymonocarbonate, peroxomonosulphate and so on. This review paper covers the mechanism of the peroxide induced ultra-weak CL and the analytical applications of the CL have also been summarized. The future prospects for the peroxide induced ultra-weak CL are discussed.
Collapse
Affiliation(s)
- Zhen Lin
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Xue Yuan Road, University Town, Fuzhou 350108, China
| | | | | |
Collapse
|
30
|
Lingampalli SR, Gupta U, Gautam UK, Rao CNR. Oxidation of Toluene and Other Examples of CH Bond Activation by CdO2and ZnO2Nanoparticles. Chempluschem 2013; 78:837-842. [DOI: 10.1002/cplu.201300114] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Revised: 05/03/2013] [Indexed: 11/08/2022]
|
31
|
Qian Y, Zhou X, Zhang Y, Zhang W, Chen J. Performance and properties of nanoscale calcium peroxide for toluene removal. CHEMOSPHERE 2013; 91:717-723. [PMID: 23466092 DOI: 10.1016/j.chemosphere.2013.01.049] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/17/2013] [Accepted: 01/18/2013] [Indexed: 06/01/2023]
Abstract
Due to the large diameter and small surface, the contaminant degradation by conventional calcium peroxide (CaO2) is slow with high dosage required. The aggregation of conventional CaO2 also makes it difficult to operate. Nanoscale CaO2 was therefore synthesized and applied to remove toluene in this study. Prepared from nanoscale Ca(OH)2 and H2O2 in the ratio of 1:7, the finely dispersed nanoscale CaO2 particles were confirmed by the scanning electron microscope to be in the range of 100-200nm in size. Compared to their non nanoscale counterparts, the synthesized nanoscale CaO2 demonstrated a superior performance in the degradation of toluene, which could be eliminated in 3d at pH 6. The oxidation products of toluene were analyzed to include benzyl alcohol, benzaldehyde and three cresol isomers. With the addition of 2-propanol, hydroxyl radicals were indicated as the main reactive oxygen species in the oxidation of toluene by nanoscale CaO2. Superoxide radicals were also investigated as the marker of nanoscale CaO2 in the solution. Our study thus provides an important insight into the application of nanoscale CaO2 in the removal of toluene contaminants, which is significant, especially for controlling the petroleum contaminations.
Collapse
Affiliation(s)
- Yajie Qian
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | | | | | | | | |
Collapse
|
32
|
Tzitrinovich Z, Lipovsky A, Gedanken A, Lubart R. Visible light-induced OH radicals in Ga2O3: an EPR study. Phys Chem Chem Phys 2013; 15:12977-81. [DOI: 10.1039/c3cp00102d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
33
|
Oxygen generating scaffolds for enhancing engineered tissue survival. Biomaterials 2009; 30:757-62. [DOI: 10.1016/j.biomaterials.2008.09.065] [Citation(s) in RCA: 204] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Accepted: 09/29/2008] [Indexed: 11/21/2022]
|