1
|
Muenzebrock KA, Ho FYW, Pontes AP, Jorquera-Cordero C, Utomo L, Garcia JP, Willems PC, Welting TJM, Rip J, Creemers LB. Polymeric Nanoparticles Enable mRNA Transfection and Its Translation in Intervertebral Disc and Human Joint Cells, Except for M1 Macrophages. Pharmaceutics 2024; 16:438. [PMID: 38675100 PMCID: PMC11053495 DOI: 10.3390/pharmaceutics16040438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/28/2024] Open
Abstract
Chronic lower back pain caused by intervertebral disc degeneration and osteoarthritis (OA) are highly prevalent chronic diseases. Although pain management and surgery can alleviate symptoms, no disease-modifying treatments are available. mRNA delivery could halt inflammation and degeneration and induce regeneration by overexpressing anti-inflammatory cytokines or growth factors involved in cartilage regeneration. Here, we investigated poly(amidoamine)-based polymeric nanoparticles to deliver mRNA to human joint and intervertebral disc cells. Human OA chondrocytes, human nucleus pulposus (NP) cells, human annulus fibrosus (AF) cells, fibroblast-like synoviocytes (FLS) and M1-like macrophages were cultured and transfected with uncoated or PGA-PEG-coated nanoparticles loaded with EGFP-encoding mRNA. Cell viability and transfection efficiency were analyzed for all cell types. Nanoparticle internalization was investigated in FLS and M1-like macrophages. No significant decrease in cell viability was observed in most conditions. Only macrophages showed a dose-dependent reduction of viability. Transfection with either nanoparticle version resulted in EGFP expression in NP cells, AF cells, OA chondrocytes and FLS. Macrophages showed internalization of nanoparticles by particle-cell co-localization, but no detectable expression of EGFP. Taken together, our data show that poly (amidoamine)-based nanoparticles can be used for mRNA delivery into cells of the human joint and intervertebral disc, indicating its potential future use as an mRNA delivery system in OA and IVDD, except for macrophages.
Collapse
Affiliation(s)
- Katrin Agnes Muenzebrock
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (K.A.M.)
| | - Fiona Y. W. Ho
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (K.A.M.)
| | - Adriano P. Pontes
- 20Med Therapeutics BV, 2333 BD Leiden, The Netherlands; (A.P.P.); (J.R.)
| | - Carla Jorquera-Cordero
- Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Lizette Utomo
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Joao Pedro Garcia
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (K.A.M.)
| | - Paul C. Willems
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (P.C.W.); (T.J.M.W.)
| | - Tim J. M. Welting
- Department of Orthopedic Surgery, Maastricht University Medical Center, 6229 HX Maastricht, The Netherlands; (P.C.W.); (T.J.M.W.)
| | - Jaap Rip
- 20Med Therapeutics BV, 2333 BD Leiden, The Netherlands; (A.P.P.); (J.R.)
| | - Laura B. Creemers
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (K.A.M.)
| |
Collapse
|
2
|
Singh D. Macromolecular Polymer Based Complexes: A Diverse Strategy for the Delivery of Nucleotides. Protein Pept Lett 2024; 31:586-601. [PMID: 39177133 DOI: 10.2174/0109298665310091240809103048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 06/06/2024] [Accepted: 07/24/2024] [Indexed: 08/24/2024]
Abstract
This review explores the burgeoning field of macromolecular polymer-based complexes, highlighting their revolutionary potential for the delivery of nucleotides for therapeutic applications. These complexes, ingeniously crafted from a variety of polymers, offer a unique solution to the challenges of nucleotide delivery, including protection from degradation, targeted delivery, and controlled release. The focus of this report is primarily on the design principles, encapsulation strategies, and biological interactions of these complexes, with an emphasis on their biocompatibility, biodegradability, and ability to form diverse structures, such as nanoparticles and micelles. Significant attention is paid to the latest advancements in polymer science that enable the precise tailoring of these complexes for specific nucleotides, such as DNA, RNA, and siRNA. The review discusses the critical role of surface modifications and the incorporation of targeting ligands in enhancing cellular uptake and ensuring delivery to specific tissues or cells, thereby reducing off-target effects and improving therapeutic efficacy. Clinical applications of these polymer-based delivery systems are thoroughly examined with a focus on their use in treating genetic disorders, cancer, and infectious diseases. The review also addresses the challenges and limitations currently faced in this field, such as scalability, manufacturing complexities, and regulatory hurdles. Overall, this review provides a comprehensive overview of the current state and future prospects of macromolecular polymer-based complexes in nucleotide delivery. It underscores the significance of these systems in advancing the field of targeted therapeutics and their potential to reshape the landscape of medical treatment for a wide range of diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, 140413, India
| |
Collapse
|
3
|
Jerca FA, Muntean C, Remaut K, Jerca VV, Raemdonck K, Hoogenboom R. Cationic amino-acid functionalized polymethacrylamide vectors for siRNA transfection based on modification of poly(2-isopropenyl-2-oxazoline). J Control Release 2023; 364:687-699. [PMID: 37935258 DOI: 10.1016/j.jconrel.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/09/2023]
Abstract
Poly(2-isopropenyl-2-oxazoline) (PiPOx) is a functional polymer showing great potential for the development of smart biomaterials. The straightforward synthesis and post-polymerization functionalization of PiPOx offers many opportunities for tailoring the properties of the polymer towards biomaterials. In this study we report for the first time PiPOx-based cationic charged polymethacrylamides with amino acid side chains that can complex siRNA and promote transfection in vitro. Therefore, PiPOx was fully modified via ring opening addition reactions with the carboxylic acid groups of a series of N-Boc-L-amino acids and their reaction kinetics were investigated. Based on the determined kinetic constants, another series of PiPOx-based copolymers with balanced hydrophilic/hydrophobic content of N-Boc-L-amino acids were obtained via one-pot modification reaction with two different N-Boc-L-amino acids. The N-Boc protected homopolymers and related copolymers were deprotected to obtain (co)polymers with the targeted side chain cationic charged units. The (co)polymers' structures were fully investigated via FT-IR and 1H NMR spectroscopy, size exclusion chromatography (SEC), and TGA-DSC-MS analysis. The polarimetry measurements revealed that the homopolymers retain their chiroptical properties after post-modification, and a sign inversion is noticed from (L) N-Boc-protected analogues to (D) for the TFA cationic charged homopolymers. Generally, cationically charged homopolymers with hydrophilic amino acids on the side chain showed efficient complexation of siRNA, but poor transfection while cationic copolymers having both tryptophan and valine or proline side chains revealed moderate siRNA binding, high transfection efficiency (> 90% of the cells) and potent gene silencing with IC50 values down to 5.5 nM. Particularly, these cationic copolymers showed higher gene silencing potency as compared to the commercial JetPRIME® reference, without reducing cell viability in the concentration range used for transfection, making this a very interesting system for in vitro siRNA transfection.
Collapse
Affiliation(s)
- Florica Adriana Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| | - Cristina Muntean
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Katrien Remaut
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Valentin Victor Jerca
- Smart Organic Materials Group, "Costin D. Nenitzescu" Institute of Organic and Supramolecular Chemistry, Romanian Academy, 202B Spl. Independentei CP 35-108, 060023 Bucharest, Romania; Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, B-9000 Ghent, Belgium
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281-S4, B-9000 Ghent, Belgium.
| |
Collapse
|
4
|
Jin Z, Gao Q, Wu K, Ouyang J, Guo W, Liang XJ. Harnessing inhaled nanoparticles to overcome the pulmonary barrier for respiratory disease therapy. Adv Drug Deliv Rev 2023; 202:115111. [PMID: 37820982 DOI: 10.1016/j.addr.2023.115111] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 09/22/2023] [Accepted: 10/08/2023] [Indexed: 10/13/2023]
Abstract
The lack of effective treatments for pulmonary diseases presents a significant global health burden, primarily due to the challenges posed by the pulmonary barrier that hinders drug delivery to the lungs. Inhaled nanomedicines, with their capacity for localized and precise drug delivery to specific pulmonary pathologies through the respiratory route, hold tremendous promise as a solution to these challenges. Nevertheless, the realization of efficient and safe pulmonary drug delivery remains fraught with multifaceted challenges. This review summarizes the delivery barriers associated with major pulmonary diseases, the physicochemical properties and drug formulations affecting these barriers, and emphasizes the design advantages and functional integration of nanomedicine in overcoming pulmonary barriers for efficient and safe local drug delivery. The review also deliberates on established nanocarriers and explores drug formulation strategies rooted in these nanocarriers, thereby furnishing essential guidance for the rational design and implementation of pulmonary nanotherapeutics. Finally, this review cast a forward-looking perspective, contemplating the clinical prospects and challenges inherent in the application of inhaled nanomedicines for respiratory diseases.
Collapse
Affiliation(s)
- Zhaokui Jin
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Qi Gao
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Keke Wu
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Jiang Ouyang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China
| | - Weisheng Guo
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China.
| | - Xing-Jie Liang
- School of Biomedical Engineering, Guangzhou Medical University, Guangzhou 511436, PR China; CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, No. 11, First North Road, Zhongguancun, Beijing 100190, PR China.
| |
Collapse
|
5
|
Lu T, Hu X, van Haren MHI, Spruijt E, Huck WTS. Structure-Property Relationships Governing Membrane-Penetrating Behaviour of Complex Coacervates. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303138. [PMID: 37218010 DOI: 10.1002/smll.202303138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 05/24/2023]
Abstract
Complex coacervates are phase-separated liquid droplets composed of oppositely charged multivalent molecules. The unique material properties of the complex coacervate interior favours the sequestration of biomolecules and facilitates reactions. Recently, it is shown that coacervates can be used for direct cytosolic delivery of sequestered biomolecules in living cells. Here, it is studied that the physical properties required for complex coacervates composed of oligo-arginine and RNA to cross phospholipid bilayers and enter liposomes penetration depends on two main parameters: the difference in ζ-potential between the complex coacervates and the liposomes, and the partitioning coefficient (Kp ) of lipids into the complex coacervates. Following these guidelines, a range of complex coacervates is found that is able to penetrate the membrane of living cells, thus paving the way for further development of coacervates as delivery vehicles of therapeutic agents.
Collapse
Affiliation(s)
- Tiemei Lu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Xinyu Hu
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Merlijn H I van Haren
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Evan Spruijt
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| | - Wilhelm T S Huck
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, Nijmegen, 6525 AJ, the Netherlands
| |
Collapse
|
6
|
Khairkhah N, Namvar A, Bolhassani A. Application of Cell Penetrating Peptides as a Promising Drug Carrier to Combat Viral Infections. Mol Biotechnol 2023; 65:1387-1402. [PMID: 36719639 PMCID: PMC9888354 DOI: 10.1007/s12033-023-00679-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/20/2023] [Indexed: 02/01/2023]
Abstract
Novel effective drugs or therapeutic vaccines have been already developed to eradicate viral infections. Some non-viral carriers have been used for effective drug delivery to a target cell or tissue. Among them, cell penetrating peptides (CPPs) attracted a special interest to enhance drug delivery into the cells with low toxicity. They were also applied to transfer peptide/protein-based and nucleic acids-based therapeutic vaccines against viral infections. CPPs-conjugated drugs or vaccines were investigated in several viral infections including poliovirus, Ebola, coronavirus, herpes simplex virus, human immunodeficiency virus, hepatitis B virus, hepatitis C virus, Japanese encephalitis virus, and influenza A virus. Some studies showed that the uptake of CPPs or CPPs-conjugated drugs can be performed through both non-endocytic and endocytic pathways. Despite high potential of CPPs for cargo delivery, there are some serious drawbacks such as non-tissue-specificity, instability, and suboptimal pharmacokinetics features that limit their clinical applications. At present, some solutions are utilized to improve the CPPs properties such as conjugation of CPPs with targeting moieties, the use of fusogenic lipids, generation of the proton sponge effect, etc. Up to now, no CPP or composition containing CPPs has been approved by the Food and Drug Administration (FDA) due to the lack of sufficient in vivo studies on stability, immunological assays, toxicity, and endosomal escape of CPPs. In this review, we briefly describe the properties, uptake mechanisms, advantages and disadvantages, and improvement of intracellular delivery, and bioavailability of cell penetrating peptides. Moreover, we focus on their application as an effective drug carrier to combat viral infections.
Collapse
Affiliation(s)
- Niloofar Khairkhah
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran
| | - Ali Namvar
- Iranian Comprehensive Hemophilia Care Center, Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
7
|
Payra AK, Saha B, Ghosh A. Ortho_Sim_Loc: Essential protein prediction using orthology and priority-based similarity approach. Comput Biol Chem 2021; 92:107503. [PMID: 33962168 DOI: 10.1016/j.compbiolchem.2021.107503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 04/02/2021] [Accepted: 04/21/2021] [Indexed: 10/21/2022]
Abstract
Proteins are the essential macro-molecules of living organism. But all proteins cannot be considered as essential in different relevant studies. Essentiality of a protein is thus computed by computation methods rather than biological experiments which in turn save both time and effort. Different computational approaches are already predicted to select essential proteins successfully with different biological significances by researchers. Most of the experimental approaches return higher false negative outcomes with respect to others. In order to retain the prediction accuracy level, a novel methodology "Ortho_Sim_Loc"has been proposed which is a combined approach of Orthology, Similarity (using clustering and priority based GO-Annotation) and Subcellular localization. Ortho_Sim_Loc can predict enriched functional set essential proteins. The predicted results are validated with other existing methods like different centrality measures, LIDC. The validation results exhibits better performance of Ortho_Sim_Loc in compare to other existing computational approaches.
Collapse
Affiliation(s)
- Anjan Kumar Payra
- Department of Computer Science & Engineering, Dr. Sudhir Chandra Sur Degree Engineering College, 540, Dum Dum Road, Near Dum Dum Jn. Station, Surermath, Kolkata, 700074, India.
| | - Banani Saha
- Department of Computer Science & Engineering, University of Calcutta, Saltlake City, Kolkata, 700073, India.
| | - Anupam Ghosh
- Department of Computer Science & Engineering, Netaji Subhash Engineering College, Techno City, Panchpota, Garia, Kolkata, 700152, India.
| |
Collapse
|
8
|
Sizikov AA, Kharlamova MV, Nikitin MP, Nikitin PI, Kolychev EL. Nonviral Locally Injected Magnetic Vectors for In Vivo Gene Delivery: A Review of Studies on Magnetofection. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1078. [PMID: 33922066 PMCID: PMC8143545 DOI: 10.3390/nano11051078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/19/2021] [Accepted: 04/19/2021] [Indexed: 12/20/2022]
Abstract
Magnetic nanoparticles have been widely used in nanobiomedicine for diagnostics and the treatment of diseases, and as carriers for various drugs. The unique magnetic properties of "magnetic" drugs allow their delivery in a targeted tumor or tissue upon application of a magnetic field. The approach of combining magnetic drug targeting and gene delivery is called magnetofection, and it is very promising. This method is simple and efficient for the delivery of genetic material to cells using magnetic nanoparticles controlled by an external magnetic field. However, magnetofection in vivo has been studied insufficiently both for local and systemic routes of magnetic vector injection, and the relevant data available in the literature are often merely descriptive and contradictory. In this review, we collected and systematized the data on the efficiency of the local injections of magnetic nanoparticles that carry genetic information upon application of external magnetic fields. We also investigated the efficiency of magnetofection in vivo, depending on the structure and coverage of magnetic vectors. The perspectives of the development of the method were also considered.
Collapse
Affiliation(s)
- Artem A. Sizikov
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Marianna V. Kharlamova
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| | - Maxim P. Nikitin
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
- Sirius University of Science and Technology, 354340 Sochi, Russia
| | - Petr I. Nikitin
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 117942 Moscow, Russia
| | - Eugene L. Kolychev
- Moscow Institute of Physics and Technology, 141701 Dolgoprudny, Russia; (A.A.S.); (M.V.K.); (M.P.N.)
| |
Collapse
|
9
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
10
|
Mapossa AB, Focke WW, Tewo RK, Androsch R, Kruger T. Mosquito-repellent controlled-release formulations for fighting infectious diseases. Malar J 2021; 20:165. [PMID: 33761967 PMCID: PMC7988998 DOI: 10.1186/s12936-021-03681-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Accepted: 03/03/2021] [Indexed: 12/18/2022] Open
Abstract
Malaria is a principal cause of illness and death in countries where the disease is endemic. Personal protection against mosquitoes using repellents could be a useful method that can reduce and/or prevent transmission of mosquito-borne diseases. The available repellent products, such as creams, roll-ons, and sprays for personal protection against mosquitoes, lack adequate long-term efficacy. In most cases, they need to be re-applied or replaced frequently. The encapsulation and release of the repellents from several matrices has risen as an alternative process for the development of invention of repellent based systems. The present work reviews various studies about the development and use of repellent controlled-release formulations such as polymer microcapsules, polymer microporous formulations, polymer micelles, nanoemulsions, solid-lipid nanoparticles, liposomes and cyclodextrins as new tools for mosquito-borne malaria control in the outdoor environment. Furthermore, investigation on the mathematical modelling used for the release rate of repellents is discussed in depth by exploring the Higuchi, Korsmeyer-Peppas, Weibull models, as well as the recently developed Mapossa model. Therefore, the studies searched suggest that the final repellents based-product should not only be effective against mosquito vectors of malaria parasites, but also reduce the biting frequency of other mosquitoes transmitting diseases, such as dengue fever, chikungunya, yellow fever and Zika virus. In this way, they will contribute to the improvement in overall public health and social well-being.
Collapse
Affiliation(s)
- António B Mapossa
- Department of Chemical Engineering, Institute of Applied Materials , University of Pretoria, Lynnwood Road, Pretoria, South Africa.
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa.
| | - Walter W Focke
- Department of Chemical Engineering, Institute of Applied Materials , University of Pretoria, Lynnwood Road, Pretoria, South Africa
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| | - Robert K Tewo
- Department of Chemical Engineering, Vaal University of Technology, Private Bag X021, 1911, Vanderbijlpark, South Africa
| | - René Androsch
- Interdisciplinary Center for Transfer-oriented Research in Natural Sciences, Martin Luther University Halle-Wittenberg, 06099, Halle/Saale, Germany
| | - Taneshka Kruger
- UP Institute for Sustainable Malaria Control & MRC Collaborating Centre for Malaria Research, School of Health Systems and Public Health, University of Pretoria, Private Bag X20, Hatfield, 0028, Pretoria, South Africa
| |
Collapse
|
11
|
Ma LL, Tang Q, Liu MX, Liu XY, Liu JY, Lu ZL, Gao YG, Wang R. [12]aneN 3-Based Gemini-Type Amphiphiles with Two-Photon Absorption Properties for Enhanced Nonviral Gene Delivery and Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2020; 12:40094-40107. [PMID: 32805811 DOI: 10.1021/acsami.0c10718] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Although a plethora of nonviral gene vectors have been developed for potential gene therapy, imageable gemini surfactants with stimuli-responsiveness and high transfection efficiency are still scarce for gene delivery. Herein, three gemini amphiphiles (DEDPP-4/8/12) consisting of an aggregation-induced emission (AIE) central fluorophore: 5,6-diphenylpyrazine-2,3-diester (DEDPP), decorated with triazole-[12]aneN3 as the hydrophilic moiety and alkyl chains of various lengths as the hydrophobic moiety, were designed and synthesized for trackable gene delivery via optical imaging. All three amphiphiles exhibited ultralow critical micelle concentrations (CMCs) (up to 3.40 × 10-6 M), prominent two-photon absorption properties, and solvatochromic fluorescence. Gel electrophoresis assays demonstrated that the migration of plasmid DNA was completely retarded after condensation with these gemini amphiphiles at low concentrations (up to 10 μM). In addition, the ester bond in these amphiphiles may facilitate vector degradation and DNA release, in response to esterase and the acidic environment inside cells. Upon self-assembly with DOPE to form liposomes, DEDPP-8/DOPE achieved the best transfection efficiency in four cell lines, and the transfection efficiency of DEDPP-8/DOPE in HeLa cell lines was 23.5-fold higher than that of Lipo2000, which is unusually high for small organic molecule-based nonviral vectors. Furthermore, excellent transfection efficiency of DEDPP-8/DOPE was obtained in the presence of serum, and the red fluorescence protein (RFP) gene was successfully transfected in zebrafish embryos. Both one- and two-photon fluorescence imaging clearly demonstrated the delivery process of plasmid DNA. This study demonstrated that gemini-type amphiphiles composed of a two-photon fluorophore core conjugated with triazole-[12]aneN3 via an ester bond afforded an unprecedentedly high transfection efficiency with excellent biocompatibility, which may provide new insights for the design and development of multifunctional nonviral gene vectors for imageable gene delivery.
Collapse
Affiliation(s)
- Le-Le Ma
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Quan Tang
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ming-Xuan Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xu-Ying Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jin-Yu Liu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhong-Lin Lu
- Key Laboratory of Radiopharmaceutics, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Yong-Guang Gao
- Lab for Bone Metabolism, Key Lab for Space Biosciences and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau SAR 9990078, China
| |
Collapse
|
12
|
Guler Gokce Z, Birol SZ, Mitina N, Harhay K, Finiuk N, Glasunova V, Stoika R, Ercelen S, Zaichenko A. Novel amphiphilic block-copolymer forming stable micelles and interpolyelectrolyte complexes with DNA for efficient gene delivery. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1740988] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Zeliha Guler Gokce
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Semra Zuhal Birol
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
- Department of Nano Science and Nano Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Nataliya Mitina
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Khrystyna Harhay
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| | - Nataliya Finiuk
- Department of Regulation of Cell Proliferation, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Valentina Glasunova
- Department of Physical Materials, Donetsk O. O. Galkin Institute of Physics and Engineering, National Academy of Sciences of Ukraine, Donetsk, Ukraine
| | - Rostyslav Stoika
- Department of Regulation of Cell Proliferation, Institute of Cell Biology, National Academy of Sciences of Ukraine, Lviv, Ukraine
| | - Sebnem Ercelen
- Center Genetic Engineering and Biotechnology Institute, TUBITAK Marmara Research, Kocaeli, Turkey
| | - Alexander Zaichenko
- Department of Organic Chemistry, Lviv Polytechnic National University, Lviv, Ukraine
| |
Collapse
|
13
|
Zheng Y, Wu Y, Zhou Y, Wu J, Wang X, Qu Y, Wang Y, Zhang Y, Yu Q. Photothermally Activated Electrospun Nanofiber Mats for High-Efficiency Surface-Mediated Gene Transfection. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7905-7914. [PMID: 31976653 DOI: 10.1021/acsami.9b20221] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although electrospun nanofibers have been used to deliver functional genes into cells attached to the surface of the nanofibers, the controllable release of genes from nanofibers and the subsequent gene transfection with high efficiency remain challenging. Herein, photothermally activated electrospun hybrid nanofibers are developed for high-efficiency surface-mediated gene transfection. Nanofibers with a core-sheath structure are fabricated using coaxial electrospinning. Plasmid DNA (pDNA) encoding basic fibroblast growth factor is encapsulated in the fiber core, and gold nanorods with photothermal properties are embedded in the fiber sheath composed of poly(l-lactic acid) and gelatin. The nanofiber mats show excellent and controllable photothermal response under near-infrared irradiation. The permeability of the nanofibers is thereby enhanced to allow the rapid release of pDNA. In addition, transient holes are formed in the membranes of NIH-3T3 fibroblasts attached to the mat, thus facilitating delivery and transfection with pDNA and leading to increased proliferation and migration of the transfected cells in vitro. This work offers a facile and reliable method for the regulation of cell function and cell behavior via localized gene transfection, showing great potential for application in tissue engineering and cell-based therapy.
Collapse
Affiliation(s)
- Yanjun Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yong Wu
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yang Zhou
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Jingxian Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Xiaoyu Wang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Yangcui Qu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yaran Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| | - Yanxia Zhang
- Institute for Cardiovascular Science and Department of Cardiovascular Surgery of the First Affiliated Hospital , Soochow University , Suzhou 215007 , P. R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science , Soochow University , Suzhou 215123 , P. R. China
| |
Collapse
|
14
|
Wang M, Xue H, Gao M, Wang Q, Yang H. Synthetic fluorinated polyamides as efficient gene vectors. J Biomed Mater Res B Appl Biomater 2019; 107:2132-2139. [DOI: 10.1002/jbm.b.34307] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 11/27/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Mian Wang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Han Xue
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| | - Min Gao
- Lianyungang Technical College; Chenguang Road 2, Lianyungang 222000 China
| | - Qingli Wang
- Jinyuan Mineral Co. Ltd; Lingbao 472500 China
| | - Haijie Yang
- Xinxiang Medical University; Jinsui Avenue 601, Xinxiang 453003 China
| |
Collapse
|
15
|
Mullis AS, Schlichtmann BW, Narasimhan B, Cademartiri R, Mallapragada SK. Ligand-cascading nano-delivery devices to enable multiscale targeting of anti-neurodegenerative therapeutics. Biomed Mater 2018; 13:034102. [DOI: 10.1088/1748-605x/aaa778] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Luo HC, Li N, Yan L, Mai KJ, Sun K, Wang W, Lao GJ, Yang C, Zhang LM, Ren M. Comparison of the cellular transport mechanism of cationic, star-shaped polymers and liposomes in HaCat cells. Int J Nanomedicine 2017; 12:1085-1096. [PMID: 28223800 PMCID: PMC5304973 DOI: 10.2147/ijn.s121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Several biological barriers must be overcome to achieve efficient nonviral gene delivery. These barriers include target cell uptake, lysosomal degradation, and dissociation from the carrier. In this study, we compared the differences in the uptake mechanism of cationic, star-shaped polymer/MMP-9siRNA complexes (β-CD-(D3)7/MMP-9siRNA complexes: polyplexes) and commercial liposome/MMP-9siRNA complexes (Lipofectamine® 2000/MMP-9siRNA complexes: liposomes). The uptake pathway and transfection efficiency of the polyplexes and liposomes were determined by fluorescence microscopy, flow cytometry, and reverse transcriptase-polymerase chain reaction. The occurrence of intracellular processing was assessed by confocal laser scanning microscopy. Endosomal acidification inhibitors were used to explore the endosomal escape mechanisms of the polyplexes and lysosomes. We concluded that the polyplexes were internalized by non-caveolae- and non-clathrin-mediated pathways, with no lysosomal trafficking, thereby inducing successful transfection, while the majority of liposomes were internalized by clathrin-dependent endocytosis (CDE), caveolae-mediated endocytosis, and macropinocytosis, and only CDE induced successful transfection. Liposomes might escape more quickly than polyplexes, and the digestion effect of acidic organelles on liposomes was faint compared to the polyplexes, although both complexes escaped from endolysosomes via the proton sponge mechanism. This may be the key aspect that leads to the lower transfection efficiency of the β-CD-(D3)7/MMP-9siRNA complexes. The present study may offer some insights for the rational design of novel delivery systems with increased transfection efficiency but decreased toxicity.
Collapse
Affiliation(s)
- Heng-Cong Luo
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China; Department of Endocrinology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, People's Republic of China
| | - Na Li
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li Yan
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Kai-Jin Mai
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Kan Sun
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Wei Wang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Guo-Juan Lao
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Chuan Yang
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Li-Ming Zhang
- School of Materials Science and Engineering, School of Chemistry, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Meng Ren
- Department of Endocrinology, Sun Yat-Sen Memorial Hospital, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation Medical Research Center, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
17
|
Escalona-Rayo O, Fuentes-Vázquez P, Leyva-Gómez G, Cisneros B, Villalobos R, Magaña JJ, Quintanar-Guerrero D. Nanoparticulate strategies for the treatment of polyglutamine diseases by halting the protein aggregation process. Drug Dev Ind Pharm 2017; 43:871-888. [PMID: 28142290 DOI: 10.1080/03639045.2017.1281949] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Polyglutamine (polyQ) diseases are a class of neurodegenerative disorders that cause cellular dysfunction and, eventually, neuronal death in specific regions of the brain. Neurodegeneration is linked to the misfolding and aggregation of expanded polyQ-containing proteins, and their inhibition is one of major therapeutic strategies used commonly. However, successful treatment has been limited to date because of the intrinsic properties of therapeutic agents (poor water solubility, low bioavailability, poor pharmacokinetic properties), and difficulty in crossing physiological barriers, including the blood-brain barrier (BBB). In order to solve these problems, nanoparticulate systems with dimensions of 1-1000 nm able to incorporate small and macromolecules with therapeutic value, to protect and deliver them directly to the brain, have recently been developed, but their use for targeting polyQ disease-mediated protein misfolding and aggregation remains scarce. This review provides an update of the polyQ protein aggregation process and the development of therapeutic strategies for halting it. The main features that a nanoparticulate system should possess in order to enhance brain delivery are discussed, as well as the different types of materials utilized to produce them. The final part of this review focuses on the potential application of nanoparticulate system strategies to improve the specific and efficient delivery of therapeutic agents to the brain for the treatment of polyQ diseases.
Collapse
Affiliation(s)
- Oscar Escalona-Rayo
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Paulina Fuentes-Vázquez
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Gerardo Leyva-Gómez
- b Laboratory of Connective Tissue , CENIAQ, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - Bulmaro Cisneros
- c Department of Genetics and Molecular Biology , CINVESTAV-IPN , Mexico City , Mexico
| | - Rafael Villalobos
- d División de Estudios de Posgrado (Tecnología Farmacéutica), Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| | - Jonathan J Magaña
- e Laboratory of Genomic Medicine, Department of Genetics , Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra , Mexico City , Mexico
| | - David Quintanar-Guerrero
- a Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Facultad de Estudios Superiores Cuautitlán , Universidad Nacional Autónoma de México (UNAM) , Cuautitlán Izcalli , Mexico
| |
Collapse
|
18
|
Wang B, Chen P, Zhang J, Chen XC, Liu YH, Huang Z, Yu QY, Zhang JH, Zhang W, Wei X, Yu XQ. Self-assembled core–shell-corona multifunctional non-viral vector with AIE property for efficient hepatocyte-targeting gene delivery. Polym Chem 2017. [DOI: 10.1039/c7py01520h] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Core–shell-corona multifunctional nanoparticles were prepared and used for cell imaging and cell-targeting delivery of genes toward hepatocytes.
Collapse
|
19
|
Perevyazko I, Gubarev AS, Tauhardt L, Dobrodumov A, Pavlov GM, Schubert US. Linear poly(ethylene imine)s: true molar masses, solution properties and conformation. Polym Chem 2017. [DOI: 10.1039/c7py01634d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
In-depth characterization of pharmaceutically relevant polymers plays a pivotal role in many areas, including nanoscience, gene therapy, analytical and polymer chemistry etc.
Collapse
Affiliation(s)
- Igor Perevyazko
- Department of Molecular Biophysics and Polymers Physics
- St. Petersburg State University
- 199034 St. Petersburg
- Russia
| | - Alexander S. Gubarev
- Department of Molecular Biophysics and Polymers Physics
- St. Petersburg State University
- 199034 St. Petersburg
- Russia
| | - Lutz Tauhardt
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| | - Anatoly Dobrodumov
- Institute of Macromolecular Compounds
- Russian Academy of Science
- 199004 St. Petersburg
- Russia
| | - Georges M. Pavlov
- Department of Molecular Biophysics and Polymers Physics
- St. Petersburg State University
- 199034 St. Petersburg
- Russia
- Institute of Macromolecular Compounds
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC)
- Friedrich Schiller University Jena
- 07743 Jena
- Germany
- Jena Center for Soft Matter (JCSM)
| |
Collapse
|
20
|
Shakya A, Al-Hashimi HM, Banaszak Holl MM. Three RNA Microenvironments Detected in Fluxional Gene Delivery Polyplex Nanoassemblies. ACS Macro Lett 2016; 5:1104-1108. [PMID: 35658189 DOI: 10.1021/acsmacrolett.6b00668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Prototropic and solvatochromatic properties of fluorescein (FL) were employed to detect the presence of microenvironments in polyplexes consisting of polycationic polymer (POCP) and a fluorescein-conjugated RNA, the HIV-1 transactivation response element (TAR-FL). Results reveal new aspects of polyplex structure with respect to polyplex-bound RNA existing in the following local microenvironments: (a) RNA associated with the polyplex that experiences local pH changes in a manner dependent on POCP nitrogen to RNA phosphate ratio (N:P), (b) RNA experiencing relatively acidic local pH environment that remains constant in polyplexes formed after a charge-neutral ratio, and (c) RNA packed close enough to mediate fluorophore/fluorophore quenching. The magnitude of these changes observed as a function of POCP to nucleic acid N:P ratio is polymer dependent. Assessment of the different microenvironments can help elucidate the functional hierarchy of polyplex-bound oligonucleotides and additionally characterize POCPs based on the resulting local pH and solvent properties upon polyplex formation.
Collapse
Affiliation(s)
| | - Hashim M. Al-Hashimi
- Department
of Biochemistry and Chemistry, Duke University Medical Center, Durham, North Carolina 27710, United States
| | | |
Collapse
|
21
|
|
22
|
Redondo JA, Martínez-Campos E, Plet L, Pérez-Perrino M, Navarro R, Corrales G, Pandit A, Reinecke H, Gallardo A, López-Lacomba JL, Fernández-Mayoralas A, Elvira C. Polymeric Gene Carriers Bearing Pendant β-Cyclodextrin: The Relevance of Glycoside Permethylation on the "In Vitro" Cell Response. Macromol Rapid Commun 2016; 37:575-83. [PMID: 26833583 DOI: 10.1002/marc.201500647] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 11/27/2015] [Indexed: 11/06/2022]
Abstract
The incorporation of cyclodextrins (CDs) to nonviral cationic polymer vectors is very attractive due to recent studies that report a clear improvement of their cytocompatibility and transfection efficiency. However, a systematic study on the influence of the CD derivatization is still lacking. In this work, the relevance of β-CD permethylation has been addressed by preparing and evaluating two series of copolymers of the cationic N-ethyl pyrrolidine methacrylamide (EPA) and styrenic units bearing pendant hydroxylated and permethylated β-CDs (HCDSt and MeCDSt, respectively). For both cell lines, CDs permethylation shows a strong influence on plasmid DNA complexation, "in vitro" cytocompatibility and transfection efficiency of the resulting copolymers over two murine cell lines. While the incorporation of the hydroxylated CD moiety increased the cytotoxicity of the copolymers in comparison with their homopolycationic counterpart, the permethylated copolymers have shown full cytocompatibility as well as superior transfection efficiency than the controls. This behavior has been related to the different chemical nature of both units and tentatively to a different distribution of units along the polymeric chains. Cellular internalization analysis with fluorescent copo-lymers supports this behavior.
Collapse
Affiliation(s)
- Juan Alfonso Redondo
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Enrique Martínez-Campos
- Institute of Biofunctional Studies (IEB), Tissue Engineering Group, (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo de Juan XXIII 1, 28040, Madrid, Spain
| | - Laetitia Plet
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain.,Université Pierre et Marie Curie, 4, Place Jussieu, 75005, Paris, France
| | - Mónica Pérez-Perrino
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Rodrigo Navarro
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Guillermo Corrales
- Institute of Organic Chemistry, IQOG-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Abhay Pandit
- Network of Excellence for Functional Biomaterials, National University of Ireland, Newcastle Road, Galway, Ireland
| | - Helmut Reinecke
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - Alberto Gallardo
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| | - José Luis López-Lacomba
- Institute of Biofunctional Studies (IEB), Tissue Engineering Group, (UCM), Associated Unit to the Institute of Polymer Science and Technology (CSIC), Paseo de Juan XXIII 1, 28040, Madrid, Spain
| | | | - Carlos Elvira
- Institute of Polymer Science and Technology, ICTP-CSIC, Juan de la Cierva 3, 28006, Madrid, Spain
| |
Collapse
|
23
|
Davydova NK, Sinitsyna OV, Sergeev VN, Perevyazko I, Laukhina EE. Towards DNA sensing polymers: interaction between acrylamide/3-(N,N-dimethylaminopropyl)-acrylamide and DNA phage λ at various N/P ratios. RSC Adv 2016. [DOI: 10.1039/c6ra11231e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The present study relates to the development of cationic polymers that are of great interest due to their enormous potential for biomedical applications, especially as non-viral vectors for gene therapy, active components in DNA sensing devices, etc.
Collapse
Affiliation(s)
- N. K. Davydova
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russian Federation
| | - O. V. Sinitsyna
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russian Federation
| | - V. N. Sergeev
- A. N. Nesmeyanov Institute of Organoelement Compounds of Russian Academy of Sciences
- Moscow
- Russian Federation
| | - I. Perevyazko
- Department of Molecular Biophysics and Polymer Physics
- St. Petersburg State University
- St. Petersburg
- Russian Federation
| | - E. E. Laukhina
- The Biomedical Research Networking Center in Bioengineering
- Biomaterials and Nanomedicine
- ICMAB-CSIC
- Bellaterra
- Spain
| |
Collapse
|
24
|
Agirre M, Ojeda E, Zarate J, Puras G, Grijalvo S, Eritja R, García del Caño G, Barrondo S, González-Burguera I, López de Jesús M, Sallés J, Pedraz JL. New Insights into Gene Delivery to Human Neuronal Precursor NT2 Cells: A Comparative Study between Lipoplexes, Nioplexes, and Polyplexes. Mol Pharm 2015; 12:4056-66. [DOI: 10.1021/acs.molpharmaceut.5b00496] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mireia Agirre
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Edilberto Ojeda
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Jon Zarate
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Gustavo Puras
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Santiago Grijalvo
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Advanced Chemistry of Catalonia, IQAC−CSIC, Barcelona, Spain
| | - Ramón Eritja
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Institute of Advanced Chemistry of Catalonia, IQAC−CSIC, Barcelona, Spain
| | - Gontzal García del Caño
- Department
of Neurosciences, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Sergio Barrondo
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Imanol González-Burguera
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Maider López de Jesús
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Joan Sallés
- Department
of Pharmacology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - José Luis Pedraz
- NanoBioCel
Group, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
- Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| |
Collapse
|