1
|
Xu W, Zhang Y, Li L, Pan L, Lu L, Zhi S, Li W. Osteocyte-derived exosomes regulate the DLX2/wnt pathway to alleviate osteoarthritis by mediating cartilage repair. Autoimmunity 2024; 57:2364686. [PMID: 38946534 DOI: 10.1080/08916934.2024.2364686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 06/02/2024] [Indexed: 07/02/2024]
Abstract
BACKGROUND Chondrocyte viability, apoptosis, and migration are closely related to cartilage injury in osteoarthritis (OA) joints. Exosomes are identified as potential therapeutic agents for OA. OBJECTIVE This study aimed to investigate the role of exosomes derived from osteocytes in OA, particularly focusing on their effects on cartilage repair and molecular mechanisms. METHODS An injury cell model was established by treating chondrocytes with IL-1β. Cartilage repair was evaluated using cell counting kit-8, flow cytometry, scratch test, and Western Blot. Molecular mechanisms were analyzed using quantitative real-time PCR, bioinformatic analysis, and Western Blot. An OA mouse model was established to explore the role of exosomal DLX2 in vivo. RESULTS Osteocyte-released exosomes promoted cell viability and migration, and inhibited apoptosis and extracellular matrix (ECM) deposition. Moreover, exosomes upregulated DLX2 expression, and knockdown of DLX2 activated the Wnt pathway. Additionally, exosomes attenuated OA in mice by transmitting DLX2. CONCLUSION Osteocyte-derived exosomal DLX2 alleviated IL-1β-induced cartilage repair and inactivated the Wnt pathway, thereby alleviating OA progression. The findings suggested that osteocyte-derived exosomes may hold promise as a treatment for OA.
Collapse
Affiliation(s)
- Wenjuan Xu
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Yuanyuan Zhang
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Lijuan Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Liyan Pan
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Li Lu
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| | - Shenshen Zhi
- Department of Blood Transfusion, Chongqing University Central Hospital, School of Medicine, Chongqing University, Chongqing, China
| | - Wei Li
- Chongqing Emergency Medical Center, Chongqing University Central Hospital, Clinical Laboratory, Chongqing, China
| |
Collapse
|
2
|
Wang F, Wang J, Zhang L, Fan S, Liu S. The effect of human umbilical cord mesenchymal stem cells combined with concentrated growth factor on repairing necrotic pulp caused by dental caries. Dent Mater J 2024:2024-007. [PMID: 39462611 DOI: 10.4012/dmj.2024-007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
This study investigated the impact of combining human umbilical cord mesenchymal stem cells (hUC-MSCs) with concentrated growth factor (CGF) on regenerating necrotic pulp. Ten-month-old male Bama miniature pigs were divided into control and caries groups. The experimental teeth were randomly divided into three groups: caries untreated, Ca(OH)2, and engineering dental pulp-like tissue (EDPT). hUC-MSCs and CGF scaffold were combined to construct EDPT, and the histological structure was observed. Odontoblasts and dental pulp cells were counted in each group. The results showed that hUC-MSCs adhered firmly to the porous mesh CGF scaffold, grew vigorously, and stretched sufficiently. In the EDPT group, odontoblasts in the root canal were arranged neatly, and predentin was formed. The odontoblast and dental pulp cell counts in the EDPT group were statistically significant compared to the caries untreated and Ca(OH)2 groups. The hUC-MSCs-CGF could successfully repair necrotic pulp in animals with dental caries.
Collapse
Affiliation(s)
- Feifei Wang
- Department of Oral Medicine, The Third Hospital of Hebei Medical University
| | - Jie Wang
- Department of Oral Pathology, Hospital of Stomatology Hebei Medical University
| | - Lijie Zhang
- Department of Clinical Laboratory, The Third Hospital of Hebei Medical University
| | - Shifeng Fan
- Department of Oral Medicine, The Third Hospital of Hebei Medical University
| | - Siyu Liu
- Department of Stomatology, Tangshan People's Hospital
| |
Collapse
|
3
|
Wang Y, Hu K, Liao C, Han T, Jiang F, Gao Z, Yan J. Exosomes-Shuttled lncRNA SNHG7 by Bone Marrow Mesenchymal Stem Cells Alleviates Osteoarthritis Through Targeting miR-485-5p/FSP1 Axis-Mediated Chondrocytes Ferroptosis and Inflammation. Tissue Eng Regen Med 2024:10.1007/s13770-024-00668-8. [PMID: 39363054 DOI: 10.1007/s13770-024-00668-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/08/2024] [Accepted: 08/19/2024] [Indexed: 10/05/2024] Open
Abstract
BACKGROUND Osteoarthritis (OA), a degenerative joint disorder, is a major reason of disability in adults. Accumulating evidences have proved that bone marrow mesenchymal stem cells (BMSCs)-carried exosomes play a significant therapeutic effect on OA. However, the precise regulatory network remains unknown. METHODS OA and normal cartilage samples were acquired from patients, and chondrocytes were exposed to IL-1β to conduct a cellular OA model. Exosomes prepared from BMSCs were identified using nanoparticle tracking analysis (NTA) and transmission electron microscopy (TEM). Cell viability was determined with CCK-8 assay. Inflammatory injury was assessed by LDH and inflammatory factors (TNF-α and IL-6) using corresponding ELISA kits, respectively. Ferroptosis was evaluated by GSH, MDA and iron levels using corresponding kits, and ROS level with DCFH-DA. The expressions of genes/proteins were determined with RT-qPCR/western bolt. RNA immunoprecipitation and luciferase activity assay were conducted for testing the interactions of small nucleolar RNA host gene 7 (SNHG7)/ferroptosis suppressor protein 1 (FSP1) and miR-485-5p. RESULTS The expressions of SNHG7 and FSP1 were both reduced in IL-1β-induced chondrocytes and OA cartilage tissues, and there was a positive correlation between them in clinical level. Moreover, SNHG7 was enriched in BMSCs-derived exosomes (BMSCs-Exos) and could be internalized by chondrocytes. Functional analysis illustrated that BMSCs-Exos administration repressed inflammatory injury, oxidative stress and ferroptosis in IL-1β-induced chondrocytes, while these changes were reinforced when SNHG7 was overexpressed in BMSCs-Exos. Notably, FSP1 silencing in chondrocytes abolished the beneficial effects mediated by exosomal SNHG7. CONCLUSIONS Exosomal SNHG7 released from BMSCs inhibited inflammation and ferroptosis in IL-1β-induced chondrocytes through miR-485-5p/FSP1 axis. This work suggested that BMSCs-derived exosomal SNHG7 would be a prospective target for OA treatment.
Collapse
Affiliation(s)
- Yue Wang
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Kaili Hu
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Changdi Liao
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Ting Han
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Fenglin Jiang
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Zixin Gao
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China
| | - Jinhua Yan
- Rheumatology and Immunology Department, The First Hospital of Nanchang, No. 128, North Xiangshan Road, Nanchang, 330008, Jiangxi Province, China.
| |
Collapse
|
4
|
Zhang Y, He X, Ge Z, Wang B, Ni M, Cai G. Investigating the differential therapeutic efficacy and mechanisms of human umbilical cord mesenchymal stem cells at various passages in osteoarthritis treatment. Tissue Cell 2024; 90:102499. [PMID: 39126832 DOI: 10.1016/j.tice.2024.102499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/25/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024]
Abstract
This study aimed to assess the clinical efficacy of umbilical cord mesenchymal stem cells (hUC-MSCs) from different passages (P3, P8, and P13) in the treatment of knee osteoarthritis (OA) and explore the underlying mechanisms. The hUC-MSCs from each passage were characterized and evaluated for their stemness, migration, proliferation, and marker expression. Rats with OA were treated with hUC-MSCs from each passage, and the therapeutic effects were assessed based on knee swelling, discomfort, and pathological examination of the knee joint. Co-culture experiments were conducted to examine the ability of hUC-MSCs to stimulate type II collagen synthesis and inhibit MMP13 expression in chondrocytes. Telomere length and telomerase activity of hUC-MSCs from each passage were measured to investigate the reasons for the observed differences in clinical efficacy. The results revealed that P3 and P8 hUC-MSCs exhibited superior osteogenic and chondrogenic differentiation potential compared to P13, while P13 demonstrated stronger adipogenic differentiation. The wound healing rate was significantly higher in the P3 and P8 groups compared to P13. All hUC-MSC groups expressed high levels of CD90 and CD105, indicating their mesenchymal stem cell characteristics, while CD31 and CD45 were not expressed. CD105 expression was significantly reduced in the P13 group. In the treatment of rat osteoarthritis, there were no significant differences in knee swelling, discomfort, Mankin scores, and pathological findings between P3 and P8 hUC-MSC treatments. However, there was a significant difference between the 8th and 13th passages. Co-culture experiments showed that hUC-MSCs from P3 and P8 enhanced type II collagen synthesis and reduced MMP13 expression in chondrocytes. Although no significant difference was observed between the P3 and P8 groups, a significant difference was found between the P13 and P8 groups. Telomere length analysis revealed that P13 samples had significantly shorter telomeres compared to both P3 and P8. The telomerase activity was positive in P3 and P8 hUC-MSCs, indicating no significant difference between these passages, while it was negative in P13 hUC-MSCs. In conclusion, P3 and P8 hUC-MSCs exhibited superior therapeutic potential for knee osteoarthritis compared to P13, possibly due to their enhanced differentiation capacity and telomerase activity.
Collapse
Affiliation(s)
- Yingkai Zhang
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China; Department of Orthopaedic Surgery, Zhongshan Hospital Fudan University, Shanghai City 200032, PR China
| | - Xianwei He
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Zhe Ge
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Bingnan Wang
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Miaozhong Ni
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China
| | - Guoping Cai
- Department of Orthopaedic Surgery, Jinshan Hospital of Fudan University, Shanghai City 201508, PR China.
| |
Collapse
|
5
|
Zhang H, Yan J, Ma Q, Lin L, Pilehvar Y, Zarghami N, Liang L, Xu K, Zhang X, Yan K, Long H, Liao B. Sodium alginate hydrogels co-encapsulated with cell free fat extract-loaded core-shell nanofibers and menstrual blood stem cells derived exosomes for acceleration of articular cartilage regeneration. Int J Biol Macromol 2024; 280:135851. [PMID: 39307503 DOI: 10.1016/j.ijbiomac.2024.135851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 09/30/2024]
Abstract
This study presents a novel scaffold system comprising sodium alginate hydrogels (SAh) co-encapsulated with cell-free fat extract (CEFFE)-loaded core-shell nanofibers (NFs) and menstrual blood stem cell-derived exosomes (EXOs). The scaffold integrates the regenerative potential of EXOs and CFFFE, offering a multifaceted strategy for promoting articular cartilage repair. Coaxially electrospun core-shell NFs exhibited successful encapsulation of CEFFE and seamless integration into the SAh matrix. Structural modifications induced by the incorporation of CEFFE-NFs enhanced hydrogel porosity, mechanical strength, and degradation kinetics, facilitating cell adhesion, proliferation, and tissue ingrowth. The release kinetics of growth factors from the composite scaffold demonstrated sustained and controlled release profiles, essential for optimal tissue regeneration. In vitro studies revealed high cell viability, enhanced chondrocyte proliferation, and migration in the presence of EXOs/CEFFE-NFs@SAh composite scaffolds. Additionally, in vivo experiments demonstrated significant cartilage regeneration, with the composite scaffold outperforming controls in promoting hyaline cartilage formation and defect bridging. Overall, this study underscores the potential of EXOs and CEFFE-NFs integrated into SAh matrices for enhancing chondrocyte viability, proliferation, migration, and ultimately, articular cartilage regeneration. Future research directions may focus on elucidating underlying mechanisms and conducting long-term in vivo studies to validate clinical applicability and scalability.
Collapse
Affiliation(s)
- Hongtao Zhang
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Jingchuan Yan
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qiong Ma
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Li Lin
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Younes Pilehvar
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Research Institute, Urmia University of Medical Science, Urmia, Iran
| | - Nosratollah Zarghami
- Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey
| | - Lizhuo Liang
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kui Xu
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaoping Zhang
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kang Yan
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Hua Long
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| | - Bo Liao
- Department of Orthopedics, Tangdu Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Wu B, Zhang T, Chen H, Shi X, Guan C, Hu J, Lu H. Exosomes derived from bone marrow mesenchymal stem cell preconditioned by low-intensity pulsed ultrasound stimulation promote bone-tendon interface fibrocartilage regeneration and ameliorate rotator cuff fatty infiltration. J Orthop Translat 2024; 48:89-106. [PMID: 39189009 PMCID: PMC11345897 DOI: 10.1016/j.jot.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 05/28/2024] [Accepted: 07/18/2024] [Indexed: 08/28/2024] Open
Abstract
Background Fibrovascular scar healing of bone-tendon interface (BTI) instead of functional fibrocartilage regeneration is the main concern associated with unsatisfactory prognosis in rotator cuff repair. Mesenchymal stem cells (MSCs) exosomes have been reported to be a new promising cell-free approach for rotator cuff healing. Whereas, controversies abound in whether exosomes of native MSCs alone can effectively induce chondrogenesis. Purpose To explore the effect of exosomes derived from low-intensity pulsed ultrasound stimulation (LIPUS)-preconditioned bone marrow mesenchymal stem cells (LIPUS-BMSC-Exos) or un-preconditioned BMSCs (BMSC-Exos) on rotator cuff healing and the underlying mechanism. Methods C57BL/6 mice underwent unilateral supraspinatus tendon detachment and repair were randomly assigned to saline, BMSCs-Exos or LIPUS-BMSC-Exos injection therapy. Histological, immunofluorescent and biomechanical tests were detected to investigate the effect of exosomes injection on BTI healing and muscle fatty infiltration of the repaired rotator cuff. In vitro, native BMSCs were incubated with BMSC-Exos or LIPUS-BMSC-Exos and then chondrogenic/adipogenic differentiation were observed. Further, quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the chondrogenesis/adipogenesis-related miRNA profiles of LIPUS-BMSC-Exos and BMSC-Exos. The chondrogenic/adipogenic potential of the key miRNA was verified through function recover test with its mimic and inhibitor. Results The results indicated that the biomechanical properties of the supraspinatus tendon-humeral junction were significantly improved in the LIPUS-BMSC-Exos group than that of the BMSCs-Exos group. The LIPUS-BMSC-Exos group also exhibited a higher histological score and more newly regenerated fibrocartilage at the repair site at postoperative 2 and 4 weeks and less fatty infiltration at 4 weeks than the BMSCs-Exos group. In vitro, co-culture of BMSCs with LIPUS-BMSC-Exos could significantly promote BMSCs chondrogenic differentiation and inhibit adipogenic differentiation. Subsequently, qRT-PCR revealed significantly higher enrichment of chondrogenic miRNAs and less enrichment of adipogenic miRNAs in LIPUS-BMSC-Exos compared with BMSC-Exos. Moreover, we demonstrated that this chondrogenesis-inducing potential was primarily attributed to miR-140, one of the most abundant miRNAs in LIPUS-BMSC-Exos. Conclusion LIPUS-preconditioned BMSC-Exos can effectively promote BTI fibrocartilage regeneration and ameliorate supraspinatus fatty infiltration by positive regulation of pro-chondrogenesis and anti-adipogenesis, which was primarily through delivering miR-140. The translational potential of this article These findings propose an innovative "LIPUS combined Exosomes strategy" for rotator cuff healing which combines both physiotherapeutic and biotherapeutic advantages. This strategy possesses a good translational potential as a local injection of LIPUS preconditioned BMSC-derived Exos during operation can be not only efficient for promoting fibrocartilage regeneration and ameliorating rotator cuff fatty infiltration, but also time-saving, simple and convenient for patients.
Collapse
Affiliation(s)
- Bing Wu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Tao Zhang
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Huabin Chen
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Xin Shi
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Changbiao Guan
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| | - Jianzhong Hu
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Mobile Health Ministry of Education - China Mobile Joint Laboratory, Changsha, 410008, Hunan Province, China
| | - Hongbin Lu
- Department of Sports Medicine, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
- Key Laboratory of Organ Injury, Aging and Regenerative Medicine of Hunan Province, Changsha, 410008, Hunan, China
- Hunan Engineering Research Center of Sports and Health, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, Hunan Province, China
| |
Collapse
|
7
|
Wu J, Wu J, Liu Z, Gong Y, Feng D, Xiang W, Fang S, Chen R, Wu Y, Huang S, Zhou Y, Liu N, Xu H, Zhou S, Liu B, Ni Z. Mesenchymal stem cell-derived extracellular vesicles in joint diseases: Therapeutic effects and underlying mechanisms. J Orthop Translat 2024; 48:53-69. [PMID: 39170747 PMCID: PMC11338158 DOI: 10.1016/j.jot.2024.07.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/09/2024] [Accepted: 07/08/2024] [Indexed: 08/23/2024] Open
Abstract
Joint diseases greatly impact the daily lives and occupational functioning of patients globally. However, conventional treatments for joint diseases have several limitations, such as unsatisfatory efficacy and side effects, necessitating the exploration of more efficacious therapeutic strategies. Mesenchymal stem cell (MSC)-derived EVs (MSC-EVs) have demonstrated high therapeutic efficacyin tissue repair and regeneration, with low immunogenicity and tumorigenicity. Recent studies have reported that EVs-based therapy has considerable therapeutic effects against joint diseases, including osteoarthritis, tendon and ligament injuries, femoral head osteonecrosis, and rheumatoid arthritis. Herein, we review the therapeutic potential of various types of MSC-EVs in the aforementioned joint diseases, summarise the mechanisms underlying specific biological effects of MSC-EVs, and discuss future prospects for basic research on MSC-EV-based therapeutic modalities and their clinical translation. In general, this review provides an in-depth understanding of the therapeutic effects of MSC-EVs in joint diseases, as well as the underlying mechanisms, which may be beneficial to the clinical translation of MSC-EV-based treatment. The translational potential of this article: MSC-EV-based cell-free therapy can effectively promote regeneration and tissue repair. When used to treat joint diseases, MSC-EVs have demonstrated desirable therapeutic effects in preclinical research. This review may supplement further research on MSC-EV-based treatment of joint diseases and its clinical translation.
Collapse
Affiliation(s)
- Jinhui Wu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Jiangyi Wu
- Plastic Surgery Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100144, China
| | - Zheng Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yunquan Gong
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Daibo Feng
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Wei Xiang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Shunzheng Fang
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| | - Ran Chen
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Yaran Wu
- Department of Clinical Biochemistry, Faculty of Pharmacy and Laboratory Medicine, Army Medical University, Gantaoyan Street, Shapinba District, Chongqing, 400038, China
| | - Shu Huang
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Yizhao Zhou
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Ningning Liu
- Department of Laboratory Medicine, The Fifth Clinical Medical College of Henan University of Chinese Medicine (Zhengzhou People's Hospital), Zhengzhou, 450003, China
| | - Hao Xu
- Department of Laboratory Medicine, the Third Affiliated Hospital of Zhengzhou University Zhengzhou, 450003, China
| | - Siru Zhou
- War Trauma Medical Center, State Key Laboratory of Trauma and Chemical Poisoning, Army Medical Center, Daping Hospital, Army Medical University, Chongqing, 40038, China
| | - Baorong Liu
- Department of Joint Surgery and Sport Medicine, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, 410000, China
| | - Zhenhong Ni
- Department of Rehabilitation Medicine, Daping Hospital, Army Medical University, Chongqing, 400022, China
| |
Collapse
|
8
|
Zhou Z, Bu Z, Wang S, Yu J, Liu W, Huang J, Hu J, Xu S, Wu P. Extracellular matrix hydrogels with fibroblast growth factor 2 containing exosomes for reconstructing skin microstructures. J Nanobiotechnology 2024; 22:438. [PMID: 39061089 PMCID: PMC11282598 DOI: 10.1186/s12951-024-02718-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Decellularized extracellular matrix hydrogel (ECM hydrogel), a natural material derived from normal tissue with unique biocompatibility properties, is widely used for tissue repair. However, there are still problems such as poor biological activity and insufficient antimicrobial property. To overcome these drawbacks, fibroblast growth factor 2 (FGF 2) containing exosome (exoFGF 2) was prepared to increase the biological activity. Furthermore, the antimicrobial capacity of ECM hydrogel was optimised by using copper ions as a ligand-bonded cross-linking agent. The decellularized extracellular matrix hydrogel, intricately cross-linked with copper ions through ligand bonds and loaded with FGF 2 containing exosome (exoFGF 2@ECM/Cu2+ hydrogel), has demonstrated exceptional biocompatibility and antimicrobial properties. In vitro, exoFGF 2@ECM/Cu2+ hydrogel effectively promoted cell proliferation, migration, antioxidant and inhibited bacterial growth. In vivo, the wound area of rat treated with exoFGF 2@ECM/Cu2+ hydrogels were significantly smaller than that of other groups at Day 5 (45.24% ± 3.15%), Day 10 (92.20% ± 2.31%) and Day 15 (95.22% ± 1.28%). Histological examination showed that exoFGF 2@ECM/Cu2+ hydrogels promoted angiogenesis and collagen deposition. Overall, this hydrogel has the potential to inhibit bacterial growth and effectively promote wound healing in a variety of clinical applications.
Collapse
Affiliation(s)
- Zheng Zhou
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Ziheng Bu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Shiqiang Wang
- Department of Joint and Sports Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, 200092, PR China
| | - Jianing Yu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Wei Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Junchao Huang
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China
| | - Jianhai Hu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| | - Sudan Xu
- Department of Geriatric, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, PR China.
| | - Peng Wu
- Department of Orthopedics, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, PR China.
| |
Collapse
|
9
|
Yang L, Li W, Zhao Y, Shang L. Magnetic Polysaccharide Mesenchymal Stem Cells Exosomes Delivery Microcarriers for Synergistic Therapy of Osteoarthritis. ACS NANO 2024. [PMID: 39039744 DOI: 10.1021/acsnano.4c01406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Osteoarthritis (OA) is a prevalent degenerative disease that afflicts more than 250 million people worldwide, impairing their mobility and quality of life. However, conventional drug therapy is palliative. Exosomes (Exo), although with the potential to fundamentally repair cartilage, face challenges in their efficient enrichment and delivery. In this study, we developed magnetic polysaccharide hydrogel particles as microcarriers for synergistic therapy of OA. The microcarriers were composed of modified natural polysaccharides, hyaluronic acid (HAMA), and chondroitin sulfate (CSMA), and were generated from microfluidic electrospray in combination with a cryogelation process. Magnetic nanoparticles with spiny structures capable of capturing stem cell Exo were encapsulated within the microcarriers together with an anti-inflammatory drug diclofenac sodium (DS). The released DS and Exo from the microcarriers had a synergistic effect in alleviating the OA symptoms and promoting cartilage repair. The in vitro and in vivo results demonstrated the excellent performance of the microcarrier for OA treatment. We believe this work has potential for Exo therapy of OA and other related diseases.
Collapse
Affiliation(s)
- Lei Yang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Wenzhao Li
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Oujiang Laboratory (Zhejiang Laboratory for Regenerative Medicine, Vision and Brain Health), Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325001, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-Laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
10
|
Fan X, Zhang Y, Liu W, Shao M, Gong Y, Wang T, Xue S, Nian R. A comprehensive review of engineered exosomes from the preparation strategy to therapeutic applications. Biomater Sci 2024; 12:3500-3521. [PMID: 38828621 DOI: 10.1039/d4bm00558a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Exosomes exhibit high bioavailability, biological stability, targeted specificity, low toxicity, and low immunogenicity in shuttling various bioactive molecules such as proteins, lipids, RNA, and DNA. Natural exosomes, however, have limited production, targeting abilities, and therapeutic efficacy in clinical trials. On the other hand, engineered exosomes have demonstrated long-term circulation, high stability, targeted delivery, and efficient intracellular drug release, garnering significant attention. The engineered exosomes bring new insights into developing next-generation drug delivery systems and show enormous potential in therapeutic applications, such as tumor therapies, diabetes management, cardiovascular disease, and tissue regeneration and repair. In this review, we provide an overview of recent advancements associated with engineered exosomes by focusing on the state-of-the-art strategies for cell engineering and exosome engineering. Exosome isolation methods, including traditional and emerging approaches, are systematically compared along with advancements in characterization methods. Current challenges and future opportunities are further discussed in terms of the preparation and application of engineered exosomes.
Collapse
Affiliation(s)
- Xiying Fan
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Yiwen Zhang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Wenshuai Liu
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| | - Mingzheng Shao
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yibo Gong
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Tingya Wang
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Beijing 100049, People's Republic of China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189, Songling Road, Qingdao 266101, China.
- Shandong Energy Institute, No. 189, Songling Road, Qingdao 266101, China
- Qingdao New Energy Shandong Laboratory, No. 189, Songling Road, Qingdao 266101, China
| |
Collapse
|
11
|
Jin X, Zhang J, Zhang Y, He J, Wang M, Hei Y, Guo S, Xu X, Liu Y. Different origin-derived exosomes and their clinical advantages in cancer therapy. Front Immunol 2024; 15:1401852. [PMID: 38994350 PMCID: PMC11236555 DOI: 10.3389/fimmu.2024.1401852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/13/2024] [Indexed: 07/13/2024] Open
Abstract
Exosomes, as a class of small extracellular vesicles closely related to the biological behavior of various types of tumors, are currently attracting research attention in cancer diagnosis and treatment. Regarding cancer diagnosis, the stability of their membrane structure and their wide distribution in body fluids render exosomes promising biomarkers. It is expected that exosome-based liquid biopsy will become an important tool for tumor diagnosis in the future. For cancer treatment, exosomes, as the "golden communicators" between cells, can be designed to deliver different drugs, aiming to achieve low-toxicity and low-immunogenicity targeted delivery. Signaling pathways related to exosome contents can also be used for safer and more effective immunotherapy against tumors. Exosomes are derived from a wide range of sources, and exhibit different biological characteristics as well as clinical application advantages in different cancer therapies. In this review, we analyzed the main sources of exosomes that have great potential and broad prospects in cancer diagnosis and therapy. Moreover, we compared their therapeutic advantages, providing new ideas for the clinical application of exosomes.
Collapse
Affiliation(s)
- Xiaoyan Jin
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Jing Zhang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
- The Second Affiliated Hospital of Xi‘an Medical University, Xi’an, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Jing He
- Laboratory of Obstetrics and Gynecology, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Mingming Wang
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yu Hei
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Shutong Guo
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Xiangrong Xu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| | - Yusi Liu
- Department of Cell Biology and Genetics, Medical College of Yan’an University, Yan’an, Shaanxi, China
| |
Collapse
|
12
|
Rostamani H, Fakhraei O, Zamirinadaf N, Mahjour M. An overview of nasal cartilage bioprinting: from bench to bedside. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2024; 35:1273-1320. [PMID: 38441976 DOI: 10.1080/09205063.2024.2321636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/08/2024] [Indexed: 03/07/2024]
Abstract
Nasal cartilage diseases and injuries are known as significant challenges in reconstructive medicine, affecting a substantial number of individuals worldwide. In recent years, the advent of three-dimensional (3D) bioprinting has emerged as a promising approach for nasal cartilage reconstruction, offering potential breakthroughs in the field of regenerative medicine. This paper provides an overview of the methods and challenges associated with 3D bioprinting technologies in the procedure of reconstructing nasal cartilage tissue. The process of 3D bioprinting entails generating a digital 3D model using biomedical imaging techniques and computer-aided design to integrate both internal and external scaffold features. Then, bioinks which consist of biomaterials, cell types, and bioactive chemicals, are applied to facilitate the precise layer-by-layer bioprinting of tissue-engineered scaffolds. After undergoing in vitro and in vivo experiments, this process results in the development of the physiologically functional integrity of the tissue. The advantages of 3D bioprinting encompass the ability to customize scaffold design, enabling the precise incorporation of pore shape, size, and porosity, as well as the utilization of patient-specific cells to enhance compatibility. However, various challenges should be considered, including the optimization of biomaterials, ensuring adequate cell viability and differentiation, achieving seamless integration with the host tissue, and navigating regulatory attention. Although numerous studies have demonstrated the potential of 3D bioprinting in the rebuilding of such soft tissues, this paper covers various aspects of the bioprinted tissues to provide insights for the future development of repair techniques appropriate for clinical use.
Collapse
Affiliation(s)
- Hosein Rostamani
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Omid Fakhraei
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Niloufar Zamirinadaf
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mehran Mahjour
- Department of Biomedical Engineering, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| |
Collapse
|
13
|
Ragni E, De Luca P, Landoni S, Valli F, Mortati L, Palombella S, Talò G, Moretti M, de Girolamo L. High efficiency protocol for platelet derived fibrin gel loaded with mesenchymal stromal cells extracellular vesicles. Regen Ther 2024; 26:442-457. [PMID: 39070124 PMCID: PMC11276930 DOI: 10.1016/j.reth.2024.06.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/30/2024] Open
Abstract
Introduction Extracellular vesicles from mesenchymal stromal cells (MSC-EVs) are potent stimulators of naïve cartilage and their injection is studied in clinical trials for cartilage lesions, since often cartilage repaired with conventional approaches is incomplete or less performant leading to joint degeneration. The main pitfall of these innovative approaches is the high EVs dispersion into the joint cavity and consequent low concentration at lesion site. Thus, biological scaffolds for concentration of EVs where needed might be a promising option. This work aimed at producing an enhanced platelet-derived fibrin gel loaded with adipose-derived MSCs (ASCs)-EVs. Methods EVs' embedment efficiency in platelet gel, their release and incorporation in OA chondrocytes and cartilage explants were monitored by flow cytometry, microfluidic approaches, scansion electron microscopy and real-time quantitative multimodal nonlinear optics imaging. The effect of released EVs was tested in OA chondrocytes by gene expression studies. Results A protocol ensuring high incorporation EVs efficiency in platelet gels was defined, relying on a one-step modification of the standard procedure used in current clinical practice. Trapped EVs were released continuously for up to 4 weeks and uptaken in pathologic chondrocytes and cartilage explants. The release of the EVs-loaded platelet gel had stronger and synergic anti-inflammatory/matrix remodelling effects with respect to both EVs per se and unloaded gel released products. Conclusions These results suggest the feasibility of producing a platelet gel loaded with MSC-EVs at high efficiency that can be used as an enhanced tool to foster chondrocyte homeostasis, a key requisite for proper cartilage healing.
Collapse
Affiliation(s)
- Enrico Ragni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Paola De Luca
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Simona Landoni
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Federico Valli
- IRCCS Istituto Ortopedico Galeazzi, Chirurgia Articolare Sostitutiva e Chirurgia Ortopedica (C.A.S.C.O.), Via Cristina Belgioioso 173, 20157 Milano, Italy
| | - Leonardo Mortati
- Istituto Nazionale di Ricerca Metrologica (INRIM), Str. delle Cacce 91, 10135 Torino, Italy
| | - Silvia Palombella
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
| | - Giuseppe Talò
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
| | - Matteo Moretti
- IRCCS Istituto Ortopedico Galeazzi, Cell and Tissue Engineering Laboratory, Via C. Belgioioso 173, 20157, Milano, Italy
- Regenerative Medicine Technologies Lab, Laboratories for Translational Research, Ente Ospedaliero Cantonale, via Chiesa 5, 6500 Bellinzona, Switzerland
- Service of Orthopaedics and Traumatology, Department of Surgery, Ente Ospedaliero Cantonale, via Tesserete 46, 6900 Lugano, Switzerland
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), via Buffi 13, 6900 Lugano, Switzerland
| | - Laura de Girolamo
- IRCCS Istituto Ortopedico Galeazzi, Laboratorio di Biotecnologie Applicate all’Ortopedia, Via Cristina Belgioioso 173, 20157 Milano, Italy
| |
Collapse
|
14
|
Wang L, Wang L, Wang R, Xu T, Wang J, Cui Z, Cheng F, Wang W, Yang X. Endometrial stem cell-derived exosomes repair cisplatin-induced premature ovarian failure via Hippo signaling pathway. Heliyon 2024; 10:e31639. [PMID: 38831834 PMCID: PMC11145543 DOI: 10.1016/j.heliyon.2024.e31639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Stem cells have been documented as a new therapeutic method for ovarian injuries such as premature ovarian failure (POF). However, effects of exosomes (Exos) derived from human endometrial stem cells (EnSCs) on diminished ovarian failure remain to be carefully elucidated. Our study aims to investigate the mechanisms of EnSC-Exos in the recovery of the cisplatin-induced granulosa cell injury model in vitro or POF mouses model in vivo and whether the Hippo signaling pathway is involved in the regulation. In this study, we established successful construction of the cisplatin-induced granulosa cell injury model and evaluated Hippo signaling pathway activation in cisplatin-damaged granulosa cells (GCs). Furthermore, laser scanning confocal microscope and immunofluorescence demonstrated that EnSC-Exos can be transferred to cisplatin-damaged GCs to decrease apoptosis. In addition, the enhanced expression of YAP at the protein level as well as YAP/TEAD target genes, such as CTGF, ANKRD1, and the increase of YAP into the nucleus in immunofluorescence staining after the addition of EnSC-Exos to cisplatin-damaged GCs confirmed the suppression of Hippo signaling pathway. While in vivo, EnSC-Exos successfully remedied POF in a mouse model. Collectively, our findings suggest that chemotherapy-induced POF was associated with the activating of Hippo signaling pathway. Human EnSC-Exos significantly elevated the proliferation of ovarian GCs and the ovarian function by regulating Hippo signaling pathway. These findings provide new insights for further understanding of EnSC-Exos in the recovery of ovary function.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
- Department of Obstetrics and Gynecology, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
- Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, China
| | - Lihui Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Rongli Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Jingyuan Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Zhiwei Cui
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Feiyan Cheng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Wei Wang
- Department of Anesthesiology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| | - Xinyuan Yang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, 710061, China
| |
Collapse
|
15
|
Rajankunte Mahadeshwara M, Al-Jawad M, Hall RM, Pandit H, El-Gendy R, Bryant M. How Do Cartilage Lubrication Mechanisms Fail in Osteoarthritis? A Comprehensive Review. Bioengineering (Basel) 2024; 11:541. [PMID: 38927777 PMCID: PMC11200606 DOI: 10.3390/bioengineering11060541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024] Open
Abstract
Cartilage degeneration is a characteristic of osteoarthritis (OA), which is often observed in aging populations. This degeneration is due to the breakdown of articular cartilage (AC) mechanical and tribological properties primarily attributed to lubrication failure. Understanding the reasons behind these failures and identifying potential solutions could have significant economic and societal implications, ultimately enhancing quality of life. This review provides an overview of developments in the field of AC, focusing on its mechanical and tribological properties. The emphasis is on the role of lubrication in degraded AC, offering insights into its structure and function relationship. Further, it explores the fundamental connection between AC mechano-tribological properties and the advancement of its degradation and puts forth recommendations for strategies to boost its lubrication efficiency.
Collapse
Affiliation(s)
- Manoj Rajankunte Mahadeshwara
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Maisoon Al-Jawad
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
| | - Richard M. Hall
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| | - Hemant Pandit
- Leeds Institute of Rheumatic and Musculoskeletal Medicine (LIRMM), University of Leeds, Chapel Allerton Hospital, Leeds LS7 4SA, UK;
| | - Reem El-Gendy
- Department of Oral Biology, Faculty of Dentistry, University of Leeds, Leeds LS2 9JT, UK; (M.A.-J.); (R.E.-G.)
- Department of Oral Pathology, Faculty of Dentistry, Suez Canal University, Ismailia 3, Ismailia Governorate 8366004, Egypt
| | - Michael Bryant
- Institute of Functional Surfaces, Mechanical Engineering, University of Leeds, Leeds LS2 9JT, UK
- School of Engineering, College of Engineering and Physical Sciences, University of Birmingham, Birmingham B15 2TT, UK;
| |
Collapse
|
16
|
Wang L, Li F, Wang L, Wu B, Du M, Xing H, Pan S. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Rheumatoid Arthritis Symptoms via Shuttling Proteins. J Proteome Res 2024; 23:1298-1312. [PMID: 38500415 DOI: 10.1021/acs.jproteome.3c00697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Our prior investigations have evidenced that bone marrow mesenchymal stem cell (BMSC) therapy can significantly improve the outcomes of rheumatoid arthritis (RA). This study aims to conduct a comprehensive analysis of the proteomics between BMSCs and BMSCs-Exos, and to further elucidate the potential therapeutic effect of BMSCs-Exos on RA, so as to establish a theoretical framework for the prevention and therapy of BMSCs-Exos on RA. The 4D label-free LC-MS/MS technique was used for comparative proteomic analysis of BMSCs and BMSCs-Exos. Collagen-induced arthritis (CIA) rat model was used to investigate the therapeutic effect of BMSCs-Exos on RA. Our results showed that some homology and differences were observed between BMSCs and BMSCs-Exos proteins, among which proteins highly enriched in BMSCs-Exos were related to extracellular matrix and extracellular adhesion. BMSCs-Exos can be taken up by chondrocytes, promoting cell proliferation and migration. In vivo results revealed that BMSCs-Exos significantly improved the clinical symptoms of RA, showing a certain repair effect on the injury of articular cartilage. In short, our study revealed, for the first time, that BMSCs-Exos possess remarkable efficacy in alleviating RA symptoms, probably through shuttling proteins related to cell adhesion and tissue repair ability in CIA rats, suggesting that BMSCs-Exos carrying expressed proteins may become a useful biomaterial for RA treatment.
Collapse
Affiliation(s)
- Lijun Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Fei Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Liting Wang
- Department of Rehabilitation, The Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, Shandong 250011, China
| | - Bingxing Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Min Du
- Department of Animal Sciences, Washington State University, Pullman ,Washington 99163, United States
| | - Hua Xing
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| | - Shifeng Pan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
17
|
Zhang J, Xiang Y, Yang Q, Chen J, Liu L, Jin J, Zhu S. Adipose-derived stem cells derived decellularized extracellular matrix enabled skin regeneration and remodeling. Front Bioeng Biotechnol 2024; 12:1347995. [PMID: 38628439 PMCID: PMC11019001 DOI: 10.3389/fbioe.2024.1347995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/14/2024] [Indexed: 04/19/2024] Open
Abstract
The tissues or organs derived decellularized extracellular matrix carry immunogenicity and the risk of pathogen transmission, resulting in limited therapeutic effects. The cell derived dECM cultured in vitro can address these potential risks, but its impact on wound remodeling is still unclear. This study aimed to explore the role of decellularized extracellular matrix (dECM) extracted from adipose derived stem cells (ADSCs) in skin regeneration. Methods: ADSCs were extracted from human adipose tissue. Then we cultivated adipose-derived stem cell cells and decellularized ADSC-dECM for freeze-drying. Western blot (WB), enzyme-linked immunosorbent assay (ELISA) and mass spectrometry (MS) were conducted to analyzed the main protein components in ADSC-dECM. The cell counting assay (CCK-8) and scratch assay were used to explore the effects of different concentrations of ADSC-dECM on the proliferation and migration of human keratinocytes cells (HaCaT), human umbilical vein endothelia cells (HUVEC) and human fibroblasts (HFB), respectively. Moreover, we designed a novel ADSC-dECM-CMC patch which used carboxymethylcellulose (CMC) to load with ADSC-dECM; and we further investigated its effect on a mouse full thickness skin wound model. Results: ADSC-dECM was obtained after decellularization of in vitro cultured human ADSCs. Western blot, ELISA and mass spectrometry results showed that ADSC-dECM contained various bioactive molecules, including collagen, elastin, laminin, and various growth factors. CCK-8 and scratch assay showed that ADSC-dECM treatment could significantly promote the proliferation and migration of HaCaT, human umbilical vein endothelia cells, and human fibroblasts, respectively. To evaluate the therapeutic effect on wound healing in vivo, we developed a novel ADSC-dECM-CMC patch and transplanted it into a mouse full-thickness skin wound model. And we found that ADSC-dECM-CMC patch treatment significantly accelerated the wound closure with time. Further histology and immunohistochemistry indicated that ADSC-dECM-CMC patch could promote tissue regeneration, as confirmed via enhanced angiogenesis and high cell proliferative activity. Conclusion: In this study, we developed a novel ADSC-dECM-CMC patch containing multiple bioactive molecules and exhibiting good biocompatibility for skin reconstruction and regeneration. This patch provides a new approach for the use of adipose stem cells in skin tissue engineering.
Collapse
Affiliation(s)
- Jin Zhang
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Yang Xiang
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Quyang Yang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai Institute of Dermatology, Shanghai, China
| | - Jiqiu Chen
- Department of Burns, The First Affiliated Hospital of the Naval Medical University, Shanghai, China
| | - Lei Liu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jian Jin
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shihui Zhu
- Department of Burns and Plastic Surgery, Shanghai Children’s Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
18
|
Chen J, Ni X, Yang J, Yang H, Liu X, Chen M, Sun C, Wang Y. Cartilage stem/progenitor cells-derived exosomes facilitate knee cartilage repair in a subacute osteoarthritis rat model. J Cell Mol Med 2024; 28:e18327. [PMID: 38661437 PMCID: PMC11044818 DOI: 10.1111/jcmm.18327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/28/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024] Open
Abstract
Cartilage defects in the knee are often associated with the progression of degenerative osteoarthritis (OA), and cartilage repair is a useful strategy for managing this disease. However, cartilage repair is challenging because of the unique environment within the tissue. Recently, stem cell-based therapies have shed new light on this issue. In this study, we prepared exosomes (EXOs) from cartilage stem/progenitor cells (CSPCs) and found that treatment with EXOs increased the viability, migration, and proliferation of cultured primary chondrocytes. In a subacute OA rat model, the application of EXOs facilitated cartilage regeneration as evidenced by histological staining. Exosomal protein analysis together with bioinformatics suggested that cyclin-dependent kinase 9 (CDK9) is a key factor for chondrocyte growth and migration. Functional studies confirmed this prediction, that is, inhibiting CDK9 reduced the beneficial effects induced by EXOs in primary chondrocytes; while overexpression of CDK9 recapitulated the EXOs-induced phenotypes. RNA-Seq data showed that a set of genes involved in cell growth and migration were up-regulated by EXOs in chondrocytes. These changes could be partially reproduced by CDK9 overexpression. Overall, our data suggest that EXOs derived from primary CSPCs hold great therapeutic potential for treating cartilage defect-associated disorders such as degenerative OA, and that CDK9 is a key factor in this process.
Collapse
Affiliation(s)
- Jing Chen
- Department of OrthopedicsAffiliated Hospital of Nantong University, Nantong UniversityNantongJiangsu ProvinceChina
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Xiaohui Ni
- Department of OrthopedicsDafeng People's HospitalYanchengJiangsu ProvinceChina
| | - Jian Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Hongwei Yang
- Department of OrthopedicsAffiliated Nantong Hospital 3 of Nantong UniversityNantongJiangsu ProvinceChina
| | - Xiaoyu Liu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Minhao Chen
- Department of OrthopedicsAffiliated Hospital of Nantong University, Nantong UniversityNantongJiangsu ProvinceChina
| | - Cheng Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐innovation Center of NeuroregenerationNantong UniversityNantongJiangsu ProvinceChina
| | - Youhua Wang
- Department of OrthopedicsAffiliated Hospital of Nantong University, Nantong UniversityNantongJiangsu ProvinceChina
| |
Collapse
|
19
|
Shi H, Yang Z, Cui J, Tao H, Ma R, Zhao Y. Mesenchymal stem cell-derived exosomes: a promising alternative in the therapy of preeclampsia. Stem Cell Res Ther 2024; 15:30. [PMID: 38317195 PMCID: PMC10845755 DOI: 10.1186/s13287-024-03652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 01/29/2024] [Indexed: 02/07/2024] Open
Abstract
Preeclampsia (PE) is a common morbid complication during pregnancy, affecting 2%-8% of pregnancies globally and posing serous risks to the health of both mother and fetus. Currently, the only effective treatment for PE is timely termination of pregnancy, which comes with increased perinatal risks. However, there is no effective way to delay pathological progress and improve maternal and fetal outcomes. In light of this, it is of great significance to seek effective therapeutic strategies for PE. Exosomes which are nanoparticles carrying bioactive substances such as proteins, lipids, and nucleic acids, have emerged as a novel vehicle for intercellular communication. Mesenchymal stem cell-derived exosomes (MSC-Exos) participate in various important physiological processes, including immune regulation, cell proliferation and migration, and angiogenesis, and have shown promising potential in tissue repair and disease treatment. Recently, MSC-Exos therapy has gained popularity in the treatment of ischaemic diseases, immune dysfunction, inflammatory diseases, and other fields due to their minimal immunogenicity, characteristics similar to donor cells, ease of storage, and low risk of tumor formation. This review elaborates on the potential therapeutic mechanism of MSC-Exos in treating preeclampsia, considering the main pathogenic factors of the condition, including placental vascular dysplasia, immunological disorders, and oxidative stress, based on the biological function of MSC-Exos. Additionally, we discuss in depth the advantages and challenges of MSC-Exos as a novel acellular therapeutic agent in preeclampsia treatment.
Collapse
Affiliation(s)
- Haoran Shi
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Zejun Yang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Jianjian Cui
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Hui Tao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Ruilin Ma
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yin Zhao
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China.
- Shenzhen Huazhong University of Science and Technology Research Institute, Shen Zhen, 518000, China.
| |
Collapse
|
20
|
Zhang Y, Li G, Wang J, Zhou F, Ren X, Su J. Small Joint Organoids 3D Bioprinting: Construction Strategy and Application. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2302506. [PMID: 37814373 DOI: 10.1002/smll.202302506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/28/2023] [Indexed: 10/11/2023]
Abstract
Osteoarthritis (OA) is a chronic disease that causes pain and disability in adults, affecting ≈300 million people worldwide. It is caused by damage to cartilage, including cellular inflammation and destruction of the extracellular matrix (ECM), leading to limited self-repairing ability due to the lack of blood vessels and nerves in the cartilage tissue. Organoid technology has emerged as a promising approach for cartilage repair, but constructing joint organoids with their complex structures and special mechanisms is still challenging. To overcome these boundaries, 3D bioprinting technology allows for the precise design of physiologically relevant joint organoids, including shape, structure, mechanical properties, cellular arrangement, and biological cues to mimic natural joint tissue. In this review, the authors will introduce the biological structure of joint tissues, summarize key procedures in 3D bioprinting for cartilage repair, and propose strategies for constructing joint organoids using 3D bioprinting. The authors also discuss the challenges of using joint organoids' approaches and perspectives on their future applications, opening opportunities to model joint tissues and response to joint disease treatment.
Collapse
Affiliation(s)
- Yuan Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Guangfeng Li
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
- Department of Trauma Orthopedics, Zhongye Hospital, Shanghai, 200941, China
| | - Jian Wang
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Fengjin Zhou
- Honghui Hospital, Xi'an Jiao Tong University, Xi'an, 710000, China
| | - Xiaoxiang Ren
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai, 200444, China
- Musculoskeletal Organoid Research Center, Shanghai University, Shanghai, 200444, China
| |
Collapse
|
21
|
Qiu M, Xie Y, Tan G, Wang X, Huang P, Hong L. Synovial mesenchymal stem cell-derived exosomal miR-485-3p relieves cartilage damage in osteoarthritis by targeting the NRP1-mediated PI3K/Akt pathway: Exosomal miR-485-3p relieves cartilage damage. Heliyon 2024; 10:e24042. [PMID: 38293485 PMCID: PMC10826677 DOI: 10.1016/j.heliyon.2024.e24042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/24/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA) is an age-related musculoskeletal disease that results in pain and functional disability. Stem cell therapy has been considered as a promising treatment for OA. In this study, the therapeutic action and potential mechanism of synovial mesenchymal stem cells (SMSCs)-derived exosomes (Exos) in OA cartilage damage were investigated. Cartilage cells were stimulated with IL-1β to establish an in vitro model of OA cartilage damage. Cartilage cell functions were detected by CCK-8, scratch assay, and flow cytometry, respectively. Inflammatory cytokine levels were assessed by ELISA. Target molecule levels were measured by qRT‒PCR and Western blotting. Exos-induced differential expression of miRNAs in cartilage cells were analyzed by microarray analysis. The interaction between miR-485-3p and neuropilin-1 (NRP1) was validated by dual luciferase reporter and RIP assays. We found that treatment with Exos promoted proliferation, migration, and ECM secretion, but restrained apoptosis and inflammation of IL-1β-exposed cartilage cells via up-regulation of miR-485-3p. Additionally, miR-485-3p directly targeted NRP1 to repress NRP1 expression, which subsequently caused inactivation of the PI3K/Akt pathway. The protective effect of Exos on cartilage damage was counteracted by NRP1 overexpression-mediated activation of the PI3K/Akt pathway. In conclusion, Exos delivered miR-485-3p to attenuate IL-1β-induced cartilage degradation by targeting NRP1 and succedent inactivation of the PI3K/Akt pathway. Our findings shed light on the novel protective mechanism of Exos in OA, which suggest that the restoration of miR-485-3p by Exos might be a novel approach for OA treatment.
Collapse
Affiliation(s)
- Mingjun Qiu
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Yanhua Xie
- Department of orthopedic, The Second Affiliated Hospital of University of South China, China
| | - Guanghua Tan
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Xiaoxu Wang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Peiguan Huang
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| | - Liang Hong
- Department of joint surgery, The Second Affiliated Hospital of University of South China, China
| |
Collapse
|
22
|
Campbell TM, Trudel G. Protecting the regenerative environment: selecting the optimal delivery vehicle for cartilage repair-a narrative review. Front Bioeng Biotechnol 2024; 12:1283752. [PMID: 38333081 PMCID: PMC10850577 DOI: 10.3389/fbioe.2024.1283752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 01/15/2024] [Indexed: 02/10/2024] Open
Abstract
Focal cartilage defects are common in youth and older adults, cause significant morbidity and constitute a major risk factor for developing osteoarthritis (OA). OA is the most common musculoskeletal (MSK) disease worldwide, resulting in pain, stiffness, loss of function, and is currently irreversible. Research into the optimal regenerative approach and methods in the setting of either focal cartilage defects and/or OA holds to the ideal of resolving both diseases. The two fundamentals required for cartilage regenerative treatment are 1) the biological element contributing to the regeneration (e.g., direct application of stem cells, or of an exogenous secretome), and 2) the vehicle by which the biological element is suspended and delivered. The vehicle provides support to the regenerative process by providing a protective environment, a structure that allows cell adherence and migration, and a source of growth and regenerative factors that can activate and sustain regeneration. Models of cartilage diseases include osteochondral defect (OCD) (which usually involve one focal lesion), or OA (which involves a more diffuse articular cartilage loss). Given the differing nature of these models, the optimal regenerative strategy to treat different cartilage diseases may not be universal. This could potentially impact the translatability of a successful approach in one condition to that of the other. An analogy would be the repair of a pothole (OCD) versus repaving the entire road (OA). In this narrative review, we explore the existing literature evaluating cartilage regeneration approaches for OCD and OA in animal then in human studies and the vehicles used for each of these two conditions. We then highlight strengths and challenges faced by the different approaches presented and discuss what might constitute the optimal cartilage regenerative delivery vehicle for clinical cartilage regeneration.
Collapse
Affiliation(s)
- T. Mark Campbell
- Elisabeth Bruyère Hospital, Ottawa, ON, Canada
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
| | - Guy Trudel
- Bone and Joint Research Laboratory, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital, Department of Medicine, Division of Physical Medicine and Rehabilitation, Ottawa, ON, Canada
| |
Collapse
|
23
|
Xu T, Yu X, Xu K, Lin Y, Wang J, Pan Z, Fang J, Wang S, Zhou Z, Song H, Zhu S, Dai X. Comparison of the ability of exosomes and ectosomes derived from adipose-derived stromal cells to promote cartilage regeneration in a rat osteochondral defect model. Stem Cell Res Ther 2024; 15:18. [PMID: 38229196 PMCID: PMC10792834 DOI: 10.1186/s13287-024-03632-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/04/2024] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) derived from mesenchymal stromal cells (MSCs) offer promising prospects for stimulating cartilage regeneration. The different formation mechanisms suggest that exosomes and ectosomes possess different biological functions. However, little attention has been paid to the differential effects of EV subsets on cartilage regeneration. METHODS Our study compared the effects of the two EVs isolated from adipose-derived MSCs (ASCs) on chondrocytes and bone marrow-derived MSCs (BMSCs) in vitro. Additionally, we loaded the two EVs into type I collagen hydrogels to optimize their application for the treatment of osteochondral defects in vivo. RESULTS In vitro experiments demonstrate that ASC-derived exosomes (ASC-Exos) significantly promoted the proliferation and migration of both cells more effectively than ASC-derived ectosomes (ASC-Ectos). Furthermore, ASC-Exos facilitated a stronger differentiation of BMSCs into chondrogenic cells than ASC-Ectos, but both inhibited chondrocyte apoptosis to a similar extent. In the osteochondral defect model of rats, ASC-Exos promoted cartilage regeneration in situ better than ASC-Ectos. At 8 weeks, the hydrogel containing exosomes group (Gel + Exo group) had higher macroscopic and histological scores, a higher value of trabecular bone volume fraction (BV/TV), a lower value of trabecular thickness (Tb.Sp), and a better remodeling of extracellular matrix than the hydrogel containing ectosomes group (Gel + Ecto group). At 4 and 8 weeks, the expression of CD206 and Arginase-1 in the Gel + Exo group was significantly higher than that in the Gel + Ecto group. CONCLUSION Our findings indicate that administering ASC-Exos may be a more effective EV strategy for cartilage regeneration than the administration of ASC-Ectos.
Collapse
Affiliation(s)
- Tengjing Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Xinning Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Kaiwang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Yunting Lin
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Jiajie Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Zongyou Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Jinghua Fang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Siheng Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Zhuxing Zhou
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Hongyun Song
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Sunan Zhu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China
| | - Xuesong Dai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, People's Republic of China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, People's Republic of China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, People's Republic of China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou City, People's Republic of China.
| |
Collapse
|
24
|
Luo D, Zhu H, Li S, Wang Z, Xiao J. Mesenchymal stem cell-derived exosomes as a promising cell-free therapy for knee osteoarthritis. Front Bioeng Biotechnol 2024; 12:1309946. [PMID: 38292826 PMCID: PMC10824863 DOI: 10.3389/fbioe.2024.1309946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 01/05/2024] [Indexed: 02/01/2024] Open
Abstract
Osteoarthritis (OA), as a degenerative disease, leads to high socioeconomic burdens and disability rates. The knee joint is typically the most affected and is characterized by progressive destruction of articular cartilage, subchondral bone remodeling, osteophyte formation and synovial inflammation. The current management of OA mainly focuses on symptomatic relief and does not help to slow down the advancement of disease. Recently, mesenchymal stem cells (MSCs) and their exosomes have garnered significant attention in regenerative therapy and tissue engineering areas. Preclinical studies have demonstrated that MSC-derived exosomes (MSC-Exos), as bioactive factor carriers, have promising results in cell-free therapy of OA. This study reviewed the application of various MSC-Exos for the OA treatment, along with exploring the potential underlying mechanisms. Moreover, current strategies and future perspectives for the utilization of engineered MSC-Exos, alongside their associated challenges, were also discussed.
Collapse
Affiliation(s)
| | | | | | - Zhenggang Wang
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun Xiao
- Department of Orthopedics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Kuchynsky K, Stevens P, Hite A, Xie W, Diop K, Tang S, Pietrzak M, Khan S, Walter B, Purmessur D. Transcriptional profiling of human cartilage endplate cells identifies novel genes and cell clusters underlying degenerated and non-degenerated phenotypes. Arthritis Res Ther 2024; 26:12. [PMID: 38173036 PMCID: PMC10763221 DOI: 10.1186/s13075-023-03220-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Low back pain is a leading cause of disability worldwide and is frequently attributed to intervertebral disc (IVD) degeneration. Though the contributions of the adjacent cartilage endplates (CEP) to IVD degeneration are well documented, the phenotype and functions of the resident CEP cells are critically understudied. To better characterize CEP cell phenotype and possible mechanisms of CEP degeneration, bulk and single-cell RNA sequencing of non-degenerated and degenerated CEP cells were performed. METHODS Human lumbar CEP cells from degenerated (Thompson grade ≥ 4) and non-degenerated (Thompson grade ≤ 2) discs were expanded for bulk (N=4 non-degenerated, N=4 degenerated) and single-cell (N=1 non-degenerated, N=1 degenerated) RNA sequencing. Genes identified from bulk RNA sequencing were categorized by function and their expression in non-degenerated and degenerated CEP cells were compared. A PubMed literature review was also performed to determine which genes were previously identified and studied in the CEP, IVD, and other cartilaginous tissues. For single-cell RNA sequencing, different cell clusters were resolved using unsupervised clustering and functional annotation. Differential gene expression analysis and Gene Ontology, respectively, were used to compare gene expression and functional enrichment between cell clusters, as well as between non-degenerated and degenerated CEP samples. RESULTS Bulk RNA sequencing revealed 38 genes were significantly upregulated and 15 genes were significantly downregulated in degenerated CEP cells relative to non-degenerated cells (|fold change| ≥ 1.5). Of these, only 2 genes were previously studied in CEP cells, and 31 were previously studied in the IVD and other cartilaginous tissues. Single-cell RNA sequencing revealed 11 unique cell clusters, including multiple chondrocyte and progenitor subpopulations with distinct gene expression and functional profiles. Analysis of genes in the bulk RNA sequencing dataset showed that progenitor cell clusters from both samples were enriched in "non-degenerated" genes but not "degenerated" genes. For both bulk- and single-cell analyses, gene expression and pathway enrichment analyses highlighted several pathways that may regulate CEP degeneration, including transcriptional regulation, translational regulation, intracellular transport, and mitochondrial dysfunction. CONCLUSIONS This thorough analysis using RNA sequencing methods highlighted numerous differences between non-degenerated and degenerated CEP cells, the phenotypic heterogeneity of CEP cells, and several pathways of interest that may be relevant in CEP degeneration.
Collapse
Affiliation(s)
- Kyle Kuchynsky
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Patrick Stevens
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Amy Hite
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - William Xie
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Khady Diop
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Shirley Tang
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Maciej Pietrzak
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
- The James Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA
| | - Safdar Khan
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA
| | - Benjamin Walter
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA
| | - Devina Purmessur
- Department of Biomedical Engineering, The Ohio State University, 3016 Fontana Laboratories, 140 W. 19th Ave, Columbus, OH, 43210, USA.
- Department of Orthopaedics, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
26
|
Li S, Yuan Q, Yang M, Long X, Sun J, Yuan X, Liu L, Zhang W, Li Q, Deng Z, Tian R, Xu R, Xie L, Yuan J, He Y, Liu Y, Liu H, Yuan Z. Enhanced cartilage regeneration by icariin and mesenchymal stem cell-derived extracellular vesicles combined in alginate-hyaluronic acid hydrogel. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 55:102723. [PMID: 38007064 DOI: 10.1016/j.nano.2023.102723] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/09/2023] [Accepted: 10/31/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE Osteoarthritis (OA) is characterized by progressive cartilage degeneration and absence of curative therapies. Therefore, more efficient therapies are compellingly needed. Both mesenchymal stem cells (MSCs)-derived extracellular vesicles (EVs) and Icariin (ICA) are promising for repair of cartilage defect. This study proposes that ICA may be combined to potentiate the cartilage repair capacity of MSC-EVs. MATERIALS AND METHODS MSC-EVs were isolated from sodium alginate (SA) and hyaluronic acid (HA) composite hydrogel (SA-HA) cell spheroid culture. EVs and ICA were combined in SA-HA hydrogel to test therapeutic efficacy on cartilage defect in vivo. RESULTS EVs and ICA were synergistic for promoting both proliferation and migration of MSCs and inflammatory chondrocytes. The combination therapy led to strikingly enhanced repair on cartilage defect in rats, with mechanisms involved in the concomitant modulation of both cartilage degradation and synthesis makers. CONCLUSION The MSC-EVs-ICA/SA-HA hydrogel potentially constitutes a novel therapy for cartilage defect in OA.
Collapse
Affiliation(s)
- Shuyi Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Qian Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Minghui Yang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xinyi Long
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jianwu Sun
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Xin Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Lang Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Wanting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Quanjiang Li
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Zhujie Deng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Rui Tian
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Renhao Xu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, PR China.
| | - Lingna Xie
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| | - Jingna Yuan
- Jinhang Bio-science and Biotechnology Co. Ltd, Guangzhou 510663, PR China.
| | - Yue He
- Jinhang Bio-science and Biotechnology Co. Ltd, Guangzhou 510663, PR China.
| | - Yi Liu
- Orthopedics Department, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, PR China.
| | - Hongmei Liu
- Department of Ultrasound, Institute of Ultrasound in Musculoskeletal Sports Medicine, Guangdong Second Provincial General Hospital, 510317 Guangzhou, PR China.
| | - Zhengqiang Yuan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
27
|
Li J, Tang Y, Yin L, Lin X, Luo Z, Wang S, Yuan L, Liang P, Jiang B. Mesenchymal stem cell-derived exosomes in myocardial infarction: Therapeutic potential and application. J Gene Med 2024; 26:e3596. [PMID: 37726968 DOI: 10.1002/jgm.3596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/21/2023] Open
Abstract
Myocardial infarction refers to the irreversible impairment of cardiac function resulting from the permanent loss of numerous cardiomyocytes and the formation of scar tissue. This condition is caused by acute and persistent inadequate blood supply to the heart's arteries. In the treatment of myocardial infarction, Mesenchymal stem cells (MSCs) play a crucial role because of their powerful therapeutic effects. These effects primarily stem from the paracrine secretion of multiple factors by MSCs, with exosome-carried microRNAs being the most effective component in promoting cardiac function recovery after infarction. Exosome therapy has emerged as a promising cell-free treatment for myocardial infarction as a result of its relatively simple composition, low immunogenicity and controlled transplantation dose. Despite these advantages, maintaining the stability of exosomes after transplantation and enhancing their targeting effect remain significant challenges in clinical applications. In recent developments, several approaches have been designed to optimize exosome therapy. These include enhancing exosome retention, improving their ability to target specific effects, pretreating MSC-derived exosomes and employing transgenic MSC-derived exosomes. This review primarily focuses on describing the biological characteristics of exosomes, their therapeutic potential and their application in treating myocardial infarction.
Collapse
Affiliation(s)
- Jing Li
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Yuting Tang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Leijing Yin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Xiaofang Lin
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Zhengyang Luo
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Shuxin Wang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Ludong Yuan
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| | - Pengfei Liang
- Department of Burns and Plastic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Bimei Jiang
- Department of Pathophysiology, Sepsis Translational Medicine Key Laboratory of Hunan Province, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- National Medicine Functional Experimental Teaching Center, Central South University, Changsha, Hunan, China
| |
Collapse
|
28
|
Lou C, Jiang H, Lin Z, Xia T, Wang W, Lin C, Zhang Z, Fu H, Iqbal S, Liu H, Lin J, Wang J, Pan X, Xue X. MiR-146b-5p enriched bioinspired exosomes derived from fucoidan-directed induction mesenchymal stem cells protect chondrocytes in osteoarthritis by targeting TRAF6. J Nanobiotechnology 2023; 21:486. [PMID: 38105181 PMCID: PMC10726686 DOI: 10.1186/s12951-023-02264-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023] Open
Abstract
Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.
Collapse
Affiliation(s)
- Chao Lou
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Hongyi Jiang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhongnan Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Tian Xia
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China
| | - Weidan Wang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Chihao Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Zhiguang Zhang
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Haonan Fu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Shoaib Iqbal
- Feik School of Pharmacy, University of the Incarnate Word, Broadway, San Antonio, 4301, USA
| | - Haixiao Liu
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jian Lin
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China
| | - Jilong Wang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang Province, China.
| | - Xiaoyun Pan
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| | - Xinghe Xue
- Department of Orthopedics, The Second Affiliated Hospital, Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China.
- Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, Zhejiang Province, China.
| |
Collapse
|
29
|
Sun W, Lv J, Guo S, Lv M. Cellular microenvironment: a key for tuning mesenchymal stem cell senescence. Front Cell Dev Biol 2023; 11:1323678. [PMID: 38111850 PMCID: PMC10725964 DOI: 10.3389/fcell.2023.1323678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 11/17/2023] [Indexed: 12/20/2023] Open
Abstract
Mesenchymal stem cells (MSCs) possess the ability to self-renew and differentiate into multiple cell types, making them highly suitable for use as seed cells in tissue engineering. These can be derived from various sources and have been found to play crucial roles in several physiological processes, such as tissue repair, immune regulation, and intercellular communication. However, the limited capacity for cell proliferation and the secretion of senescence-associated secreted phenotypes (SASPs) pose challenges for the clinical application of MSCs. In this review, we provide a comprehensive summary of the senescence characteristics of MSCs and examine the different features of cellular microenvironments studied thus far. Additionally, we discuss the mechanisms by which cellular microenvironments regulate the senescence process of MSCs, offering insights into preserving their functionality and enhancing their effectiveness.
Collapse
Affiliation(s)
| | | | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengzhu Lv
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
30
|
Xiao Y, Zhong J, Yang J, Fu Z, Wang B, Peng L, Zuo X, Zhao X, He D, Yuan J. Myeloid-derived suppressor cells ameliorate corneal alkali burn through IL-10-dependent anti-inflammatory properties. Transl Res 2023; 262:25-34. [PMID: 37543286 DOI: 10.1016/j.trsl.2023.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 06/03/2023] [Accepted: 07/23/2023] [Indexed: 08/07/2023]
Abstract
This study aims to investigate the efficiency and the underlying mechanism of myeloid-derived suppressor cells (MDSCs) in corneal alkali burns (CAB). In the study, CD11b+ Gr-1+ cells from C57BL/6J mice bone marrow were cultured and induced. Cell activity and immunoregulatory function were assessed by flow cytometry in vitro. The optimal strategy of MDSCs therapy was assessed by slit-lamp microscopy, and flow cytometry in vivo. The therapeutic effects of MDSCs and the critical signaling pathway were investigated by hematoxylin-eosin (HE) staining, slit-lamp microscopy, flow cytometry, and immunofluorescence. The expression level of the NLRP3 inflammasome pathway was examined. The crucial biochemical parameters of MDSCs were examined by RNA-seq and qPCR to screen out the key regulators. The mechanism of MDSCs' therapeutic effects was explored using MDSCs with IL-10 knockout/rescue by slit-lamp microscopy, HE staining, and qPCR evaluation. The cell frequencies of macrophages and neutrophils in the cornea were examined by flow cytometry in vivo. The results demonstrated that the induced MDSCs meet the standard of phenotypic and functional characteristics. The treatment of 5 × 105 MDSCs conjunctival injection on alternate days significantly ameliorated the disease development, downregulated the NLRP3 inflammasome pathway, and decreased the cell frequencies of macrophages and neutrophils in vivo significantly. IL-10 was screened out to be the critical factor for MDSCs therapy. The therapeutic effects of MDSCs were impaired largely by IL-10 knock-out and saved by the IL-10 supplement. In conclusion, MDSCs therapy is a promising therapeutic solution for CAB. MDSCs fulfilled immunoregulatory roles for CAB by IL-10-dependent anti-inflammatory properties.
Collapse
Affiliation(s)
- Yichen Xiao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jing Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jiahui Yang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Zhenyuan Fu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Bowen Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Lulu Peng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xin Zuo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Xuan Zhao
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Dalian He
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China
| | - Jin Yuan
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou, Guangdong, China.
| |
Collapse
|
31
|
Zhang H, Huang J, Alahdal M. Exosomes loaded with chondrogenic stimuli agents combined with 3D bioprinting hydrogel in the treatment of osteoarthritis and cartilage degeneration. Biomed Pharmacother 2023; 168:115715. [PMID: 37857246 DOI: 10.1016/j.biopha.2023.115715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/07/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
Osteoarthritis (OA) is a challenging joint inflammatory disease that often leads to disability. Immunoregulatory Exosomes (Exos) have shown promise in OA and cartilage degeneration treatment. Engineering Exos to deliver therapeutic agents like Kartogenin (KGN) has displayed potential for restoring cartilage regeneration. However, challenges include the uneven distribution of Exos at the injury site and the release of Exos cargo out of chondrocytes. Hydrogel-loaded uMSC-Exo has demonstrated significant therapeutic effects in wound healing and tissue regeneration. Recently, a new version of three-dimensional (3D) bioprinting of hydrogel significantly restored cartilage regeneration in OA joints. Combining immune regulatory Exos with 3D bioprinting hydrogel (3D-BPH-Exos) holds the potential for immunomodulating cartilage tissue and treatment of OA. It can reduce intracellular inflammasome formation and the release of inflammatory agents like IL-1β, TNF-α, and INF-γ, while also preventing chondrocyte apoptosis by restoring mitochondrial functions and enhancing chondrogenesis in synovial MSCs, osteoprogenitor cells, and osteoclasts. Loading Exos with chondrogenic stimuli agents in the 3D-BPH-Exos approach may offer a faster and safer strategy for cartilage repair while better inhibiting joint inflammation than high doses of anti-inflammatory drugs and cell-based therapies. This review provides a comprehensive overview of hydrogel bioprinting and exosome-based therapy in OA. It emphasizes the potential of 3D-BPH-Exos loaded with chondrogenic stimuli agents for OA treatment, serving as a basis for further research.
Collapse
Affiliation(s)
- Hui Zhang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Department of Orthopedics, Shangrao People's Hospital, Shangrao, Jiangxi, China
| | - Jianghong Huang
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China.
| | - Murad Alahdal
- Shenzhen Key Laboratory of Tissue Engineering, Shenzhen Laboratory of Digital Orthopedic Engineering, Shenzhen Second People's Hospital (The First Hospital Affiliated to Shenzhen University, Health Science Center), Shenzhen 518035, China; Johns Hopkins All Children's Hospital, 600 5th St. South, St. Petersburg, FL 33701, USA.
| |
Collapse
|
32
|
Zhang J, Shi M, Wang J, Li F, Du C, Su G, Xie X, Li S. Novel Strategies for Angiogenesis in Tissue Injury: Therapeutic Effects of iPSCs-Derived Exosomes. Angiology 2023:33197231213192. [PMID: 37933764 DOI: 10.1177/00033197231213192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Regeneration after tissue injury is a dynamic and complex process, and angiogenesis is necessary for normal physiological activities and tissue repair. Induced pluripotent stem cells are a new approach in regenerative medicine, which provides good model for the study of difficult-to-obtain human tissues, patient-specific therapy, and tissue repair. As an innovative cell-free therapeutic strategy, the main advantages of the treatment of induced pluripotent stem cells (iPSCs)-derived exosomes are low in tumorigenicity and immunogenicity, which become an important pathway for tissue injury. This review focuses on the mechanism of the angiogenic effect of iPSCs-derived exosomes on wound repair in tissue injury and their potential therapeutic targets, with a view to providing a theoretical basis for the use of iPSCs-derived exosomes in clinical therapy.
Collapse
Affiliation(s)
- Jiaxin Zhang
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| | - Maoning Shi
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Wang
- Gansu Province Medical Genetics Center, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, Gansu Provincial Maternity and Child Care Hospital, Lanzhou, China
| | - Fei Li
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Chenxu Du
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Su
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Xiaodong Xie
- School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Shiweng Li
- School of Biological and Pharmaceutical Engineering, Lanzhou Jiaotong University, Lanzhou, China
| |
Collapse
|
33
|
Zhang M, Wan L, Li R, Li X, Zhu T, Lu H. Engineered exosomes for tissue regeneration: from biouptake, functionalization and biosafety to applications. Biomater Sci 2023; 11:7247-7267. [PMID: 37794789 DOI: 10.1039/d3bm01169k] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Exosomes are increasingly recognized as important effector molecules that regulate intercellular signaling pathways. Notably, certain types of exosomes can induce therapeutic responses, including cell proliferation, angiogenesis, and tissue repair. The use of exosomes in therapy is a hot spot in current research, especially in regenerative medicine. Despite the therapeutic potential, problems have hindered their success in clinical applications. These shortcomings include low concentration, poor targeting and limited loading capability. To fully realize their therapeutic potential, certain modifications are needed in native exosomes. In the present review, we summarize the exosome modification and functionalization strategies. In addition, we provide an overview of potential clinical applications and highlight the issues associated with the biosafety and biocompatibility of engineered exosomes in applications.
Collapse
Affiliation(s)
- Mu Zhang
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Lei Wan
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Ruiqi Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Xiaoling Li
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Taifu Zhu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
| | - Haibin Lu
- Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, 510280, China.
- The Fifth Affiliated Hospital, Southern Medical University, Guangzhou, 510900, China
| |
Collapse
|
34
|
Lee CS, Lee M, Na K, Hwang HS. Stem Cell-Derived Extracellular Vesicles for Cancer Therapy and Tissue Engineering Applications. Mol Pharm 2023; 20:5278-5311. [PMID: 37867343 DOI: 10.1021/acs.molpharmaceut.3c00376] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Recently, stem cells and their secretomes have attracted great attention in biomedical applications, particularly extracellular vesicles (EVs). EVs are secretomes of cells for cell-to-cell communication. They play a role as intercellular messengers as they carry proteins, nucleic acids, lipids, and therapeutic agents. They have also been utilized as drug-delivery vehicles due to their biocompatibility, low immunogenicity, stability, targetability, and engineerable properties. The therapeutic potential of EVs can be further enhanced by surface engineering and modification using functional molecules such as aptamers, peptides, and antibodies. As a consequence, EVs hold great promise as effective delivery vehicles for enhancing treatment efficacy while avoiding side effects. Among various cell types that secrete EVs, stem cells are ideal sources of EVs because stem cells have unique properties such as self-renewal and regenerative potential for transplantation into damaged tissues that can facilitate their regeneration. However, challenges such as immune rejection and ethical considerations remain significant hurdles. Stem cell-derived EVs have been extensively explored as a cell-free approach that bypasses many challenges associated with cell-based therapy in cancer therapy and tissue regeneration. In this review, we summarize and discuss the current knowledge of various types of stem cells as a source of EVs, their engineering, and applications of EVs, focusing on cancer therapy and tissue engineering.
Collapse
Affiliation(s)
- Chung-Sung Lee
- Department of Pharmaceutical Engineering, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Min Lee
- Division of Advanced Prosthodontics, University of California, Los Angeles, California 90095, United States
- Department of Bioengineering, University of California, Los Angeles, California 90095, United States
| | - Kun Na
- Department of BioMedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Sook Hwang
- Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| |
Collapse
|
35
|
Han H, Zhao X, Ma H, Zhang Y, Lei B. Multifunctional injectable hydrogels with controlled delivery of bioactive factors for efficient repair of intervertebral disc degeneration. Heliyon 2023; 9:e21867. [PMID: 38027562 PMCID: PMC10665751 DOI: 10.1016/j.heliyon.2023.e21867] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/07/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Millions of people worldwide suffer from intervertebral disc degeneration (IVDD), which imposes a significant socioeconomic burden on society. There is an urgent clinical demand for more effective treatments for IVDD because conventional treatments can only alleviate the symptoms rather than preventing the progression of IVDD. Hydrogels, a class of elastic biomaterials with good biocompatibility, are promising candidates for intervertebral disc repair and regeneration. In recent years, various hydrogels have been investigated in vitro and in vivo for the repair of intervertebral discs, some of which are ready for clinical testing. This review summarizes the latest findings and developments in using bioactive factors-released bioactive injectable hydrogels for the repair and regeneration of intervertebral discs. It focuses on the analysis and summary of the use of multifunctional injectable hydrogels to delivery bioactive factors (cells, exosomes, growth factors, genes, drugs) for disc regeneration, providing guidance for future study. Finally, we discussed and analyzed the optimal timing for the application of controlled-release hydrogels in the treatment of IVDD to meet the high standards required for intervertebral disc regeneration and precision medicine.
Collapse
Affiliation(s)
- Hao Han
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Xiaoming Zhao
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Hongyun Ma
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yingang Zhang
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Bo Lei
- Department of Orthopaedics of the First Affiliated Hospital, Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710000, China
- Fronter Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| |
Collapse
|
36
|
Jammes M, Cassé F, Velot E, Bianchi A, Audigié F, Contentin R, Galéra P. Pro-Inflammatory Cytokine Priming and Purification Method Modulate the Impact of Exosomes Derived from Equine Bone Marrow Mesenchymal Stromal Cells on Equine Articular Chondrocytes. Int J Mol Sci 2023; 24:14169. [PMID: 37762473 PMCID: PMC10531906 DOI: 10.3390/ijms241814169] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Osteoarthritis (OA) is a widespread osteoarticular pathology characterized by progressive hyaline cartilage degradation, exposing horses to impaired well-being, premature career termination, alongside substantial financial losses for horse owners. Among the new therapeutic strategies for OA, using mesenchymal stromal cell (MSC)-derived exosomes (MSC-exos) appears to be a promising option for conveying MSC therapeutic potential, yet avoiding the limitations inherent to cell therapy. Here, we first purified and characterized exosomes from MSCs by membrane affinity capture (MAC) and size-exclusion chromatography (SEC). We showed that intact MSC-exos are indeed internalized by equine articular chondrocytes (eACs), and then evaluated their functionality on cartilaginous organoids. Compared to SEC, mRNA and protein expression profiles revealed that MAC-exos induced a greater improvement of eAC-neosynthesized hyaline-like matrix by modulating collagen levels, increasing PCNA, and decreasing Htra1 synthesis. However, because the MAC elution buffer induced unexpected effects on eACs, an ultrafiltration step was included to the isolation protocol. Finally, exosomes from MSCs primed with equine pro-inflammatory cytokines (IL-1β, TNF-α, or IFN-γ) further improved the eAC hyaline-like phenotype, particularly IL-1β and TNF-α. Altogether, these findings indicate the importance of the exosome purification method and further demonstrate the potential of pro-inflammatory priming in the enhancement of the therapeutic value of MSC-exos for equine OA treatment.
Collapse
Affiliation(s)
- Manon Jammes
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Frédéric Cassé
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Emilie Velot
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Arnaud Bianchi
- Molecular Engineering and Articular Physiopathology (IMoPA), French National Center for Scientific Research (CNRS), Université de Lorraine, 54000 Nancy, France; (E.V.); (A.B.)
| | - Fabrice Audigié
- Center of Imaging and Research in Locomotor Affections on Equines, Veterinary School of Alfort, 14430 Goustranville, France;
| | - Romain Contentin
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| | - Philippe Galéra
- BIOTARGEN, UNICAEN, Normandie University, 14000 Caen, France; (M.J.); (F.C.); (R.C.)
| |
Collapse
|
37
|
He S, Deng H, Li P, Hu J, Yang Y, Xu Z, Liu S, Guo W, Guo Q. Arthritic Microenvironment-Dictated Fate Decisions for Stem Cells in Cartilage Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207715. [PMID: 37518822 PMCID: PMC10520688 DOI: 10.1002/advs.202207715] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/05/2023] [Indexed: 08/01/2023]
Abstract
The microenvironment and stem cell fate guidance of post-traumatic articular cartilage regeneration is primarily the focus of cartilage tissue engineering. In articular cartilage, stem cells are characterized by overlapping lineages and uneven effectiveness. Within the first 12 weeks after trauma, the articular inflammatory microenvironment (AIME) plays a decisive role in determining the fate of stem cells and cartilage. The development of fibrocartilage and osteophyte hyperplasia is an adverse outcome of chronic inflammation, which results from an imbalance in the AIME during the cartilage tissue repair process. In this review, the sources for the different types of stem cells and their fate are summarized. The main pathophysiological events that occur within the AIME as well as their protagonists are also discussed. Additionally, regulatory strategies that may guide the fate of stem cells within the AIME are proposed. Finally, strategies that provide insight into AIME pathophysiology are discussed and the design of new materials that match the post-traumatic progress of AIME pathophysiology in a spatial and temporal manner is guided. Thus, by regulating an appropriately modified inflammatory microenvironment, efficient stem cell-mediated tissue repair may be achieved.
Collapse
Affiliation(s)
- Songlin He
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Haotian Deng
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Peiqi Li
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Jingjing Hu
- Department of GastroenterologyInstitute of GeriatricsChinese PLA General HospitalBeijing100853China
| | - Yongkang Yang
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Ziheng Xu
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Shuyun Liu
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| | - Weimin Guo
- Department of Orthopaedic SurgeryGuangdong Provincial Key Laboratory of Orthopedics and TraumatologyFirst Affiliated HospitalSun Yat‐Sen UniversityGuangzhouGuangdong510080China
| | - Quanyi Guo
- School of MedicineNankai UniversityTianjin300071China
- Institute of Orthopedicsthe First Medical CenterChinese PLA General HospitalBeijing Key Lab of Regenerative Medicine in OrthopedicsKey Laboratory of Musculoskeletal Trauma & War Injuries PLABeijing100853China
| |
Collapse
|
38
|
Liu Q, Li J, Chang J, Guo Y, Wen D. The characteristics and medical applications of antler stem cells. Stem Cell Res Ther 2023; 14:225. [PMID: 37649124 PMCID: PMC10468909 DOI: 10.1186/s13287-023-03456-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Antlers are the only fully regenerable mammalian appendages whose annual renewal is initiated by antler stem cells (ASCs), defined as a specialized type of mesenchymal stem cells (MSCs) with embryonic stem cell properties. ASCs possess the same biological features as MSCs, including the capacity for self-renewal and multidirectional differentiation, immunomodulatory functions, and the maintenance of stem cell characteristics after multiple passages. Several preclinical studies have shown that ASCs exhibit promising potential in wound healing, bone repair, osteoarthritis, anti-tissue fibrosis, anti-aging, and hair regeneration. Medical applications based on ASCs and ASC-derived molecules provide a new source of stem cells and therapeutic modalities for regenerative medicine. This review begins with a brief description of antler regeneration and the role of ASCs. Then, the properties and advantages of ASCs are described. Finally, medical research advances regarding ASCs are summarized, and the prospects and challenges of ASCs are highlighted.
Collapse
Affiliation(s)
- Qi Liu
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jiannan Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Jinghui Chang
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Yu Guo
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Dacheng Wen
- Department of Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China.
| |
Collapse
|
39
|
Copp G, Robb KP, Viswanathan S. Culture-expanded mesenchymal stromal cell therapy: does it work in knee osteoarthritis? A pathway to clinical success. Cell Mol Immunol 2023; 20:626-650. [PMID: 37095295 PMCID: PMC10229578 DOI: 10.1038/s41423-023-01020-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/29/2023] [Indexed: 04/26/2023] Open
Abstract
Osteoarthritis (OA) is a degenerative multifactorial disease with concomitant structural, inflammatory, and metabolic changes that fluctuate in a temporal and patient-specific manner. This complexity has contributed to refractory responses to various treatments. MSCs have shown promise as multimodal therapeutics in mitigating OA symptoms and disease progression. Here, we evaluated 15 randomized controlled clinical trials (RCTs) and 11 nonrandomized RCTs using culture-expanded MSCs in the treatment of knee OA, and we found net positive effects of MSCs on mitigating pain and symptoms (improving function in 12/15 RCTs relative to baseline and in 11/15 RCTs relative to control groups at study endpoints) and on cartilage protection and/or repair (18/21 clinical studies). We examined MSC dose, tissue of origin, and autologous vs. allogeneic origins as well as patient clinical phenotype, endotype, age, sex and level of OA severity as key parameters in parsing MSC clinical effectiveness. The relatively small sample size of 610 patients limited the drawing of definitive conclusions. Nonetheless, we noted trends toward moderate to higher doses of MSCs in select OA patient clinical phenotypes mitigating pain and leading to structural improvements or cartilage preservation. Evidence from preclinical studies is supportive of MSC anti-inflammatory and immunomodulatory effects, but additional investigations on immunomodulatory, chondroprotective and other clinical mechanisms of action are needed. We hypothesize that MSC basal immunomodulatory "fitness" correlates with OA treatment efficacy, but this hypothesis needs to be validated in future studies. We conclude with a roadmap articulating the need to match an OA patient subset defined by molecular endotype and clinical phenotype with basally immunomodulatory "fit" or engineered-to-be-fit-for-OA MSCs in well-designed, data-intensive clinical trials to advance the field.
Collapse
Affiliation(s)
- Griffin Copp
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Kevin P Robb
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada
- Krembil Research Institute, University Health Network, Toronto, ON, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - Sowmya Viswanathan
- Osteoarthritis Research Program, Division of Orthopedic Surgery, Schroeder Arthritis Institute, University Health Network, Toronto, ON, Canada.
- Krembil Research Institute, University Health Network, Toronto, ON, Canada.
- Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada.
- Department of Medicine, Division of Hematology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
40
|
Semerci Sevimli T, Sevimli M, Qomi Ekenel E, Altuğ Tasa B, Nur Soykan M, Demir Güçlüer Z, İnan U, Uysal O, Güneş Bağış S, Çemrek F, Eker Sarıboyacı A. Comparison of exosomes secreted by synovial fluid-derived mesenchymal stem cells and adipose tissue-derived mesenchymal stem cells in culture for microRNA-127-5p expression during chondrogenesis. Gene 2023; 865:147337. [PMID: 36878417 DOI: 10.1016/j.gene.2023.147337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/14/2023] [Accepted: 02/28/2023] [Indexed: 03/07/2023]
Abstract
This study aimed to investigate the differences between the exosomal microRNA-127-5p expression profiles of human adipose tissue-derived mesenchymal stem cells (hAT-MSCs) and human synovial fluid-derived mesenchymal stem cells (hSF-MSCs) during chondrogenesis in terms of regenerative treatment of cartilage. Synovial fluid-derived mesenchymal stem cells, adipose tissue-derived mesenchymal stem cells, and human fetal chondroblast cells (hfCCs) were directed to chondrogenic differentiation. Alcian Blue and Safranin O stainings were performed to detect chondrogenic differentiation histochemically. Exosomes derived from chondrogenic differentiated cells and their exosomes were isolated and characterized. microRNA-127-5p expressions were measured by Quantitative reverse transcription PCR (qRT-PCR). Significantly higher levels of microRNA-127-5p expression in differentiated hAT-MSCs exosomes, similar to human fetal chondroblast cells, which are the control group in the chondrogenic differentiation process, were observed. hAT-MSCs are better sources of microRNA-127-5p than hSF-MSCs for stimulating chondrogenesis or in the regenerative therapy of cartilage-related pathologies. hAT-MSCs exosomes are rich sources of microRNA-127-5p and can be an essential candidate for cartilage regeneration treatments.
Collapse
Affiliation(s)
- Tuğba Semerci Sevimli
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Murat Sevimli
- Department of Histology and Embryology, Faculty of Medicine, Suleyman Demirel University, 32260 Isparta, Turkey.
| | - Emilia Qomi Ekenel
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Burcugül Altuğ Tasa
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Merve Nur Soykan
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Zilif Demir Güçlüer
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Ulukan İnan
- Department of Orthopedics and Traumatology, Faculty of Medicine, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Onur Uysal
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Sibel Güneş Bağış
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Fatih Çemrek
- Department of Statistics, Faculty of Science and Letters, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| | - Ayla Eker Sarıboyacı
- Department of Stem Cell, Cellular Therapy and Stem Cell Production Application and Research Center (ESTEM), Eskisehir Osmangazi University, 26040 Eskisehir, Turkey; Department of Stem Cell, Institute of Health Sciences, Eskisehir Osmangazi University, 26040 Eskisehir, Turkey.
| |
Collapse
|
41
|
Mélou C, Pellen-Mussi P, Novello S, Brézulier D, Novella A, Tricot S, Bellaud P, Chauvel-Lebret D. Spheroid Culture System, a Promising Method for Chondrogenic Differentiation of Dental Mesenchymal Stem Cells. Biomedicines 2023; 11:biomedicines11051314. [PMID: 37238984 DOI: 10.3390/biomedicines11051314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of the present work was to develop a three-dimensional culture model to evaluate, in a short period of time, cartilage tissue engineering protocols. The spheroids were compared with the gold standard pellet culture. The dental mesenchymal stem cell lines were from pulp and periodontal ligament. The evaluation used RT-qPCR and Alcian Blue staining of the cartilage matrix. This study showed that the spheroid model allowed for obtaining greater fluctuations of the chondrogenesis markers than for the pellet one. The two cell lines, although originating from the same organ, led to different biological responses. Finally, biological changes were detectable for short periods of time. In summary, this work demonstrated that the spheroid model is a valuable tool for studying chondrogenesis and the mechanisms of osteoarthritis, and evaluating cartilage tissue engineering protocols.
Collapse
Affiliation(s)
- Caroline Mélou
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
- Pôle d'Odontologie, Centre Hospitalier Universitaire de Rennes, 35033 Rennes, France
- UFR Odontologie, University of Rennes, 35043 Rennes, France
| | - Pascal Pellen-Mussi
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
| | - Solen Novello
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
- Pôle d'Odontologie, Centre Hospitalier Universitaire de Rennes, 35033 Rennes, France
- UFR Odontologie, University of Rennes, 35043 Rennes, France
| | - Damien Brézulier
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
- Pôle d'Odontologie, Centre Hospitalier Universitaire de Rennes, 35033 Rennes, France
| | - Agnès Novella
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
| | - Sylvie Tricot
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
| | - Pascale Bellaud
- CNRS, Inserm UMS Biosit, France BioImaging, Core Facility H2P2, University of Rennes, 35000 Rennes, France
| | - Dominique Chauvel-Lebret
- CNRS, ISCR (Institut des Sciences Chimiques de Rennes), University of Rennes, UMR 6226, 35000 Rennes, France
- Pôle d'Odontologie, Centre Hospitalier Universitaire de Rennes, 35033 Rennes, France
- UFR Odontologie, University of Rennes, 35043 Rennes, France
| |
Collapse
|
42
|
Qi H, Shen E, Shu X, Liu D, Wu C. ERK-estrogen receptor α signaling plays a role in the process of bone marrow mesenchymal stem cell-derived exosomes protecting against ovariectomy-induced bone loss. J Orthop Surg Res 2023; 18:250. [PMID: 36973789 PMCID: PMC10045825 DOI: 10.1186/s13018-023-03660-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 02/28/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Exosomes derived from bone marrow mesenchymal stem cells (BMSC-Exos) are considered as candidates for osteoporosis (OP) therapy. Estrogen is critical in the maintenance of bone homeostasis. However, the role of estrogen and/or its receptor in BMSC-Exos treatment of OP, as well as its methods of regulation during this process remain unclear. METHODS BMSCs were cultured and characterized. Ultracentrifugation was performed to collect BMSC-Exos. Transmission electron microscopy, nanoparticle tracking analysis, and western blotting were used to identify BMSC-Exos. We examined the effects of BMSC-Exos on the proliferation, osteogenic differentiation, mineralization, and cell cycle distribution of MG-63 cells. The protein expression of estrogen receptor α (ERα) and the phosphorylation of ERK were investigated through western blotting. We determined the effects of BMSC-Exos on the prevention of bone loss in female rats. The female Sprague-Dawley rats were divided into three groups: the sham group, ovariectomized (OVX) group, and the OVX + BMSC-Exos group. Bilateral ovariectomy was performed in the OVX and OVX + BMSC-Exos groups, while a similar volume of adipose tissue around the ovary was removed in the sham group. The rats in OVX group and OVX + BMSC-Exos group were given PBS or BMSC-Exos after 2 weeks of surgery. Micro-CT scanning and histological staining were used to evaluate the in vivo effects of BMSC-Exos. RESULTS BMSC-Exos significantly enhanced the proliferation, alkaline phosphatase activity, and the Alizarin red S staining in MG-63 cells. The results of cell cycle distribution demonstrated that BMSC-Exos increased the proportion of cells in the G2 + S phase and decreased the proportion of cells in the G1 phase. Moreover, PD98059, an inhibitor of ERK, inhibited both the activation of ERK and the expression of ERα, which were promoted by administration of BMSC-Exos. Micro-CT scan showed that in the OVX + BMSC-Exos group, bone mineral density, bone volume/tissue volume fraction, trabecular number were significantly upregulated. Additionally, the microstructure of the trabecular bone was preserved in the OVX + BMSC-Exos group compared to that in the OVX group. CONCLUSION BMSC-Exos showed an osteogenic-promoting effect both in vitro and in vivo, in which ERK-ERα signaling might play an important role.
Collapse
Affiliation(s)
- Hui Qi
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Enpu Shen
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiong Shu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China
- Beijing Jishuitan Hospital, Beijing, 100035, China
| | - Danping Liu
- Department of Orthopaedics, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, China.
| | - Cheng'ai Wu
- Beijing Research Institute of Traumatology and Orthopaedics, Beijing, 100035, China.
- Beijing Jishuitan Hospital, Beijing, 100035, China.
| |
Collapse
|
43
|
Chen LY, Kao TW, Chen CC, Niaz N, Lee HL, Chen YH, Kuo CC, Shen YA. Frontier Review of the Molecular Mechanisms and Current Approaches of Stem Cell-Derived Exosomes. Cells 2023; 12:cells12071018. [PMID: 37048091 PMCID: PMC10093591 DOI: 10.3390/cells12071018] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Exosomes are effective therapeutic vehicles that may transport their substances across cells. They are shown to possess the capacity to affect cell proliferation, migration, anti-apoptosis, anti-scarring, and angiogenesis, via the action of transporting molecular components. Possessing immense potential in regenerative medicine, exosomes, especially stem cell-derived exosomes, have the advantages of low immunogenicity, minimal invasiveness, and broad clinical applicability. Exosome biodistribution and pharmacokinetics may be altered, in response to recent advancements in technology, for the purpose of treating particular illnesses. Yet, prior to clinical application, it is crucial to ascertain the ideal dose and any potential negative consequences of an exosome. This review focuses on the therapeutic potential of stem cell-derived exosomes and further illustrates the molecular mechanisms that underpin their potential in musculoskeletal regeneration, wound healing, female infertility, cardiac recovery, immunomodulation, neurological disease, and metabolic regulation. In addition, we provide a summary of the currently effective techniques for isolating exosomes, and describe the innovations in biomaterials that improve the efficacy of exosome-based treatments. Overall, this paper provides an updated overview of the biological factors found in stem cell-derived exosomes, as well as potential targets for future cell-free therapeutic applications.
Collapse
|
44
|
Xu L, Sima Y, Xiao C, Chen Y. Exosomes derived from mesenchymal stromal cells: a promising treatment for pelvic floor dysfunction. Hum Cell 2023; 36:937-949. [PMID: 36940057 DOI: 10.1007/s13577-023-00887-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/25/2023] [Indexed: 03/21/2023]
Abstract
Pelvic floor dysfunction (PFDs), which include pelvic organ prolapse (POP), stress urinary incontinence (SUI) and anal incontinence (AI), are common degenerative diseases in women that have dramatic effects on quality of life. The pathology of PFDs is based on impaired pelvic connective tissue supportive strength due to an imbalance in extracellular matrix (ECM) metabolism, the loss of a variety of cell types, such as fibroblasts, muscle cells, peripheral nerve cells, and oxidative stress and inflammation in the pelvic environment. Fortunately, exosomes, which are one of the major secretions of mesenchymal stromal cells (MSCs), are involved in intercellular communication and the modulation of molecular activities in recipient cells via their contents, which are bioactive proteins and genetic factors such as mRNAs and miRNAs. These components modify fibroblast activation and secretion, facilitate ECM modelling, and promote cell proliferation to enhance pelvic tissue regeneration. In this review, we focus on the molecular mechanisms and future directions of exosomes derived from MSCs that are of great value in the treatment of PFD.
Collapse
Affiliation(s)
- Leimei Xu
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Yizhen Sima
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China
| | - Chengzhen Xiao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China
| | - Yisong Chen
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, 128 ShenYang Road, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Shanghai, China.
| |
Collapse
|
45
|
van de Looij SM, de Jong OG, Vermonden T, Lorenowicz MJ. Injectable hydrogels for sustained delivery of extracellular vesicles in cartilage regeneration. J Control Release 2023; 355:685-708. [PMID: 36739906 DOI: 10.1016/j.jconrel.2023.01.060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/15/2022] [Accepted: 01/23/2023] [Indexed: 02/07/2023]
Abstract
Extracellular vesicles (EVs) are a population of small vesicles secreted by essentially all cell types, containing a wide variety of biological macromolecules. Due to their intrinsic capabilities for efficient intercellular communication, they are involved in various aspects of cellular functioning. In the past decade, EVs derived from stem cells attracted interest in the field of regenerative medicine. Owing to their regenerative properties, they have great potential for use in tissue repair, in particular for tissues with limited regenerative capabilities such as cartilage. The maintenance of articular cartilage is dependent on a precarious balance of many different components that can be disrupted by the onset of prevalent rheumatic diseases. However, while cartilage is a tissue with strong mechanical properties that can withstand movement and heavy loads for years, it is virtually incapable of repairing itself after damage has occurred. Stem cell-derived EVs (SC-EVs) transport regenerative components such as proteins and nucleic acids from their parental cells to recipient cells, thereby promoting cartilage healing. Many possible pathways through which SC-EVs execute their regenerative function have been reported, but likely there are still numerous other pathways that are still unknown. This review discusses various preclinical studies investigating intra-articular injections of free SC-EVs, which, while often promoting chondrogenesis and cartilage repair in vivo, showed a recurring limitation of the need for multiple administrations to achieve sufficient tissue regeneration. Potentially, this drawback can be overcome by making use of an EV delivery platform that is capable of sustainably releasing EVs over time. With their remarkable versatility and favourable chemical, biological and mechanical properties, hydrogels can facilitate this release profile by encapsulating EVs in their porous structure. Ideally, the optimal delivery platform can be formed in-situ, by means of an injectable hydrogel that can be administered directly into the affected joint. Relevant research fulfilling these criteria is discussed in detail, including the steps that still need to be taken before injectable hydrogels for sustained delivery of EVs can be applied in the context of cartilage regeneration in the clinic.
Collapse
Affiliation(s)
- Sanne M van de Looij
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Olivier G de Jong
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Science for Life, Utrecht University, 3508 TB Utrecht, The Netherlands
| | - Magdalena J Lorenowicz
- Regenerative Medicine Centre, Uppsalalaan 8, 3584 CT, Utrecht, The Netherlands; Centre for Molecular Medicine, University Medical Centre Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands; Biomedical Primate Research Centre, 2288 GJ Rijswijk, The Netherlands.
| |
Collapse
|
46
|
Gerami MH, Khorram R, Rasoolzadegan S, Mardpour S, Nakhaei P, Hashemi S, Al-Naqeeb BZT, Aminian A, Samimi S. Emerging role of mesenchymal stem/stromal cells (MSCs) and MSCs-derived exosomes in bone- and joint-associated musculoskeletal disorders: a new frontier. Eur J Med Res 2023; 28:86. [PMID: 36803566 PMCID: PMC9939872 DOI: 10.1186/s40001-023-01034-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 01/26/2023] [Indexed: 02/22/2023] Open
Abstract
Exosomes are membranous vesicles with a 30 to 150 nm diameter secreted by mesenchymal stem/stromal cells (MSCs) and other cells, such as immune cells and cancer cells. Exosomes convey proteins, bioactive lipids, and genetic components to recipient cells, such as microRNAs (miRNAs). Consequently, they have been implicated in regulating intercellular communication mediators under physiological and pathological circumstances. Exosomes therapy as a cell-free approach bypasses many concerns regarding the therapeutic application of stem/stromal cells, including undesirable proliferation, heterogeneity, and immunogenic effects. Indeed, exosomes have become a promising strategy to treat human diseases, particularly bone- and joint-associated musculoskeletal disorders, because of their characteristics, such as potentiated stability in circulation, biocompatibility, low immunogenicity, and toxicity. In this light, a diversity of studies have indicated that inhibiting inflammation, inducing angiogenesis, provoking osteoblast and chondrocyte proliferation and migration, and negative regulation of matrix-degrading enzymes result in bone and cartilage recovery upon administration of MSCs-derived exosomes. Notwithstanding, insufficient quantity of isolated exosomes, lack of reliable potency test, and exosomes heterogeneity hurdle their application in clinics. Herein, we will deliver an outline respecting the advantages of MSCs-derived exosomes-based therapy in common bone- and joint-associated musculoskeletal disorders. Moreover, we will have a glimpse the underlying mechanism behind the MSCs-elicited therapeutic merits in these conditions.
Collapse
Affiliation(s)
- Mohammad Hadi Gerami
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Roya Khorram
- grid.412571.40000 0000 8819 4698Bone and Joint Diseases Research Center, Department of Orthopedic Surgery, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soheil Rasoolzadegan
- grid.411600.2Department of Surgery, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Mardpour
- grid.411705.60000 0001 0166 0922Department of Radiology, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Pooria Nakhaei
- grid.411705.60000 0001 0166 0922Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Soheyla Hashemi
- grid.411036.10000 0001 1498 685XObstetrician, Gynaecology & Infertility Department, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Amir Aminian
- Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Sahar Samimi
- Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Conditioned Medium - Is it an Undervalued Lab Waste with the Potential for Osteoarthritis Management? Stem Cell Rev Rep 2023:10.1007/s12015-023-10517-1. [PMID: 36790694 PMCID: PMC10366316 DOI: 10.1007/s12015-023-10517-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND The approaches currently used in osteoarthritis (OA) are mainly short-term solutions with unsatisfactory outcomes. Cell-based therapies are still controversial (in terms of the sources of cells and the results) and require strict culture protocol, quality control, and may have side-effects. A distinct population of stromal cells has an interesting secretome composition that is underrated and commonly ends up as biological waste. Their unique properties could be used to improve the existing techniques due to protective and anti-ageing properties. SCOPE OF REVIEW In this review, we seek to outline the advantages of the use of conditioned media (CM) and exosomes, which render them superior to other cell-based methods, and to summarise current information on the composition of CM and their effect on chondrocytes. MAJOR CONCLUSIONS CM are obtainable from a variety of mesenchymal stromal cell (MSC) sources, such as adipose tissue, bone marrow and umbilical cord, which is significant to their composition. The components present in CMs include proteins, cytokines, growth factors, chemokines, lipids and ncRNA with a variety of functions. In most in vitro and in vivo studies CM from MSCs had a beneficial effect in enhance processes associated with chondrocyte OA pathomechanism. GENERAL SIGNIFICANCE This review summarises the information available in the literature on the function of components most commonly detected in MSC-conditioned media, as well as the effect of CM on OA chondrocytes in in vitro culture. It also highlights the need to standardise protocols for obtaining CM, and to conduct clinical trials to transfer the effects obtained in vitro to human subjects.
Collapse
|
48
|
Yao Q, Wu X, Tao C, Gong W, Chen M, Qu M, Zhong Y, He T, Chen S, Xiao G. Osteoarthritis: pathogenic signaling pathways and therapeutic targets. Signal Transduct Target Ther 2023; 8:56. [PMID: 36737426 PMCID: PMC9898571 DOI: 10.1038/s41392-023-01330-w] [Citation(s) in RCA: 291] [Impact Index Per Article: 291.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 02/05/2023] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative joint disorder that leads to disability and affects more than 500 million population worldwide. OA was believed to be caused by the wearing and tearing of articular cartilage, but it is now more commonly referred to as a chronic whole-joint disorder that is initiated with biochemical and cellular alterations in the synovial joint tissues, which leads to the histological and structural changes of the joint and ends up with the whole tissue dysfunction. Currently, there is no cure for OA, partly due to a lack of comprehensive understanding of the pathological mechanism of the initiation and progression of the disease. Therefore, a better understanding of pathological signaling pathways and key molecules involved in OA pathogenesis is crucial for therapeutic target design and drug development. In this review, we first summarize the epidemiology of OA, including its prevalence, incidence and burdens, and OA risk factors. We then focus on the roles and regulation of the pathological signaling pathways, such as Wnt/β-catenin, NF-κB, focal adhesion, HIFs, TGFβ/ΒΜP and FGF signaling pathways, and key regulators AMPK, mTOR, and RUNX2 in the onset and development of OA. In addition, the roles of factors associated with OA, including MMPs, ADAMTS/ADAMs, and PRG4, are discussed in detail. Finally, we provide updates on the current clinical therapies and clinical trials of biological treatments and drugs for OA. Research advances in basic knowledge of articular cartilage biology and OA pathogenesis will have a significant impact and translational value in developing OA therapeutic strategies.
Collapse
Affiliation(s)
- Qing Yao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Xiaohao Wu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Chu Tao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Weiyuan Gong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Mingjue Chen
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Minghao Qu
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yiming Zhong
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Tailin He
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Sheng Chen
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Guozhi Xiao
- Department of Biochemistry, School of Medicine, Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
49
|
Dai Y, Chen Y, Hu Y, Zhang L. Current knowledge and future perspectives on exosomes in the field of regenerative medicine: a bibliometric analysis. Regen Med 2023; 18:123-136. [PMID: 36325823 DOI: 10.2217/rme-2022-0141] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Objective: This study aimed to use bibliometric analysis to qualitatively and quantitatively evaluate the research of exosomes in the field of regenerative medicine and to provide research hotspots and trends in this field. Materials & methods: Bibliometric analysis and data presentation were performed by VOSviewer and Microsoft Excel. Results: China was the major contributor to research in this field and enjoys a high reputation in academia. The highest contributing institution is Shanghai Jiao Tong University. Research hotspots included exosome-mediated neurovascular regeneration, exosome mechanism research, exosome-mediated cartilage regeneration and repair and exosome-mediated cardiac regeneration. Research was trending in the treatment of osteoarthritis, knee disease and cartilage regeneration and repair. Conclusion: This study provides a panoramic view of the application of exosomes in regenerative medicine.
Collapse
Affiliation(s)
- Yuxuan Dai
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| | - Yu Chen
- Division of Thyroid Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yiming Hu
- Department of Plastic & Aesthetic Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, China
| | - Lianbo Zhang
- Department of Plastic Surgery, China-Japan Union Hospital of Jilin University, Changchun, 130000, China
| |
Collapse
|
50
|
Duan WL, Zhang LN, Bohara R, Martin-Saldaña S, Yang F, Zhao YY, Xie Y, Bu YZ, Pandit A. Adhesive hydrogels in osteoarthritis: from design to application. Mil Med Res 2023; 10:4. [PMID: 36710340 PMCID: PMC9885614 DOI: 10.1186/s40779-022-00439-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/31/2022] [Indexed: 01/31/2023] Open
Abstract
Osteoarthritis (OA) is the most common type of degenerative joint disease which affects 7% of the global population and more than 500 million people worldwide. One research frontier is the development of hydrogels for OA treatment, which operate either as functional scaffolds of tissue engineering or as delivery vehicles of functional additives. Both approaches address the big challenge: establishing stable integration of such delivery systems or implants. Adhesive hydrogels provide possible solutions to this challenge. However, few studies have described the current advances in using adhesive hydrogel for OA treatment. This review summarizes the commonly used hydrogels with their adhesion mechanisms and components. Additionally, recognizing that OA is a complex disease involving different biological mechanisms, the bioactive therapeutic strategies are also presented. By presenting the adhesive hydrogels in an interdisciplinary way, including both the fields of chemistry and biology, this review will attempt to provide a comprehensive insight for designing novel bioadhesive systems for OA therapy.
Collapse
Affiliation(s)
- Wang-Lin Duan
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Li-Ning Zhang
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Raghvendra Bohara
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Sergio Martin-Saldaña
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland
| | - Fei Yang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yi-Yang Zhao
- Department of Rehabilitation Medicine, the First Medical Center, Chinese PLA General Hospital, No.28 Fuxing Road, Haidian District, Beijing, 100853, China
| | - Yong Xie
- Department of Orthopedics, the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100853, China. .,National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Beijing, 100853, China.
| | - Ya-Zhong Bu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Abhay Pandit
- CÚRAM, SFI Research Centre for Medical Devices, University of Galway, Galway, H91 TK33, Ireland.
| |
Collapse
|