1
|
Liang S, Quan Q, Liu D, Yang S, Yan Q, Jiang Z. Regulation of Metabolic Pathways to Enhance Difucosyllactose Biosynthesis in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:727-734. [PMID: 39699992 DOI: 10.1021/acs.jafc.4c09796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Difucosyllactose (DFL), an important kind of fucosylated human milk oligosaccharides (HMOs), has garnered considerable attention due to its excellent physiological activities in infants. Previously, we achieved de novo biosynthesis of DFL; however, substantial residual intermediates of fucosyllactoses (FL) were detected. In this study, DFL biosynthesis was optimized, and residual FL were reduced by regulating metabolic pathways. Different plasmid combinations were used to regulate gene expression, achieving an optimal flux balance between 2'-FL and DFL. The expression level of key enzyme α-1,3-fucosyltransferase (α-1,3-FT, FucTa) was then enhanced by increasing plasmid copy number and integrating fucTa gene into the chromosome. Exocytosis of 2'-FL was reduced by deleting the sugar efflux transporter setA gene, thereby minimizing residual FL. Finally, strain BSF41 produced 55.3 g/L of DFL with only 2.59 g/L of residual FL in a 5 L fermentor, representing the highest reported titer to date. This study provides an important foundation for advancing the biosynthesis of fucosylated HMOs.
Collapse
Affiliation(s)
- Shanquan Liang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| | - Qi Quan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe, Henan 462300, China
| |
Collapse
|
2
|
Park BS, Yoon J, Lee JM, Cho SH, Choi Y, Cho BK, Oh MK. Metabolic engineering of Priestia megaterium for 2'-fucosyllactose production. Microb Cell Fact 2025; 24:2. [PMID: 39754105 PMCID: PMC11699682 DOI: 10.1186/s12934-024-02620-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 12/08/2024] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND 2'-Fucosyllactose (2'-FL) is a predominant human milk oligosaccharide that significantly enhances infant nutrition and immune health. This study addresses the need for a safe and economical production of 2'-FL by employing Generally Recognized As Safe (GRAS) microbial strain, Priestia megaterium ATCC 14581. This strain was chosen for its robust growth and established safety profile and attributing suitable for industrial-scale production. RESULTS The engineering targets included the deletion of the lacZ gene to prevent lactose metabolism interference, introduction of α-1,2-fucosyltransferase derived from the non-pathogenic strain, and optimization of the GDP-L-fucose biosynthesis pathway through the overexpression of manA and manC. These changes, coupled with improvements in lactose uptake and utilization through random mutagenesis, led to a high 2'-FL yield of 28.6 g/L in fed-batch fermentation, highlighting the potential of our metabolic engineering strategies on P. megaterium. CONCLUSIONS The GRAS strain P. megaterium ATCC 14581 was successfully engineered to overproduce 2'-FL, a valuable human milk oligosaccharide, through a series of genetic modifications and metabolic pathway optimizations. This work underscores the feasibility of using GRAS strains for the production of oligosaccharides, paving the way for safer and more efficient methods in biotechnological applications. Future studies could explore additional genetic modifications and optimization of fermentation conditions of the strain to further enhance 2'-FL yield and scalability.
Collapse
Affiliation(s)
- Bu-Soo Park
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jihee Yoon
- Samyang Corp., 295 Pangyo-ro, Bundang-gu, Seongnam-si, Gyeonggi-do, 13488, Republic of Korea
| | - Jun-Min Lee
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea
| | - Sang-Hyeok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Yoojeong Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.
| | - Min-Kyu Oh
- Department of Chemical & Biological Engineering, Korea University, Seoul, 136-763, Korea.
| |
Collapse
|
3
|
Nonaka D, Hirata Y, Kishida M, Mori A, Fujiwara R, Kondo A, Mori Y, Noda S, Tanaka T. Parallel metabolic pathway engineering for aerobic 1,2-propanediol production in Escherichia coli. Biotechnol J 2024; 19:e2400210. [PMID: 39167552 DOI: 10.1002/biot.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/28/2024] [Accepted: 07/12/2024] [Indexed: 08/23/2024]
Abstract
The demand for the essential commodity chemical 1,2-propanediol (1,2-PDO) is on the rise, as its microbial production has emerged as a promising method for a sustainable chemical supply. However, the reliance of 1,2-PDO production in Escherichia coli on anaerobic conditions, as enhancing cell growth to augment precursor availability remains a substantial challenge. This study presents glucose-based aerobic production of 1,2-PDO, with xylose utilization facilitating cell growth. An engineered strain was constructed capable of exclusively producing 1,2-PDO from glucose while utilizing xylose to support cell growth. This was accomplished by deleting the gloA, eno, eda, sdaA, sdaB, and tdcG genes for 1,2-PDO production from glucose and introducing the Weimberg pathway for cell growth using xylose. Enhanced 1,2-PDO production was achieved via yagF overexpression and disruption of the ghrA gene involved in the 1,2-PDO-competing pathway. The resultant strain, PD72, produced 2.48 ± 0.15 g L-1 1,2-PDO with a 0.27 ± 0.02 g g-1-glucose yield after 72 h cultivation. Overall, this study demonstrates aerobic 1,2-PDO synthesis through the isolation of the 1,2-PDO synthetic pathway from the tricarboxylic acid cycle.
Collapse
Affiliation(s)
- Daisuke Nonaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Yuuki Hirata
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Mayumi Kishida
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ayana Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Ryosuke Fujiwara
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, Tsurumi-ku, Yokohama, Japan
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| | - Shuhei Noda
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe, Hyogo, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi, Saitama, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Nada-ku, Kobe, Hyogo, Japan
| |
Collapse
|
4
|
Zhu Y, Chen R, Wang H, Chen Y, Huang Z, Du Z, Meng J, Zhou J, Mu W. De Novo Biosynthesis of Difucosyllactose by Artificial Pathway Construction and α1,3/4-Fucosyltransferase Rational Design in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38598361 DOI: 10.1021/acs.jafc.4c01691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Difucosyllactose (DFL) is a significant and plentiful oligosaccharide found in human breast milk. In this study, an artificial metabolic pathway of DFL was designed, focusing on the de novo biosynthesis of GDP-fucose from only glycerol. This was achieved by engineering Escherichia coli to endogenously overexpress genes manB, manC, gmd, and wcaG and heterologously overexpress a pair of fucosyltransferases to produce DFL from lactose. The introduction of α-1,2-fucosyltransferase from Helicobacter pylori (FucT2) along with α-1,3/4-fucosyltransferase (HP3/4FT) addressed rate-limiting challenges in enzymatic catalysis and allowed for highly efficient conversion of lactose into DFL. Based on these results, molecular modification of HP3/4FT was performed based on computer-assisted screening and structure-based rational design. The best-performing mutant, MH5, containing a combination of five mutated sites (F49K/Y131D/Y197N/E338D/R369A) of HP3/4FT was obtained. The best strain BLC09-58 harboring MH5 yielded 45.81 g/L of extracellular DFL in 5-L fed-batch cultures, which was the highest titer reported to date.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhaolin Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Zhihui Du
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jiawei Meng
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
5
|
Liang S, He Z, Liu D, Yang S, Yan Q, Jiang Z. Efficient Biosynthesis of Difucosyllactose via De Novo GDP-l-Fucose Pathway in Metabolically Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:4367-4375. [PMID: 38374607 DOI: 10.1021/acs.jafc.3c09742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2024]
Abstract
Difucosyllactose (DFL) is an important component of human milk oligosaccharides (HMOs) and has significant benefits for the growth and development of infants. So far, a few microbial cell factories have been constructed for the production of DFL, which still have problems of low production and high cost. Herein, a high-level de novo pathway DFL-producing strain was constructed by multistep optimization strategies in Escherichia coli BL21star(DE3). We first efficiently synthesized the intermediate 2'-fucosyllactose (2'-FL) in E. coli BL21star(DE3) by the advisable stepwise strategy. The truncated α-1,3/4-fucosyltransferase (Hp3/4FT) was then introduced into the engineered strain to achieve de novo biosynthesis of DFL. ATP-dependent protease (Lon) and GDP-mannose hydrolase (NudK) were deleted, and mannose-6-phosphate isomerase (ManA) was overexpressed to improve GDP-l-fucose accumulation. The regulator RcsA was overexpressed to fine-tune the expression level of pathway genes, thereby increasing the synthesis of DFL. The final strain produced 6.19 g/L of DFL in the shake flask and 33.45 g/L of DFL in the 5 L fermenter, which were the highest reported titers so far. This study provides a more economical, sustainable, and effective strategy to produce the fucosylated human milk oligosaccharides (HMOs).
Collapse
Affiliation(s)
- Shanquan Liang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Zi He
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Dan Liu
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Shaoqing Yang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Department of Nutrition and Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| |
Collapse
|
6
|
Peng F, Hong J, Cui J, An YN, Guo Q, Shen Q, Cheng F, Xue YP, Zheng YG. Improvement of an enzymatic cascade synthesis of nicotinamide mononucleotide via protein engineering and reaction-process reinforcement. Biotechnol J 2024; 19:e2300748. [PMID: 38403401 DOI: 10.1002/biot.202300748] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/27/2024]
Abstract
Enzymatic synthesis of β-nicotinamide mononucleotide (NMN) from D-ribose has garnered widespread attention due to its cheap material, the use of mild reaction conditions, and the ability to produce highly pure products with the desired optical properties. However, the overall NMN yield of this method is impeded by the low activity of rate-limiting enzymes. The ribose-phosphate diphosphokinase (PRS) and nicotinamide phosphoribosyltransferase (NAMPT), that control the rate of the reaction, were engineered to improve the reaction efficacy. The actives of mutants PRS-H150Q and NAMPT-Y15S were 334% and 57% higher than that of their corresponding wild-type enzymes, respectively. Furthermore, by adding pyrophosphatase, the byproduct pyrophosphate which can inhibit the activity of NAMPT was degraded, leading to a 6.72% increase in NMN yield. Following with reaction-process reinforcement, a high yield of 8.10 g L-1 NMN was obtained after 3 h of reaction, which was 56.86-fold higher than that of the stepwise reaction synthesis (0.14 g L-1 ), indicating that the in vitro enzymatic synthesis of NMN from D-ribose and niacinamide is an economical and feasible route.
Collapse
Affiliation(s)
- Feng Peng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jian Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Ya-Ni An
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Qian Guo
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, PR China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, PR China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, PR China
| |
Collapse
|
7
|
Park JS, Kim YW, Kim H, Kim SK, Park K. Development of a Novel ATP Bioluminescence Assay Based on Engineered Probiotic Saccharomyces boulardii Expressing Firefly Luciferase. J Microbiol Biotechnol 2023; 33:1506-1512. [PMID: 37482802 DOI: 10.4014/jmb.2305.05019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/06/2023] [Accepted: 07/18/2023] [Indexed: 07/25/2023]
Abstract
Quantitative analysis of adenosine triphosphate (ATP) has been widely used as a diagnostic tool in the food and medical industries. Particularly, the pathogenesis of a few diseases including inflammatory bowel disease (IBD) is closely related to high ATP concentrations. A bioluminescent D-luciferin/luciferase system, which includes a luciferase (FLuc) from the firefly Photinus pyralis as a key component, is the most commonly used method for the detection and quantification of ATP. Here, instead of isolating FLuc produced in recombinant Escherichia coli, we aimed to develop a whole-cell biocatalyst system that does not require extraction and purification of FLuc. To this end, the gene coding for FLuc was introduced into the genome of probiotic Saccharomyces boulardii using the CRISPR/Cas9-based genome editing system. The linear relationship (r2 = 0.9561) between ATP levels and bioluminescence generated from the engineered S. boulardii expressing FLuc was observed in vitro. To explore the feasibility of using the engineered S. boulardii expressing FLuc as a whole-cell biosensor to detect inflammation biomarker (i.e., ATP) in the gut, a colitis mouse model was established using dextran sodium sulfate as a colitogenic compound. Our findings demonstrated that the whole-cell biosensor can detect elevated ATP levels during gut inflammation in mice. Therefore, the simple and powerful method developed herein could be applied for non-invasive IBD diagnosis.
Collapse
Affiliation(s)
- Ji Sun Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Young-Woo Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyungdong Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
8
|
Zhao M, Zhu Y, Wang H, Xu W, Zhang W, Mu W. An Overview of Sugar Nucleotide-Dependent Glycosyltransferases for Human Milk Oligosaccharide Synthesis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12390-12402. [PMID: 37552889 DOI: 10.1021/acs.jafc.3c02895] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
Human milk oligosaccharides (HMOs) have received increasing attention because of their special effects on infant health and commercial value as the new generation of core components in infant formula. Currently, large-scale production of HMOs is generally based on microbial synthesis using metabolically engineered cell factories. Introduction of the specific glycosyltransferases is essential for the construction of HMO-producing engineered strains in which the HMO-producing glycosyltransferases are generally sugar nucleotide-dependent. Four types of glycosyltransferases have been used for typical glycosylation reactions to synthesize HMOs. Soluble expression, substrate specificity, and regioselectivity are common concerns of these glycosyltransferases in practical applications. Screening of specific glycosyltransferases is an important research topic to solve these problems. Molecular modification has also been performed to enhance the catalytic activity of various HMO-producing glycosyltransferases and to improve the substrate specificity and regioselectivity. In this article, various sugar nucleotide-dependent glycosyltransferases for HMO synthesis were overviewed, common concerns of these glycosyltransferases were described, and the future perspectives of glycosyltransferase-related studies were provided.
Collapse
Affiliation(s)
- Mingli Zhao
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Wei Xu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
9
|
Qian D, Zhang C, Deng C, Zhou M, Fan L, Zhao L. De novo biosynthesis of 2'-fucosyllactose in engineered Pichia pastoris. Biotechnol Lett 2023; 45:521-536. [PMID: 36790735 DOI: 10.1007/s10529-023-03357-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/22/2022] [Accepted: 01/13/2023] [Indexed: 02/16/2023]
Abstract
PURPOSE Pichia pastoris is well known for its ability to produce short and low-immunogenic humanized glycosyl chains onto recombinant glycoproteins, it was thus speculated to be applicable to synthesize oligosaccharides. In this study, generally recognized as safe (GRAS) microorganism Pichia pastoris GS115 was tested for its potential to be used as a new synthetic chassis to produce the most abundant human milk oligosaccharide 2'-fucosyllactose (2'-FL). METHODS To enable the de novo synthesis of 2'-FL, lactose transporter lac12, two enzymes of gmd, gmer, and fucosyltransferases futC were integrated into the genome of P. pastoris, under the control of constitutive PGAP promoter. RESULTS The resulting recombinant yeasts yielded up to 0.276 g/L through culture optimization in a 5 L bioreactor. CONCLUSION To our knowledge, this is the first report of 2'-FL production in engineered Pichia pastoris. This work is a good starting point to produce 2'-FL using Pichia pastoris as a viable chassis.
Collapse
Affiliation(s)
- Difan Qian
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Chunyue Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Chen Deng
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China
| | - Mian Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China
| | - Liqiang Fan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| | - Liming Zhao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Meilong Road 130, Shanghai, 200237, China.
- Organ Transplant Center, Shanghai Changzheng Hospital, Shanghai, 200003, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology (SCICBT), Shanghai, 200237, China.
| |
Collapse
|
10
|
Chen Y, Zhu Y, Wang H, Chen R, Liu Y, Zhang W, Mu W. De novo biosynthesis of 2'-fucosyllactose in a metabolically engineered Escherichia coli using a novel ɑ1,2-fucosyltransferase from Azospirillum lipoferum. BIORESOURCE TECHNOLOGY 2023; 374:128818. [PMID: 36868425 DOI: 10.1016/j.biortech.2023.128818] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Human milk oligosaccharides are complex, indigestible oligosaccharides that provide ideal nutrition for infant development. Here, 2'-fucosyllactose was efficiently produced in Escherichia coli by using a biosynthetic pathway. For this, both lacZ and wcaJ (encoding β-galactosidase and UDP-glucose lipid carrier transferase, respectively) were deleted to enhance the 2'-fucosyllactose biosynthesis. To further enhance 2'-fucosyllactose production, SAMT from Azospirillum lipoferum was inserted into the chromosome of the engineered strain, and the native promoter was replaced with a strong constitutive promoter (PJ23119). The titer of 2'-fucosyllactose was increased to 8.03 g/L by introducing the regulators rcsA and rcsB into the recombinant strains. Compared to wbgL-based strains, only 2'-fucosyllactose was produced in SAMT-based strains without other by-products. Finally, the highest titer of 2'-fucosyllactose reached 112.56 g/L in a 5 L bioreactor by fed-batch cultivation, with a productivity of 1.10 g/L/h and a yield of 0.98 mol/mol lactose, indicating a strong potential in industrial production.
Collapse
Affiliation(s)
- Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China.
| |
Collapse
|
11
|
Zhu Y, Chen R, Wang H, Chen Y, Liu Y, Zhou J, Mu W. Elimination of Byproduct Generation and Enhancement of 2'-Fucosyllactose Synthesis by Expressing a Novel α1,2-Fucosyltransferase in Engineered Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4915-4923. [PMID: 36876899 DOI: 10.1021/acs.jafc.3c00139] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
2'-Fucosyllactose (2'-FL) is a kind of fucosylated human milk oligosaccharide (HMO), representing the most abundant oligosaccharide in breast milk. We conducted systematic studies on three canonical α1,2-fucosyltransferases (WbgL, FucT2, and WcfB) to quantify the byproducts in a lacZ- and wcaJ-deleted Escherichia coli BL21(DE3) basic host strain. Further, we screened a highly active α1,2-fucosyltransferase from Helicobacter sp. 11S02629-2 (BKHT), which exhibits high in vivo 2'-FL productivity without the formation of byproducts difucosyl lactose (DFL) and 3-FL. The maximum 2'-FL titer and yield reached 11.13 g/L and 0.98 mol/mol of lactose, respectively, in shake-flask cultivation, both approaching the theoretical maximum value. In a 5 L fed-batch cultivation, the maximum 2'-FL titer reached 94.7 g/L extracellularly with a yield of 0.98 mol of 2'-FL/mol of lactose and productivity of 1.14 g L-1 h-1. Our reported 2'-FL yield is the highest from lactose reported to date.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Roulin Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Yihan Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yuanlin Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
12
|
Meng J, Zhu Y, Wang H, Cao H, Mu W. Biosynthesis of Human Milk Oligosaccharides: Enzyme Cascade and Metabolic Engineering Approaches. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2234-2243. [PMID: 36700801 DOI: 10.1021/acs.jafc.2c08436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Human milk oligosaccharides (HMOs) have unique beneficial effects for infants and are considered as the new gold standard for premium infant formula. They are a collection of unconjugated glycans, and more than 200 distinct structures have been identified. Generally, HMOs are enzymatically produced by elongation and/or modification from lactose via stepwise glycosylation. Each glycosylation requires a specific glycosyltransferase (GT) and the corresponding nucleotide sugar donor. In this review, the typical HMO-producing GTs and the one-pot multienzyme modules for generating various nucleotide sugar donors are introduced, the principles for designing the enzyme cascade routes for HMO synthesis are described, and the important metabolic engineering strategies for mass production of HMOs are also reviewed. In addition, the future research directions in biotechnological production of HMOs were prospected.
Collapse
Affiliation(s)
- Jiawei Meng
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| | - Hao Wang
- Bloomage Biotechnology Corporation, Limited, Jinan, Shandong 250010, People's Republic of China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, People's Republic of China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, People's Republic of China
| |
Collapse
|
13
|
Zhu Y, Cao H, Wang H, Mu W. Biosynthesis of human milk oligosaccharides via metabolic engineering approaches: current advances and challenges. Curr Opin Biotechnol 2022; 78:102841. [PMID: 36371892 DOI: 10.1016/j.copbio.2022.102841] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/13/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022]
Abstract
Human milk oligosaccharides (HMOs) are structurally complex unconjugated glycans that are the third largest solid component in human milk. HMOs have drawn increasing attention because of their beneficial effects to infant health. Of the more than 200 HMOs, only less than 10 have been used in medical or food industries. Although HMO research has been becoming increasingly intensive and booming, the limited availability of HMOs still cannot meet the demand in health effect research and large-scale application. Therefore, efficient synthetic approaches and strategies for HMO production are urgently needed. The goal of this review is to highlight recent advances in microbial cell factory development for HMO biosynthesis. Key challenges in representative HMO production are also highlighted. The further perspectives in general HMO biosynthesis are discussed.
Collapse
Affiliation(s)
- Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Hongzhi Cao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong 266003, China
| | - Hao Wang
- Bloomage Biotechnology Corp., Ltd., Jinan, Shandong 250010, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
14
|
Shin J, Kim S, Park W, Jin KC, Kim SK, Kweon DH. Directed Evolution of Soluble α-1,2-Fucosyltransferase Using Kanamycin Resistance Protein as a Phenotypic Reporter for Efficient Production of 2'-Fucosyllactose. J Microbiol Biotechnol 2022; 32:1471-1478. [PMID: 36437520 PMCID: PMC9720067 DOI: 10.4014/jmb.2209.09018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/11/2022] [Accepted: 10/12/2022] [Indexed: 11/29/2022]
Abstract
2'-Fucosyllactose (2'-FL), the most abundant fucosylated oligosaccharide in human milk, has multiple beneficial effects on human health. However, its biosynthesis by metabolically engineered Escherichia coli is often hampered owing to the insolubility and instability of α-1,2-fucosyltransferase (the rate-limiting enzyme). In this study, we aimed to enhance 2'-FL production by increasing the expression of soluble α-1,2-fucosyltransferase from Helicobacter pylori (FucT2). Because structural information regarding FucT2 has not been unveiled, we decided to improve the expression of soluble FucT2 in E. coli via directed evolution using a protein solubility biosensor that links protein solubility to antimicrobial resistance. For such a system to be viable, the activity of kanamycin resistance protein (KanR) should be dependent on FucT2 solubility. KanR was fused to the C-terminus of mutant libraries of FucT2, which were generated using a combination of error-prone PCR and DNA shuffling. Notably, one round of the directed evolution process, which consisted of mutant library generation and selection based on kanamycin resistance, resulted in a significant increase in the expression level of soluble FucT2. As a result, a batch fermentation with the ΔL M15 pBCGW strain, expressing the FucT2 mutant (F#1-5) isolated from the first round of the directed evolution process, resulted in the production of 0.31 g/l 2'-FL with a yield of 0.22 g 2'-FL/g lactose, showing 1.72- and 1.51-fold increase in the titer and yield, respectively, compared to those of the control strain. The simple and powerful method developed in this study could be applied to enhance the solubility of other unstable enzymes.
Collapse
Affiliation(s)
- Jonghyeok Shin
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Seungjoo Kim
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea
| | - Kyoung Chan Jin
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea
| | - Sun-Ki Kim
- Department of Food Science and Technology, Chung-Ang University, Anseong, Gyeonggi 17546, Republic of Korea,
S.K. Kim Phone: +82-31-670-3261 Fax: +82-31-675-3108 E-mail:
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, College of Biotechnology and Bioengineering, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi 16419, Republic of Korea,Corresponding authors D.H. Kweon Phone: +82-31-290-7869 Fax: +82-31-290-7870 E-mail:
| |
Collapse
|
15
|
Production of colanic acid hydrolysate and its use in the production of fucosylated oligosaccharides by engineered Saccharomyces cerevisiae. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|