1
|
Barone GD, Tagliaro I, Oliver-Simancas R, Radice M, Kalossaka LM, Mattei M, Biundo A, Pisano I, Jiménez-Quero A. Keratinous and corneous-based products towards circular bioeconomy: A research review. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100444. [PMID: 39183760 PMCID: PMC11342888 DOI: 10.1016/j.ese.2024.100444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 06/24/2024] [Accepted: 06/27/2024] [Indexed: 08/27/2024]
Abstract
Keratins and corneous proteins are key components of biomaterials used in a wide range of applications and are potential substitutes for petrochemical-based products. Horns, hooves, feathers, claws, and similar animal tissues are abundant sources of α-keratin and corneous β-proteins, which are by-products of the food industry. Their close association with the meat industry raises environmental and ethical concerns regarding their disposal. To promote an eco-friendly and circular use of these materials in novel applications, efforts have focused on recovering these residues to develop sustainable, non-animal-related, affordable, and scalable procedures. Here, we review and examine biotechnological methods for extracting and expressing α-keratins and corneous β-proteins in microorganisms. This review highlights consolidated research trends in biomaterials, medical devices, food supplements, and packaging, demonstrating the keratin industry's potential to create innovative value-added products. Additionally, it analyzes the state of the art of related intellectual property and market size to underscore the potential within a circular bioeconomic model.
Collapse
Affiliation(s)
| | - Irene Tagliaro
- Department of Materials Science, University of Milano-Bicocca, 20126, Milano, Italy
| | - Rodrigo Oliver-Simancas
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, 41296, Sweden
| | - Matteo Radice
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Livia M. Kalossaka
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, United Kingdom
| | - Michele Mattei
- Libera Università Internazionale Degli Studi Sociali “Guido Carli”, I-00198, Rome, Italy
| | - Antonino Biundo
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
| | - Isabella Pisano
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari Aldo Moro, Via E. Orabona, 4, 70125, Bari, Italy
- CIRCC – Interuniversity Consortium Chemical Reactivity and Catalysis, Via C. Ulpiani 27, 70126, Bari, Italy
| | - Amparo Jiménez-Quero
- Division of Industrial Biotechnology, Department of Life Sciences, Chalmers University of Technology, Gothenburg, 41296, Sweden
| |
Collapse
|
2
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
3
|
Chen L, Meng R, Qing R, Li W, Wang Z, Hou Y, Deng J, Pu W, Gao Z, Wang B, Hao S. Bioinspired Robust Keratin Hydrogels for Biomedical Applications. NANO LETTERS 2022; 22:8835-8844. [PMID: 36375092 DOI: 10.1021/acs.nanolett.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although keratins are robust in nature, hydrogels producing their extracts exhibit poor mechanical properties due to the complicated composition and ineffective self-assembly. Here we report a bioinspired strategy to fabricate robust keratin hydrogels based on mechanism study through recombinant proteins. Homotypic and heterotypic self-assembly of selected type I and type II keratins in different combinations was conducted to identify crucial domain structures for the process, their kinetics, and relationship with the mechanical strength of hydrogels. Segments with best performance were isolated and used to construct novel assembling units. The new design outperformed combinations of native proteins in mechanical properties and in biomedical applications such as controlled drug release and skin regeneration. Our approach not only elucidated the critical structural domains and underlying mechanisms for keratin self-assembly but also opens an avenue toward the rational design of robust keratin hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Liling Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ziwei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zibin Gao
- State Key Laboratory Breeding Base─Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
4
|
Agnieray H, Glasson J, Chen Q, Kaur M, Domigan L. Recent developments in sustainably sourced protein-based biomaterials. Biochem Soc Trans 2021; 49:953-964. [PMID: 33729443 PMCID: PMC8106505 DOI: 10.1042/bst20200896] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 02/17/2021] [Accepted: 02/22/2021] [Indexed: 12/12/2022]
Abstract
Research into the development of sustainable biomaterials is increasing in both interest and global importance due to the increasing demand for materials with decreased environmental impact. This research field utilises natural, renewable resources to develop innovative biomaterials. The development of sustainable biomaterials encompasses the entire material life cycle, from desirable traits, and environmental impact from production through to recycling or disposal. The main objective of this review is to provide a comprehensive definition of sustainable biomaterials and to give an overview of the use of natural proteins in biomaterial development. Proteins such as collagen, gelatin, keratin, and silk, are biocompatible, biodegradable, and may form materials with varying properties. Proteins, therefore, provide an intriguing source of biomaterials for numerous applications, including additive manufacturing, nanotechnology, and tissue engineering. We give an insight into current research and future directions in each of these areas, to expand knowledge on the capabilities of sustainably sourced proteins as advanced biomaterials.
Collapse
Affiliation(s)
- H. Agnieray
- School of Chemical Sciences, University of Auckland, Auckland, New Zealand
| | - J.L. Glasson
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - Q. Chen
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| | - M. Kaur
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - L.J. Domigan
- Department of Chemical and Material Engineering, University of Auckland, Auckland, New Zealand
| |
Collapse
|
5
|
Lai HY, Setyawati MI, Ferhan AR, Divakarla SK, Chua HM, Cho NJ, Chrzanowski W, Ng KW. Self-Assembly of Solubilized Human Hair Keratins. ACS Biomater Sci Eng 2021; 7:83-89. [PMID: 33356132 DOI: 10.1021/acsbiomaterials.0c01507] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human hair keratins have proven to be a viable biomaterial for diverse regenerative applications. However, the most significant characteristic of this material, the ability to self-assemble into nanoscale intermediate filaments, has not been exploited. Herein, we successfully demonstrated the induction of hair-extracted keratin self-assembly in vitro to form dense, homogeneous, and continuous nanofibrous networks. These networks remain hydrolytically stable in vitro for up to 5 days in complete cell culture media and are compatible with primary human dermal fibroblasts and keratinocytes. These results enhance the versatility of human hair keratins for applications where structured assembly is of benefit.
Collapse
Affiliation(s)
- Hui Ying Lai
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore
| | - Magdiel Inggrid Setyawati
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Shiva Kamini Divakarla
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Huei Min Chua
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Wojciech Chrzanowski
- The University of Sydney, Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, Sydney, New South Wales 2006, Australia
| | - Kee Woei Ng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore.,Nanyang Environment & Water Research Institute (Environmental Chemistry and Materials Centre), Interdisciplinary Graduate Program, Nanyang Technological University, Singapore.,Skin Research Institute of Singapore, Biomedical Science Institutes, Immunos, 8A Biomedical Grove, Singapore 138648, Singapore.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, Massachusetts 02115, United States
| |
Collapse
|
6
|
Parker RN, Trent A, Roth Stefaniak KL, Van Dyke ME, Grove TZ. A comparative study of materials assembled from recombinant K31 and K81 and extracted human hair keratins. ACTA ACUST UNITED AC 2020; 15:065006. [PMID: 32485704 DOI: 10.1088/1748-605x/ab98e8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural biopolymers have found success in tissue engineering and regenerative medicine applications. Their intrinsic biocompatibility and biological activity make them well suited for biomaterials development. Specifically, keratin-based biomaterials have demonstrated utility in regenerative medicine applications including bone regeneration, wound healing, and nerve regeneration. However, studies of structure-function relationships in keratin biomaterials have been hindered by the lack of homogeneous preparations of materials extracted and isolated from natural sources such as wool and hair fibers. Here we present a side-by-side comparison of natural and recombinant human hair keratin proteins K31 and K81. When combined, the recombinant proteins (i.e. rhK31 and rhK81) assemble into characteristic intermediate filament-like fibers. Coatings made from natural and recombinant dimers were compared side-by-side and investigated for coating characteristics and cell adhesion. In comparison to control substrates, the recombinant keratin materials show a higher propensity for inducing involucrin and hence, maturation in terms of potential skin cell differentiation.
Collapse
Affiliation(s)
- Rachael N Parker
- Department of Chemistry and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24060. Authors contributed equally to this work
| | | | | | | | | |
Collapse
|
7
|
Gao F, Li W, Deng J, Kan J, Guo T, Wang B, Hao S. Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18681-18690. [PMID: 31038908 DOI: 10.1021/acsami.9b01725] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In recent years, favorable enhanced wound-healing properties and excellent biocompatibility of keratin derived from human hair have attracted considerable attention. Recombinant keratin proteins can be produced by recombinant DNA technology and have higher purity than extracted keratin. However, the wound-healing properties of recombinant keratin proteins remain unclear. Herein, two recombinant trichocyte keratins including human type I hair keratin 37 and human type II hair keratin 81 were expressed using a bacterial expression system, and recombinant keratin nanoparticles (RKNPs) were prepared via an ultrasonic dispersion method. The molecular weight, purity, and physicochemical properties of the recombinant keratin proteins and nanoparticles were assessed using gel electrophoresis, circular dichroism, mass spectrometry, and scanning electron microscope analyses. The RKNPs significantly enhanced cell proliferation and migration in vitro, and the treatment of dermal wounds in vivo with RKNPs resulted in improved wound healing associated with improved epithelialization, vascularization, and collagen deposition and remodeling. In addition, the in vivo biocompatibility test revealed no systemic toxicity. Overall, this work demonstrates that RKNPs are a promising candidate for enhanced wound healing, and this study opens up new prospects for the development of keratin biomaterials.
Collapse
Affiliation(s)
- Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Jia Deng
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Jinlan Kan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Tingwang Guo
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| |
Collapse
|
8
|
di Luca M, Curcio M, Valli E, Cirillo G, Voli F, Butini ME, Farfalla A, Pantuso E, Leggio A, Nicoletta FP, Tavanti A, Iemma F, Vittorio O. Combining antioxidant hydrogels with self-assembled microparticles for multifunctional wound dressings. J Mater Chem B 2019. [DOI: 10.1039/c9tb00871c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A multi-functional composite to be employed as a dressing material was prepared by combining hydrogel and microparticle systems.
Collapse
|
9
|
Guo T, Li W, Wang J, Luo T, Lou D, Wang B, Hao S. Recombinant human hair keratin proteins for halting bleeding. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:456-461. [DOI: 10.1080/21691401.2018.1459633] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingwang Guo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Ju Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Deshuai Lou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
- Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing, China
| |
Collapse
|
10
|
Choi SM, Chaudhry P, Zo SM, Han SS. Advances in Protein-Based Materials: From Origin to Novel Biomaterials. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1078:161-210. [PMID: 30357624 DOI: 10.1007/978-981-13-0950-2_10] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Biomaterials play a very important role in biomedicine and tissue engineering where they directly affect the cellular activities and their microenvironment . Myriad of techniques have been employed to fabricate a vast number natural, artificial and recombinant polymer s in order to harness these biomaterials in tissue regene ration , drug delivery and various other applications. Despite of tremendous efforts made in this field during last few decades, advanced and new generation biomaterials are still lacking. Protein based biomaterials have emerged as an attractive alternatives due to their intrinsic properties like cell to cell interaction , structural support and cellular communications. Several protein based biomaterials like, collagen , keratin , elastin , silk protein and more recently recombinant protein s are being utilized in a number of biomedical and biotechnological processes. These protein-based biomaterials have enormous capabilities, which can completely revolutionize the biomaterial world. In this review, we address an up-to date review on the novel, protein-based biomaterials used for biomedical field including tissue engineering, medical science, regenerative medicine as well as drug delivery. Further, we have also emphasized the novel fabrication techniques associated with protein-based materials and implication of these biomaterials in the domain of biomedical engineering .
Collapse
Affiliation(s)
- Soon Mo Choi
- Regional Research Institute for Fiber&Fashion Materials, Yeungnam University, Gyeongsan, South Korea
| | - Prerna Chaudhry
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sun Mi Zo
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Sung Soo Han
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea.
| |
Collapse
|