1
|
K R, S VK, Saravanan P, Rajeshkannan R, Rajasimman M, Kamyab H, Vasseghian Y. Exploring the diverse applications of Carbohydrate macromolecules in food, pharmaceutical, and environmental technologies. ENVIRONMENTAL RESEARCH 2024; 240:117521. [PMID: 37890825 DOI: 10.1016/j.envres.2023.117521] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/26/2023] [Accepted: 10/25/2023] [Indexed: 10/29/2023]
Abstract
Carbohydrates are a class of macromolecules that has significant potential across several domains, including the organisation of genetic material, provision of structural support, and facilitation of defence mechanisms against invasion. Their molecular diversity enables a vast array of essential functions, such as energy storage, immunological signalling, and the modification of food texture and consistency. Due to their rheological characteristics, solubility, sweetness, hygroscopicity, ability to prevent crystallization, flavour encapsulation, and coating capabilities, carbohydrates are useful in food products. Carbohydrates hold potential for the future of therapeutic development due to their important role in sustained drug release, drug targeting, immune antigens, and adjuvants. Bio-based packaging provides an emerging phase of materials that offer biodegradability and biocompatibility, serving as a substitute for traditional non-biodegradable polymers used as coatings on paper. Blending polyhydroxyalkanoates (PHA) with carbohydrate biopolymers, such as starch, cellulose, polylactic acid, etc., reduces the undesirable qualities of PHA, such as crystallinity and brittleness, and enhances the PHA's properties in addition to minimizing manufacturing costs. Carbohydrate-based biopolymeric nanoparticles are a viable and cost-effective way to boost agricultural yields, which is crucial for the increasing global population. The use of biopolymeric nanoparticles derived from carbohydrates is a potential and economically viable approach to enhance the quality and quantity of agricultural harvests, which is of utmost importance given the developing global population. The carbohydrate biopolymers may play in plant protection against pathogenic fungi by inhibiting spore germination and mycelial growth, may act as effective elicitors inducing the plant immune system to cope with pathogens. Furthermore, they can be utilised as carriers in controlled-release formulations of agrochemicals or other active ingredients, offering an alternative approach to conventional fungicides. It is expected that this review provides an extensive summary of the application of carbohydrates in the realms of food, pharmaceuticals, and environment.
Collapse
Affiliation(s)
- Ramaprabha K
- School of Bio-Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Venkat Kumar S
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India.
| | - Panchamoorthy Saravanan
- Department of Petrochemical Technology, University College of Engineering, BIT Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - R Rajeshkannan
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - M Rajasimman
- Department of Chemical Engineering, Annamalai University, Annamalainagar, 608002, Tamil Nadu, India
| | - Hesam Kamyab
- Faculty of Architecture and Urbanism, UTE University, Calle Rumipamba S/N and Bourgeois, Quito, Ecuador; Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, 600 077, India; Process Systems Engineering Centre (PROSPECT), Faculty of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India.
| |
Collapse
|
2
|
Verhulst NO, Juurlink M, Wondwosen B, Rugaimukamu S, Hill SR, Ignell R, Koenraadt CJM, Spitzen J. Fermenting molasses and a synthetic odour blend to attract blood-fed Anopheles coluzzii. MEDICAL AND VETERINARY ENTOMOLOGY 2023; 37:228-237. [PMID: 36346219 DOI: 10.1111/mve.12622] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 10/17/2022] [Indexed: 05/18/2023]
Abstract
Collecting blood-fed mosquitoes to monitor pathogen presence or to gather information on the host blood meal is often challenging. Fermenting molasses can be used to produce carbon dioxide to attract host-seeking mosquitoes, however, earlier work indicated that it may also attract blood-fed mosquitoes in the field. In the current study, these field results were validated in an experimental setting using a large cage setup with Anopheles coluzzii (Diptera, Culicidae). Blood-fed mosquitoes were indeed attracted to fermenting molasses with the highest attraction at 72 hours post feeding, which was used for subsequent experiments. Next, it was tested if fermentation of molasses is required for attraction, and whether it acts as an oviposition attractant, increases egg laying, or increases mosquito survival. The compounds that could be responsible for attraction were identified by combined electrophysiology and chemical analyses and formulated into a synthetic blend. Fermenting molasses attracted blood-fed mosquitoes in the large cage study, while fermenting sugar and non-fermenting molasses did not. The fecundity of blood-fed mosquitoes increased after feeding on fermenting molasses, however, compounds emanating from molasses did not trigger oviposition. The synthetic blend attracted blood-fed mosquitoes and may be used to determine mosquito host selection and for xenomonitoring, as 'flying syringes' to detect non-vector borne pathogens.
Collapse
Affiliation(s)
- Niels O Verhulst
- National Centre for Vector Entomology, Institute of Parasitology, Faculty of Veterinary Science, University of Zürich, Zürich, Switzerland
| | - Malou Juurlink
- Laboratory of Entomology, Wageningen University, Wageningen, Gelderland, The Netherlands
| | - Betelehem Wondwosen
- Department of Zoological Sciences, Addis Ababa University, Addis Ababa, Oromia, Ethiopia
| | - Sapience Rugaimukamu
- Laboratory of Entomology, Wageningen University, Wageningen, Gelderland, The Netherlands
| | - Sharon R Hill
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Skåne County, Sweden
| | - Rickard Ignell
- Disease Vector Group, Department of Plant Protection Biology, Swedish University of Agricultural Sciences, Alnarp, Skåne County, Sweden
| | | | - Jeroen Spitzen
- Laboratory of Entomology, Wageningen University, Wageningen, Gelderland, The Netherlands
| |
Collapse
|
3
|
Gahlaut PS, Gautam D, Yadav K, Jana B. Supramolecular Gels for the Sensing and Extraction of Heavy Metal Ions from Wastewater. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
4
|
Xiao Z, Shen J, Li Y, Wang Z, Zhao Y, Chen Y, Zhao JY. High and Economical Nattokinase Production with Acetoin as a Useful Byproduct from Soybean Milk and Glucose. Probiotics Antimicrob Proteins 2022; 14:792-803. [PMID: 34387855 DOI: 10.1007/s12602-021-09831-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 10/20/2022]
Abstract
Nattokinase (NK) is a potent fibrinolytic enzyme with wide pharmaceutical and nutraceutical applications. Safe and high NK-yielding strains are urgently needed. In this study, the best strain NDF was isolated from one of the 11 natto samples and then identified as Bacillus subtilis. The effects of carbon and nitrogen sources on NK production were investigated, and glucose and soybean milk were finally selected as the optimal carbon and nitrogen sources, respectively. Acetoin, a valuable compound with versatile usages, was detected as the main byproduct of carbon overflow. In a 6-L fermenter, NK and acetoin reached their peak concentrations simultaneously (10,220 IU/mL and 25.9 g/L, respectively) at 25 h in a culture medium containing 180 g/L of soybean milk and 105 g/L of glucose. The NK product was verified by sequencing of the aprN gene and SDS-PAGE analysis. Only very limited kinds of proteins were found in the supernatant of the fermentation broth, and NK was one of the main bands. This study has developed an economical and high NK production method with acetoin as a useful byproduct.
Collapse
Affiliation(s)
- Zijun Xiao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China.
| | - Jie Shen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yang Li
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Zhuo Wang
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yanshuang Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yong Chen
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Jing-Yi Zhao
- Center for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| |
Collapse
|
5
|
Lin K, Han S, Zheng S. Application of Corynebacterium glutamicum engineering display system in three generations of biorefinery. Microb Cell Fact 2022; 21:14. [PMID: 35090458 PMCID: PMC8796525 DOI: 10.1186/s12934-022-01741-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 01/09/2022] [Indexed: 11/29/2022] Open
Abstract
The fermentation production of platform chemicals in biorefineries is a sustainable alternative to the current petroleum refining process. The natural advantages of Corynebacterium glutamicum in carbon metabolism have led to C. glutamicum being used as a microbial cell factory that can use various biomass to produce value-added platform chemicals and polymers. In this review, we discussed the use of C. glutamicum surface display engineering bacteria in the three generations of biorefinery resources, and analyzed the C. glutamicum engineering display system in degradation, transport, and metabolic network reconstruction models. These engineering modifications show that the C. glutamicum engineering display system has great potential to become a cell refining factory based on sustainable biomass, and further optimizes the inherent properties of C. glutamicum as a whole-cell biocatalyst. This review will also provide a reference for the direction of future engineering transformation.
Collapse
Affiliation(s)
- Kerui Lin
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Shuangyan Han
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China
| | - Suiping Zheng
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China. .,Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| |
Collapse
|
6
|
Li X, Tan S, Luo J, Pinelo M. Nanofiltration for separation and purification of saccharides from biomass. Front Chem Sci Eng 2021; 15:837-853. [PMID: 33717607 PMCID: PMC7937517 DOI: 10.1007/s11705-020-2020-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 09/22/2020] [Indexed: 11/29/2022]
Abstract
Saccharide production is critical to the development of biotechnology in the field of food and biofuel. The extraction of saccharide from biomass-based hydrolysate mixtures has become a trend due to low cost and abundant biomass reserves. Compared to conventional methods of fractionation and recovery of saccharides, nanofiltration (NF) has received considerable attention in recent decades because of its high selectivity and low energy consumption and environmental impact. In this review the advantages and challenges of NF based technology in the separation of saccharides are critically evaluated. Hybrid membrane processes, i.e., combining NF with ultrafiltration, can complement each other to provide an efficient approach for removal of unwanted solutes to obtain higher purity saccharides. However, use of NF membrane separation technology is limited due to irreversible membrane fouling that results in high capital and operating costs. Future development of NF membrane technology should therefore focus on improving material stability, antifouling ability and saccharide targeting selectivity, as well as on engineering aspects such as process optimisation and membrane module design.
Collapse
Affiliation(s)
- Xianhui Li
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| | - Sheng Tan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100190 China
| | - Manuel Pinelo
- Process and Systems Engineering Center (PROSYS), Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800 Lyngby, Denmark
| |
Collapse
|
7
|
Singh S, Sithole B, Lekha P, Permaul K, Govinden R. Optimization of cultivation medium and cyclic fed-batch fermentation strategy for enhanced polyhydroxyalkanoate production by Bacillus thuringiensis using a glucose-rich hydrolyzate. BIORESOUR BIOPROCESS 2021; 8:11. [PMID: 38650248 PMCID: PMC10992944 DOI: 10.1186/s40643-021-00361-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/05/2021] [Indexed: 01/22/2023] Open
Abstract
The accumulation of petrochemical plastic waste is detrimental to the environment. Polyhydroxyalkanoates (PHAs) are bacterial-derived polymers utilized for the production of bioplastics. PHA-plastics exhibit mechanical and thermal properties similar to conventional plastics. However, high production cost and obtaining high PHA yield and productivity impedes the widespread use of bioplastics. This study demonstrates the concept of cyclic fed-batch fermentation (CFBF) for enhanced PHA productivity by Bacillus thuringiensis using a glucose-rich hydrolyzate as the sole carbon source. The statistically optimized fermentation conditions used to obtain high cell density biomass (OD600 of 2.4175) were: 8.77 g L-1 yeast extract; 66.63% hydrolyzate (v/v); a fermentation pH of 7.18; and an incubation time of 27.22 h. The CFBF comprised three cycles of 29 h, 52 h, and 65 h, respectively. After the third cyclic event, cell biomass of 20.99 g L-1, PHA concentration of 14.28 g L-1, PHA yield of 68.03%, and PHA productivity of 0.219 g L-1 h-1 was achieved. This cyclic strategy yielded an almost threefold increase in biomass concentration and a fourfold increase in PHA concentration compared with batch fermentation. FTIR spectra of the extracted PHAs display prominent peaks at the wavelengths unique to PHAs. A copolymer was elucidated after the first cyclic event, whereas, after cycles CFBF 2-4, a terpolymer was noted. The PHAs obtained after CFBF cycle 3 have a slightly higher thermal stability compared with commercial PHB. The cyclic events decreased the melting temperature and degree of crystallinity of the PHAs. The approach used in this study demonstrates the possibility of coupling fermentation strategies with hydrolyzate derived from lignocellulosic waste as an alternative feedstock to obtain high cell density biomass and enhanced PHA productivity.
Collapse
Affiliation(s)
- Sarisha Singh
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, South Africa.
| | - Bruce Sithole
- Biorefinery Industry Development Facility, Chemicals Cluster, Council for Scientific and Industrial Research, Durban, South Africa
- Discipline of Chemical Engineering, University of KwaZulu-Natal, Durban, South Africa
| | - Prabashni Lekha
- Biorefinery Industry Development Facility, Chemicals Cluster, Council for Scientific and Industrial Research, Durban, South Africa
| | - Kugenthiren Permaul
- Department of Biotechnology and Food Technology, Durban University of Technology, Durban, South Africa
| | - Roshini Govinden
- Discipline of Microbiology, University of KwaZulu-Natal (Westville Campus), Durban, South Africa
| |
Collapse
|
8
|
Zhu G, Hayashi M, Shimomura N, Yamaguchi T, Aimi T. Differential expression of three α-amylase genes from the basidiomycetous fungus Pholiota microspora. MYCOSCIENCE 2017. [DOI: 10.1016/j.myc.2017.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
9
|
Carbon-rich wastes as feedstocks for biodegradable polymer (polyhydroxyalkanoate) production using bacteria. ADVANCES IN APPLIED MICROBIOLOGY 2016; 84:139-200. [PMID: 23763760 DOI: 10.1016/b978-0-12-407673-0.00004-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Research into the production of biodegradable polymers has been driven by vision for the most part from changes in policy, in Europe and America. These policies have their origins in the Brundtland Report of 1987, which provides a platform for a more sustainable society. Biodegradable polymers are part of the emerging portfolio of renewable raw materials seeking to deliver environmental, social, and economic benefits. Polyhydroxyalkanoates (PHAs) are naturally-occurring biodegradable-polyesters accumulated by bacteria usually in response to inorganic nutrient limitation in the presence of excess carbon. Most of the early research into PHA accumulation and technology development for industrial-scale production was undertaken using virgin starting materials. For example, polyhydroxybutyrate and copolymers such as polyhydroxybutyrate-co-valerate are produced today at industrial scale from corn-derived glucose. However, in recent years, research has been undertaken to convert domestic and industrial wastes to PHA. These wastes in today's context are residuals seen by a growing body of stakeholders as platform resources for a biobased society. In the present review, we consider residuals from food, plastic, forest and lignocellulosic, and biodiesel manufacturing (glycerol). Thus, this review seeks to gain perspective of opportunities from literature reporting the production of PHA from carbon-rich residuals as feedstocks. A discussion on approaches and context for PHA production with reference to pure- and mixed-culture technologies is provided. Literature reports advocate results of the promise of waste conversion to PHA. However, the vast majority of studies on waste to PHA is at laboratory scale. The questions of surmounting the technical and political hurdles to industrialization are generally left unanswered. There are a limited number of studies that have progressed into fermentors and a dearth of pilot-scale demonstration. A number of fermentation studies show that biomass and PHA productivity can be increased, and sometimes dramatically, in a fermentor. The relevant application-specific properties of the polymers from the wastes studied and the effect of altered-waste composition on polymer properties are generally not well reported and would greatly benefit the progress of the research as high productivity is of limited value without the context of requisite case-specific polymer properties. The proposed use of a waste residual is advantageous from a life cycle viewpoint as it removes the direct or indirect effect of PHA production on land usage and food production. However, the question, of how economic drivers will promote or hinder advancements to demonstration scale, when wastes generally become understood as resources for a biobased society, hangs today in the balance due to a lack of shared vision and the legacy of mistakes made with first generation bioproducts.
Collapse
|
10
|
Production of Industrially Relevant Isoprenoid Compounds in Engineered Microbes. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
11
|
Kinetics and thermodynamics of ethanol production by Saccharomyces cerevisiae MLD10 using molasses. Appl Biochem Biotechnol 2014; 172:2455-64. [PMID: 24395695 DOI: 10.1007/s12010-013-0689-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 12/22/2013] [Indexed: 10/25/2022]
Abstract
In this study, we have used ultraviolet (UV) and γ-ray induction to get a catabolite repression resistant and thermotolerant mutant with enhanced ethanol production along with optimization of sugar concentration and temperature of fermentation. Classical mutagenesis in two consecutive cycles of UV- and γ-ray-induced mutations evolved one best catabolite-resistant and thermotolerant mutant Saccharomyces cerevisiae MLD10 which showed improved ethanol yield (0.48 ± 0.02 g g(-1)), theoretical yield (93 ± 3%), and extracellular invertase productivity (1,430 ± 50 IU l(-1) h(-1)), respectively, when fermenting 180 g sugars l(-1) in molasses medium at 43 °C in 300 m(3) working volume fermenter. Ethanol production was highly dependent on invertase production. Enthalpy (ΔH*) (32.27 kJ M(-1)) and entropy (ΔS*) (-202.88 J M(-1) K(-1)) values at 43 °C by the mutant MLD10 were significantly lower than those of β-glucosidase production by a thermophilic mutant derivative of Thermomyces lanuginosus. These results confirmed the enhanced production of ethanol and invertase by this mutant derivative. These studies proved that mutant was significantly improved for ethanol production and was thermostable in nature. Lower fermentation time for ethanol production and maintenance of ethanol production rates (3.1 g l(-1) h(-1)) at higher temperature (43 °C) by this mutant could decrease the overall cost of fermentation process and increase the quality of ethanol production.
Collapse
|
12
|
Evaluation and modelling of continuous flow sub-critical water hydrolysis of biomass derived components; lipids and carbohydrates. Chem Eng Res Des 2013. [DOI: 10.1016/j.cherd.2013.05.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Evaluation of hardboard manufacturing process wastewater as a feedstream for ethanol production. J Ind Microbiol Biotechnol 2013; 40:671-7. [PMID: 23604526 DOI: 10.1007/s10295-013-1272-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Accepted: 04/07/2013] [Indexed: 10/26/2022]
Abstract
Waste streams from the wood processing industry can serve as feedstream for ethanol production from biomass residues. Hardboard manufacturing process wastewater (HPW) was evaluated on the basis of monomeric sugar recovery and fermentability as a novel feedstream for ethanol production. Dilute acid hydrolysis, coupled with concentration of the wastewater resulted in a hydrolysate with 66 g/l total fermentable sugars. As xylose accounted for 53 % of the total sugars, native xylose-fermenting yeasts were evaluated for their ability to produce ethanol from the hydrolysate. The strains selected were, in decreasing order by ethanol yields from xylose (Y p/s, based on consumed sugars), Scheffersomyces stipitis ATCC 58785 (CBS 6054), Pachysolen tannophilus ATCC 60393, and Kluyveromyces marxianus ATCC 46537. The yeasts were compared on the basis of substrate utilization and ethanol yield during fermentations of the hydrolysate, measured using an HPLC. S. stipitis, P. tannophilus, and K. marxianus produced 0.34, 0.31, and 0.36 g/g, respectively. The yeasts were able to utilize between 58 and 75 % of the available substrate. S. stipitis outperformed the other yeast during the fermentation of the hydrolysate; consuming the highest concentration of available substrate and producing the highest ethanol concentration in 72 h. Due to its high sugar content and low inhibitor levels after hydrolysis, it was concluded that HPW is a suitable feedstream for ethanol production by S. stipitis.
Collapse
|
14
|
The Biotechnological Potential of Corynebacterium glutamicum, from Umami to Chemurgy. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
15
|
Lin H, Wang Q, Shen Q, Zhan J, Zhao Y. Genetic engineering of microorganisms for biodiesel production. Bioengineered 2012; 4:292-304. [PMID: 23222170 DOI: 10.4161/bioe.23114] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biodiesel, as one type of renewable energy, is an ideal substitute for petroleum-based diesel fuel and is usually made from triacylglycerides by transesterification with alcohols. Biodiesel production based on microbial fermentation aiming to establish more efficient, less-cost and sustainable biodiesel production strategies is under current investigation by various start-up biotechnology companies and research centers. Genetic engineering plays a key role in the transformation of microbes into the desired cell factories with high efficiency of biodiesel production. Here, we present an overview of principal microorganisms used in the microbial biodiesel production and recent advances in metabolic engineering for the modification required. Overexpression or deletion of the related enzymes for de novo synthesis of biodiesel is highlighted with relevant examples.
Collapse
Affiliation(s)
- Hui Lin
- Institute of Microbiology; College of Life Sciences; Zhejiang University; Hangzhou, China; Institute of Plant Science; College of Life Sciences; Zhejiang University; Hangzhou, China
| | | | | | | | | |
Collapse
|
16
|
Jiang Y, Marang L, Tamis J, van Loosdrecht MCM, Dijkman H, Kleerebezem R. Waste to resource: Converting paper mill wastewater to bioplastic. WATER RESEARCH 2012; 46:5517-5530. [PMID: 22921584 DOI: 10.1016/j.watres.2012.07.028] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 07/05/2012] [Accepted: 07/17/2012] [Indexed: 06/01/2023]
Abstract
In this study we investigated the feasibility of producing polyhydroxyalkanoate (PHA) by microbial enrichments on paper mill wastewater. The complete process includes (1) paper mill wastewater acidogenic fermentation in a simple batch process, (2) enrichment of a PHA-producing microbial community in a selector operated in sequencing batch mode with feast-famine regime, (3) Cellular PHA content maximization of the enrichment in an accumulator in fed-batch mode. The selective pressure required to establish a PHA-producing microbial enrichment, as derived from our previous research on synthetic medium, was validated using an agro-industrial waste stream in this study. The microbial enrichment obtained could accumulate maximum up to 77% PHA of cell dry weight within 5 h, which is currently the best result obtained on real agro-industrial waste streams, especially in terms of biomass specific efficiency. Biomass in this enrichment included both Plasticicumulans acidivorans, which was the main PHA producer, and a flanking population, which exhibited limited PHA-producing capacity. The fraction of P. acidivorans in the biomass was largely dependent on the fraction of volatile fatty acids in the total soluble COD in the wastewater after acidification. Based on this observation, one simple equation was proposed for predicting the PHA storage capacity of the enrichment. Moreover, some crucial bottlenecks that may impede the successful scaling-up of the process are discussed.
Collapse
Affiliation(s)
- Yang Jiang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Leonie Marang
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Jelmer Tamis
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - Henk Dijkman
- Paques BV, T. de Boerstraat 24, 8561 EL Balk, The Netherlands.
| | - Robbert Kleerebezem
- Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| |
Collapse
|
17
|
Zhang S, Yang F, Wang Q, Hua Y, Zhao ZK. High-level secretory expression and characterization of the recombinant Kluyveromyces marxianus inulinase. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Examining the feasibility of bulk commodity production in Escherichia coli. Biotechnol Lett 2011; 34:585-96. [PMID: 22160295 DOI: 10.1007/s10529-011-0821-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Accepted: 11/30/2011] [Indexed: 10/14/2022]
Abstract
Escherichia coli is currently used by many research institutions and companies around the world as a platform organism for the development of bio-based production processes for bulk biochemicals. A given bulk biochemical bioprocess must be economically competitive with current production routes. Ideally the viability of each bioprocess should be evaluated prior to commencing research, both by metabolic network analysis (to determine the maximum theoretical yield of a given biocatalyst) and by techno-economic analysis (TEA; to determine the conditions required to make the bioprocess cost-competitive). However, these steps are rarely performed. Here we examine theoretical yields and review available TEA for bulk biochemical production in E. coli. In addition, we examine fermentation feedstocks and review recent strain engineering approaches to achieve industrially-relevant production, using examples for which TEA has been performed: ethanol, poly-3-hydroxybutyrate, and 1,3-propanediol.
Collapse
|
19
|
Deletion of cscR in Escherichia coli W improves growth and poly-3-hydroxybutyrate (PHB) production from sucrose in fed batch culture. J Biotechnol 2011; 156:275-8. [DOI: 10.1016/j.jbiotec.2011.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 07/03/2011] [Accepted: 07/06/2011] [Indexed: 11/19/2022]
|
20
|
Badawi AM, Fahmy AA, Mohamed KA, Noor El-Din MR, Riad MG. The Effect of Different Ethoxylations for Sorbitan Monolaurate on Enhancing Simultaneous Saccharification and Fermentation (SSF) of Wheat Straw to Ethanol. Appl Biochem Biotechnol 2011; 166:22-35. [DOI: 10.1007/s12010-011-9400-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 09/26/2011] [Indexed: 11/30/2022]
|
21
|
Pilot-scale production of fatty acid ethyl esters by an engineered Escherichia coli strain harboring the p(Microdiesel) plasmid. Appl Environ Microbiol 2010; 76:4560-5. [PMID: 20453138 DOI: 10.1128/aem.00515-10] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Fatty acid ethyl esters (FAEEs) were produced in this study by the use of an engineered Escherichia coli p(Microdiesel) strain. Four fed-batch pilot scale cultivations were carried out by first using glycerol as sole carbon source for biomass production before glucose and oleic acid were added as carbon sources. Cultivations yielded a cell density of up to 61 +/- 3.1 g of cell dry mass (CDM) per liter and a maximal FAEE content of 25.4% +/- 1.1% (wt/wt) of CDM.
Collapse
|
22
|
Tirado-Acevedo O, Chinn MS, Grunden AM. Production of biofuels from synthesis gas using microbial catalysts. ADVANCES IN APPLIED MICROBIOLOGY 2010; 70:57-92. [PMID: 20359454 DOI: 10.1016/s0065-2164(10)70002-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
World energy consumption is expected to increase 44% in the next 20 years. Today, the main sources of energy are oil, coal, and natural gas, all fossil fuels. These fuels are unsustainable and contribute to environmental pollution. Biofuels are a promising source of sustainable energy. Feedstocks for biofuels used today such as grain starch are expensive and compete with food markets. Lignocellulosic biomass is abundant and readily available from a variety of sources, for example, energy crops and agricultural/industrial waste. Conversion of these materials to biofuels by microorganisms through direct hydrolysis and fermentation can be challenging. Alternatively, biomass can be converted to synthesis gas through gasification and transformed to fuels using chemical catalysts. Chemical conversion of synthesis gas components can be expensive and highly susceptible to catalyst poisoning, limiting biofuel yields. However, there are microorganisms that can convert the CO, H(2), and CO(2) in synthesis gas to fuels such as ethanol, butanol, and hydrogen. Biomass gasification-biosynthesis processing systems have shown promise as some companies have already been exploiting capable organisms for commercial purposes. The discovery of novel organisms capable of higher product yield, as well as metabolic engineering of existing microbial catalysts, makes this technology a viable option for reducing our dependency on fossil fuels.
Collapse
Affiliation(s)
- Oscar Tirado-Acevedo
- Department of Microbiology, North Carolina State University, Raleigh, North Carolina, USA
| | | | | |
Collapse
|
23
|
Koller M, Atlić A, Dias M, Reiterer A, Braunegg G. Microbial PHA Production from Waste Raw Materials. MICROBIOLOGY MONOGRAPHS 2010. [DOI: 10.1007/978-3-642-03287-5_5] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
24
|
Figueiredo JA, Ismael MI, Anjo CMS, Duarte AP. Cellulose and Derivatives from Wood and Fibers as Renewable Sources of Raw-Materials. Top Curr Chem (Cham) 2010; 294:117-28. [DOI: 10.1007/128_2010_88] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
25
|
Kumar P, Satyanarayana T. Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 2009; 29:225-55. [DOI: 10.1080/07388550903136076] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
26
|
Fascione MA, Adshead SJ, Stalford SA, Kilner CA, Leach AG, Turnbull WB. Stereoselective glycosylation using oxathiane glycosyl donors. Chem Commun (Camb) 2009:5841-3. [DOI: 10.1039/b913308a] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
27
|
Guvench O, Greene SN, Kamath G, Brady JW, Venable RM, Pastor RW, Mackerell AD. Additive empirical force field for hexopyranose monosaccharides. J Comput Chem 2008; 29:2543-64. [PMID: 18470966 PMCID: PMC2882059 DOI: 10.1002/jcc.21004] [Citation(s) in RCA: 420] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We present an all-atom additive empirical force field for the hexopyranose monosaccharide form of glucose and its diastereomers allose, altrose, galactose, gulose, idose, mannose, and talose. The model is developed to be consistent with the CHARMM all-atom biomolecular force fields, and the same parameters are used for all diastereomers, including both the alpha- and beta-anomers of each monosaccharide. The force field is developed in a hierarchical manner and reproduces the gas-phase and condensed-phase properties of small-molecule model compounds corresponding to fragments of pyranose monosaccharides. The resultant parameters are transferred to the full pyranose monosaccharides, and additional parameter development is done to achieve a complete hexopyranose monosaccharide force field. Parametrization target data include vibrational frequencies, crystal geometries, solute-water interaction energies, molecular volumes, heats of vaporization, and conformational energies, including those for over 1800 monosaccharide conformations at the MP2/cc-pVTZ//MP2/6-31G(d) level of theory. Although not targeted during parametrization, free energies of aqueous solvation for the model compounds compare favorably with experimental values. Also well-reproduced are monosaccharide crystal unit cell dimensions and ring pucker, densities of concentrated aqueous glucose systems, and the thermodynamic and dynamic properties of the exocyclic torsion in dilute aqueous systems. The new parameter set expands the CHARMM additive force field to allow for simulation of heterogeneous systems that include hexopyranose monosaccharides in addition to proteins, nucleic acids, and lipids.
Collapse
Affiliation(s)
- Olgun Guvench
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Maryland, Baltimore, 20 Penn St., HSF II-629, Baltimore, Maryland 21201, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Zhang S, Yang F, Wang Q, Zhao ZK. Secretory expression of the exo-inulinase from K. marxianus CBS 6556 IN Pichia pastoris. J Biotechnol 2008. [DOI: 10.1016/j.jbiotec.2008.07.1905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
29
|
Cellulosic ethanol: securing the planet future energy needs. Int J Mol Sci 2008; 9:838-841. [PMID: 19325787 PMCID: PMC2635711 DOI: 10.3390/ijms9050838] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2008] [Revised: 05/16/2008] [Accepted: 05/16/2008] [Indexed: 11/17/2022] Open
Abstract
Bioenergy is fairly recognized as not only a necessity, but an inevitable path to secure the planet future energy needs. There is however a global consensus that the overall feasibility of bioenergy will require an integrated approach based on diversified feedstocks and conversion processes. As illustrated in the Brazilian experience, the thrust of any bioenergy program should be centered on the principles and criteria of sustainable production. In general the trends are towards exploiting low value cellulosic materials to obtain high-end value energy products. To this end, it is expected that scientific or technical innovation will come to play a critical role on the future prospects and potential of any bioenergy initiative.
Collapse
|
30
|
Yuan XL, van der Kaaij RM, van den Hondel CAMJJ, Punt PJ, van der Maarel MJEC, Dijkhuizen L, Ram AFJ. Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles. Mol Genet Genomics 2008; 279:545-61. [PMID: 18320228 PMCID: PMC2413074 DOI: 10.1007/s00438-008-0332-7] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2007] [Accepted: 02/14/2008] [Indexed: 11/25/2022]
Abstract
The filamentous ascomycete Aspergillus niger is well known for its ability to produce a large variety of enzymes for the degradation of plant polysaccharide material. A major carbon and energy source for this soil fungus is starch, which can be degraded by the concerted action of α-amylase, glucoamylase and α-glucosidase enzymes, members of the glycoside hydrolase (GH) families 13, 15 and 31, respectively. In this study we have combined analysis of the genome sequence of A. niger CBS 513.88 with microarray experiments to identify novel enzymes from these families and to predict their physiological functions. We have identified 17 previously unknown family GH13, 15 and 31 enzymes in the A. niger genome, all of which have orthologues in other aspergilli. Only two of the newly identified enzymes, a putative α-glucosidase (AgdB) and an α-amylase (AmyC), were predicted to play a role in starch degradation. The expression of the majority of the genes identified was not induced by maltose as carbon source, and not dependent on the presence of AmyR, the transcriptional regulator for starch degrading enzymes. The possible physiological functions of the other predicted family GH13, GH15 and GH31 enzymes, including intracellular enzymes and cell wall associated proteins, in alternative α-glucan modifying processes are discussed.
Collapse
Affiliation(s)
- Xiao-Lian Yuan
- Clusius Laboratory, Molecular Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
- Microarray Department, University of Amsterdam, Kruislaan 318, 1098 SM Amsterdam, The Netherlands
| | - Rachel M. van der Kaaij
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- Centre for Carbohydrate Bioprocessing, TNO, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Cees A. M. J. J. van den Hondel
- Clusius Laboratory, Molecular Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | - Peter J. Punt
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Utrechtseweg 48, 3704 HE Zeist, The Netherlands
| | - Marc J. E. C. van der Maarel
- Centre for Carbohydrate Bioprocessing, TNO, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- TNO Quality of Life, Business Unit Food and Biotechnology Innovations, Rouaanstraat 27, 9723 CC Groningen, The Netherlands
| | - Lubbert Dijkhuizen
- Department of Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
- Centre for Carbohydrate Bioprocessing, TNO, University of Groningen, Kerklaan 30, 9751 NN Haren, The Netherlands
| | - Arthur F. J. Ram
- Clusius Laboratory, Molecular Microbiology and Kluyver Centre for Genomics of Industrial Fermentations, Institute of Biology Leiden, Leiden University, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| |
Collapse
|
31
|
Badotti F, Dário MG, Alves SL, Cordioli MLA, Miletti LC, de Araujo PS, Stambuk BU. Switching the mode of sucrose utilization by Saccharomyces cerevisiae. Microb Cell Fact 2008; 7:4. [PMID: 18304329 PMCID: PMC2268662 DOI: 10.1186/1475-2859-7-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2007] [Accepted: 02/27/2008] [Indexed: 11/17/2022] Open
Abstract
Background Overflow metabolism is an undesirable characteristic of aerobic cultures of Saccharomyces cerevisiae during biomass-directed processes. It results from elevated sugar consumption rates that cause a high substrate conversion to ethanol and other bi-products, severely affecting cell physiology, bioprocess performance, and biomass yields. Fed-batch culture, where sucrose consumption rates are controlled by the external addition of sugar aiming at its low concentrations in the fermentor, is the classical bioprocessing alternative to prevent sugar fermentation by yeasts. However, fed-batch fermentations present drawbacks that could be overcome by simpler batch cultures at relatively high (e.g. 20 g/L) initial sugar concentrations. In this study, a S. cerevisiae strain lacking invertase activity was engineered to transport sucrose into the cells through a low-affinity and low-capacity sucrose-H+ symport activity, and the growth kinetics and biomass yields on sucrose analyzed using simple batch cultures. Results We have deleted from the genome of a S. cerevisiae strain lacking invertase the high-affinity sucrose-H+ symporter encoded by the AGT1 gene. This strain could still grow efficiently on sucrose due to a low-affinity and low-capacity sucrose-H+ symport activity mediated by the MALx1 maltose permeases, and its further intracellular hydrolysis by cytoplasmic maltases. Although sucrose consumption by this engineered yeast strain was slower than with the parental yeast strain, the cells grew efficiently on sucrose due to an increased respiration of the carbon source. Consequently, this engineered yeast strain produced less ethanol and 1.5 to 2 times more biomass when cultivated in simple batch mode using 20 g/L sucrose as the carbon source. Conclusion Higher cell densities during batch cultures on 20 g/L sucrose were achieved by using a S. cerevisiae strain engineered in the sucrose uptake system. Such result was accomplished by effectively reducing sucrose uptake by the yeast cells, avoiding overflow metabolism, with the concomitant reduction in ethanol production. The use of this modified yeast strain in simpler batch culture mode can be a viable option to more complicated traditional sucrose-limited fed-batch cultures for biomass-directed processes of S. cerevisiae.
Collapse
Affiliation(s)
- Fernanda Badotti
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis, SC 88040-900, Brazil.
| | | | | | | | | | | | | |
Collapse
|