1
|
Yao ZY, Gong JS, Jiang JY, Su C, Zhao WH, Xu ZH, Shi JS. Unraveling the intricacies of glycosaminoglycan biosynthesis: Decoding the molecular symphony in understanding complex polysaccharide assembly. Biotechnol Adv 2024; 75:108416. [PMID: 39033835 DOI: 10.1016/j.biotechadv.2024.108416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/01/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Glycosaminoglycans (GAGs) are extensively utilized in clinical, cosmetic, and healthcare field, as well as in the treatment of thrombosis, osteoarthritis, rheumatism, and cancer. The biological production of GAGs is a strategy that has garnered significant attention due to its numerous advantages over traditional preparation methods. In this review, we embark on a journey to decode the intricate molecular symphony that orchestrates the biosynthesis of glycosaminoglycans. By unraveling the complex interplay of related enzymes and thorough excavation of the intricate metabolic cascades involved, GAGs chain aggregation and transportation, which efficiently and controllably modulate GAGs sulfation patterns involved in biosynthetic pathway, we endeavor to offer a thorough comprehension of how these remarkable GAGs are intricately assembled and pushes the boundaries of our understanding in GAGs biosynthesis.
Collapse
Affiliation(s)
- Zhi-Yuan Yao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| | - Jia-Yu Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China
| | - Wen-Han Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Zheng-Hong Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, School of Biotechnology, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China; College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology of Ministry of Education, School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, PR China; Institute of Future Food Technology, JITRI, Yixing 214200, PR China.
| |
Collapse
|
2
|
Wei M, Huang Y, Zhu J, Qiao Y, Xiao N, Jin M, Gao H, Huang Y, Hu X, Li O. Advances in hyaluronic acid production: Biosynthesis and genetic engineering strategies based on Streptococcus - A review. Int J Biol Macromol 2024; 270:132334. [PMID: 38744368 DOI: 10.1016/j.ijbiomac.2024.132334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 05/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Hyaluronic acid (HA), which is a highly versatile glycosaminoglycan, is widely applied across the fields of food, cosmetics, and pharmaceuticals. It is primary produced through Streptococcus fermentation, but the product presents inherent challenges concerning consistency and potential pathogenicity. However, recent strides in molecular biology have paved the way for genetic engineering, which facilitates the creation of high-yield, nonpathogenic strains adept at synthesizing HA with specific molecular weights. This comprehensive review extensively explores the molecular biology underpinning pivotal HA synthase genes, which elucidates the intricate mechanisms governing HA synthesis. Moreover, it delineates various strategies employed in engineering HA-producing strains.
Collapse
Affiliation(s)
- Mengmeng Wei
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ying Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Junyuan Zhu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yufan Qiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Na Xiao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Mengying Jin
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Han Gao
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Yitie Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Xiufang Hu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China
| | - Ou Li
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310000, PR China.
| |
Collapse
|
3
|
Yuan S, Zheng Y, Du Y, Song M, Sun CC, Cheng F, Yu H. Fine-tuning the cell morphology of Corynebacterium glutamicum via dual-valve regulation for enhanced hyaluronic acid production. BIOTECHNOLOGY NOTES (AMSTERDAM, NETHERLANDS) 2023; 4:135-145. [PMID: 39416921 PMCID: PMC11446395 DOI: 10.1016/j.biotno.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/09/2023] [Accepted: 12/09/2023] [Indexed: 10/19/2024]
Abstract
Enhanced synthesis of hyaluronic acid (HA) with recombinant Corynebacterium glutamicum as production host was achieved in this work. Hyaluronan synthase (HAS), which is a membrane protein acting as a key enzyme in HA biosynthesis, impacts both HA yield and its molecular weight. Cell morphology, which includes size, shape, and surface area, has a large impact on the expression and activity of HAS. Therefore, deliberate regulation of cell morphology holds the potential to enhance HA production. Here, we constructed three modules, namely the transporter module, the morphology tuning module and the HA synthesis module. The transporter module contains a strong constitutive promoter Ptuf and arabinose transport protein was used to control the maximum amount of inducer entering the cell, thus reducing excessive cell deformation. The morphology tuning module contains an arabinose-inducible weak promoter PBAD and a cell-division-relevant gene was used to sense intracellular inducer concentrations and achieve different degrees of change in cell size. These two modules worked together, described as a dual-valve regulation, to achieve fine-tuning of cell morphology, resulting in a 1.87-fold increase in cell length and a 2.08-fold increase in cell membrane. When combined with the HA synthesis module, the HA titer reached 16.0 g/L, which was 1.6 times the yield reported in the previous morphology-engineered strain. Hence, for the first time, a morphologically engineered strain resulting in both high cell density and HA titer was constructed.
Collapse
Affiliation(s)
- Shuting Yuan
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Yukun Zheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Yan Du
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Mingye Song
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Claudia Chen Sun
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Fangyu Cheng
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
| | - Huimin Yu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Key Laboratory for Industrial Biocatalysis, Ministry of Education, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
4
|
Wang D, Hu L, Xu R, Zhang W, Xiong H, Wang Y, Du G, Kang Z. Production of different molecular weight glycosaminoglycans with microbial cell factories. Enzyme Microb Technol 2023; 171:110324. [PMID: 37742407 DOI: 10.1016/j.enzmictec.2023.110324] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/04/2023] [Accepted: 09/08/2023] [Indexed: 09/26/2023]
Abstract
Glycosaminoglycans (GAGs) are naturally occurring acidic polysaccharides with wide applications in pharmaceuticals, cosmetics, and health foods. The diverse biological activities and physiological functions of GAGs are closely associated with their molecular weights and sulfation patterns. Except for the non-sulfated hyaluronan which can be synthesized naturally by group A Streptococcus, all the other GAGs such as heparin and chondroitin sulfate are mainly acquired from animal tissues. Microbial cell factories provide a more effective platform for the production of structurally homogeneous GAGs. Enhancing the production efficiency of polysaccharides, accurately regulating the GAGs molecular weight, and effectively controlling the sulfation degree of GAGs represent the major challenges of developing GAGs microbial cell factories. Several enzymatic, metabolic engineering, and synthetic biology strategies have been developed to tackle these obstacles and push forward the industrialization of biotechnologically produced GAGs. This review summarizes the recent advances in the construction of GAGs synthesis cell factories, regulation of GAG molecular weight, and modification of GAGs chains. Furthermore, the challenges and prospects for future research in this field are also discussed.
Collapse
Affiliation(s)
- Daoan Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Ruirui Xu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Weijiao Zhang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Haibo Xiong
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; The Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| |
Collapse
|
5
|
Benhadda F, Zykwinska A, Colliec-Jouault S, Sinquin C, Thollas B, Courtois A, Fuzzati N, Toribio A, Delbarre-Ladrat C. Marine versus Non-Marine Bacterial Exopolysaccharides and Their Skincare Applications. Mar Drugs 2023; 21:582. [PMID: 37999406 PMCID: PMC10672628 DOI: 10.3390/md21110582] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/25/2023] Open
Abstract
Bacteria are well-known to synthesize high molecular weight polysaccharides excreted in extracellular domain, which constitute their protective microenvironment. Several bacterial exopolysaccharides (EPS) are commercially available for skincare applications in cosmetic products due to their unique structural features, conferring valuable biological and/or textural properties. This review aims to give an overview of bacterial EPS, an important group of macromolecules used in cosmetics as actives and functional ingredients. For this purpose, the main chemical characteristics of EPS are firstly described, followed by the basics of the development of cosmetic ingredients. Then, a focus on EPS production, including upstream and downstream processes, is provided. The diversity of EPS used in the cosmetic industry, and more specifically of marine-derived EPS is highlighted. Marine bacteria isolated from extreme environments are known to produce EPS. However, their production processes are highly challenging due to high or low temperatures; yield must be improved to reach economically viable ingredients. The biological properties of marine-derived EPS are then reviewed, resulting in the highlight of the challenges in this field.
Collapse
Affiliation(s)
- Fanny Benhadda
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Agata Zykwinska
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Sylvia Colliec-Jouault
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | - Corinne Sinquin
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| | | | | | - Nicola Fuzzati
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Alix Toribio
- CHANEL Fragrance and Beauty, F-93500 Pantin, France; (N.F.); (A.T.)
| | - Christine Delbarre-Ladrat
- Ifremer, MASAE Microbiologie Aliment Santé Environnement, F-44000 Nantes, France; (F.B.); (S.C.-J.); (C.S.); (C.D.-L.)
| |
Collapse
|
6
|
Paliya BS, Sharma VK, Tuohy MG, Singh HB, Koffas M, Benhida R, Tiwari BK, Kalaskar DM, Singh BN, Gupta VK. Bacterial glycobiotechnology: A biosynthetic route for the production of biopharmaceutical glycans. Biotechnol Adv 2023; 67:108180. [PMID: 37236328 DOI: 10.1016/j.biotechadv.2023.108180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 05/28/2023]
Abstract
The recent advancement in the human glycome and progress in the development of an inclusive network of glycosylation pathways allow the incorporation of suitable machinery for protein modification in non-natural hosts and explore novel opportunities for constructing next-generation tailored glycans and glycoconjugates. Fortunately, the emerging field of bacterial metabolic engineering has enabled the production of tailored biopolymers by harnessing living microbial factories (prokaryotes) as whole-cell biocatalysts. Microbial catalysts offer sophisticated means to develop a variety of valuable polysaccharides in bulk quantities for practical clinical applications. Glycans production through this technique is highly efficient and cost-effective, as it does not involve expensive initial materials. Metabolic glycoengineering primarily focuses on utilizing small metabolite molecules to alter biosynthetic pathways, optimization of cellular processes for glycan and glycoconjugate production, characteristic to a specific organism to produce interest tailored glycans in microbes, using preferably cheap and simple substrate. However, metabolic engineering faces one of the unique challenges, such as the need for an enzyme to catalyze desired substrate conversion when natural native substrates are already present. So, in metabolic engineering, such challenges are evaluated, and different strategies have been developed to overcome them. The generation of glycans and glycoconjugates via metabolic intermediate pathways can still be supported by glycol modeling achieved through metabolic engineering. It is evident that modern glycans engineering requires adoption of improved strain engineering strategies for creating competent glycoprotein expression platforms in bacterial hosts, in the future. These strategies include logically designing and introducing orthogonal glycosylation pathways, identifying metabolic engineering targets at the genome level, and strategically improving pathway performance (for example, through genetic modification of pathway enzymes). Here, we highlight current strategies, applications, and recent progress in metabolic engineering for producing high-value tailored glycans and their applications in biotherapeutics and diagnostics.
Collapse
Affiliation(s)
- Balwant S Paliya
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Vivek K Sharma
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India
| | - Maria G Tuohy
- Biochemistry, School of Biological and Chemical Sciences, College of Science & Engineering, University of Galway (Ollscoil na Gaillimhe), University Road, Galway City, Ireland
| | - Harikesh B Singh
- Department of Biotechnology, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Mattheos Koffas
- Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Rachid Benhida
- Institut de Chimie de Nice, UMR7272, Université Côte d'Azur, Nice, France; Mohamed VI Polytechnic University, Lot 660, Hay Moulay Rachid 43150, Benguerir, Morocco
| | | | - Deepak M Kalaskar
- UCL Division of Surgery and Interventional Science, Royal Free Hospital Campus, University College London, Rowland Hill Street, NW3 2PF, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow 226001, India.
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Centre, SRUC, Barony Campus, Parkgate, Dumfries DG1 3NE, United Kingdom.
| |
Collapse
|
7
|
Liu K, Guo L, Chen X, Liu L, Gao C. Microbial synthesis of glycosaminoglycans and their oligosaccharides. Trends Microbiol 2023; 31:369-383. [PMID: 36517300 DOI: 10.1016/j.tim.2022.11.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 12/15/2022]
Abstract
Compared with chemical synthesis and tissue extraction methods, microbial synthesis of glycosaminoglycans (GAGs) is attractive because of the advantages of eco-friendly processes, production safety, and sustainable development. However, boosting the efficiency of microbial cell factories, precisely regulating GAG molecular weights, and rationally controlling the sulfation degree of GAGs remain challenging. To address these issues, various strategies, including genetic, enzymatic, metabolic, and fermentation engineering, have been developed. In this review, we summarize the recent progress in the construction of efficient GAG-producing microbial cell factories, regulation of the molecular weight of GAGs, and modification of GAG chains. Moreover, future studies, remaining challenges, and potential solutions in this field are discussed.
Collapse
Affiliation(s)
- Kaifang Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; International Joint Laboratory on Food Safety, Jiangnan University, Wuxi 214122, China; School of Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
8
|
Liu S, Yu JM, Gan YC, Qiu XZ, Gao ZC, Wang H, Chen SX, Xiong Y, Liu GH, Lin SE, McCarthy A, John JV, Wei DX, Hou HH. Biomimetic natural biomaterials for tissue engineering and regenerative medicine: new biosynthesis methods, recent advances, and emerging applications. Mil Med Res 2023; 10:16. [PMID: 36978167 PMCID: PMC10047482 DOI: 10.1186/s40779-023-00448-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/23/2023] [Indexed: 03/30/2023] Open
Abstract
Biomimetic materials have emerged as attractive and competitive alternatives for tissue engineering (TE) and regenerative medicine. In contrast to conventional biomaterials or synthetic materials, biomimetic scaffolds based on natural biomaterial can offer cells a broad spectrum of biochemical and biophysical cues that mimic the in vivo extracellular matrix (ECM). Additionally, such materials have mechanical adaptability, microstructure interconnectivity, and inherent bioactivity, making them ideal for the design of living implants for specific applications in TE and regenerative medicine. This paper provides an overview for recent progress of biomimetic natural biomaterials (BNBMs), including advances in their preparation, functionality, potential applications and future challenges. We highlight recent advances in the fabrication of BNBMs and outline general strategies for functionalizing and tailoring the BNBMs with various biological and physicochemical characteristics of native ECM. Moreover, we offer an overview of recent key advances in the functionalization and applications of versatile BNBMs for TE applications. Finally, we conclude by offering our perspective on open challenges and future developments in this rapidly-evolving field.
Collapse
Affiliation(s)
- Shuai Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Jiang-Ming Yu
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Yan-Chang Gan
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Xiao-Zhong Qiu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China
| | - Zhe-Chen Gao
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033, Guangdong, China.
| | - Shi-Xuan Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, Zhejiang, China.
| | - Yuan Xiong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guo-Hui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Si-En Lin
- Department of Orthopaedics and Traumatology, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong SAR, 999077, China
| | - Alec McCarthy
- Department of Functional Materials, Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Johnson V John
- Mary & Dick Holland Regenerative Medicine Program, College of Medicine, University of Nebraska Medical Center, Omaha, NE, 68130, USA
| | - Dai-Xu Wei
- Department of Orthopedics, Tongren Hospital, Shanghai Jiao Tong University, Shanghai, 200336, China.
- Zigong Affiliated Hospital of Southwest Medical University, Zigong Psychiatric Research Center, Zigong Institute of Brain Science, Zigong, 643002, Sichuan, China.
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710127, China.
| | - Hong-Hao Hou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, The Fifth Affiliated Hospital, School of Basic Medical Science, Southern Medical University, Guangzhou, 510900, China.
| |
Collapse
|
9
|
Serra M, Casas A, Toubarro D, Barros AN, Teixeira JA. Microbial Hyaluronic Acid Production: A Review. Molecules 2023; 28:molecules28052084. [PMID: 36903332 PMCID: PMC10004376 DOI: 10.3390/molecules28052084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 02/25/2023] Open
Abstract
Microbial production of hyaluronic acid (HA) is an area of research that has been gaining attention in recent years due to the increasing demand for this biopolymer for several industrial applications. Hyaluronic acid is a linear, non-sulfated glycosaminoglycan that is widely distributed in nature and is mainly composed of repeating units of N-acetylglucosamine and glucuronic acid. It has a wide and unique range of properties such as viscoelasticity, lubrication, and hydration, which makes it an attractive material for several industrial applications such as cosmetics, pharmaceuticals, and medical devices. This review presents and discusses the available fermentation strategies to produce hyaluronic acid.
Collapse
Affiliation(s)
- Mónica Serra
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
- Correspondence: (M.S.); or (A.N.B.)
| | - Ana Casas
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
| | - Duarte Toubarro
- CBA and Faculty of Sciences and Technology, University of Azores, Rua Mãe de Deus No 13, 9500-321 Ponta Delgada, Portugal
| | - Ana Novo Barros
- Mesosystem, Rua da Igreja Velha 295, 4410-160 Vila Nova de Gaia, Portugal
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)), Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production (Inov4Agro), University of Trás-os-Montes and Alto Douro (UTAD), Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence: (M.S.); or (A.N.B.)
| | - José António Teixeira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
- LABBELS–Associate Laboratory, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Abdullah Thaidi NI, Mohamad R, Wasoh H, Kapri MR, Ghazali AB, Tan JS, Rios-Solis L, Halim M. Development of In Situ Product Recovery (ISPR) System Using Amberlite IRA67 for Enhanced Biosynthesis of Hyaluronic Acid by Streptococcus zooepidemicus. Life (Basel) 2023; 13:life13020558. [PMID: 36836914 PMCID: PMC9966800 DOI: 10.3390/life13020558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
High broth viscosity due to the accumulation of hyaluronic acid (HA) causes a limited yield of HA. It is a major problem of HA production using Streptococcus zooepidemicus. Extractive fermentation via in situ product recovery (ISPR) was utilized to enhance the HA production. Resins from Amberlite: IRA400 Cl; IRA900 Cl; IRA410 Cl; IRA402 Cl; and IRA67 were tested for the HA adsorption. IRA67 showed high adsorption capacity on HA. The study of the adsorption via a 2 L stirred tank bioreactor of S. zooepidemicus fermentation was investigated to elucidate the adsorption of HA onto IRA67 in dispersed and integrated internal column systems. The application of a dispersed IRA67 improved the HA production compared to the fermentation without resin addition by 1.37-fold. The HA production was further improved by 1.36-fold with an internal column (3.928 g/L) over that obtained with dispersed IRA67. The cultivation with an internal column shows the highest reduction of viscosity value after the addition of IRA67 resin: from 58.8 to 23.7 (mPa·s), suggesting the most effective ISPR of HA. The improved biosynthesis of HA indicated that an extractive fermentation by ISPR adsorption is effective and may streamline the HA purification.
Collapse
Affiliation(s)
- Nur Imanina Abdullah Thaidi
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Rosfarizan Mohamad
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Helmi Wasoh
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Mohammad Rizal Kapri
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
| | - Ahmad Badruddin Ghazali
- Department of Oral Maxillofacial Surgery and Oral Diagnosis, Kulliyyah of Dentistry, International Islamic University Malaysia, 25200 Kuantan, Malaysia
| | - Joo Shun Tan
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- School of Industrial Technology, Universiti Sains Malaysia, 11800 Gelugor, Malaysia
| | - Leonardo Rios-Solis
- School of Natural and Environmental Sciences, Molecular Biology and Biotechnology Group, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- School of Engineering, Institute for Bioengineering, University of Edinburgh, Edinburgh EH9 3JL, UK
| | - Murni Halim
- Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Bioprocessing and Biomanufacturing Research Complex, Universiti Putra Malaysia, 43400 Serdang, Malaysia
- Correspondence:
| |
Collapse
|
11
|
Goyal N, Jerold F. Biocosmetics: technological advances and future outlook. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25148-25169. [PMID: 34825334 PMCID: PMC8616574 DOI: 10.1007/s11356-021-17567-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 04/16/2023]
Abstract
The paper provides an overview of biocosmetics, which has tremendous potential for growth and is attracting huge business opportunities. It emphasizes the immediate need to replace conventional fossil-based ingredients in cosmetics with natural, safe, and effective ingredients. It assembles recent technologies viable in the production/extraction of the bioactive ingredient, product development, and formulation processes, its rapid and smooth delivery to the target site, and fosters bio-based cosmetic packaging. It further explores industries that can be a trailblazer in supplying raw material for extraction of bio-based ingredients for cosmetics, creating biodegradable packaging, or weaving innovation in fashion clothing. Lastly, the paper discusses what it takes to become the first generation of a circular economy and supports the implementation of strict regulatory guidelines for any cosmetic sold globally.
Collapse
Affiliation(s)
- Nishu Goyal
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India.
| | - Frankline Jerold
- Department of Chemical Engineering, University of Petroleum and Energy Studies, Dehradun, 248007, India
| |
Collapse
|
12
|
Nasser H, Eikmanns BJ, Tolba MM, El-Azizi M, Abou-Aisha K. The Superiority of Bacillus megaterium over Escherichia coli as a Recombinant Bacterial Host for Hyaluronic Acid Production. Microorganisms 2022; 10:microorganisms10122347. [PMID: 36557601 PMCID: PMC9787986 DOI: 10.3390/microorganisms10122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/20/2022] [Accepted: 11/21/2022] [Indexed: 11/29/2022] Open
Abstract
(1) Background: Hyaluronic acid (HA) is a polyanionic mucopolysaccharide extensively used in biomedical and cosmetic industries due to its unique rheological properties. Recombinant HA production using other microbial platforms has received increasing interest to avoid potential toxin contamination associated with its production by streptococcal fermentation. In this study, the Gram-negative strains Escherichia coli (pLysY/Iq), E. coli Rosetta2, E. coli Rosetta (DE3) pLysS, E. coli Rosetta2 (DE3), E. coli Rosetta gammiB(DE3)pLysS, and the Gram-positive Bacillus megaterium (MS941) were investigated as new platforms for the heterologous production of HA. (2) Results: The HA biosynthesis gene hasA, cloned from Streptococcus equi subsp. zoopedemicus, was ligated into plasmid pMM1522 (MoBiTec), resulting in pMM1522 hasA, which was introduced into E. coli Rosetta-2(DE3) and B. megaterium (MS941). The initial HA titer by the two hosts in the LB medium was 5 mg/L and 50 mg/L, respectively. Streptococcal hasABC and hasABCDE genes were ligated into plasmid pPT7 (MoBiTec) and different E. coli host strains were then transformed with the resulting plasmids pPT7hasABC and pPT7hasABCDE. For E. coli Rosetta-gamiB(DE3)pLysS transformed with pPT7hasABC, HA production was 500 ± 11.4 mg/L in terrific broth (TB) medium. Productivity was slightly higher (585 ± 2.9 mg/L) when the same host was transformed with pPT7 carrying the entire HA operon. We also transformed B. megaterium (MS941) protoplasts carrying T7-RNAP with pPT7hasABC and pPT7hasABCDE. In comparison, the former plasmid resulted in HA titers of 2116.7 ± 44 and 1988.3 ± 19.6 mg/L in LB media supplemented with 5% sucrose and A5 medium + MOPSO, respectively; the latter plasmid boosted the titer final concentration further to reach 2476.7 ± 14.5 mg/L and 2350 ± 28.8 mg/L in the two media, respectively. The molecular mass of representative HA samples ranged from 105 − 106 Daltons (Da), and the polydispersity index (PDI) was <2. Fourier transform infrared spectroscopy (FTIR) spectra of the HA product were identical to those obtained for commercially available standard polymers. Finally, scanning electron microscopic examination revealed the presence of extensive HA capsules in E. coli Rosetta-gamiB(DE3)pLysS, while no HA capsules were produced by B. megaterium. (3) Conclusions: Our results suggested that Gram-positive bacteria are probably superior host strains for recombinant HA production over their Gram-negative counters. The titers and the molecular weight (MW) of HA produced by B. megaterium were significantly higher than those obtained by different E. coli host strains used in this study.
Collapse
Affiliation(s)
- HebaT’Allah Nasser
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
- Institute of Microbiology and Biotechnology, Ulm University, 89081 Ulm, Germany
- Correspondence:
| | | | - Mahmoud M. Tolba
- Pharmaceutical Division, Ministry of Health and Population, Faiyum City 63723, Egypt
| | - Mohamed El-Azizi
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| | - Khaled Abou-Aisha
- Department of Microbiology, Immunology, and Biotechnology, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo 11435, Egypt
| |
Collapse
|
13
|
Shikina E, Kovalevsky R, Shirkovskaya A, Toukach P. Prospective bacterial and fungal sources of hyaluronic acid: A review. Comput Struct Biotechnol J 2022; 20:6214-6236. [PMID: 36420162 PMCID: PMC9676211 DOI: 10.1016/j.csbj.2022.11.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 11/05/2022] [Accepted: 11/05/2022] [Indexed: 11/11/2022] Open
Abstract
The unique biological and rheological properties make hyaluronic acid a sought-after material for medicine and cosmetology. Due to very high purity requirements for hyaluronic acid in medical applications, the profitability of streptococcal fermentation is reduced. Production of hyaluronic acid by recombinant systems is considered a promising alternative. Variations in combinations of expressed genes and fermentation conditions alter the yield and molecular weight of produced hyaluronic acid. This review is devoted to the current state of hyaluronic acid production by recombinant bacterial and fungal organisms.
Collapse
|
14
|
Deng C, Zhao M, Zhao Q, Zhao L. Advances in green bioproduction of marine and glycosaminoglycan oligosaccharides. Carbohydr Polym 2022; 300:120254. [DOI: 10.1016/j.carbpol.2022.120254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/02/2022]
|
15
|
Jeeva P, Jayaprakash SR, Jayaraman G. Hyaluronic acid production is enhanced by harnessing the heme-induced respiration in recombinant Lactococcus lactis cultures. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Mohan N, Pavan SS, Jayakumar A, Rathinavelu S, Sivaprakasam S. Real-time metabolic heat-based specific growth rate soft sensor for monitoring and control of high molecular weight hyaluronic acid production by Streptococcus zooepidemicus. Appl Microbiol Biotechnol 2022; 106:1079-1095. [PMID: 35076739 DOI: 10.1007/s00253-022-11760-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/28/2021] [Accepted: 01/05/2022] [Indexed: 11/24/2022]
Abstract
This present investigation addressing the metabolic bottleneck in synthesis of high MW HA by Streptococcus zooepidemicus and illustrates the application of calorimetric fed-batch control of µ at a narrower range. Feedforward (FF) and feedback (FB) control was devised to improve the molecular weight (MW) of HA production by S. zooepidemicus. Metabolic heat measurements (Fermentation calorimetry) were modeled to decipher real-time specific growth rate, [Formula: see text] was looped into the PID circuit, envisaged to control [Formula: see text] to their desired setpoint values 0.05 [Formula: see text], 0.1 [Formula: see text], and 0.15 [Formula: see text] respectively. Similarly, a predetermined exponential feed rate irrespective of real-time µ was carried out in FF strategy. The developed FB strategy established a robust control capable of maintaining the specific growth rate (µ) close to the [Formula: see text] value with a minimal tracking error. Exponential feed rate carried out with a lowest [Formula: see text] of 0.05 [Formula: see text] showed an improved MW of HA to 2.98 MDa and 2.94 MDa for the FF and FB-based control strategies respectively. An optimal HA titer of 4.73 g/L was achieved in FF control strategy at [Formula: see text]. Superior control of µ at low [Formula: see text] value was observed to influence HA polymerization positively by yielding an improved MW and desired polydispersity index (PDI) of HA. PID control offers advantage over conventional fed-batch method to synthesize HA at an improved MW. Calorimetric signal-based µ control by PID negates adverse effects due to the secretion of other end products albeit maintaining regular metabolic activities. KEY POINTS: First report to compare HA productivities by feedforward and feedback control strategy. Inherent merits of regulating µ at narrower range were entailed. Relationship between operating µ and HA molecular weight was discussed.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Anjali Jayakumar
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sivakumar Rathinavelu
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences & Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| |
Collapse
|
17
|
Du Y, Cheng F, Wang M, Xu C, Yu H. Indirect Pathway Metabolic Engineering Strategies for Enhanced Biosynthesis of Hyaluronic Acid in Engineered Corynebacterium glutamicum. Front Bioeng Biotechnol 2022; 9:768490. [PMID: 34988066 PMCID: PMC8721151 DOI: 10.3389/fbioe.2021.768490] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 11/13/2022] Open
Abstract
Hyaluronic acid (HA) is composed of alternating d-glucuronic acid and N-acetyl-d-glucosamine, with excellent biocompatibility and water retention capacity. To achieve heterologous biosynthesis of HA, Corynebacterium glutamicum, a safe GRAS (generally recognized as safe) host, was utilized and metabolically engineered previously. In this work, to achieve further enhancement of HA yield, four strategies were proposed and performed separately first, i.e., (1) improvement of glucose uptake via iolR gene knockout, releasing the inhibition of transporter IolT1/IolT2 and glucokinases; (2) intensification of cardiolipin synthesis through overexpression of genes pgsA1/pgsA2/cls involved in cardiolipin synthesis; (3) duly expressed Vitreoscilla hemoglobin in genome, enhancing HA titer coupled with more ATP and improved NAD+/NADH (>7.5) ratio; and (4) identification of the importance of glutamine for HA synthesis through transcriptome analyses and then enhancement of the HA titer via its supplement. After that, we combined different strategies together to further increase the HA titer. As a result, one of the optimal recombinant strains, Cg-dR-CLS, yielded 32 g/L of HA at 60 h in a fed-batch culture, which was increased by 30% compared with that of the starting strain. This high value of HA titer will enable the industrial production of HA via the engineered C. glutamicum.
Collapse
Affiliation(s)
- Yan Du
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Fangyu Cheng
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Miaomiao Wang
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Chunmeng Xu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Huimin Yu
- Key Laboratory for Industrial Biocatalysis of the Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China.,Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| |
Collapse
|
18
|
Chai M, Deng C, Chen Q, Lu W, Liu Y, Li J, Du G, Lv X, Liu L. Synthetic Biology Toolkits and Metabolic Engineering Applied in Corynebacterium glutamicum for Biomanufacturing. ACS Synth Biol 2021; 10:3237-3250. [PMID: 34855356 DOI: 10.1021/acssynbio.1c00355] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Corynebacterium glutamicum is an important workhorse in industrial white biotechnology. It has been widely applied in the producing processes of amino acids, fuels, and diverse value-added chemicals. With the continuous disclosure of genetic regulation mechanisms, various strategies and technologies of synthetic biology were used to design and construct C. glutamicum cells for biomanufacturing and bioremediation. This study mainly aimed to summarize the design and construction strategies of C. glutamicum-engineered strains, which were based on genomic modification, synthetic biological device-assisted metabolic flux optimization, and directed evolution-based engineering. Then, taking two important bioproducts (N-acetylglucosamine and hyaluronic acid) as examples, the applications of C. glutamicum cell factories were introduced. Finally, we discussed the current challenges and future development trends of C. glutamicum-engineered strain construction.
Collapse
Affiliation(s)
- Meng Chai
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Chen Deng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Qi Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wei Lu
- Shandong Runde Biotechnology Co., Ltd., Tai’an 271000, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
19
|
Nazeri A, Niazi A, Afsharifar A, Taghavi SM, Moghadam A, Aram F. Heterologous production of hyaluronic acid in Nicotiana tabacum hairy roots expressing a human hyaluronan synthase 2. Sci Rep 2021; 11:17966. [PMID: 34504153 PMCID: PMC8429445 DOI: 10.1038/s41598-021-97139-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Hyaluronic acid (HA), a unique polysaccharide with excellent Physico-chemical properties, is broadly used in pharmaceutical, biomedical, and cosmetic fields. It is widely present in all vertebrates, certain bacterial strains, and even viruses while it is not found in plants, fungi, and insects. HA is naturally synthesized by a class of integral membrane proteins called Hyaluronic acid synthase (HAS). Thus far, industrial production of HA is carried out based on either extraction from animal sources or large-scale microbial fermentation. The major drawbacks to using these systems are contamination with pathogens and microbial toxins. Recently, the production of HA through recombinant systems has received considerable attention. Plants are eco-friendly ideal expression systems for biopharmaceuticals production. In this study, the optimized human hyaluronic acid synthase2 (hHAS2) sequence was transformed into Nicotiana tabacum using Agrobacterium rhizogenes. The highest rhHAS2 concentration of 65.72 ng/kg (wet weight) in transgenic tobacco hairy roots was measured by the human HAS2 ELISA kit. The HA production in the transgenic hairy roots was verified by scanning electron microscope (SEM) and quantified by the HA ELISA kit. The DPPH radical scavenging activity of HA with the highest concentration of 0.56 g/kg (wet weight) showed a maximum activity of 46%. Gel Permeation Chromatography (GPC) analyses revealed the high molecular weight HA (HMW-HA) with about > 0.8 MDa.
Collapse
Affiliation(s)
- Arezoo Nazeri
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Ali Niazi
- Institute of Biotechnology, Shiraz University, Shiraz, Iran.
| | - Alireza Afsharifar
- Plant Virology Research Center, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Seyed Mohsen Taghavi
- Department of Plant Protection, College of Agriculture, Shiraz University, Shiraz, Iran
| | - Ali Moghadam
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| | - Farzaneh Aram
- Institute of Biotechnology, Shiraz University, Shiraz, Iran
| |
Collapse
|
20
|
Manfrão-Netto JHC, Queiroz EB, de Oliveira Junqueira AC, Gomes AMV, Gusmão de Morais D, Paes HC, Parachin NS. Genetic strategies for improving hyaluronic acid production in recombinant bacterial culture. J Appl Microbiol 2021; 132:822-840. [PMID: 34327773 DOI: 10.1111/jam.15242] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 07/27/2021] [Indexed: 02/06/2023]
Abstract
Hyaluronic acid (HA) is a biopolymer of repeating units of glucuronic acid and N-acetylglucosamine. Its market was valued at USD 8.9 billion in 2019. Traditionally, HA has been obtained from rooster comb-like animal tissues and fermentative cultures of attenuated pathogenic streptococci. Various attempts have been made to engineer a safe micro-organism for HA synthesis; however, the HA titres obtained from these attempts are in general still lower than those achieved by natural, pathogenic producers. In this scenario, ways to increase HA molecule length and titres in already constructed strains are gaining attention in the last years, but no recent publication has reviewed the main genetic strategies applied to improve HA production on heterologous hosts. In light of that, we hereby compile the advances made in the engineering of micro-organisms to improve HA synthesis.
Collapse
Affiliation(s)
- João H C Manfrão-Netto
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Enzo Bento Queiroz
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Ana C de Oliveira Junqueira
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Antônio M V Gomes
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil
| | - Daniel Gusmão de Morais
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| | - Hugo Costa Paes
- Clinical Medicine Division, University of Brasília Medical School, Brasília, Brazil
| | - Nádia Skorupa Parachin
- Grupo de Engenharia de Biocatalisadores, Departamento de Biologia Celular, Instituto de Ciências Biológicas Bloco K, Universidade de Brasília, Brasília, Brazil.,Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, Brazil
| |
Collapse
|
21
|
Advances in metabolic engineering of Corynebacterium glutamicum to produce high-value active ingredients for food, feed, human health, and well-being. Essays Biochem 2021; 65:197-212. [PMID: 34096577 PMCID: PMC8313993 DOI: 10.1042/ebc20200134] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 04/26/2021] [Accepted: 04/27/2021] [Indexed: 12/12/2022]
Abstract
The soil microbe Corynebacterium glutamicum is a leading workhorse in industrial biotechnology and has become famous for its power to synthetise amino acids and a range of bulk chemicals at high titre and yield. The product portfolio of the microbe is continuously expanding. Moreover, metabolically engineered strains of C. glutamicum produce more than 30 high value active ingredients, including signature molecules of raspberry, savoury, and orange flavours, sun blockers, anti-ageing sugars, and polymers for regenerative medicine. Herein, we highlight recent advances in engineering of the microbe into novel cell factories that overproduce these precious molecules from pioneering proofs-of-concept up to industrial productivity.
Collapse
|
22
|
Becker J, Wittmann C. Metabolic Engineering of
Corynebacterium glutamicum. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
23
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
24
|
Versatile strategies for bioproduction of hyaluronic acid driven by synthetic biology. Carbohydr Polym 2021; 264:118015. [PMID: 33910717 DOI: 10.1016/j.carbpol.2021.118015] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/17/2021] [Accepted: 03/28/2021] [Indexed: 01/16/2023]
Abstract
Owing to its outstanding water-retention ability, viscoelasticity, biocompatibility and non-immunogenicity, Hyaluronic acid (HA), a natural linear polymer alternating linked by d-glucuronic acid and N-acetylglucosamine, has been widely employed in cosmetic, medical and clinical applications. With the development of synthetic biology and bioprocessing optimization, HA production via microbial fermentation is an economical and sustainable alternative over traditional animal extraction methods. Indeed, recently Streptococci and other recombinant systems for HA synthesis has received increasing interests due to its technical advantages. This review summarizes the production of HA by microorganisms and demonstrates its synthesis mechanism, focusing on the current status in various production systems, as well as common synthetic biology strategies include driving more carbon flux into HA biosynthesis and regulating the molecular weight (MW), and finally discusses the major challenges and prospects.
Collapse
|
25
|
Zhao L, Ma Z, Yin J, Shi G, Ding Z. Biological strategies for oligo/polysaccharide synthesis: biocatalyst and microbial cell factory. Carbohydr Polym 2021; 258:117695. [PMID: 33593568 DOI: 10.1016/j.carbpol.2021.117695] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022]
Abstract
Oligosaccharides and polysaccharides constitute the principal components of carbohydrates, which are important biomacromolecules that demonstrate considerable bioactivities. However, the variety and structural complexity of oligo/polysaccharides represent a major challenge for biological and structural explorations. To access structurally defined oligo/polysaccharides, biological strategies using glycoenzyme biocatalysts have shown remarkable synthetic potential attributed to their regioselectivity and stereoselectivity that allow mild, structurally controlled reaction without addition of protecting groups necessary in chemical strategies. This review summarizes recent biotechnological approaches of oligo/polysaccharide synthesis, which mainly includes in vitro enzymatic synthesis and cell factory synthesis. We have discussed the important factors involved in the production of nucleotide sugars. Furthermore, the strategies established in the cell factory and enzymatic syntheses are summarized, and we have highlighted concepts like metabolic flux rebuilding and regulation, enzyme engineering, and route design as important strategies. The research challenges and prospects are also outlined and discussed.
Collapse
Affiliation(s)
- Liting Zhao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongbao Ma
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
26
|
Zheng Y, Cheng F, Zheng B, Yu H. Enhancing single-cell hyaluronic acid biosynthesis by microbial morphology engineering. Synth Syst Biotechnol 2020; 5:316-323. [PMID: 33024847 PMCID: PMC7530263 DOI: 10.1016/j.synbio.2020.09.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 08/31/2020] [Accepted: 09/09/2020] [Indexed: 12/14/2022] Open
Abstract
Microbial morphology engineering is a novel approach for cell factory to improve the titer of target product in bio-manufacture. Hyaluronic acid (HA), a valuable glycosaminoglycan polymerized by HA synthase (HAS), a membrane protein, is particularly selected as the model product to improve its single-cell HA-producing capacity via morphology engineering. DivIVA and FtsZ, the cell-elongation and cell division related protein, respectively, were both down/up dual regulated in C. glutamicum via weak promoter substitution or plasmid overexpression. Different from the natural short-rod shape, varied morphologies of engineered cells, i.e. small-ellipsoid-like (DivIVA-reduced), bulb-like (DivIVA-enhanced), long-rod (FtsZ-reduced) and dumbbell-like (FtsZ-enhanced), were observed. Applying these morphology-changed cells as hosts for HA production, the reduced expression of both DivIVA and FtsZ seriously inhibited normal cell growth; meanwhile, overexpression of DivIVA didn't show morphology changes, but overexpression of FtsZ surprisingly change the cell-shape into long and thick rod with remarkably enlarged single-cell surface area (more than 5.2-fold-increase). And finally, the single-cell HA-producing capacity of the FtsZ-overexpressed C. glutamicum was immensely improved by 13.5-folds. Flow cytometry analyses verified that the single-cell HAS amount on membrane was enhanced by 2.1 folds. This work is pretty valuable for high titer synthesis of diverse metabolic products with microbial cell factory.
Collapse
Affiliation(s)
- Yukun Zheng
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Fangyu Cheng
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Bo Zheng
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
| | - Huimin Yu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Beijing, 100084, PR China
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084, PR China
- Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, PR China
| |
Collapse
|
27
|
Gunasekaran V, D G, V P. Role of membrane proteins in bacterial synthesis of hyaluronic acid and their potential in industrial production. Int J Biol Macromol 2020; 164:1916-1926. [PMID: 32791275 DOI: 10.1016/j.ijbiomac.2020.08.077] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 08/06/2020] [Accepted: 08/08/2020] [Indexed: 10/23/2022]
Abstract
Hyaluronic acid (HA) is a glycosaminoglycan polymer found in various parts of human body and is required for functions like lubrication, water homeostasis etc. Hyaluronic acid is mostly produced industrially by bacterial fermentation for pharmaceutical and cosmetic applications. This review discusses on the role of membrane proteins involved in synthesis and transport of bacterial HA, since HA is a transmembrane product. The different types of membrane proteins involved, their transcriptional control in wild type bacteria and the expression of those proteins in various recombinant hosts have been discussed. The role of phospholipids and metal ions on membrane proteins activity, HA yield and size of HA have also been discussed. Today with an estimated market of US$ 8.3 billion and which is expected to grow to US$ 15.25 billion in 2026, it is essential to increase the efficiency of the industrial HA production process. So this review also proposes on how those membrane proteins and cellular mechanisms like the transcriptional control can be utilised to develop efficient industrial strains that enhance the yield and size of HA produced.
Collapse
Affiliation(s)
| | - Gowdhaman D
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India
| | - Ponnusami V
- Biomass conversion and Bioproducts Laboratory, Center for Bioenergy, School of Chemical & Biotechnology, SASTRA Deemed University, Thirumalaisamudram, Tamil Nadu, India.
| |
Collapse
|
28
|
Wang Y, Hu L, Huang H, Wang H, Zhang T, Chen J, Du G, Kang Z. Eliminating the capsule-like layer to promote glucose uptake for hyaluronan production by engineered Corynebacterium glutamicum. Nat Commun 2020; 11:3120. [PMID: 32561727 PMCID: PMC7305114 DOI: 10.1038/s41467-020-16962-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
Hyaluronan is widely used in cosmetics and pharmaceutics. Development of robust and safe cell factories and cultivation approaches to efficiently produce hyaluronan is of many interests. Here, we describe the metabolic engineering of Corynebacterium glutamicum and application of a fermentation strategy to manufacture hyaluronan with different molecular weights. C. glutamicum is engineered by combinatorial overexpression of type I hyaluronan synthase, enzymes of intermediate metabolic pathways and attenuation of extracellular polysaccharide biosynthesis. The engineered strain produces 34.2 g L−1 hyaluronan in fed-batch cultures. We find secreted hyaluronan encapsulates C. glutamicum, changes its cell morphology and inhibits metabolism. Disruption of the encapsulation with leech hyaluronidase restores metabolism and leads to hyper hyaluronan productions of 74.1 g L−1. Meanwhile, the molecular weight of hyaluronan is also highly tunable. These results demonstrate combinatorial optimization of cell factories and the extracellular environment is efficacious and likely applicable for the production of other biopolymers. Bioproduction of hyaluronan needs increases in yield and greater diversity of the molecular weights. Here, the author increases hyaluronan production and diversifies the molecular weights through engineering the hyaluronan biosynthesis pathway and disruption of Corynebacterium glutamicum encapsulation caused by secreted hyaluronan.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Litao Hu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Huang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Hao Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | | | - Jian Chen
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China.,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China
| | - Zhen Kang
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 214122, Wuxi, China. .,The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 214122, Wuxi, China.
| |
Collapse
|
29
|
Mohan N, Tadi SRR, Pavan SS, Sivaprakasam S. Deciphering the role of dissolved oxygen and N-acetyl glucosamine in governing higher molecular weight hyaluronic acid synthesis in Streptococcus zooepidemicus cell factory. Appl Microbiol Biotechnol 2020; 104:3349-3365. [PMID: 32078020 DOI: 10.1007/s00253-020-10445-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 01/27/2020] [Accepted: 02/06/2020] [Indexed: 01/01/2023]
Abstract
The present study is focused on systematic process and kinetic investigation of hyaluronic acid (HA) production strategy unraveling the role of dissolved oxygen (DO) and N-acetyl glucosamine (GlcNAc) towards the enhancement of HA titer and its molecular weight. Maintaining excess DO levels (10-40% DO) through DO-stat control and the substitution of GlcNAc at a range (5-20 g/L) with glucose (Glc) critically influenced HA production. DO-stat control strategy yielded a promising HA titer (2.4 g/L) at 40% DO concentration. Controlling DO level at 20% (DO-stat) was observed to be optimum resulting in a significant HA production (2.1 g/L) and its molecular weight ranging 0.98-1.45 MDa with a consistent polydispersity index (PDI) (1.57-1.69). Substitution of GlcNAc with Glc at different proportions explicitly addressed the metabolic trade-off between HA titer and its molecular weight. GlcNAc substitution positively influenced the molecular weight of HA. The highest HA molecular weight (2.53 MDa) of two-fold increase compared with glucose as sole carbon substrate and narrower PDI (1.35 ± 0.18) was achieved for the 10:20 (Glc:GlcNAc) proportion. A novice attempt on modeling the uptake of dual substrates (Glc and GlcNAc) by Streptococcus zooepidemicus for HA production was successfully accomplished using double Andrew's growth model and the kinetic parameters were estimated reliably.
Collapse
Affiliation(s)
- Naresh Mohan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Subbi Rami Reddy Tadi
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Satya Sai Pavan
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Senthilkumar Sivaprakasam
- BioPAT Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
30
|
Multi-enzyme systems and recombinant cells for synthesis of valuable saccharides: Advances and perspectives. Biotechnol Adv 2019; 37:107406. [DOI: 10.1016/j.biotechadv.2019.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 05/30/2019] [Accepted: 06/08/2019] [Indexed: 02/07/2023]
|
31
|
Cheng F, Yu H, Stephanopoulos G. Engineering Corynebacterium glutamicum for high-titer biosynthesis of hyaluronic acid. Metab Eng 2019; 55:276-289. [DOI: 10.1016/j.ymben.2019.07.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/30/2019] [Accepted: 07/09/2019] [Indexed: 10/26/2022]
|
32
|
Heterologous Hyaluronic Acid Production in Kluyveromyces lactis. Microorganisms 2019; 7:microorganisms7090294. [PMID: 31466214 PMCID: PMC6780701 DOI: 10.3390/microorganisms7090294] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/02/2019] [Accepted: 08/11/2019] [Indexed: 11/17/2022] Open
Abstract
Hyaluronic Acid (HA) is a biopolymer composed by the monomers Glucuronic Acid (GlcUA) and N-Acetyl Glucosamine (GlcNAc). It has a broad range of applications in the field of medicine, being marketed between USD 1000-5000/kg. Its primary sources include extraction of animal tissue and fermentation using pathogenic bacteria. However, in both cases, extensive purification protocols are required to prevent toxin contamination. In this study, aiming at creating a safe HA producing microorganism, the generally regarded as safe (GRAS) yeast Kluyveroymyces lactis is utilized. Initially, the hasB (UDP-Glucose dehydrogenase) gene from Xenopus laevis (xlhasB) is inserted. After that, four strains are constructed harboring different hasA (HA Synthase) genes, three of humans (hshasA1, hshasA2, and hshasA3) and one with the bacteria Pasteurella multocida (pmhasA). Transcript values analysis confirms the presence of hasA genes only in three strains. HA production is verified by scanning electron microscopy in the strain containing the pmHAS isoform. The pmHAS strain is grown in a 1.3 l bioreactor operating in a batch mode, the maximum HA levels are 1.89 g/L with a molecular weight of 2.097 MDa. This is the first study that reports HA production in K. lactis and it has the highest HA titers reported among yeast.
Collapse
|
33
|
Li Y, Li G, Zhao X, Shao Y, Wu M, Ma T. Regulation of hyaluronic acid molecular weight and titer by temperature in engineered Bacillus subtilis. 3 Biotech 2019; 9:225. [PMID: 31139540 DOI: 10.1007/s13205-019-1749-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 05/08/2019] [Indexed: 11/27/2022] Open
Abstract
Hyaluronic acid (HA) is a biopolymer used in several industries. There is increasing global demand. HA is normally produced on a large scale using attenuated strains of group C streptococci that are pathogenic and fastidious. Accordingly, it is of interest to use a "generally recognized as safe" (GRAS) organism such as Bacillus subtilis for HA production. Here, we report an engineered B. subtilis strain named WmB that produces different molecular weights (MW) and titers of HA at different temperatures. The faster the bacteria grew, the lower the MW of HA produced and the higher the titer. The MW of HA obtained ranged from 6.937 MDa at 47 °C to 0.392 MDa at 32 °C. At 32 °C, the HA titer reached 3.65 ± 0.13 g/L. We have engineered a strain that can produce high-molecular-weight and medium-molecular-weight HA at different growth temperatures. This GRAS B. subtilis strain can be applied in industry and provides a new strategy for production of HA with different molecular weights.
Collapse
Affiliation(s)
- Yingying Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Guoqiang Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Xin Zhao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Yuzhe Shao
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Mengmeng Wu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| | - Ting Ma
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071 China
| |
Collapse
|
34
|
Zhan M, Kan B, Dong J, Xu G, Han R, Ni Y. Metabolic engineering of Corynebacterium glutamicum for improved L-arginine synthesis by enhancing NADPH supply. J Ind Microbiol Biotechnol 2018; 46:45-54. [PMID: 30446890 DOI: 10.1007/s10295-018-2103-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 10/30/2018] [Indexed: 02/07/2023]
Abstract
Corynebacterium glutamicum SNK 118 was metabolically engineered with improved L-arginine titer. Considering the crucial role of NADPH level in L-arginine production, pntAB (membrane-bound transhydrogenase) and ppnK (NAD+ kinase) were co-expressed to increase the intracellular NADPH pool. Expression of pntAB exhibited significant effects on NADPH supply and L-arginine synthesis. Furthermore, argR and farR, encoding arginine repressor ArgR and transcriptional regulator FarR, respectively, were removed from the genome of C. glutamicum. The competitive branch pathway gene ldh was also deleted. Eventually, an engineered C. glutamicum JML07 was obtained for L-arginine production. Fed-batch fermentation in 5-L bioreactor employing strain JML07 allowed production of 67.01 g L-1L-arginine with productivity of 0.89 g L-1 h-1 and yield of 0.35 g g-1 glucose. This study provides a productive L-arginine fermentation strain and an effective cofactor manipulating strategy for promoting the biosynthesis of NADPH-dependent metabolites.
Collapse
Affiliation(s)
- Milin Zhan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Baojun Kan
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Jinjun Dong
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Guochao Xu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ruizhi Han
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China
| | - Ye Ni
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, Jiangsu, China. .,Key Laboratory of Guangxi Biorefinery, Nanning, 530003, Guangxi, China.
| |
Collapse
|
35
|
Metabolically engineered Corynebacterium glutamicum for bio-based production of chemicals, fuels, materials, and healthcare products. Metab Eng 2018; 50:122-141. [DOI: 10.1016/j.ymben.2018.07.008] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 01/15/2023]
|
36
|
Chahuki FF, Aminzadeh S, Jafarian V, Tabandeh F, Khodabandeh M. Hyaluronic acid production enhancement via genetically modification and culture medium optimization in Lactobacillus acidophilus. Int J Biol Macromol 2018; 121:870-881. [PMID: 30342141 DOI: 10.1016/j.ijbiomac.2018.10.112] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/17/2018] [Accepted: 10/14/2018] [Indexed: 01/16/2023]
Abstract
Hyaluronic acid (HA) is a natural polymer with various molecular weights that specify multiple biological roles. Traditionally, HA is obtained from animal waste and conventional pathogenic streptococci. However, there are challenges in these processes such as the presence of exotoxins, hyaluronidase, and viral contamination. In order to reduce these problems, this study was conducted to produce HA using recombinant bacterium that is generally recognized as safe (GRAS), and thereafter increase production through experimental design. At first, some lactic acid bacteria were screened and evaluated for HA production. Accordingly, among the selected bacteria, Lactobacillus acidophilus PTCC1643 produced about 0.25 g HA/L in the 48th hour of cultivation, and was thus selected as an alternative host for heterologous HA production. An expression vector containing HA synthase genes was transformed into L. acidophilus by electroporation. Consequently, HA production increased to 0.4 g/L. Eventually, response surface method (RSM) was used, which increased HA production to 1.7 g/L. This is approximately 7-fold higher than that produced at first. The resulting HA was characterized by FTIR spectroscopy and its molecular weight was estimated using agarose gel electrophoresis. In conclusion, L. acidophilus could be a safe, effective, and novel HA producer with industrial potential and commercial prospects.
Collapse
Affiliation(s)
- Fatemeh Fotouhi Chahuki
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran; Department of Biology, Faculty of Sciences, University of Zanjan, Iran
| | - Saeed Aminzadeh
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran.
| | - Vahab Jafarian
- Department of Biology, Faculty of Sciences, University of Zanjan, Iran
| | - Fatemeh Tabandeh
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran
| | - Mahvash Khodabandeh
- National Institute for Genetic Engineering and Biotechnology (NIGEB), Institute of Industrial and Environmental Biotechnology, Bioprocess Engineering Research Group, Shahrak-e Pajoohesh km 15, Tehran-Karaj Highway, P. O. Box: 14965/161, Tehran, Iran
| |
Collapse
|
37
|
Kang Z, Zhou Z, Wang Y, Huang H, Du G, Chen J. Bio-Based Strategies for Producing Glycosaminoglycans and Their Oligosaccharides. Trends Biotechnol 2018; 36:806-818. [DOI: 10.1016/j.tibtech.2018.03.010] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 03/21/2018] [Accepted: 03/23/2018] [Indexed: 01/06/2023]
|
38
|
Mandawe J, Infanzon B, Eisele A, Zaun H, Kuballa J, Davari MD, Jakob F, Elling L, Schwaneberg U. Directed Evolution of Hyaluronic Acid Synthase from Pasteurella multocida towards High-Molecular-Weight Hyaluronic Acid. Chembiochem 2018; 19:1414-1423. [PMID: 29603528 DOI: 10.1002/cbic.201800093] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Indexed: 01/20/2023]
Abstract
Hyaluronic acid (HA), with diverse cosmetic and medical applications, is the natural glycosaminoglycan product of HA synthases. Although process and/or metabolic engineering are used for industrial HA production, the potential of protein engineering has barely been realised. Herein, knowledge-gaining directed evolution (KnowVolution) was employed to generate an HA synthase variant from Pasteurella multocida (pmHAS) with improved chain-length specificity and a twofold increase in mass-based turnover number. Seven improved pmHAS variants out of 1392 generated by error-prone PCR were identified; eight prospective positions were saturated and the most beneficial amino acid substitutions were recombined. After one round of KnowVolution, the longest HA polymer (<4.7 MDa), through an engineered pmHAS variant in a cell-free system, was synthesised. Computational studies showed that substitutions from the best variant (T40L, V59M and T104A) are distant from the glycosyltransferase sites and increase the flexibility of the N-terminal region of pmHAS. Taken together, these findings suggest that the N terminus may be involved in HA synthesis and demonstrate the potential of protein engineering towards improved HA synthase activity.
Collapse
Affiliation(s)
- John Mandawe
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belen Infanzon
- Department of Microbiology, Faculty of Biology, University of Barcelona, Avinguda Diagonal 643, 08028, Barcelona, Spain
| | - Anna Eisele
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Henning Zaun
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Jürgen Kuballa
- GALAB Laboratories GmbH, Am Schleusengraben 7, 21029, Hamburg, Germany
| | - Mehdi D Davari
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Felix Jakob
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany
| | - Lothar Elling
- Helmholtz-Institute for Biomedical Engineering, RWTH Aachen, Pauwelsstrasse 20, 52074, Aachen, Germany
| | - Ulrich Schwaneberg
- DWI-Leibniz-Institute for Interactive Materials, Forckenbeckstrasse 50, 52056, Aachen, Germany.,Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| |
Collapse
|
39
|
Anderson LA, Islam MA, Prather KLJ. Synthetic biology strategies for improving microbial synthesis of "green" biopolymers. J Biol Chem 2018; 293:5053-5061. [PMID: 29339554 PMCID: PMC5892568 DOI: 10.1074/jbc.tm117.000368] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Polysaccharide-based biopolymers have many material properties relevant to industrial and medical uses, including as drug delivery agents, wound-healing adhesives, and food additives and stabilizers. Traditionally, polysaccharides are obtained from natural sources. Microbial synthesis offers an attractive alternative for sustainable production of tailored biopolymers. Here, we review synthetic biology strategies for select "green" biopolymers: cellulose, alginate, chitin, chitosan, and hyaluronan. Microbial production pathways, opportunities for pathway yield improvements, and advances in microbial engineering of biopolymers in various hosts are discussed. Taken together, microbial engineering has expanded the repertoire of green biological chemistry by increasing the diversity of biobased materials.
Collapse
Affiliation(s)
- Lisa A Anderson
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - M Ahsanul Islam
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Kristala L J Prather
- From the Department of Chemical Engineering and Center for Integrative Synthetic Biology (CISB), Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| |
Collapse
|
40
|
Wang Y, Liu Y, Liu J, Guo Y, Fan L, Ni X, Zheng X, Wang M, Zheng P, Sun J, Ma Y. MACBETH: Multiplex automated Corynebacterium glutamicum base editing method. Metab Eng 2018; 47:200-210. [PMID: 29580925 DOI: 10.1016/j.ymben.2018.02.016] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 01/27/2018] [Accepted: 02/28/2018] [Indexed: 11/27/2022]
Abstract
CRISPR/Cas9 or Cpf1-introduced double strand break dramatically decreases bacterial cell survival rate, which hampers multiplex genome editing in bacteria. In addition, the requirement of a foreign DNA template for each target locus is labor demanding and may encounter more GMO related regulatory hurdle in industrial applications. Herein, we developed a multiplex automated Corynebacterium glutamicum base editing method (MACBETH) using CRISPR/Cas9 and activation-induced cytidine deaminase (AID), without foreign DNA templates, achieving single-, double-, and triple-locus editing with efficiencies up to 100%, 87.2% and 23.3%, respectively. In addition, MACBETH was applied to generate a combinatorial gene inactivation library for improving glutamate production, and pyk&ldhA double inactivation strain was found to improve glutamate production by 3-fold. Finally, MACBETH was automated with an integrated robotic system, which would enable us to generate thousands of rationally engineered strains per month for metabolic engineering of C. glutamicum. As a proof of concept demonstration, the automation platform was used to construct an arrayed genome-scale gene inactivation library of 94 transcription factors with 100% success rate. Therefore, MACBETH would be a powerful tool for multiplex and automated bacterial genome editing in future studies and industrial applications.
Collapse
Affiliation(s)
- Yu Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Ye Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Jiao Liu
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Yanmei Guo
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Liwen Fan
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Science, University of Science and Technology of China, Hefei 230026, China
| | - Xiaomeng Ni
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Xiaomei Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| | - Meng Wang
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Ping Zheng
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; School of Life Science, University of Science and Technology of China, Hefei 230026, China.
| | - Jibin Sun
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| | - Yanhe Ma
- Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China; Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China
| |
Collapse
|
41
|
Bai F, Alper H. Harnessing Microbial Cells Through Advanced Technologies and Conventional Strategies. Biotechnol J 2017; 12. [PMID: 28869360 DOI: 10.1002/biot.201700558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 09/01/2017] [Indexed: 11/06/2022]
Affiliation(s)
- Fengwu Bai
- Shanghai Jiao Tong University, Shanghai, China
| | - Hal Alper
- The University of Texas at Austin, Austin, USA
| |
Collapse
|