1
|
Kalishwaralal K, Azeez Nazeer A, Induja DK, Keerthana CK, Shifana SC, Anto RJ. Enhanced extracellular vesicles mediated uttroside B (Utt-B) delivery to Hepatocellular carcinoma cell: Pharmacokinetics based on PBPK modelling. Biochem Biophys Res Commun 2024; 703:149648. [PMID: 38368675 DOI: 10.1016/j.bbrc.2024.149648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 01/26/2024] [Accepted: 02/06/2024] [Indexed: 02/20/2024]
Abstract
Our prior investigation has confirmed that the anti-hepatocellular carcinoma activity of the plant saponin, specifically Uttroside B (Utt-B), derived from the leaves of Solanum nigrum Linn. This study concentrated on formulating a novel biocompatible nanocarrier utilizing Extracellular vesicles (EVs) to enhance the delivery of plant saponin into cells. The physicochemical attributes of Extracellular Vesicles/UttrosideB (EVs/Utt-B) were comprehensively characterized through techniques such as Transmission Electron Microscopy (TEM) and Fourier-transform infrared spectroscopy (FTIR). Despite the promising therapeutic potential of this uttroside B, mechanistic know-how about its entry into cells is still in its infancy. Our research sheds light on the extracellular vesicle-mediated mechanism facilitating the entry of the saponin into cells, a phenomenon confirmed through the use of by confocal microscopy. We further analysed drug-releasing kinetics and simulated the Pharmacokinetics by PBPK modelling. The simulated pharmacokinetics revealed the bioavailability of Uttroside-B in oral administration against intravenous administration.
Collapse
Affiliation(s)
- Kalimuthu Kalishwaralal
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 95014, Kerala, India.
| | - Abdul Azeez Nazeer
- Laboratory of Pharmaceutical Sciences, College of Pharmacy, Kangwon National University, Chuncheon, Gangwon state, 24341, Republic of Korea
| | - D K Induja
- Chemical Sciences and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram, 695019, Kerala, India
| | - Chenicheri K Keerthana
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 95014, Kerala, India
| | - Sadiq C Shifana
- Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, 695317, Kerala, India
| | - Ruby John Anto
- Division of Cancer Research, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, 95014, Kerala, India; Molecular Bioassay Laboratory, Institute of Advanced Virology, Thiruvananthapuram, 695317, Kerala, India
| |
Collapse
|
2
|
Andre M, Caobi A, Miles JS, Vashist A, Ruiz MA, Raymond AD. Diagnostic potential of exosomal extracellular vesicles in oncology. BMC Cancer 2024; 24:322. [PMID: 38454346 PMCID: PMC10921614 DOI: 10.1186/s12885-024-11819-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/02/2024] [Indexed: 03/09/2024] Open
Abstract
Liquid biopsy can detect circulating cancer cells or tumor cell-derived DNA at various stages of cancer. The fluid from these biopsies contains extracellular vesicles (EVs), such as apoptotic bodies, microvesicles, exomeres, and exosomes. Exosomes contain proteins and nucleic acids (DNA/RNA) that can modify the microenvironment and promote cancer progression, playing significant roles in cancer pathology. Clinically, the proteins and nucleic acids within the exosomes from liquid biopsies can be biomarkers for the detection and prognosis of cancer. We review EVs protein and miRNA biomarkers identified for select cancers, specifically melanoma, glioma, breast, pancreatic, hepatic, cervical, prostate colon, and some hematological malignancies. Overall, this review demonstrates that EV biomolecules have great potential to expand the diagnostic and prognostic biomarkers used in Oncology; ultimately, EVs could lead to earlier detection and novel therapeutic targets. Clinical implicationsEVs represent a new paradigm in cancer diagnostics and therapeutics. The potential use of exosomal contents as biomarkers for diagnostic and prognostic indicators may facilitate cancer management. Non-invasive liquid biopsy is helpful, especially when the tumor is difficult to reach, such as in pancreatic adenocarcinoma. Moreover, another advantage of using minimally invasive liquid biopsy is that monitoring becomes more manageable. Identifying tumor-derived exosomal proteins and microRNAs would allow a more personalized approach to detecting cancer and improving treatment.
Collapse
Affiliation(s)
- Mickensone Andre
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Allen Caobi
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Jana S Miles
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Arti Vashist
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
| | - Marco A Ruiz
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA
- Medical Oncology, Baptist Health Miami Cancer Institute, Miami, 33176, FL, USA
| | - Andrea D Raymond
- Herbert Wertheim College of Medicine at, Department of Immunology and Nanomedicine, Florida International University, Miami, 33199, FL, USA.
| |
Collapse
|
3
|
Jing Z, Guo Z, Zhang C. Plasma-derived Exosomal miR-25-3p and miR-23b-3p as Predictors of Response to Chemoradiotherapy in Esophageal Squamous Cell Carcinoma. Technol Cancer Res Treat 2024; 23:15330338241289520. [PMID: 39380461 PMCID: PMC11465297 DOI: 10.1177/15330338241289520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/07/2024] [Accepted: 09/11/2024] [Indexed: 10/10/2024] Open
Abstract
BACKGROUND Exosomal miRNAs have emerged as promising biomarkers for cancer. However, little is known about the role of exosomal miRNAs in the response prediction of esophageal squamous cell carcinoma (ESCC) patients treated with chemoradiotherapy (CRT). METHODS In this prospective study, 40 ESCC patients treated by CRT were enrolled from January 2021 to June 2022. Exosomes were isolated from plasma through EXODUS platform. We used small RNA sequencing in 14 samples of ESCC patients (7 responders, 7 non-responders) and the selected exosomal miRNAs were further validated in the extended cohort of 40 ESCC patients by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS In the discovery phase, we identified five significantly differentially expressed exosomal miRNAs from miRNA sequencing data between the responder and non-responder patients. In the extended groups of responders (n = 27) and non-responders (n = 13), only miR-23b-3p (p = 0.035, AUC = 0.708) and miR-25-3p (p < 0.001, AUC = 0.932) were confirmed to have the predictive ability to distinguish non-responders from responders. The patients with low levels of miR-25-3p had a significantly shorter progression-free survival (PFS) than those with high levels (p = 0.035). Multivariate Cox regression analysis revealed that miR-25-3p may serve as an independent predictive biomarker of PFS in ESCC patients received CRT. CONCLUSION Exosomal miR-25-3p and miR-23b-3p serve as promising biomarkers for predicting the early effectiveness of CRT in locally advanced ESCC patients, whereas miR-25-3p is a novel prognostic marker for ESCC. However, further larger prospective studies are needed to confirm their utility for individualized treatment decision in ESCC.
Collapse
Affiliation(s)
- Zhao Jing
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Zhen Guo
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| | - Chuanfeng Zhang
- Department of Oncology, Zhejiang Hospital, Hangzhou, Zhejiang, People's Republic of China
| |
Collapse
|
4
|
Extracellular Vesicles, as Drug-Delivery Vehicles, Improve the Biological Activities of Astaxanthin. Antioxidants (Basel) 2023; 12:antiox12020473. [PMID: 36830031 PMCID: PMC9952194 DOI: 10.3390/antiox12020473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/07/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Astaxanthin (AST) exhibits potent antioxidant and anti-inflammatory activities but poor stability and biological efficacy, which limit its application in the food and medical industries. In the present study, a new strategy was proposed to enhance the biological activities of AST using fetal bovine serum-derived extracellular vesicles (EVs). Saponin-assisted incubation was used to load AST owing to its high encapsulation efficiency and loading capacity. AST-incorporated EVs (EV-ASTs) maintained their original EV morphology and showed high stability at 4 °C, 25 °C, and 37 °C over a 28-day period, which was attributed to the protective environment provided by the phospholipid bilayer membrane of the EVs. Additionally, the EV-ASTs exhibited excellent antioxidant and anti-inflammatory activities in HaCaT keratinocytes and RAW 264.7 macrophage cells, respectively; these were significantly higher than those of free AST. Furthermore, the mechanism associated with the enhanced biological activities of EV-ASTs was evaluated by analyzing the expression of genes involved in antioxidation and anti-inflammation, in parallel with cellular in vitro assays. These results provide insights into methods for improving the performance of hydrophobic drugs using nature-derived EVs and will contribute to the development of novel drug-delivery systems.
Collapse
|
5
|
Guo C, Lv H, Bai Y, Guo M, Li P, Tong S, He K. Circular RNAs in extracellular vesicles: Promising candidate biomarkers for schizophrenia. Front Genet 2023; 13:997322. [PMID: 36685830 PMCID: PMC9852742 DOI: 10.3389/fgene.2022.997322] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 12/05/2022] [Indexed: 01/09/2023] Open
Abstract
As one of common and severe mental illnesses, schizophrenia is difficult to be diagnosed exactly. Both its pathogenesis and the causes of its development are still uncertain because of its etiology complexity. At present, the diagnosis of schizophrenia is mainly based on the patient's symptoms and signs, lacking reliable biomarkers that can be used for diagnosis. Circular RNAs in extracellular vesicles (EV circRNAs) can be used as promising candidate biomarkers for schizophrenia and other diseases, for they are not only high stability and disease specificity, but also are rich in contents and easy to be detected. The review is to focus on the research progress of the correlation between circRNAs and schizophrenia, and then to explores the possibility of EV circRNAs as new biomarkers for the schizophrenia diagnosis.
Collapse
Affiliation(s)
- Chuang Guo
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Haibing Lv
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Yulong Bai
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China
| | - Meng Guo
- Network Center, Inner Mongolia Minzu University, Tongliao, China
| | - Pengfei Li
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Shuping Tong
- Affiliated Hospital of Inner Mongolia Minzu University, Tongliao, China
| | - Kuanjun He
- College of Life Sciences and Food Engineering, Inner Mongolia Minzu University, Tongliao, China,*Correspondence: Kuanjun He,
| |
Collapse
|
6
|
Sfragano PS, Pillozzi S, Condorelli G, Palchetti I. Practical tips and new trends in electrochemical biosensing of cancer-related extracellular vesicles. Anal Bioanal Chem 2023; 415:1087-1106. [PMID: 36683059 PMCID: PMC9867925 DOI: 10.1007/s00216-023-04530-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/03/2022] [Accepted: 12/06/2022] [Indexed: 01/24/2023]
Abstract
To tackle cancer and provide prompt diagnoses and prognoses, the constantly evolving biosensing field is continuously on the lookout for novel markers that can be non-invasively analysed. Extracellular vesicles (EVs) may represent a promising biomarker that also works as a source of biomarkers. The augmented cellular activity of cancerous cells leads to the production of higher numbers of EVs, which can give direct information on the disease due to the presence of general and cancer-specific surface-tethered molecules. Moreover, the intravesicular space is enriched with other molecules that can considerably help in the early detection of neoplasia. Even though EV-targeted research has indubitably received broad attention lately, there still is a wide lack of practical and effective quantitative procedures due to difficulties in pre-analytical and analytical phases. This review aims at providing an exhaustive outline of the recent progress in EV detection using electrochemical and photoelectrochemical biosensors, with a focus on handling approaches and trends in the selection of bioreceptors and molecular targets related to EVs that might guide researchers that are approaching such an unstandardised field.
Collapse
Affiliation(s)
- Patrick Severin Sfragano
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| | - Serena Pillozzi
- grid.24704.350000 0004 1759 9494Medical Oncology Unit, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Gerolama Condorelli
- grid.4691.a0000 0001 0790 385XDepartment of Molecular Medicine and Medical Biotechnology, Federico II University of Naples, Via Pansini, 5, 80131 Naples, Italy ,grid.419543.e0000 0004 1760 3561IRCCS Istituto Neurologico Mediterraneo (INM) Neuromed, Via Atinense 18, 86077 Pozzilli, Italy
| | - Ilaria Palchetti
- grid.8404.80000 0004 1757 2304Department of Chemistry Ugo Schiff, University of Florence, Via Della Lastruccia 3, 50019 Sesto, Fiorentino, Italy
| |
Collapse
|
7
|
Yang J, Aljitawi O, Van Veldhuizen P. Prostate Cancer Stem Cells: The Role of CD133. Cancers (Basel) 2022; 14:5448. [PMID: 36358865 PMCID: PMC9656005 DOI: 10.3390/cancers14215448] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/17/2022] [Accepted: 11/01/2022] [Indexed: 09/27/2023] Open
Abstract
Prostate cancer stem cells (PCSCs), possessing self-renewal properties and resistance to anticancer treatment, are possibly the leading cause of distant metastasis and treatment failure in prostate cancer (PC). CD133 is one of the most well-known and valuable cell surface markers of cancer stem cells (CSCs) in many cancers, including PC. In this article, we focus on reviewing the role of CD133 in PCSC. Any other main stem cell biomarkers in PCSC reported from key publications, as well as about vital research progress of CD133 in CSCs of different cancers, will be selectively reviewed to help us inform the main topic.
Collapse
Affiliation(s)
| | - Omar Aljitawi
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Van Veldhuizen
- Department of Medicine, Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
8
|
Dyan B, Seele PP, Skepu A, Mdluli PS, Mosebi S, Sibuyi NRS. A Review of the Nucleic Acid-Based Lateral Flow Assay for Detection of Breast Cancer from Circulating Biomarkers at a Point-of-Care in Low Income Countries. Diagnostics (Basel) 2022; 12:diagnostics12081973. [PMID: 36010323 PMCID: PMC9406634 DOI: 10.3390/diagnostics12081973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/24/2022] Open
Abstract
The current levels of breast cancer in African women have contributed to the high mortality rates among them. In South Africa, the incidence of breast cancer is also on the rise due to changes in behavioural and biological risk factors. Such low survival rates can be attributed to the late diagnosis of the disease due to a lack of access and the high costs of the current diagnostic tools. Breast cancer is asymptomatic at early stages, which is the best time to detect it and intervene to prevent high mortality rates. Proper risk assessment, campaigns, and access to adequate healthcare need to be prioritised among patients at an early stage. Early detection of breast cancer can significantly improve the survival rate of breast cancer patients, since therapeutic strategies are more effective at this stage. Early detection of breast cancer can be achieved by developing devices that are simple, sensitive, low-cost, and employed at point-of-care (POC), especially in low-income countries (LICs). Nucleic-acid-based lateral flow assays (NABLFAs) that combine molecular detection with the immunochemical visualisation principles, have recently emerged as tools for disease diagnosis, even for low biomarker concentrations. Detection of circulating genetic biomarkers in non-invasively collected biological fluids with NABLFAs presents an appealing and suitable method for POC testing in resource-limited regions and/or LICs. Diagnosis of breast cancer at an early stage will improve the survival rates of the patients. This review covers the analysis of the current state of NABLFA technologies used in developing countries to reduce the scourge of breast cancer.
Collapse
Affiliation(s)
- Busiswa Dyan
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa
- Correspondence: (B.D.); (N.R.S.S.)
| | - Palesa Pamela Seele
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
| | - Amanda Skepu
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
| | - Phumlane Selby Mdluli
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
| | - Salerwe Mosebi
- Department of Life and Consumer Sciences, College of Agriculture and Environmental Sciences, University of South Africa, Private Bag X6, Florida, Johannesburg 1710, South Africa
| | - Nicole Remaliah Samantha Sibuyi
- Nanotechnology Innovation Centre, Health Platform, Mintek, 200 Malibongwe Drive, Randburg, Johannesburg 2194, South Africa
- Correspondence: (B.D.); (N.R.S.S.)
| |
Collapse
|
9
|
Yang P, Song F, Yang X, Yan X, Huang X, Qiu Z, Wen Z, Liang C, Xin X, Lei Z, Zhang K, Yang J, Liu H, Wang H, Xiang S, Li L, Zhang B, Wang H. Exosomal MicroRNAs Signature Acts as Efficient Biomarker for Non-Invasive Diagnosis of Gallbladder Carcinoma. iScience 2022; 25:104816. [PMID: 36043050 PMCID: PMC9420508 DOI: 10.1016/j.isci.2022.104816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 06/20/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023] Open
Abstract
Through a three-step study that relies on biomarker discovery, training, and validation, we identified a set of five exosomal microRNAs (miRNAs) that can be used to evaluate the risk of gallbladder carcinoma (GBC), including miR-552-3p, miR-581, miR-4433a-3p, miR-496, and miR-203b-3p. When validated in 102 GBC patients and 112 chronic cholecystitis patients from multiple medical centers, the AUC of this combinatorial biomarker was 0.905, with a sensitivity of 81.37% and a specificity of 86.61%. The performance of this biomarker is superior to that of the standard biomarkers CA199 and CEA and is suited for GBC early diagnosis. The multi-clinicopathological features and prognosis of GBC patients were significantly associated with this biomarker. After building a miRNA-target gene regulation network, cell functions and signaling pathways regulated by these five miRNAs were examined. This biomarker signature can be used in the development of a noninvasive tool for GBC diagnosis, screening and prognosis prediction. A five exosomal miRNAs-set is identified to diagnose GBC through a three-step study The efficacy of this noninvasive biomarker is superior to that of conventional ones This biomarker is correlated with multiple GBC clinical features and the prognosis The functions and signal pathways that this biomarker may affect were estimated
Collapse
|
10
|
Dual rolling circle amplification-enabled ultrasensitive multiplex detection of exosome biomarkers using electrochemical aptasensors. Anal Chim Acta 2022; 1205:339762. [DOI: 10.1016/j.aca.2022.339762] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 03/03/2022] [Accepted: 03/22/2022] [Indexed: 01/31/2023]
|
11
|
Jackson KK, Powell RR, Marcus RK, Bruce TF. Comparison of the capillary-channeled polymer (C-CP) fiber spin-down tip approach to traditional methods for the isolation of extracellular vesicles from human urine. Anal Bioanal Chem 2022; 414:3813-3825. [PMID: 35412060 DOI: 10.1007/s00216-022-04023-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/24/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
Abstract
Capillary-channeled polymer fiber (C-CP) solid-phase extraction tips have demonstrated the ability to produce clean and concentrated extracellular vesicle (EV) recoveries from human urine samples in the small EV size range (< 200 nm). An organic modifier-assisted hydrophobic interaction chromatography (HIC) approach is applied in the spin-tip method under non-denaturing conditions-preserving the structure and bioactivity of the recovered vesicles. The C-CP tip method can employ either acetonitrile or glycerol as an elution modifier. The EV recoveries from the C-CP tip method (using both of these solvents) were compared to those obtained using the ultracentrifugation (UC) and polymer precipitation (exoEasy and ExoQuick) EV isolation methods for the same human urine specimen. The biophysical and quantitative characteristics of the recovered EVs using the five isolation methods were assessed based on concentration, size distribution, shape, tetraspanin surface marker protein content, and purity. In comparison to the traditionally used UC method and commercially available polymeric precipitation-based isolation kits, the C-CP tip introduces significant benefits with efficient (< 15 min processing of 12 samples here) and low-cost (< $1 per tip) EV isolations, employing sample volumes (10 µL-1 mL) and concentration (up to 4 × 1012 EVs mL-1) scales relevant for fundamental and clinical analyses. Recoveries of the target vesicles versus matrix proteins were far superior for the tip method versus the other approaches.
Collapse
Affiliation(s)
- Kaylan K Jackson
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Rhonda R Powell
- Clemson Light Imaging Facility, Clemson University, Clemson, SC, 29634, USA
| | - R Kenneth Marcus
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Terri F Bruce
- Department of Bioengineering, Clemson University, Clemson, SC, 29634, USA.
| |
Collapse
|
12
|
Fisher WS, Tchounwou C, Wei S, Roberts L, Ewert KK, Safinya CR. Exosomes are secreted at similar densities by M21 and PC3 human cancer cells and show paclitaxel solubility. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2022; 1864:183841. [PMID: 34953781 PMCID: PMC8896395 DOI: 10.1016/j.bbamem.2021.183841] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 12/08/2021] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
Exosomes are cell-secreted vesicles less than ≈150 nm in size that contain gene-encoding and gene-silencing RNA and cytosolic proteins with roles in intercellular communication. Interest in the use of exosomes as targeted drug delivery vehicles has grown since it was shown that they can bind specific cells and deliver intact genetic material to the cytosol of target cells. We isolated extracellular vesicles (EVs), consisting of a mixture of exosomes and microvesicles, from prostate (PC3) and melanoma (M21) cancer cell lines using serial ultracentrifugation. Interrogation via western blot analysis confirmed enrichment of CD63, a widely recognized EV surface protein, in the EV pellet from both cell lines. Nanoparticle tracking analysis (NTA) of EV pellets revealed that the two cell lines produced distinct vesicle size profiles in the ≈30 nm to ≈400 nm range. NTA further showed that the fraction of exosomes to all EVs was constant, suggesting cellular mechanisms that control the fraction of secreted vesicles that are exosomes. Transmission electron microscopy (TEM) images of the unmodified PC3 EVs showed vesicles with cup-like (i.e., nanocapsule) and previously unreported prolate morphologies. The observed non-spherical morphologies for dehydrated exosomal vesicles (size ≈30-100 nm) are most likely related to the dense packing of proteins in exosome membranes. Solubility phase diagram data showed that EVs enhanced the solubility of paclitaxel (PTX) in aqueous solution compared to a water-only control. Combined with their inherent targeting and cytosol delivery properties, these findings highlight the potential advantages of using exosomes as chemotherapeutic drug carriers in vivo.
Collapse
Affiliation(s)
- William S Fisher
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Christine Tchounwou
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Sophia Wei
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Logan Roberts
- Molecular, Cellular, and Developmental Biology Department, University of California, Santa Barbara, CA 93106, USA
| | - Kai K Ewert
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA
| | - Cyrus R Safinya
- Materials Department, Molecular, Cellular, and Developmental Biology Department, Physics Department, and Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
13
|
Serratì S, Guida M, Di Fonte R, De Summa S, Strippoli S, Iacobazzi RM, Quarta A, De Risi I, Guida G, Paradiso A, Porcelli L, Azzariti A. Circulating extracellular vesicles expressing PD1 and PD-L1 predict response and mediate resistance to checkpoint inhibitors immunotherapy in metastatic melanoma. Mol Cancer 2022; 21:20. [PMID: 35042524 PMCID: PMC8764806 DOI: 10.1186/s12943-021-01490-9] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/26/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The immunotherapy with immune checkpoints inhibitors (ICI) has changed the life expectancy in metastatic melanoma (MM) patients. Nevertheless, several patients do not respond hence, the identification and validation of novel biomarkers of response to ICI is of crucial importance. Circulating extracellular vesicles (EVs) such as PD-L1+ EV mediate resistance to anti-PD1, instead the role of PD1+ EV is not fully understood. METHODS We isolated the circulating EVs from the plasma of an observational cohort study of 71 metastatic melanoma patients and correlated the amount of PD-L1+ EVs and PD1+ EVs with the response to ICI. The analysis was performed according to the origin of EVs from the tumor and the immune cells. Subsequently, we analysed the data in a validation cohort of 22 MM patients to assess the reliability of identified EV-based biomarkers. Additionally we assessed the involvement of PD1+ EVs in the seizure of nivolumab and in the perturbation of immune cells-mediated killing of melanoma spheroids. RESULTS The level of PD-L1+ EVs released from melanoma and CD8+ T cells and that of PD1+ EVs irrespective of the cellular origin were higher in non-responders. The Kaplan-Meier curves indicated that higher levels of PD1+ EVs were significantly correlated with poorer progression-free survival (PFS) and overall survival (OS). Significant correlations were found for PD-L1+ EVs only when released from melanoma and T cells. The multivariate analysis showed that high level of PD1+ EVs, from T cells and B cells, and high level of PD-L1+ EVs from melanoma cells, are independent biomarkers of response. The reliability of PD-L1+ EVs from melanoma and PD1+ EVs from T cells in predicting PFS was confirmed in the validation cohort through the univariate Cox-hazard regression analysis. Moreover we discovered that the circulating EVs captured nivolumab and reduced the T cells trafficking and tumor spheroids killing. CONCLUSION Our study identified circulating PD1+ EVs as driver of resistance to anti-PD1, and highlighted that the analysis of single EV population by liquid biopsy is a promising tool to stratify MM patients for immunotherapy.
Collapse
Affiliation(s)
- Simona Serratì
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Michele Guida
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Sabino Strippoli
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Rosa Maria Iacobazzi
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Alessandra Quarta
- CNR NANOTEC-Istituto di Nanotecnologia, National Research Council (CNR), via Monteroni, 73100, Lecce, Italy
| | - Ivana De Risi
- Rare Tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Gabriella Guida
- Department of Basic Medical Sciences Neurosciences and Sense Organs, University of Bari, Piazza G. Cesare, 11, 70124, Bari, Italy
| | - Angelo Paradiso
- Scientific Directorate, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Nanotechnology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy.
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, 70124, Bari, Italy.
| |
Collapse
|
14
|
Serratì S, Palazzo A, Lapenna A, Mateos H, Mallardi A, Marsano RM, Quarta A, Del Rosso M, Azzariti A. Salting-Out Approach Is Worthy of Comparison with Ultracentrifugation for Extracellular Vesicle Isolation from Tumor and Healthy Models. Biomolecules 2021; 11:biom11121857. [PMID: 34944501 PMCID: PMC8699204 DOI: 10.3390/biom11121857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
The role of extracellular vesicles (EVs) has been completely re-evaluated in the recent decades, and EVs are currently considered to be among the main players in intercellular communication. Beyond their functional aspects, there is strong interest in the development of faster and less expensive isolation protocols that are as reliable for post-isolation characterisations as already-established methods. Therefore, the identification of easy and accessible EV isolation techniques with a low price/performance ratio is of paramount importance. We isolated EVs from a wide spectrum of samples of biological and clinical interest by choosing two isolation techniques, based on their wide use and affordability: ultracentrifugation and salting-out. We collected EVs from human cancer and healthy cell culture media, yeast, bacteria and Drosophila culture media and human fluids (plasma, urine and saliva). The size distribution and concentration of EVs were measured by nanoparticle tracking analysis and dynamic light scattering, and protein depletion was measured by a colorimetric nanoplasmonic assay. Finally, the EVs were characterised by flow cytometry. Our results showed that the salting-out method had a good efficiency in EV separation and was more efficient in protein depletion than ultracentrifugation. Thus, salting-out may represent a good alternative to ultracentrifugation.
Collapse
Affiliation(s)
- Simona Serratì
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: (S.S.); (A.P.)
| | - Antonio Palazzo
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Correspondence: (S.S.); (A.P.)
| | - Annamaria Lapenna
- Department of Chemistry, University of Bari and CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125 Bari, Italy; (A.L.); (H.M.)
| | - Helena Mateos
- Department of Chemistry, University of Bari and CSGI (Center for Colloid and Surface Science), Via Orabona 4, 70125 Bari, Italy; (A.L.); (H.M.)
| | - Antonia Mallardi
- Istituto per i Processi Chimico Fisici, National Research Council (IPCF-CNR), c/o ChemistryDepartment, Via Orabona 4, 70125 Bari, Italy;
| | | | - Alessandra Quarta
- CNR NANOTEC—Istituto di Nanotecnologia, National Research Council (CNR), Via Monteroni, 73100 Lecce, Italy;
| | - Mario Del Rosso
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, Viale G.B. Morgagni 50, 50134 Florence, Italy;
| | - Amalia Azzariti
- Nanotecnology Laboratory, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy;
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Viale Orazio Flacco 65, 70124 Bari, Italy
| |
Collapse
|
15
|
Mirfakhraie R, Noorazar L, Mohammadian M, Hajifathali A, Gholizadeh M, Salimi M, Sankanian G, Roshandel E, Mehdizadeh M. Treatment Failure in Acute Myeloid Leukemia: Focus on the Role of Extracellular Vesicles. Leuk Res 2021; 112:106751. [PMID: 34808592 DOI: 10.1016/j.leukres.2021.106751] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 12/12/2022]
Abstract
Acute myeloblastic leukemia (AML) is one of the most common types of blood malignancies that results in an AML-associated high mortality rate each year. Several causes have been reported as prognostic factors for AML in children and adults, the most important of which are cytogenetic abnormalities and environmental risk factors. Following the discovery of numerous drugs for AML treatment, leukemic cells sought a way to escape from the cytotoxic effects of chemotherapy drugs, leading to treatment failure. Nowadays, comprehensive studies have looked at the role of extracellular vesicles (EVs) secreted by AML blasts and how the microenvironment of the tumor changes in favor of cancer progression and survival to discover the mechanisms of treatment failure to choose the well-advised treatment. Reports show that malignant cells secrete EVs that transmit messages to adjacent cells and the tumor's microenvironment. By secreting EVs, containing immune-inhibiting cytokines, AML cells inactivate the immune system against malignant cells, thus ensuring their survival. Also, increased secretion of EVs in various malignancies indicates an unfavorable prognostic factor and the possibility of drug resistance. In this study, we briefly reviewed the challenges of treating AML with a glance at the EVs' role in this process. It is hoped that with a deeper understanding of EVs, new therapies will be developed to eliminate the relapse of leukemic cells.
Collapse
Affiliation(s)
- Reza Mirfakhraie
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Noorazar
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mozhdeh Mohammadian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Abbas Hajifathali
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Majid Gholizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Maryam Salimi
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Ghazaleh Sankanian
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Elham Roshandel
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mahshid Mehdizadeh
- Hematopoietic Stem Cell Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
16
|
Liu H, Liu S, Xiao Y, Song W, Li H, Ho LWC, Shen Z, Choi CHJ. A pH-Reversible Fluorescent Probe for in Situ Imaging of Extracellular Vesicles and Their Secretion from Living Cells. NANO LETTERS 2021; 21:9224-9232. [PMID: 34724785 DOI: 10.1021/acs.nanolett.1c03110] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Our knowledge in how extracellular vesicles (EVs) are secreted from cells remains inadequate due to the limited technologies available for visualizing them in situ. We report a pH-reversible boron dipyrromethene (BODIPY) fluorescent probe for confocal imaging of EVs secreted from living cells without inducing severe cytotoxicity. This probe predominantly assumes a non-fluorescent leuco-BODIPY form under basic conditions, but it gradually switches to its fluorescent parent BODIPY form upon acidification; such pH transition empowers the imaging of acidic EVs (such as CD81-enriched exosomes and extracellular multivesicular bodies) in weakly basic culture medium and intracellular acidic precursor EVs in weakly basic cytoplasm, with minimal false positive signals frequently encountered for "always-on" dyes. Joint application of this probe with plasmid transfection reveals the secretion of some EVs from cellular pseudopodia via microtubule trackways. This probe may provide mechanistic insights into the extracellular transport of EVs and support the development of EV-based nanomedicines.
Collapse
Affiliation(s)
- Hanzhuang Liu
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Shaorui Liu
- Department of Surgery, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Yu Xiao
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Wenting Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Huize Li
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Lok Wai Cola Ho
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| | - Zhen Shen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Chung Hang Jonathan Choi
- Department of Biomedical Engineering, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR
| |
Collapse
|
17
|
Durán-Vinet B, Araya-Castro K, Calderón J, Vergara L, Weber H, Retamales J, Araya-Castro P, Leal-Rojas P. CRISPR/Cas13-Based Platforms for a Potential Next-Generation Diagnosis of Colorectal Cancer through Exosomes Micro-RNA Detection: A Review. Cancers (Basel) 2021; 13:4640. [PMID: 34572866 PMCID: PMC8466426 DOI: 10.3390/cancers13184640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent cancer with the second highest mortality rate worldwide. CRC is a heterogenous disease with multiple risk factors associated, including obesity, smoking, and use of alcohol. Of total CRC cases, 60% are diagnosed in late stages, where survival can drop to about 10%. CRC screening programs are based primarily on colonoscopy, yet this approach is invasive and has low patient adherence. Therefore, there is a strong incentive for developing molecular-based methods that are minimally invasive and have higher patient adherence. Recent reports have highlighted the importance of extracellular vesicles (EVs), specifically exosomes, as intercellular communication vehicles with a broad cargo, including micro-RNAs (miRNAs). These have been syndicated as robust candidates for diagnosis, primarily for their known activities in cancer cells, including immunoevasion, tumor progression, and angiogenesis, whereas miRNAs are dysregulated by cancer cells and delivered by cancer-derived exosomes (CEx). Quantitative polymerase chain reaction (qPCR) has shown good results detecting specific cancer-derived exosome micro-RNAs (CEx-miRNAs) associated with CRC, but qPCR also has several challenges, including portability and sensitivity/specificity issues regarding experiment design and sample quality. CRISPR/Cas-based platforms have been presented as cost-effective, ultrasensitive, specific, and robust clinical detection tools in the presence of potential inhibitors and capable of delivering quantitative and qualitative real-time data for enhanced decision-making to healthcare teams. Thereby, CRISPR/Cas13-based technologies have become a potential strategy for early CRC diagnosis detecting CEx-miRNAs. Moreover, CRISPR/Cas13-based platforms' ease of use, scalability, and portability also showcase them as a potential point-of-care (POC) technology for CRC early diagnosis. This study presents two potential CRISPR/Cas13-based methodologies with a proposed panel consisting of four CEx-miRNAs, including miR-126, miR-1290, miR-23a, and miR-940, to streamline novel applications which may deliver a potential early diagnosis and prognosis of CRC.
Collapse
Affiliation(s)
- Benjamín Durán-Vinet
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Karla Araya-Castro
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Innovation and Entrepreneurship Institute (iDEAUFRO), Universidad de La Frontera, Temuco 4780000, Chile
| | - Juan Calderón
- Center for Genetics and Genomics, School of Medicine, Institute of Science and Innovation in Medicine (ICIM), Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Luis Vergara
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Doctoral Program in Cell and Applied Molecular Biology, Universidad de La Frontera, Temuco 4780000, Chile
| | - Helga Weber
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
| | - Javier Retamales
- Chilean Cooperative Group for Oncologic Research (GOCCHI), Santiago 8320000, Chile;
| | - Paulina Araya-Castro
- School of Medicine, Clínica Alemana, Universidad del Desarrollo, Santiago 8320000, Chile;
| | - Pamela Leal-Rojas
- Scientific and Technological Bioresource Nucleus (BIOREN-UFRO), Universidad de La Frontera, Temuco 4780000, Chile; (B.D.-V.); (K.A.-C.); (H.W.)
- Center of Excellence in Translational Medicine (CEMT), Biomedicine and Translational Research Laboratory, Universidad de La Frontera, Temuco 4780000, Chile;
- Department of Agricultural Sciences and Natural Resources, Faculty of Agricultural and Forestry Science, Universidad de La Frontera, Temuco 4780000, Chile
| |
Collapse
|
18
|
Vinduska V, Gallops CE, O’Connor R, Wang Y, Huang X. Exosomal Surface Protein Detection with Quantum Dots and Immunomagnetic Capture for Cancer Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1853. [PMID: 34361239 PMCID: PMC8308325 DOI: 10.3390/nano11071853] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/10/2021] [Accepted: 07/14/2021] [Indexed: 12/29/2022]
Abstract
Exosomes carry molecular contents reflective of parental cells and thereby hold great potential as a source of biomarkers for non-invasive cancer detection and monitoring. However, simple and rapid exosomal molecular detection remains challenging. Here, we report a facile method for exosome surface protein detection using quantum dot coupled with immunomagnetic capture and enrichment. In this method, exosomes were captured by magnetic beads based on CD81 protein expression. Surface protein markers of interest were recognized by primary antibody and then detected by secondary antibody-conjugated quantum dot with fluorescent spectroscopy. Validated by ELISA, our method can specifically detect different surface markers on exosomes from different cancer cell lines and differentiate cancer exosomes from normal exosomes. The clinical potential was demonstrated with pilot plasma samples using HER2-positive breast cancer as the disease model. The results show that exosomes from HER2-positive breast cancer patients exhibited a five times higher level of HER2 expression than healthy controls. Exosomal HER2 showed strong diagnostic power for HER2-positive patients, with the area under the curve of 0.969. This quantum dot-based exosome method is rapid (less than 5 h) and only requires microliters of diluted plasma without pre-purification, practical for routine use for basic vesicle research, and clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xiaohua Huang
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA; (V.V.); (C.E.G.); (R.O.); (Y.W.)
| |
Collapse
|
19
|
A predictive biomarker panel for bone metastases: Liquid biopsy approach. J Bone Oncol 2021; 29:100374. [PMID: 34189028 PMCID: PMC8220227 DOI: 10.1016/j.jbo.2021.100374] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 01/12/2023] Open
Abstract
Data mining of published microarray datasets directed us to the identification of a multi gene panel involving of 15 genes that are particular to bone metastases. Serum exosomal markers HSP90AA1, SPP1, IL3, and PTK2 found in the present study might be useful in detecting the early spread of bone metastases leading to better clinical outcomes. This multi-gene panel and their related pathways may assist as promising conclusion predictors using novel approaches of exosome as liquid biopsy and their application in therapeutic targets in breast and lung cancer patients with bone metastases.
Bone metastases is one of the common metastatic site and leading cause of cancer-related mortality in progressive cancer patients. The purpose of the present study is to establish a liquid biopsy based multi-gene classifier and associated signalling pathways for early diagnosis of bone metastases. We used publically available microarray datasets and analysed them in a platform/chip-specific manner using GeneSpring software. Analyses of gene expression datasets identified 15 consistently over-expressed genes with statistical significance. Further, expression profile of same set of 15 genes were compared in breast and lung cancer exosome derived mRNA with (n = 10) and without (n = 10) bone metastases against healthy controls. ROC curve analysis performed individually for all the 15 genes shortlisted the 5 most relevant genes with significant sensitivity and specificity in both cancers. This liquid biopsy-based bone metastases predictor using multi-gene panel is a unique approach with potential clinical applications for effective management of aggressive cancers.
Collapse
|
20
|
Porcelli L, Guida M, De Summa S, Di Fonte R, De Risi I, Garofoli M, Caputo M, Negri A, Strippoli S, Serratì S, Azzariti A. uPAR + extracellular vesicles: a robust biomarker of resistance to checkpoint inhibitor immunotherapy in metastatic melanoma patients. J Immunother Cancer 2021; 9:jitc-2021-002372. [PMID: 33972390 PMCID: PMC8112420 DOI: 10.1136/jitc-2021-002372] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/02/2021] [Indexed: 12/23/2022] Open
Abstract
Background Emerging evidence has highlighted the importance of extracellular vesicle (EV)-based biomarkers of resistance to immunotherapy with checkpoint inhibitors in metastatic melanoma. Considering the tumor-promoting implications of urokinase-type plasminogen activator receptor (uPAR) signaling, this study aimed to assess uPAR expression in the plasma-derived EVs of patients with metastatic melanoma to determine its potential correlation with clinical outcomes. Methods Blood samples from 71 patients with metastatic melanoma were collected before initiating immunotherapy. Tumor-derived and immune cell-derived EVs were isolated and analyzed to assess the relative percentage of uPAR+ EVs. The associations between uPAR and clinical outcomes, sex, BRAF status, baseline lactate dehydrogenase levels and number of metastatic sites were assessed. Results Responders had a significantly lower percentage of tumor-derived, dendritic cell (DC)-derived and CD8+ T cell-derived uPAR +EVs at baseline than non-responders. The Kaplan-Meier survival curves for the uPAR+EV quartiles indicated that higher levels of melanoma-derived uPAR+ EVs were strongly correlated with poorer progression-free survival (p<0.0001) and overall survival (p<0.0001). We also found a statistically significant correlation between lower levels of uPAR+ EVs from both CD8+ T cells and DCs and better survival. Conclusions Our results indicate that higher levels of tumor-derived, DC-derived and CD8+ T cell-derived uPAR+ EVs in non-responders may represent a new biomarker of innate resistance to immunotherapy with checkpoint inhibitors. Moreover, uPAR+ EVs represent a new potential target for future therapeutic approaches.
Collapse
Affiliation(s)
- Letizia Porcelli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Michele Guida
- Rare tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Simona De Summa
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Roberta Di Fonte
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Ivana De Risi
- Rare tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Marianna Garofoli
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Mariapia Caputo
- Molecular Diagnostics and Pharmacogenetics Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Antonio Negri
- Haematology Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Sabino Strippoli
- Rare tumors and Melanoma Unit, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Simona Serratì
- Laboratory of Nanotechnology, IRCCS-Istituto Tumori Giovanni Paolo II, Bari, Italy
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, Bari, Italy
| |
Collapse
|
21
|
Lee ES, Cha BS, Kim S, Park KS. Synthesis of Exosome-Based Fluorescent Gold Nanoclusters for Cellular Imaging Applications. Int J Mol Sci 2021; 22:ijms22094433. [PMID: 33922681 PMCID: PMC8122875 DOI: 10.3390/ijms22094433] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/24/2022] Open
Abstract
In recent years, fluorescent metal nanoclusters have been used to develop bioimaging and sensing technology. Notably, protein-templated fluorescent gold nanoclusters (AuNCs) are attracting interest due to their excellent fluorescence properties and biocompatibility. Herein, we used an exosome template to synthesize AuNCs in an eco-friendly manner that required neither harsh conditions nor toxic chemicals. Specifically, we used a neutral (pH 7) and alkaline (pH 11.5) pH to synthesize two different exosome-based AuNCs (exo-AuNCs) with independent blue and red emission. Using field-emission scanning electron microscopy, energy dispersive X-ray microanalysis, nanoparticle tracking analysis, and X-ray photoelectron spectroscopy, we demonstrated that AuNCs were successfully formed in the exosomes. Red-emitting exo-AuNCs were found to have a larger Stokes shift and a stronger fluorescence intensity than the blue-emitting exo-AuNCs. Both exo-AuNCs were compatible with MCF-7 (human breast cancer), HeLa (human cervical cancer), and HT29 (human colon cancer) cells, although blue-emitting exo-AuNCs were cytotoxic at high concentrations (≥5 mg/mL). Red-emitting exo-AuNCs successfully stained the nucleus and were compatible with membrane-staining dyes. This is the first study to use exosomes to synthesize fluorescent nanomaterials for cellular imaging applications. As exosomes are naturally produced via secretion from almost all types of cell, the proposed method could serve as a strategy for low-cost production of versatile nanomaterials.
Collapse
|
22
|
Jung Y, Song J, Park HG. Ultrasensitive nucleic acid detection based on phosphorothioated hairpin-assisted isothermal amplification. Sci Rep 2021; 11:8399. [PMID: 33863981 PMCID: PMC8052315 DOI: 10.1038/s41598-021-87948-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 03/24/2021] [Indexed: 02/02/2023] Open
Abstract
Herein, we describe a phosphorothioated hairpin-assisted isothermal amplification (PHAmp) method for detection of a target nucleic acid. The hairpin probe (HP) is designed to contain a 5' phosphorothioate (PS)-modified overhang, a target recognition site, and a 3' self-priming (SP) region. Upon binding to the target nucleic acid, the HP opens and the SP region is rearranged to serve as a primer. The subsequent process of strand displacement DNA synthesis recycles the bound target to open another HP and produces an extended HP (EP) with a PS-DNA/DNA duplex at the end, which would be readily denatured due to its reduced thermal stability. The trigger then binds to the denatured 3' end of the EP and is extended, producing an intermediate double-stranded (ds) DNA product (IP). The trigger also binds to the denatured 3' end of the IP, and its extension produces the final dsDNA product along with concomitant displacement and recycling of EP. By monitoring the dsDNA products, the target nucleic acid can be identified down to 0.29 fM with a wide dynamic range from 1 nM to 1 fM yielding an excellent specificity to discriminate even a single base-mismatched target. The unique design principle could provide new insights into the development of novel isothermal amplification methods for nucleic acid detection.
Collapse
Affiliation(s)
- Yujin Jung
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jayeon Song
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Hyun Gyu Park
- Department of Chemical and Biomolecular Engineering (BK 21+ Program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon, 34141, Republic of Korea.
| |
Collapse
|
23
|
Elmore LW, Greer SF, Daniels EC, Saxe CC, Melner MH, Krawiec GM, Cance WG, Phelps WC. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J Clin 2021; 71:107-139. [PMID: 33326126 DOI: 10.3322/caac.21652] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/15/2020] [Accepted: 10/15/2020] [Indexed: 12/12/2022] Open
Abstract
We are experiencing a revolution in cancer. Advances in screening, targeted and immune therapies, big data, computational methodologies, and significant new knowledge of cancer biology are transforming the ways in which we prevent, detect, diagnose, treat, and survive cancer. These advances are enabling durable progress in the goal to achieve personalized cancer care. Despite these gains, more work is needed to develop better tools and strategies to limit cancer as a major health concern. One persistent gap is the inconsistent coordination among researchers and caregivers to implement evidence-based programs that rely on a fuller understanding of the molecular, cellular, and systems biology mechanisms underpinning different types of cancer. Here, the authors integrate conversations with over 90 leading cancer experts to highlight current challenges, encourage a robust and diverse national research portfolio, and capture timely opportunities to advance evidence-based approaches for all patients with cancer and for all communities.
Collapse
Affiliation(s)
- Lynne W Elmore
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Susanna F Greer
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Elvan C Daniels
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Charles C Saxe
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Michael H Melner
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - Ginger M Krawiec
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William G Cance
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| | - William C Phelps
- Office of the Chief Medical and Scientific Officer, American Cancer Society, Atlanta, Georgia
| |
Collapse
|
24
|
Gorji-Bahri G, Moradtabrizi N, Vakhshiteh F, Hashemi A. Validation of common reference genes stability in exosomal mRNA-isolated from liver and breast cancer cell lines. Cell Biol Int 2021; 45:1098-1110. [PMID: 33501690 DOI: 10.1002/cbin.11556] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 01/02/2021] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Accurate relative gene expression analysis by reverse transcription-quantitative polymerase chain reaction relies on the usage of suitable reference genes for data normalization. The RNA content of small extracellular vesicles including exosomes is growingly considered as cancer biomarkers. So, reliable relative quantification of exosomal messenger RNA (mRNA) is essential for cancer diagnosis and prognosis applications. However, suitable reference genes for accurate normalization of a target gene in exosomes derived from cancer cells are not depicted yet. Here, we analyzed the expression and stability of eight well-known reference genes namely GAPDH, B2M, HPRT1, ACTB, YWHAZ, UBC, RNA18S, and TBP in exosomes-isolated from the liver (Huh7, HepG2, PLC/PRF/5) and breast (SK-BR-3) cancer cell lines using five different algorithms including geNorm, BestKeeper, Delta Ct, NormFinder, and RefFinder. Our results showed that ACTB, TBP, and HPRT1 were not expressed in exosomes-isolated from studied liver and breast cancer cell lines. The geNorm and BestKeeper algorithms indicated GAPDH and UBC as the most stable candidates. Moreover, Delta Ct and NormFinder algorithms showed YWHAZ as the most stable reference genes. Comprehensive ranking calculated by the RefFinder algorithm also pointed out GAPDH, YWHAZ, and UBC as the first three stable reference genes. Taken together, this study validated the common reference genes stability in exosomal mRNA derived from liver and breast cancer cell lines for the first time. We believe that this study would be the first step in finding more stable reference genes in exosomes that triggers more accurate detection of exosomal biomarkers.
Collapse
Affiliation(s)
- Gilar Gorji-Bahri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Niloofar Moradtabrizi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Faezeh Vakhshiteh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Atieh Hashemi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
25
|
Dai Y, Cao Y, Köhler J, Lu A, Xu S, Wang H. Unbiased RNA-Seq-driven identification and validation of reference genes for quantitative RT-PCR analyses of pooled cancer exosomes. BMC Genomics 2021; 22:27. [PMID: 33407103 PMCID: PMC7789813 DOI: 10.1186/s12864-020-07318-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 12/09/2020] [Indexed: 01/08/2023] Open
Abstract
Background Exosomes are extracellular vesicles (EVs) derived from endocytic compartments of eukaryotic cells which contain various biomolecules like mRNAs or miRNAs. Exosomes influence the biologic behaviour and progression of malignancies and are promising candidates as non-invasive diagnostic biomarkers or as targets for therapeutic interventions. Usually, quantitative real-time polymerase chain reaction (qRT-PCR) is used to assess gene expression in cancer exosomes, however, the ideal reference genes for normalization yet remain to be identified. Results In this study, we performed an unbiased analysis of high-throughput mRNA and miRNA-sequencing data from exosomes of patients with various cancer types and identify candidate reference genes and miRNAs in cancer exosomes. The expression stability of these candidate reference genes was evaluated by the coefficient of variation “CV” and the average expression stability value “M”. We subsequently validated these candidate reference genes in exosomes from an independent cohort of ovarian cancer patients and healthy control individuals by qRT-PCR. Conclusions Our study identifies OAZ1 and hsa-miR-6835-3p as the most reliable individual reference genes for mRNA and miRNA quantification, respectively. For superior accuracy, we recommend the use of a combination of reference genes - OAZ1/SERF2/MPP1 for mRNA and hsa-miR-6835-3p/hsa-miR-4468-3p for miRNA analyses.
Collapse
Affiliation(s)
- Yao Dai
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yumeng Cao
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jens Köhler
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, 02215, USA
| | - Aiping Lu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaohua Xu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Haiyun Wang
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
26
|
Cha BS, Lee ES, Kim S, Kim JM, Hwang SH, Oh SS, Park KS. Simple colorimetric detection of organophosphorus pesticides using naturally occurring extracellular vesicles. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105130] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
27
|
Wang J, Zhao J, Zhu J, Zhang S. Hypoxic Non-Small-Cell Lung Cancer Cell-Secreted Exosomal microRNA-582-3p Drives Cancer Cell Malignant Phenotypes by Targeting Secreted Frizzled-Related Protein 1. Cancer Manag Res 2020; 12:10151-10161. [PMID: 33116870 PMCID: PMC7569064 DOI: 10.2147/cmar.s263768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/26/2020] [Indexed: 01/04/2023] Open
Abstract
Background Hypoxic environment and exosomes (exos)-mediated intercellular communication are crucial for cancer invasion and metastasis, but the mechanisms are not yet fully understood. In this study, we investigated the regulatory effect of hypoxic tumor cell-secreted exosomal miR-582-3p on non-small-cell lung cancer (NSCLC) cell malignant phenotypes. Methods The concentration and diameters of exos were evaluated by nanosight particle tracking analysis. microRNA-582-3p (miR-582-3p) expression was detected by quantitative real-time PCR. The fluorescent dye PKH26 was used to label exos. The direct interaction between miR-582-3p and secreted frizzled-related protein 1 (SFRP1) was determined by dual-luciferase activity assay. NSCLC cell proliferation, migration, and invasion abilities were assessed by cell count kit-8 assay, wound healing assay, and transwell migration and invasion assay. Western blot analysis was performed to detect the protein expression level. Results Hypoxic NSCLC cell-derived exos promoted the proliferation, migration, and invasion of normoxic NSCLC cells. miR-582-3p expression was upregulated in hypoxic NSCLC cells and hypoxic NSCLC cell-secreted exos. Hypoxic NSCLC cell-derived exos transmitted miR-582-3p to normoxic NSCLC cells. Hypoxic NSCLC cell-secreted exosomal miR-582-3p promoted the proliferation, migration, and invasion of normoxic NSCLC cells. miR-582-3p inhibited the expression of SFRP1 protein by binding to its 3ʹ-UTR. In addition, enforced expression of SFRP1 restrained malignant phenotypes of normoxic NSCLC cells, which was abrogated by hypoxic NSCLC cell-secreted exosomal miR-582-3p. Conclusion Hypoxic NSCLC cell-secreted exosomal miR-582-3p drives cancer cell malignant phenotypes by targeting SFRP1, which provides a better understanding of cancer metastasis and may facilitate the development of therapeutics against human NSCLC.
Collapse
Affiliation(s)
- Jian Wang
- Department of Respiration, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| | - Jia Zhao
- Department of Neonatology, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| | - Jinsong Zhu
- Department of Respiration, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| | - Shengli Zhang
- Department of Respiration, People's Hospital of Cangzhou, Cangzhou, Hebei, People's Republic of China
| |
Collapse
|
28
|
Bagheri Hashkavayi A, Cha BS, Lee ES, Kim S, Park KS. Advances in Exosome Analysis Methods with an Emphasis on Electrochemistry. Anal Chem 2020; 92:12733-12740. [PMID: 32902258 DOI: 10.1021/acs.analchem.0c02745] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes, small extracellular vesicles, are released by various cell types. They are found in bodily fluids, including blood, urine, serum, and saliva, and play essential roles in intercellular communication. Exosomes contain various biomarkers, such as nucleic acids and proteins, that reflect the status of their parent cells. Since they influence tumorigenesis and metastasis in cancer patients, exosomes are excellent noninvasive potential indicators for early cancer detection. Aptamers with specific binding properties have distinct advantages over antibodies, making them effective versatile bioreceptors for the detection of exosome biomarkers. Here, we review various aptamer-based exosome detection approaches based on signaling methods, such as fluorescence, colorimetry, and chemiluminescence, focusing on electrochemical strategies that are easier, cost-effective, and more sensitive than others. Further, we discuss the clinical applications of electrochemical exosome analysis strategies as well as future research directions in this field.
Collapse
Affiliation(s)
- Ayemeh Bagheri Hashkavayi
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Eun Sung Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Seokjoon Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
29
|
Xie H, Di K, Huang R, Khan A, Xia Y, Xu H, Liu C, Tan T, Tian X, Shen H, He N, Li Z. Extracellular vesicles based electrochemical biosensors for detection of cancer cells: A review. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
30
|
Kholafazad Kordasht H, Hasanzadeh M. Biomedical analysis of exosomes using biosensing methods: recent progress. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:2795-2811. [PMID: 32930202 DOI: 10.1039/d0ay00722f] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Exosomes are membrane-bound extracellular vesicles (EVs) that are produced in the endosomal compartments of most eukaryotic cells; they play important roles in intercellular communication in diverse cellular processes and transmit different types of biomolecules. Endocytic pathways release exosomes, which have diameters ranging from 50 to 200 nm. The unique functions of exosomes have been introduced as cancer bio-markers due to the cargo (protein, DNA and RNA) of external exosomes (tetraspanin) and internal exosomes (syntenin). The early detection of cancer by exosomes can be an excellent method for the treatment of cancer. Although detection methods based on exosomes are important, they require extensive sample purification, have high false-positive rates, and encounter labeling difficulties due to the small size of exosomes. Here, we have reviewed three major types of biosensors, namely, electrochemical biosensors, optical biosensors and electrochemiluminescence biosensors for the detection of exosomes released from breast, ovarian, pancreatic, lung, and cervical cancer cells. In addition, the importance of nanomaterials and their applications in the biomedical analysis of exosomes are discussed. Although exosomes can be used to identify various types of external and internal biomarkers by conjugating with recognition elements, most designed biosensors are based on CD9 and CD63. Therefore, the development of novel biosensors for the selective and sensitive detection of exosomes is a current challenge. We hope that this review will serve as a beneficial study for improving exosome detection in clinical samples.
Collapse
Affiliation(s)
- Houman Kholafazad Kordasht
- Department of Food Hygiene and Aquatic, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Hasanzadeh
- Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
31
|
Chung KY, Quek JM, Neo SH, Too HP. Polymer-Based Precipitation of Extracellular Vesicular miRNAs from Serum Improve Gastric Cancer miRNA Biomarker Performance. J Mol Diagn 2020; 22:610-618. [DOI: 10.1016/j.jmoldx.2020.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 01/15/2020] [Accepted: 01/23/2020] [Indexed: 12/19/2022] Open
|
32
|
Li G, Tang W, Yang F. Cancer Liquid Biopsy Using Integrated Microfluidic Exosome Analysis Platforms. Biotechnol J 2020; 15:e1900225. [PMID: 32032977 DOI: 10.1002/biot.201900225] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 01/31/2020] [Indexed: 12/14/2022]
Abstract
Liquid biopsies serve as both powerful noninvasive diagnostic tools for early cancer screening and prognostic tools for monitoring cancer progression and treatment efficacy. Exosomes are promising biomarkers for liquid biopsies, since these nano-sized extracellular vesicles (EVs) enrich proteins, lipids, mRNAs, and miRNAs from cells of origin, including cancer cells. Although exosomes are abundantly present in various bodily fluids, conventional exosome isolation and detection methods that rely on benchtop equipment are time-consuming, expensive, and involve complicated non-portable procedures. As an alternative, recently developed microfluidic platforms can perform effective exosome separation and detection for liquid biopsies using a single device. Such methods offer advantages of integrity, speed, cost-efficiency, and portability over conventional benchtop and early microfluidic-based single-functional methods which can only separate or detect exosomes separately. These advances have made exosome-based point-of-care (POC) applications possible. This review outlines recent integrated microfluidic-based exosomal detection strategies to guide future development of such devices for use in liquid biopsies for early cancer screening, prognostic monitoring, and other potential POC applications.
Collapse
Affiliation(s)
- Guiying Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China.,National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Weiwei Tang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| | - Fang Yang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130012, China
| |
Collapse
|
33
|
Xia Y, Chen T, Chen G, Weng Y, Zeng L, Liao Y, Chen W, Lan J, Zhang J, Chen J. A nature-inspired colorimetric and fluorescent dual-modal biosensor for exosomes detection. Talanta 2020; 214:120851. [PMID: 32278412 DOI: 10.1016/j.talanta.2020.120851] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/13/2022]
Abstract
As non-invasive biomarkers, exosomes are of great significance to diseases diagnosis. However, sensitive and accurate detection of exosomes still remains technical challenges. Herein, inspired by nature's "one-to-many" concept, we design a biosensor mimicking the cactus with numerous thorns to detect exosomes. The biosensor is composed of CD63 antibodies, resembling the roots of cactus, to capture exosomes, and the exosomes resemble the stems. Cholesterol-labeled DNA (DNA anchor) binding to streptavidin modified horseradish peroxidase (HRP) can insert into exosomes membrane, which seems the thorns. The readout signal is produced through HRP-catalyzed hydrogen peroxide (H2O2) mediated oxidation of 1,4-phenylenediamine (PPD) to form 2,5-diamino-NN'-bis-(p-aminophenyl)-1,4-benzoquinone di-imine (PPDox). The PPDox can quench fluorescence of fluorescein through inner filter effect (IFE), which provides fluorescent signal for exosomes detection. Based on this principle, the obtained exosomes solution is qualitatively and quantitatively analyzed by our biosensor, with the comparison to current standard methods by nanoparticle tracking analysis (NTA) and commercial enzyme-linked immunosorbent assay (ELISA) kit. The linear range is from 1.0 × 104 to 5.0 × 105 particles μL-1 with the limit of detection 3.40 × 103 particles μL-1 and 3.12 × 103 particles μL-1 for colorimetric and fluorescent assays, respectively. Meanwhile, our biosensor exhibits good selectivity, and can eliminate the interference from proteins. This dual-modal biosensor shows favorable performance towards analytical application in clinic samples, pushing one step further towards practical clinical use.
Collapse
Affiliation(s)
- Yaokun Xia
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Tingting Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Guanyu Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Yunping Weng
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Lupeng Zeng
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Yijuan Liao
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China
| | - Wenqian Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Jianming Lan
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China
| | - Jing Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, PR China.
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, Fujian Medical University, Fuzhou, Fujian Province, 350122, PR China.
| |
Collapse
|
34
|
Cha BS, Park KS, Park JS. Signature mRNA markers in extracellular vesicles for the accurate diagnosis of colorectal cancer. J Biol Eng 2020; 14:4. [PMID: 32042310 PMCID: PMC7001337 DOI: 10.1186/s13036-020-0225-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 01/21/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND With the increasing incidence of colorectal cancer (CRC), its accurate diagnosis is critical and in high demand. However, conventional methods are not ideal due to invasiveness and low accuracy. Herein, we aimed to identify efficient CRC mRNA markers in a non-invasive manner using CRC-derived extracellular vesicles (EVs). The expression levels of EV mRNAs from cancer cell lines were compared with those of a normal cell line using quantitative polymerase chain reaction. Eight markers were evaluated in plasma EVs from CRC patients and healthy controls. The diagnostic value of each marker, individually or in combination, was then determined using recessive operating characteristics analyses and the Mann-Whitney U test. RESULTS Eight mRNA markers (MYC, VEGF, CDX2, CD133, CEA, CK19, EpCAM, and CD24) were found to be more abundant in EVs derived from cancer cell lines compared to control cell lines. A combination of VEGF and CD133 showed the highest sensitivity (100%), specificity (80%), and accuracy (93%) and an area under the curve of 0.96; hence, these markers were deemed to be the CRC signature. Moreover, this signature was found to be highly expressed in CRC-derived EVs compared to healthy controls. CONCLUSIONS VEGF and CD133 mRNAs comprise a unique CRC signature in EVs that has the potential to act as a novel, non-invasive, and accurate biomarker that would improve the current diagnostic platform for CRC, while also serving to strengthen the value of EV mRNA as diagnostic markers for myriad of diseases.
Collapse
Affiliation(s)
- Byung Seok Cha
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, Republic of Korea
| | - Jun Seok Park
- School of Medicine, Kyungpook National University, Daegu, Republic of Korea
- Colorectal Cancer Center, Kyungpook National University Chilgok Hospital, Daegu, Republic of Korea
| |
Collapse
|
35
|
Kalimuthu K, Cha BS, Kim S, Park KS. Eco-friendly synthesis and biomedical applications of gold nanoparticles: A review. Microchem J 2020. [DOI: 10.1016/j.microc.2019.104296] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
36
|
Chen J, Meng HM, An Y, Geng X, Zhao K, Qu L, Li Z. Structure-switching aptamer triggering hybridization displacement reaction for label-free detection of exosomes. Talanta 2019; 209:120510. [PMID: 31892034 DOI: 10.1016/j.talanta.2019.120510] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/15/2019] [Accepted: 10/26/2019] [Indexed: 01/06/2023]
Abstract
Exosomes play important roles in intercellular communications, tumor migration and invasion. However, the specific detection of cancer exosomes remains as a big challenge due to its low concentration in biofluids. Therefore, the sensitive and selective detection of cancer cells-derived exosomes has attracted growing attention owing to their potential in diagnostic and prognostic applications. Activatable strategies have received great attention for the detection of low abundant analytes due to their high sensitivity. Herein, based on molecular recognition between DNA aptamer and exosome surface biomarker (protein tyrosine kinase-7), a novel activatable and label-free strategy was designed for highly sensitive and specific sensing of exosomes. In this work, the target exosomes trigger strand replacement reaction to form G-quadruplex, which result in an obvious fluorescence enhancement of N-methylmesoporphyrin IX due to the bonding between G-quadruplex and N-methylmesoporphyrin IX. Under the optimum experimental conditions, the linear range for exosomes was measured to be 5.0 × 105-5.0 × 107 particles/μL and the detection limit (LOD) was calculated to be 3.4 × 105 particles/μL (3σ). This assay possesses high specificity to distinguish exosomes derived from different cell lines, and has successfully been validated in patient and healthy plasma samples. Furthermore, the probe can effectively detect the exosomes in 30% fetal bovine serum, indicating that the biological matrix has a negligible effect on this method. This developed label-free, convenient and highly sensitive biosensor will offer a great opportunity for exosomes quantification in biological study and clinical application.
Collapse
Affiliation(s)
- Juan Chen
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Hong-Min Meng
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Ying An
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Xin Geng
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Keran Zhao
- School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, PR China
| | - Lingbo Qu
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Zhaohui Li
- Institute of Chemical Biology and Clinical Application at the First Affiliated Hospital, Henan Joint International Research Laboratory of Green Construction of Functional Molecules and Their Bioanalytical Applications, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| |
Collapse
|
37
|
Exosomes: Biogenesis, Composition, Functions, and Their Role in Pre-metastatic Niche Formation. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0170-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
38
|
Sensitive detection of DNA from Chlamydia trachomatis by using flap endonuclease-assisted amplification and graphene oxide-based fluorescence signaling. Mikrochim Acta 2019; 186:330. [DOI: 10.1007/s00604-019-3453-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 04/15/2019] [Indexed: 10/26/2022]
|
39
|
Kalimuthu K, Kwon WY, Park KS. A simple approach for rapid and cost-effective quantification of extracellular vesicles using a fluorescence polarization technique. J Biol Eng 2019; 13:31. [PMID: 31015861 PMCID: PMC6469078 DOI: 10.1186/s13036-019-0160-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/31/2019] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are membrane-bound phospholipid vesicles actively secreted by all cells. As they carry specific markers expressed by their parental cells, EVs are utilized to identify specific cells via liquid biopsy. To facilitate EV-based clinical diagnosis, a fast and reliable method to count EVs is critical. We developed a method for rapid and cost-effective quantification of EVs which relies on the fluorescence polarization (FP) detection of lipophilic fluorescein probe, 5-dodecanoylamino fluorescein (C12-FAM). The alkyl tail of C12-FAM is specifically incorporated into the EVs, producing high FP values due to a slow diffusional motion. We quantified EVs derived from two cell lines, HT29 and TCMK1 using the new strategy, with good sensitivity that was at par with the commercial method. The new method involves minimal complexity and hands-on time. In addition, FP signaling is inherently ratiometric and is robust against environmental noise.
Collapse
Affiliation(s)
- Kalishwaralal Kalimuthu
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Woo Young Kwon
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| | - Ki Soo Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
40
|
Zhao Z, Fan J, Hsu YMS, Lyon CJ, Ning B, Hu TY. Extracellular vesicles as cancer liquid biopsies: from discovery, validation, to clinical application. LAB ON A CHIP 2019; 19:1114-1140. [PMID: 30882822 PMCID: PMC6469512 DOI: 10.1039/c8lc01123k] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Substantial research has been devoted to elucidate the roles that extracellular vesicles (EVs) play in the regulation of both normal and pathological processes, and multiple studies have demonstrated their potential as a source of cancer biomarkers. However, several factors have slowed the development of liquid biopsy EV biomarkers for cancer diagnosis, including logistical and technical difficulties associated with reproducibly obtaining highly purified EVs suitable for diagnostic analysis. Significant effort has focused on addressing these problems, and multiple groups have now reported EV analysis methods using liquid biopsies that have the potential for clinical translation. However, there are still important issues that must be addressed if these discoveries and technical advances are to be used for clinical translation of EV cancer biomarkers from liquid biopsies. To address these issues, this review focuses on the potential application of EV biomarkers for diagnosis of major cancer types, discussing approaches for EV biomarker discovery and verification, EV clinical assay development, analytical and clinical validation, clinical trials, regulatory submission, and end user utilization for the intended clinical application. This review also discusses key difficulties related to these steps, and recommendations for how to best accomplish steps in order to translate EV-based biomarkers into clinical settings.
Collapse
Affiliation(s)
- Zhen Zhao
- Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
| | | | | | | | | | | |
Collapse
|
41
|
Jang H, Lee CY, Lee S, Park KS, Park HG. Flap endonuclease-initiated enzymatic repairing amplification for ultrasensitive detection of target nucleic acids. NANOSCALE 2019; 11:3633-3638. [PMID: 30741288 DOI: 10.1039/c8nr06699j] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A new isothermal nucleic acid amplification method termed FERA (Flap endonuclease-initiated Enzymatic Repairing Amplification) is developed for the ultrasensitive detection of target nucleic acids. In the FERA method, flap endonuclease (FEN) catalyzes the hydrolytic cleavage at the junction of single- and double-stranded DNAs which is formed only in the presence of target nucleic acids, and releases short oligonucleotides to promote the cyclic enzymatic repairing amplification (ERA) combined with FEN-based amplification. As a result, a large amount of single- and double-stranded DNAs are generated under the isothermal conditions, leading to the high fluorescence intensity from the SYBR I green dye. Relying on the powerful amplification method, we successfully determined the target nucleic acids with a limit of detection as low as 15.16 aM, which corresponds to approximately 180 molecules in 20 μL reaction volume, and verified the practical applicability by detecting long target nucleic acids derived from Chlamydia trachomatis.
Collapse
Affiliation(s)
- Hyowon Jang
- Department of Chemical and Biomolecular Engineering (BK 21+ program), KAIST, Daehak-ro 291, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | | | | | | | | |
Collapse
|
42
|
Zhu J, Göbel U. Metabolic Engineering, Synthetic Biology, Biomedicine, Nanomaterials in Biotechnology Journal. Biotechnol J 2019; 14:e1800702. [DOI: 10.1002/biot.201800702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|