1
|
Lam D, Zhuang J, Cohen LS, Arshava B, Naider FR, Tang M. Effects of chelator lipids, paramagnetic metal ions and trehalose on liposomes by solid-state NMR. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2018; 94:1-6. [PMID: 30096558 DOI: 10.1016/j.ssnmr.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 06/08/2023]
Abstract
The effects of various lipid bound paramagnetic metal ions on liposomes prepared in the presence of trehalose and chelator lipids are evaluated to observe site-specific signal changes on liposome samples with optimal resolution in solid-state NMR spectroscopy. We found that Mn2+, Gd3+ and Dy3+ have different influences on the lipid 13C sites depending on their penetration depths into the bilayer, which can be extracted as distance information. The trehalose-liposome mixture is efficiently packed into solid-state NMR rotors and provides optimal resolution at reasonable instrument temperatures (10-50 °C). The effectiveness and convenience of the trehalose preparation for studying a membrane protein in liposomes are demonstrated by a membrane sample with a model membrane peptide to show that trehalose is useful to prepare consistent and stable membrane protein liposome samples for solid-state NMR.
Collapse
Affiliation(s)
- Dennis Lam
- Department of Chemistry, College of Staten Island - Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Jianqin Zhuang
- Department of Chemistry, College of Staten Island, Staten Island, NY, 10314, USA
| | - Leah S Cohen
- Department of Chemistry, College of Staten Island, Staten Island, NY, 10314, USA
| | - Boris Arshava
- Department of Chemistry, College of Staten Island, Staten Island, NY, 10314, USA
| | - Fred R Naider
- Department of Chemistry, College of Staten Island - Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA
| | - Ming Tang
- Department of Chemistry, College of Staten Island - Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, 10016, USA.
| |
Collapse
|
2
|
Cohen LS, Arshava B, Kauffman S, Mathew E, Fracchiolla KE, Ding FX, Dumont ME, Becker JM, Naider F. Guided reconstitution of membrane protein fragments. Biopolymers 2016; 102:16-29. [PMID: 23897574 DOI: 10.1002/bip.22349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/13/2013] [Accepted: 06/26/2013] [Indexed: 11/12/2022]
Abstract
Structural analysis by NMR of G protein-coupled receptors (GPCRs) has proven to be extremely challenging. To reduce the number of peaks in the NMR spectra by segmentally labeling a GPCR, we have developed a Guided Reconstitution method that includes the use of charged residues and Cys activation to drive heterodimeric disulfide bond formation. Three different cysteine-activating reagents: 5-5'-dithiobis(2-nitrobenzoic acid) [DTNB], 2,2'-dithiobis(5-nitropyridine) [DTNP], and 4,4'-dipyridyl disulfide [4-PDS] were analyzed to determine their efficiency in heterodimer formation at different pHs. Short peptides representing the N-terminal (NT) and C-terminal (CT) regions of the first extracellular loop (EL1) of Ste2p, the Saccharomyces cerevisiae alpha-factor mating receptor, were activated using these reagents and the efficiencies of activation and rates of heterodimerization were analyzed. Activation of NT peptides with DTNP and 4-PDS resulted in about 60% yield, but heterodimerization was rapid and nearly quantitative. Double transmembrane domain protein fragments were biosynthesized and used in Guided Reconstitution reactions. A 102-residue fragment, 2TM-tail [Ste2p(G31-I120C)], was heterodimerized with CT-EL1-tail(DTNP) at pH 4.6 with a yield of ∼75%. A 132-residue fragment, 2TMlong-tail [Ste2p(M1-I120C)], was expressed in both unlabeled and (15)N-labeled forms and used with a peptide comprising the third transmembrane domain, to generate a 180-residue segmentally labeled 3TM protein that was found to be segmentally labeled using [(15)N,(1)H]-HSQC analysis. Our data indicate that the Guided Reconstitution method would be applicable to the segmental labeling of a membrane protein with 3 transmembrane domains and may prove useful in the preparation of an intact reconstituted GPCR for use in biophysical analysis and structure determination.
Collapse
Affiliation(s)
- Leah S Cohen
- Department of Chemistry, The College of Staten Island, City University of New York (CUNY), Staten Island, NY, 10314
| | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Fracchiolla KE, Cohen LS, Arshava B, Poms M, Zerbe O, Becker JM, Naider F. Structural characterization of triple transmembrane domain containing fragments of a yeast G protein-coupled receptor in an organic : aqueous environment by solution-state NMR spectroscopy. J Pept Sci 2015; 21:212-22. [PMID: 25645975 DOI: 10.1002/psc.2750] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/26/2014] [Accepted: 12/28/2014] [Indexed: 01/09/2023]
Abstract
This report summarizes recent biophysical and protein expression experiments on polypeptides containing the N-terminus, the first, second, and third transmembrane (TM) domains and the contiguous loops of the α-factor receptor Ste2p, a G protein-coupled receptor. The 131-residue polypeptide Ste2p(G31-R161), TM1-TM3, was investigated by solution NMR in trifluoroethanol/water. TM1-TM3 contains helical TM domains at the predicted locations, supported by continuous sets of medium-range NOEs. In addition, a short helix N-terminal to TM1 was detected, as well as a short helical stretch in the first extracellular loop. Two 161-residue polypeptides, [Ste2p(M1-R161), NT-TM1-TM3], that contain the entire N-terminal sequence, one with a single mutation, were directly expressed and isolated from Escherichia coli in yields as high as 30 mg/L. Based on its increased stability, the L11P mutant will be used in future experiments to determine long-range interactions. The study demonstrated that 3-TM domains of a yeast G protein-coupled receptor can be produced in isotopically labeled form suitable for solution NMR studies. The quality of spectra is superior to data recorded in micelles and allows more rapid data analysis. No tertiary contacts have been determined, and if present, they are likely transient. This observation supports earlier studies by us that secondary structure was retained in smaller fragments, both in organic solvents and in detergent micelles, but that stable tertiary contacts may only be present when the protein is imbedded in lipids.
Collapse
Affiliation(s)
- Katrina E Fracchiolla
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY, 10314, USA; Department of Biochemistry, The Graduate Center, City University of New York, New York, NY, 10016, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Cohen LS, Fracchiolla KE, Becker J, Naider F. Invited review GPCR structural characterization: Using fragments as building blocks to determine a complete structure. Biopolymers 2014; 102:223-43. [DOI: 10.1002/bip.22490] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/24/2014] [Accepted: 03/27/2014] [Indexed: 12/30/2022]
Affiliation(s)
- Leah S. Cohen
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
| | - Katrina E. Fracchiolla
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
| | - Jeff Becker
- Department of Microbiology; University of Tennessee; Knoxville TN 37996
| | - Fred Naider
- Department of Chemistry; The College of Staten Island, City University of New York (CUNY); Staten Island NY 10314
- Department of Biochemistry; The Graduate Center; CUNY NY 10016-4309
| |
Collapse
|
5
|
Langelaan DN, Reddy T, Banks AW, Dellaire G, Dupré DJ, Rainey JK. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1471-83. [PMID: 23438363 DOI: 10.1016/j.bbamem.2013.02.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 01/17/2013] [Accepted: 02/13/2013] [Indexed: 12/20/2022]
Abstract
G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins with rich functional diversity. Signaling through the apelin receptor (AR or APJ) influences the cardiovascular system, central nervous system and glucose regulation. Pathophysiological involvement of apelin has been shown in atherosclerosis, cancer, human immunodeficiency virus-1 (HIV-1) infection and obesity. Here, we present the high-resolution nuclear magnetic resonance (NMR) spectroscopy-based structure of the N-terminus and first transmembrane (TM) segment of AR (residues 1-55, AR55) in dodecylphosphocholine micelles. AR55 consists of two disrupted helices, spanning residues D14-K25 and A29-R55(1.59). Molecular dynamics (MD) simulations of AR built from a hybrid of experimental NMR and homology model-based restraints allowed validation of the AR55 structure in the context of the full-length receptor in a hydrated bilayer. AR55 structural features were functionally probed using mutagenesis in full-length AR through monitoring of apelin-induced extracellular signal-regulated kinase (ERK) phosphorylation in transiently transfected human embryonic kidney (HEK) 293A cells. Residues E20 and D23 form an extracellular anionic face and interact with lipid headgroups during MD simulations in the absence of ligand, producing an ideal binding site for a cationic apelin ligand proximal to the membrane-water interface, lending credence to membrane-catalyzed apelin-AR binding. In the TM region of AR55, N46(1.50) is central to a disruption in helical character. G42(1.46), G45(1.49) and N46(1.50), which are all involved in the TM helical disruption, are essential for proper trafficking of AR. In summary, we introduce a new correlative NMR spectroscopy and computational biochemistry methodology and demonstrate its utility in providing some of the first high-resolution structural information for a peptide-activated GPCR TM domain.
Collapse
Affiliation(s)
- David N Langelaan
- Department of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | |
Collapse
|
6
|
Britton ZT, Hanle EI, Robinson AS. An expression and purification system for the biosynthesis of adenosine receptor peptides for biophysical and structural characterization. Protein Expr Purif 2012; 84:224-35. [PMID: 22722102 PMCID: PMC3572917 DOI: 10.1016/j.pep.2012.06.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 05/29/2012] [Accepted: 06/08/2012] [Indexed: 11/15/2022]
Abstract
Biophysical and structural characterization of G protein-coupled receptors (GPCRs) has been limited due to difficulties in expression, purification, and vitro stability of the full-length receptors. "Divide and conquer" approaches aimed at the NMR characterization of peptides corresponding to specific regions of the receptor have yielded insights into the structure and dynamics of GPCR activation and signaling. Though significant progress has been made in the generation of peptides that are composed of GPCR transmembrane domains, current methods utilize fusion protein strategies that require chemical cleavage and peptide separation via chromatographic means. We have developed an expression and purification system based on fusion to ketosteroid isomerase, thrombin cleavage, and tandem affinity chromatography that enables the solubilization, cleavage, and characterization in a single detergent system relevant for biophysical and structural characterization. We have applied this expression and purification system to the production and characterization of peptides of the adenosine receptor family of GPCRs in Escherichia coli. Herein, we demonstrate using a model peptide that includes extracellular loop 3, transmembrane domain 7, and a portion of the carboxy-terminus of the adenosine A(2)a receptor that the peptide is sufficiently pure for biophysical characterization, where it adopts α-helical structure. Furthermore, we demonstrate the utility of this system by optimizing the construct for thrombin processing and apply the system to peptides with more complex structures.
Collapse
Affiliation(s)
- Zachary T. Britton
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Elizabeth I. Hanle
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
| | - Anne S. Robinson
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, United States
- Department of Chemical and Biomolecular Engineering, 300 Lindy Boggs Laboratory, Tulane University, New Orleans, LA 70118, United States
| |
Collapse
|
7
|
Potetinova Z, Tantry S, Cohen LS, Caroccia KE, Arshava B, Becker JM, Naider F. Large multiple transmembrane domain fragments of a G protein-coupled receptor: biosynthesis, purification, and biophysical studies. Biopolymers 2012; 98:485-500. [PMID: 23203693 PMCID: PMC3542537 DOI: 10.1002/bip.22122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 06/01/2012] [Accepted: 07/02/2012] [Indexed: 01/04/2023]
Abstract
To conduct biophysical analyses on large domains of GPCRs, multimilligram quantities of highly homogeneous proteins are necessary. This communication discusses the biosynthesis of four transmembrane and five transmembrane-containing fragments of Ste2p, a GPCR recognizing the Saccharomyces cerevisiae tridecapeptide pheromone α-factor. The target fragments contained the predicted four N-terminal Ste2p[G(31) -A(198) ] (4TMN), four C-terminal Ste2p[T(155) -L(340) ] (4TMC), or five C-terminal Ste2p[I(120) -L(340) ] (5TMC) transmembrane segments of Ste2p. 4TMN was expressed as a fusion protein using a modified pMMHa vector in L-arabinose-induced Escherichia coli BL21-AI, and cleaved with cyanogen bromide. 4TMC and 5TMC were obtained by direct expression using a pET21a vector in IPTG-induced E. coli BL21(DE3) cells. 4TMC and 5TMC were biosynthesized on a preparative scale, isolated in multimilligram amounts, characterized by MS and investigated by biophysical methods. CD spectroscopy indicated the expected highly α-helical content for 4TMC and 5TMC in membrane mimetic environments. Tryptophan fluorescence showed that 5TMC integrated into the nonpolar region of 1-stearoyl-2-hydroxy-sn-glycero-3-phospho-(1'-rac-glycerol) micelles. HSQC-TROSY investigations revealed that [(15) N]-labeled 5TMC in 50% trifluoroethanol-d(2) /H(2) O/0.05%-trifluoroacetic acid was stable enough to conduct long multidimensional NMR measurements. The entire Ste2p GPCR was not readily reconstituted from the first two and last five or first three and last four transmembrane domains.
Collapse
Affiliation(s)
- Zhanna Potetinova
- Department of Chemistry, College of Staten Island, The City University of New York, Staten Island, NY 10314, USA
| | | | | | | | | | | | | |
Collapse
|
8
|
Cohen LS, Arshava B, Neumoin A, Becker JM, Güntert P, Zerbe O, Naider F. Comparative NMR analysis of an 80-residue G protein-coupled receptor fragment in two membrane mimetic environments. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2674-84. [PMID: 21791199 DOI: 10.1016/j.bbamem.2011.07.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/17/2011] [Accepted: 07/12/2011] [Indexed: 01/09/2023]
Abstract
Fragments of integral membrane proteins have been used to study the physical chemical properties of regions of transporters and receptors. Ste2p(G31-T110) is an 80-residue polypeptide which contains a portion of the N-terminal domain, transmembrane domain 1 (TM1), intracellular loop 1, TM2 and part of extracellular loop 1 of the α-factor receptor (Ste2p) from Saccharomyces cerevisiae. The structure of this peptide was previously determined to form a helical hairpin in lyso-palmitoylphosphatidyl-glycerol micelles (LPPG) [1]. Herein, we perform a systematic comparison of the structure of this protein fragment in micelles and trifluoroethanol (TFE):water in order to understand whether spectra recorded in organic:aqueous medium can facilitate the structure determination in a micellar environment. Using uniformly labeled peptide and peptide selectively protonated on Ile, Val and Leu methyl groups in a perdeuterated background and a broad set of 3D NMR experiments we assigned 89% of the observable atoms. NOEs and chemical shift analysis were used to define the helical regions of the fragment. Together with constraints from paramagnetic spin labeling, NOEs were used to calculate a transiently folded helical hairpin structure for this peptide in TFE:water. Correlation of chemical shifts was insufficient to transfer assignments from TFE:water to LPPG spectra in the absence of further information.
Collapse
Affiliation(s)
- L S Cohen
- Department of Chemistry, The College of Staten Island, City University of New York, Staten Island, NY 10314, USA
| | | | | | | | | | | | | |
Collapse
|
9
|
Solution- and solid-state NMR studies of GPCRs and their ligands. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:1462-75. [DOI: 10.1016/j.bbamem.2010.10.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2010] [Revised: 10/02/2010] [Accepted: 10/05/2010] [Indexed: 12/29/2022]
|
10
|
Bellot G, Pascal R, Mendre C, Urbach S, Mouillac B, Déméné H. Expression, purification and NMR characterization of the cyclic recombinant form of the third intracellular loop of the vasopressin type 2 receptor. Protein Expr Purif 2011; 78:131-8. [PMID: 21575724 DOI: 10.1016/j.pep.2011.04.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2010] [Revised: 04/22/2011] [Accepted: 04/30/2011] [Indexed: 11/25/2022]
Abstract
The vasopressin type 2 (V2R) receptor belongs to the class of G-protein coupled receptors. It is mainly expressed in the membrane of kidney tubules, where it is activated by the extracellular arginine vasopressin. In men, inactivating and activating mutations cause nephrogenic diabetes insipidus and the nephrogenic syndrome of inappropriate antidiuresis respectively. Like most GPCRs, V2R's third intracellular loop (V2R-i3) is involved in the binding and activation of its major effector, the GαS protein. We overexpressed the V2R₂₂₄₋₂₇₄ fragment corresponding to V2R-i3 as a fusion protein with thioredoxin A at the N-terminus and a hexahistidine tag between the two proteins. Recombinant V2R-i3 was designed to harbor N- and C-terminal cysteines, in order to introduce a disulfide bond between N- and C-terminal extremities and hence reproduce the hairpin fold presumably present in the full-length receptor. The fusion protein was produced as inclusion bodies in Escherichia coli and purified by nickel affinity chromatography under denaturing conditions. After a refolding step, thioredoxin and hexahistidine tags were specifically cleaved with the tobacco etch virus protease. The hydrolysis yield, initially very low, increased up to 80% thanks to optimization of buffers and refolding methods. The cleaved fragment, V2₂₂₄₋₂₇₄, devoid of any tag, was then eluted with low imidazole concentrations in a second nickel affinity chromatography in denaturing conditions. The final yield was sufficient to prepare a ¹⁵N-¹³C labeled NMR sample suitable for triple resonance experiments. We assigned all NMR resonances and confirmed the correct peptide sequence. As expected, the peptide forms a hairpin stabilized by a disulfide bond between its N- and C-terminal parts, thus mimicking its native structure in the full-length receptor. This study may provide a strategy for producing and studying the structure/function relationship of GPCR fragments.
Collapse
Affiliation(s)
- Gaëtan Bellot
- INSERM U1054, Centre de Biochimie Structurale, 29 Rue de Navacelles, 34090 Montpellier Cedex, France
| | | | | | | | | | | |
Collapse
|
11
|
Caroccia KE, Estephan R, Cohen LS, Arshava B, Hauser M, Zerbe O, Becker JM, Naider F. Expression and biophysical analysis of a triple-transmembrane domain-containing fragment from a yeast G protein-coupled receptor. Biopolymers 2011; 96:757-71. [DOI: 10.1002/bip.21614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
12
|
Cohen LS, Becker JM, Naider F. Biosynthesis of peptide fragments of eukaryotic GPCRs in Escherichia coli by directing expression into inclusion bodies. J Pept Sci 2010; 16:213-8. [PMID: 20401922 DOI: 10.1002/psc.1222] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biosynthesis of peptides in heterologous systems is often a prerequisite to biophysical analyses. Large amounts of peptides, in particular portions of membrane proteins, are needed to optimize conditions for secondary and tertiary structure analysis. Chemical synthesis of these peptides is limited by their high hydrophobicity and also due to the need to incorporate isotopic labels for high resolution NMR analysis. In this protocol, we describe a method for the heterologous expression and purification of unlabeled and isotopically labeled peptide fragments of Ste2p, an integral membrane G protein-coupled receptor.
Collapse
Affiliation(s)
- Leah S Cohen
- Department of Chemistry, College of Staten Island, CUNY, Staten Island, NY 10314, USA
| | | | | |
Collapse
|
13
|
Yeagle PL, Albert AD. Membrane protein fragments reveal both secondary and tertiary structure of membrane proteins. Methods Mol Biol 2010; 654:283-301. [PMID: 20665272 DOI: 10.1007/978-1-60761-762-4_15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Structural data on membrane proteins, while crucial to understanding cellular function, are scarce due to difficulties in applying to membrane proteins the common techniques of structural biology. Fragments of membrane proteins have been shown to reflect, in many cases, the secondary structure of the parent protein with fidelity and are more amenable to study. This chapter provides many examples of how the study of membrane protein fragments has provided new insight into the structure of the parent membrane protein.
Collapse
Affiliation(s)
- Philip L Yeagle
- Office of the Dean of Arts & Sciences, Rutgers University, Newark, NJ, USA.
| | | |
Collapse
|
14
|
Kim H, Lee BK, Naider F, Becker JM. Identification of specific transmembrane residues and ligand-induced interface changes involved in homo-dimer formation of a yeast G protein-coupled receptor. Biochemistry 2009; 48:10976-87. [PMID: 19839649 DOI: 10.1021/bi901291c] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The Saccharomyces cerevisiae alpha-factor pheromone receptor, Ste2p, has been studied as a model for G protein-coupled receptor (GPCR) structure and function. Dimerization has been demonstrated for many GPCRs, although the role(s) of dimerization in receptor function is disputed. Transmembrane domains one (TM1) and four (TM4) of Ste2p were shown previously to play a role in dimerization. In this study, single cysteine substitutions were introduced into a Cys-less Ste2p, and disulfide-mediated dimerization was assessed. Six residues in TM1 (L64 to M69) that had not been previously investigated and 19 residues in TM7 (T278 to A296) of which 15 were not previously investigated were mutated to create 25 single Cys-containing Ste2p molecules. Ste2p mutants V68C in TM1 and nine mutants in TM7 (cysteine substituted into residues 278, 285, 289, and 291 to 296) showed increased dimerization upon addition of an oxidizing agent in comparison to the background dimers formed by the Cys-less receptor. The formation of dimers was decreased for TM7 mutant receptors in the presence of alpha-factor indicating that ligand binding resulted in a conformational change that influenced dimerization. The effect of ligand on dimer formation suggests that dimers are formed in the resting state and the activated state of the receptor by different TM interactions.
Collapse
Affiliation(s)
- Heejung Kim
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee 37996, USA
| | | | | | | |
Collapse
|
15
|
Kim HJ, Howell SC, Van Horn WD, Jeon YH, Sanders CR. Recent Advances in the Application of Solution NMR Spectroscopy to Multi-Span Integral Membrane Proteins. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2009; 55:335-360. [PMID: 20161395 PMCID: PMC2782866 DOI: 10.1016/j.pnmrs.2009.07.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
- Hak Jun Kim
- Korea Polar Research Institute, Korea Ocean Research and Development Institute, Incheon, 406-840, Korea
| | - Stanley C. Howell
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Wade D. Van Horn
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
| | - Young Ho Jeon
- Center for Magnetic Resonance, Korea Basic Research Institute, Daejon, 305-333, Korea
| | - Charles R. Sanders
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University School of Medicine, Nashville, TN, 37232-8725, USA
- Corresponding Author: ; phone: 615-936-3756; fax: 615-936-2211
| |
Collapse
|
16
|
Neumoin A, Cohen LS, Arshava B, Tantry S, Becker JM, Zerbe O, Naider F. Structure of a double transmembrane fragment of a G-protein-coupled receptor in micelles. Biophys J 2009; 96:3187-96. [PMID: 19383463 DOI: 10.1016/j.bpj.2009.01.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Revised: 01/08/2009] [Accepted: 01/13/2009] [Indexed: 11/29/2022] Open
Abstract
The structure and dynamic properties of an 80-residue fragment of Ste2p, the G-protein-coupled receptor for alpha-factor of Saccharomyces cerevisiae, was studied in LPPG micelles with the use of solution NMR spectroscopy. The fragment Ste2p(G31-T110) (TM1-TM2) consisted of 19 residues from the N-terminal domain, the first TM helix (TM1), the first cytoplasmic loop, the second TM helix (TM2), and seven residues from the first extracellular loop. Multidimensional NMR experiments on [(15)N], [(15)N, (13)C], [(15)N, (13)C, (2)H]-labeled TM1-TM2 and on protein fragments selectively labeled at specific amino acid residues or protonated at selected methyl groups resulted in >95% assignment of backbone and side-chain nuclei. The NMR investigation revealed the secondary structure of specific residues of TM1-TM2. TALOS constraints and NOE connectivities were used to calculate a structure for TM1-TM2 that was highlighted by the presence of three alpha-helices encompassing residues 39-47, 49-72, and 80-103, with higher flexibility around the internal Arg(58) site of TM1. RMSD values of individually superimposed helical segments 39-47, 49-72, and 80-103 were 0.25 +/- 0.10 A, 0.40 +/- 0.13 A, and 0.57 +/- 0.19 A, respectively. Several long-range interhelical connectivities supported the folding of TM1-TM2 into a tertiary structure typified by a crossed helix that splays apart toward the extracellular regions and contains considerable flexibility in the G(56)VRSG(60) region. (15)N-relaxation and hydrogen-deuterium exchange data support a stable fold for the TM parts of TM1-TM2, whereas the solvent-exposed segments are more flexible. The NMR structure is consistent with the results of biochemical experiments that identified the ligand-binding site within this region of the receptor.
Collapse
Affiliation(s)
- Alexey Neumoin
- Institute of Organic Chemistry, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | |
Collapse
|
17
|
Rath A, Tulumello DV, Deber CM. Peptide Models of Membrane Protein Folding. Biochemistry 2009; 48:3036-45. [DOI: 10.1021/bi900184j] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Arianna Rath
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - David V. Tulumello
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| | - Charles M. Deber
- Division of Molecular Structure and Function, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8, and Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
18
|
Zou C, Naider F, Zerbe O. Biosynthesis and NMR-studies of a double transmembrane domain from the Y4 receptor, a human GPCR. JOURNAL OF BIOMOLECULAR NMR 2008; 42:257-269. [PMID: 18937032 DOI: 10.1007/s10858-008-9281-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 09/24/2008] [Accepted: 09/26/2008] [Indexed: 05/26/2023]
Abstract
The human Y4 receptor, a class A G-protein coupled receptor (GPCR) primarily targeted by the pancreatic polypeptide (PP), is involved in a large number of physiologically important functions. This paper investigates a Y4 receptor fragment (N-TM1-TM2) comprising the N-terminal domain, the first two transmembrane (TM) helices and the first extracellular loop followed by a (His)(6) tag, and addresses synthetic problems encountered when recombinantly producing such fragments from GPCRs in Escherichia coli. Rigorous purification and usage of the optimized detergent mixture 28 mM dodecylphosphocholine (DPC)/118 mM% 1-palmitoyl-2-hydroxy-sn-glycero-3-[phospho-rac-(1-glycerol)] (LPPG) resulted in high quality TROSY spectra indicating protein conformational homogeneity. Almost complete assignment of the backbone, including all TM residue resonances was obtained. Data on internal backbone dynamics revealed a high secondary structure content for N-TM1-TM2. Secondary chemical shifts and sequential amide proton nuclear Overhauser effects defined the TM helices. Interestingly, the properties of the N-terminal domain of this large fragment are highly similar to those determined on the isolated N-terminal domain in the presence of DPC micelles.
Collapse
Affiliation(s)
- Chao Zou
- Institute of Organic Chemistry, University of Zurich, Switzerland
| | | | | |
Collapse
|
19
|
Current awareness on yeast. Yeast 2008. [DOI: 10.1002/yea.1558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
20
|
Ruan KH, Cervantes V, Wu J. A simple, quick, and high-yield preparation of the human thromboxane A2 receptor in full size for structural studies. Biochemistry 2008; 47:6819-26. [PMID: 18529068 PMCID: PMC2581465 DOI: 10.1021/bi702501g] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human thromboxane A2 receptor (TP), a G protein-coupled receptor (GPCR), is one of the most promising targets for developing the next generation of anti-thrombosis and hypertension drugs. However, obtaining a sufficient amount of the full-sized and active membrane protein has been the major obstacle for structural elucidation that reveals the molecular mechanisms of the receptor activation and drug designs. Here we report an approach for the simple, quick, and high-yield preparation of the purified and active full-sized TP in an amount suitable for structural studies. Glycosylated human TP was highly expressed in Sf-9 cells using an optimized baculovirus (BV) expression system. The active receptor was extracted and solubilized by different detergents for comparison and was finally purified to a nearly single band with a ratio of 1:0.9 +/- 0.05 (ligand:receptor molecule) in ligand binding using a Ni column with a relatively low yield. However, a high-yield purification (milligram quantity) of the TP protein, from a modulate scale of transfected Sf-9 cell culture, has been achieved by quick and simple purification steps, which include DNA digestion, dodecyl-maltoside detergent extraction, centrifugation, and FPLC purification. The purity and quantity of the purified TP, using the high-yield approach, were suitable for protein structural studies as evidenced by SDS-PAGE, Western blot analyses, ligand binding assays, and a feasibility test using high-resolution one-dimensional and two-dimensional (1)H NMR spectroscopic analyses. These studies provide a basis for the high-yield expression and purification of the GPCR for the structural and functional characterization using biophysics approaches.
Collapse
MESH Headings
- Animals
- Baculoviridae/genetics
- Cell Line
- Chlorocebus aethiops
- Cloning, Molecular
- DNA, Complementary/genetics
- Gene Expression
- Genetic Vectors/genetics
- Humans
- Ligands
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular
- Protein Binding
- Protein Processing, Post-Translational
- Receptors, Thromboxane A2, Prostaglandin H2/chemistry
- Receptors, Thromboxane A2, Prostaglandin H2/genetics
- Receptors, Thromboxane A2, Prostaglandin H2/isolation & purification
- Receptors, Thromboxane A2, Prostaglandin H2/metabolism
- Spodoptera
- Time Factors
Collapse
Affiliation(s)
- Ke-He Ruan
- Department of Pharmacological and Pharmaceutical Sciences, Center for Experimental Therapeutics and PharmacoInformatics, University of Houston, Houston, Texas 77204-5037, USA.
| | | | | |
Collapse
|