1
|
Obituary. Carbohydr Polym 2017. [DOI: 10.1016/j.carbpol.2017.03.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
2
|
Abstract
Colonic mucus is a key biological hydrogel that protects the gut from infection and physical damage and mediates host-microbe interactions and drug delivery. However, little is known about how its structure is influenced by materials it comes into contact with regularly. For example, the gut abounds in polymers such as dietary fibers or administered therapeutics, yet whether such polymers interact with the mucus hydrogel, and if so, how, remains unclear. Although several biological processes have been identified as potential regulators of mucus structure, the polymeric composition of the gut environment has been ignored. Here, we demonstrate that gut polymers do in fact regulate mucus hydrogel structure, and that polymer-mucus interactions can be described using a thermodynamic model based on Flory-Huggins solution theory. We found that both dietary and therapeutic polymers dramatically compressed murine colonic mucus ex vivo and in vivo. This behavior depended strongly on both polymer concentration and molecular weight, in agreement with the predictions of our thermodynamic model. Moreover, exposure to polymer-rich luminal fluid from germ-free mice strongly compressed the mucus hydrogel, whereas exposure to luminal fluid from specific-pathogen-free mice-whose microbiota degrade gut polymers-did not; this suggests that gut microbes modulate mucus structure by degrading polymers. These findings highlight the role of mucus as a responsive biomaterial, and reveal a mechanism of mucus restructuring that must be integrated into the design and interpretation of studies involving therapeutic polymers, dietary fibers, and fiber-degrading gut microbes.
Collapse
|
3
|
Rokhsefat S, Lin A, Comelli EM. Mucin-Microbiota Interaction During Postnatal Maturation of the Intestinal Ecosystem: Clinical Implications. Dig Dis Sci 2016; 61:1473-86. [PMID: 26792279 DOI: 10.1007/s10620-016-4032-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 01/05/2016] [Indexed: 02/07/2023]
Abstract
The mucus layer and gut microbiota interplay contributes to host homeostasis. The mucus layer serves as a scaffold and a carbon source for gut microorganisms; conversely, gut microorganisms, including mucin degraders, influence mucin gene expression, glycosylation, and secretion. Conjointly they shield the epithelium from luminal pathogens, antigens, and toxins. Importantly, the mucus layer and gut microbiota are established in parallel during early postnatal life. During this period, the development of gut microbiota and mucus layer is coupled with that of the immune system. Developmental changes of different mucin types can impact the age-dependent patterns of intestinal infection in terms of incidence and severity. Altered mucus layer, dysbiotic microbiota, and abnormal mucus-gut microbiota interaction have the potential for inducing systemic effects, and accompany several intestinal diseases such as inflammatory bowel disease, colorectal cancer, and radiation-induced mucositis. Early life provides a pivotal window of opportunity to favorably modulate the mucus-microbiota interaction. The support of a health-compatible mucin-microbiota maturation in early life is paramount for long-term health and serves as an important opportunity for clinical intervention.
Collapse
Affiliation(s)
- Sana Rokhsefat
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building Room 308a, 150 College Street, Toronto, ON, M5S3E2, Canada
| | - Aifeng Lin
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building Room 308a, 150 College Street, Toronto, ON, M5S3E2, Canada
- Division of Genetics and Development, Toronto Western Research Institute, Toronto, Canada
- Faculty of Medicine, Institute of Medical Sciences, University of Toronto, Toronto, Canada
| | - Elena M Comelli
- Department of Nutritional Sciences, Faculty of Medicine, University of Toronto, FitzGerald Building Room 308a, 150 College Street, Toronto, ON, M5S3E2, Canada.
- Centre for Child Nutrition and Health, Faculty of Medicine, University of Toronto, Ontario, Canada.
| |
Collapse
|
4
|
|
5
|
Taylor C, Draget KI, Pearson JP, Smidsrød O. Mucous Systems Show a Novel Mechanical Response to Applied Deformation. Biomacromolecules 2005; 6:1524-30. [PMID: 15877374 DOI: 10.1021/bm049225i] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mucous secretions have a wide range of biological functions that are intimately linked with their rheological properties. In addition, many mucous secretions are exposed to significant stress and deformation during physiological function. This study has examined the rheological response of three mucous systems, native pig gastric mucus, purified mucin gels, and mucin alginate gels, to increasing applied stress to a level sufficient to induce flow behavior. A novel, frequency-dependent stress hardening was observed in all three systems. This hardening behavior may play a significant role in the ability of mucous systems to resist mechanical disruption in the physiological state.
Collapse
Affiliation(s)
- Catherine Taylor
- Norwegian Biopolymer Laboratory, Department of Biotechnology, Norwegian University of Science and Technology, Sem Saelands vei 6/8, Trondheim N-7491, Norway.
| | | | | | | |
Collapse
|
6
|
Stokke BT, Smidsrød O, Elgsaeter A. Electron microscopy of native xanthan and xanthan exposed to low ionic strength. Biopolymers 2004. [DOI: 10.1002/bip.360280207] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Round AN, Berry M, McMaster TJ, Stoll S, Gowers D, Corfield AP, Miles MJ. Heterogeneity and persistence length in human ocular mucins. Biophys J 2002; 83:1661-70. [PMID: 12202389 PMCID: PMC1302262 DOI: 10.1016/s0006-3495(02)73934-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
Atomic force microscopy (AFM) has been used to investigate the heterogeneity and flexibility of human ocular mucins and their subunits. We have paid particular attention, in terms of theory and experiment, to the problem of inducing the polymers to assume equilibrium conformations at a surface. Mucins deposited from a buffer containing Ni(2+) ions adopt extended conformations on mica akin to those observed for DNA under similar conditions. The heterogeneity of the intracellular native mucins is evident from a histogram of contour lengths, reflecting, in part, the diversity of mucin gene products expressed. Reduction of the native mucin with dithiothreitol, thereby breaking the S==S bonds between cysteine residues, causes a marked reduction in polymer length. These results reflect the modes of transport and assembly of newly synthesized mucins in vivo. By modifying the worm-like chain model for applicability to two dimensions, we have confirmed that under the conditions employed mucin adsorbs to mica in an equilibrated conformation. The determined persistence length of the native mucin, 36 nm, is consistent with that of an extended, flexible polymer; such characteristics will influence the properties of the gels formed in vivo.
Collapse
Affiliation(s)
- A N Round
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
8
|
McMaster TJ, Berry M, Corfield AP, Miles MJ. Atomic force microscopy of the submolecular architecture of hydrated ocular mucins. Biophys J 1999; 77:533-41. [PMID: 10388778 PMCID: PMC1300350 DOI: 10.1016/s0006-3495(99)76910-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
High-resolution atomic force microscopy has been applied to the imaging of intact human ocular mucins in a near-physiological buffer. The mucins displayed a range of lengths from several hundred nanometers to several microns. By varying the ionic composition of the imaging environment, it was possible to image molecules rigidly fixed to the substrate and the motion of single molecules across the substrate. From static molecular images, high-resolution line profiles show a variation of up to +/-0.75 nm in thickness along the molecule. This variation is localized in regions of several tens of nanometers. It is interpreted in terms of the varying glycosylation along the mucin and is consistent with the known size of oligosaccharides in ocular mucins. The dynamic images indicate the possibility of following mucin interactions in situ.
Collapse
Affiliation(s)
- T J McMaster
- H. H. Wills Physics Laboratory, University of Bristol, Bristol BS8 1TL, England.
| | | | | | | |
Collapse
|
9
|
Chapter 11 Human mucosal mucins in diseases. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/s0167-7306(08)60297-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
|
10
|
Samet JM, Cheng PW. The role of airway mucus in pulmonary toxicology. ENVIRONMENTAL HEALTH PERSPECTIVES 1994; 102 Suppl 2:89-103. [PMID: 7925190 PMCID: PMC1567079 DOI: 10.1289/ehp.9410289] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Airway mucus is a complex airway secretion whose primary function as part of the mucociliary transport mechanism is to to serve as renewable and transportable barrier against inhaled particulates and toxic agents. The rheologic properties necessary for this function are imparted by glycoproteins, or mucins. Some respiratory disease states, e.g., asthma, cystic fibrosis, and bronchitis, are characterized by quantitative and qualitative changes in mucus biosynthesis that contribute to pulmonary pathology. Similar alterations in various aspects of mucin biochemistry and biophysics, leading to mucus hypersecretion and altered mucus rheology, result from inhalation of certain air pollutants, such as ozone, sulfur dioxide, nitrogen dioxide, and cigarette smoke. The consequences of these pollutant-induced alterations in mucus biology are discussed in the context of pulmonary pathophysiology and toxicology.
Collapse
Affiliation(s)
- J M Samet
- Center for Environmental Medicine and Lung Biology, University of North Carolina at Chapel Hill
| | | |
Collapse
|
11
|
Slayter HS, Wold JK, Midtvedt T. Intestinal mucin of germ-free rats. Biochemical and electron-microscopic characterization. Carbohydr Res 1991; 222:1-9. [PMID: 1813101 DOI: 10.1016/0008-6215(91)89001-v] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Purified germ-free rat intestinal mucin was found by chemical analysis to contain 25% protein, enriched in serine, threonine, and proline, 75% carbohydrate, and no nucleic acid. It was analyzed by darkfield electron microscopy and found to consist of long filamentous molecules with a maximum length of approximately 740 nm, a mean length of 456 nm, and a mean width of 7 nm. Given reasonable assumptions derived from earlier work on other well-characterized mucins, the molecular weight of the peptide, calculated by the length from electron microscopy, was 200,000, and, given the chemical composition, the molecular weight of the entire mucin molecule was calculated to be approximately 800,000.
Collapse
Affiliation(s)
- H S Slayter
- Department of Cellular and Molecular Physiology, Harvard Medical School, Boston, MA 02115
| | | | | |
Collapse
|
12
|
Sheehan JK, Thornton DJ, Somerville M, Carlstedt I. Mucin structure. The structure and heterogeneity of respiratory mucus glycoproteins. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1991; 144:S4-9. [PMID: 1892325 DOI: 10.1164/ajrccm/144.3_pt_2.s4] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Respiratory mucus glycoproteins purified from both "normal" respiratory secretions and sputa of patients with a variety of hypersecretory conditions are high Mr linear molecules adopting a random coil configuration in solution. Studies on their polydispersity show them to have an Mr in the range 3 to 32 x 10(6) and a distribution of length from 200 nm to beyond 10 microns. These macromolecules are fragmented by reduction of intermolecular disulfide bonds into subunits, with Mr approximately 2 x 10(6) and length from 200 to 600 nm. Reduction not only cleaves the mucin molecule but opens, presumably by breaking intramolecular disulfide bonds, cryptic "naked" protein regions. Trypsin digestion of subunits yields high Mr glycopeptides (Mr, 300 to 500,000), presumably by cleavage of the peptide core within the unfolded "naked" protein domains. Respiratory mucus glycoproteins from infected sputum samples are usually heterogeneous in CsCl density gradients, in contrast to those from "normal" tracheobronchial secretions. The former are characterized by the presence of a number of different mucin species, and the basis for the separation of these mucins appears to be the variable presence of sialic acid and sulfate moieties in the oligosaccharide clusters. This heterogeneity may reflect a difference in cellular origin of the mucins and also may be clinically significant.
Collapse
Affiliation(s)
- J K Sheehan
- Department of Biochemistry & Molecular Biology, University of Manchester, United Kingdom
| | | | | | | |
Collapse
|
13
|
Porchet N, Dufosse J, Audie JP, Duperat VG, Perini JM, Nguyen VC, Degand P, Aubert JP. Structural features of the core proteins of human airway mucins ascertained by cDNA cloning. THE AMERICAN REVIEW OF RESPIRATORY DISEASE 1991; 144:S15-8. [PMID: 1892320 DOI: 10.1164/ajrccm/144.3_pt_2.s15] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Tracheobronchial secretions are one of the most important elements of the mucociliary system that protects the respiratory mucosa. They contain bronchial mucus, which is composed of a group of macromolecules secreted by the goblet cells of the epithelium and the submucosal glands. Bronchial mucins are the most characteristic molecules of this mucus. They form a group of complex, polydispersed O-linked glycoproteins containing sugars, which make up 80% of their weight. The protein core of human airway mucin has been difficult to sequence by traditional technologies because of its high content of serine and threonine residues linked to numerous oligosaccharide chains. We therefore prepared a lambda gt11 cDNA library from one sample of human tracheobronchial mucosa and screened this library with a polyclonal antibody directed against the apopeptides of human bronchial mucins. We obtained 20 positive clones that were sequenced. These sequences were classified into three different types. The use of the nucleotide probes from these clones in Northern blot analysis showed that the RNA messages were extremely polydispersed. At the current time, four of these probes allow us to map human tracheobronchial mucins genes to at least three different chromosomes. These results suggest that the peptide moiety of the human airway mucin is very heterogeneous.
Collapse
|
14
|
Aubert JP, Porchet N, Crepin M, Duterque-Coquillaud M, Vergnes G, Mazzuca M, Debuire B, Petitprez D, Degand P. Evidence for different human tracheobronchial mucin peptides deduced from nucleotide cDNA sequences. Am J Respir Cell Mol Biol 1991; 5:178-85. [PMID: 1892649 DOI: 10.1165/ajrcmb/5.2.178] [Citation(s) in RCA: 89] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Highly glycosylated regions or glycopeptides were obtained by proteolysis of human tracheobronchial mucins. They were chemically deglycosylated and the resulting products were used to raise a rabbit antiserum. This antiserum specifically recognized the superanuclear region of respiratory and colonic goblet cells as areas around and below the nucleus of mucin-secreting cells in tracheobronchial mucous glands. A lambda gt11 cDNA library constructed from human tracheobronchial mucosa was screened with this antiserum. Ten positive clones were obtained from screening half of the library (about 10(6) recombinants). The antibodies were purified by absorption to each positive clone; some purified antibodies were specific for goblet cells and others recognized both goblet and mucous cells, indicating that there is differential cellular expression of mucin peptides. The total or partial amino acid sequences deduced from these cDNA clones could be classified into three groups. The first group contained repetitive sequences of eight amino acid residues, almost perfectly identical, and in different arrangements. The second type exhibited homology at their amino and carboxy-terminal ends. The last group had no distinctive feature except for a high content of hydroxy amino acids typical of mucins. Five different clones could correspond to the carboxy-terminal end of tracheobronchial apomucins. These results indicate that human tracheobronchial apomucins consist of a family of different proteins.
Collapse
|
15
|
Hydrolysis of xanthan in dilute acid: Effects on chemical composition, conformation, and intrinsic viscosity. Carbohydr Res 1991. [DOI: 10.1016/s0008-6215(00)90530-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Thornton DJ, Sheehan JK, Lindgren H, Carlstedt I. Mucus glycoproteins from cystic fibrotic sputum. Macromolecular properties and structural 'architecture'. Biochem J 1991; 276 ( Pt 3):667-75. [PMID: 2064605 PMCID: PMC1151057 DOI: 10.1042/bj2760667] [Citation(s) in RCA: 55] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Mucus glycoproteins (mucins) were isolated from sputum of patients with cystic fibrosis (CF) after separation into sol and gel phases. The mucus gel was solubilized with gentle stirring in 6 M-guanidinium chloride supplemented with proteinase inhibitors, and purification of mucins was subsequently achieved by isopycnic density-gradient centrifugation in CsCl/guanidinium chloride. Density-gradient centrifugation also revealed a heterogeneity of the macromolecules, the pattern of which varied between individuals, and mucins from the gel phase was pooled as 'heavy' and 'light' fractions. Gel chromatography on Sepharose CL-2B showed that the heavy fraction contained a larger proportion of smaller species than the 'light' fraction and that the gel phase mucins were much larger than those from the sol. An apparently homogeneous high-Mr mucin population from one individual contained approx. 70% (w/w) carbohydrate, the major sugars being N-acetylglucosamine (17.8%), N-acetylgalactosamine (6.7%), galactose (20.7%), fucose (13.2%) and sialic acid (11.4%). These mucins had an S020.w of 47 S, and an Mr of 15 x 10(6) -20 x 10(6), and rate-zonal centrifugation revealed a polydisperse size distribution [range (5-30) x 10(6)] with a weight-average Mr of 17 x 10(6). The whole mucins were visualized with electron microscopy as linear and apparently flexible threads, disperse in size. Reduction produced subunits which were included on Sepharose CL-2B, and subsequent trypsin digestion yielded high-Mr glycopeptides which were further retarded. The size distributions and fragmentation patterns of mucin from two other CF patients were the same, as studied by gel chromatography, rate-zonal centrifugation and electron microscopy. We conclude that CF mucins are heterogeneous in both size and buoyant density and that the various populations, though differing in buoyant density, share the same architecture and macromolecular properties and are, in this respect, similar to mucins from normal respiratory secretions [Thornton, Davies, Kraayenbrink, Richardson, Sheehan & Carlstedt (1990) Biochem. J. 265, 179-186] and human cervical mucus [Carlstedt & Sheehan (1989) SEB Symp. XLIII 289-316].
Collapse
Affiliation(s)
- D J Thornton
- Department of Biochemistry and Molecular Biology, University of Manchester, U.K
| | | | | | | |
Collapse
|
17
|
Davies JR, Gallagher JT, Richardson PS, Sheehan JK, Carlstedt I. Mucins in cat airway secretions. Biochem J 1991; 275 ( Pt 3):663-9. [PMID: 1903925 PMCID: PMC1150106 DOI: 10.1042/bj2750663] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mucous secretions were obtained from cat tracheas that had received [3H]glucose and [35S]sulphate to radiolabel mucus glycoproteins biosynthetically. Samples were collected under resting ('basal') conditions as well as after pilocarpine stimulation and were separated into gel and sol phases by centrifugation. Macromolecules were partially purified by using gel chromatography on Sepharose CL-4B, and the species that were eluted with the void volume were then separated into two major populations with isopycnic density-gradient centrifugation in CsCl. The major component from the gel phase of pilocarpine-induced secretions had a buoyant density typical of mucins and was observed as linear and apparently flexible chains by electron microscopy. Reduction of disulphide bonds gave subunits that could be further cleaved by trypsin digestion into components of approximately the same size as the high-Mr glycopeptides obtained from other mucins after this treatment. In contrast, the dominant species in the gel phase of the 'basal' secretion had a significantly higher buoyant density than expected for mucins and was largely unaffected by reduction, as studied by gel chromatography. The macromolecules were fragmented by trypsin, suggesting that they contain a polypeptide backbone. This more dense component also predominated in the sol phase both from the 'basal' secretions and from the pilocarpine-released secretions. Digestion with DNAase, chondroitin ABC lyase or heparan sulphate lyase had no effect, which shows that this component is not DNA, a dermatan sulphate/chondroitin sulphate or a heparan sulphate proteoglycan. In contrast, endo-beta-galactosidase and keratanase caused some fragmentation, suggesting that the molecules contain some linkages of the poly-(N-acetyl-lactosamine) type, although the degradation was not as extensive as expected for keratan sulphate. Treatment with alkaline borohydride resulted in extensive fragmentation of the high-Mr glycopeptides from both components, indicating that the glycans were oligosaccharides that were probably O-linked. The monosaccharide compositions of both components were consistent with that expected for mucins. The data are in keeping with the major component from the pilocarpine-stimulated gel secretions being a mucus glycoprotein and the more dense component being a mucin-like molecule, possibly related to the keratanase-sensitive material isolated from canine trachea by Varsano, Basbaum, Forsberg, Borson, Caughey & Nadel [(1987) Exp. Lung Res. 13, 157-184].
Collapse
Affiliation(s)
- J R Davies
- Department of Physiology, St. George's Hospital and Medical School, London, U.K
| | | | | | | | | |
Collapse
|
18
|
Perini JM, Vandamme-Cubadda N, Aubert JP, Porchet N, Mazzuca M, Lamblin G, Herscovics A, Roussel P. Multiple apomucin translation products from human respiratory mucosa mRNA. EUROPEAN JOURNAL OF BIOCHEMISTRY 1991; 196:321-8. [PMID: 1706661 DOI: 10.1111/j.1432-1033.1991.tb15820.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Poly(A)-rich RNA was purified from a pool of five human tracheobronchial mucosa. After in vitro translation in a reticulocyte lysate and immunoprecipitation of the translated products, using either a polyclonal antiserum or a monoclonal antibody to deglycosylated respiratory mucin peptides, the products were characterized by SDS/PAGE. The respiratory mucin precursors migrated as a very large smear from almost the top of the resolving polyacrylamide gel to an area corresponding to a molecular mass of about 100 kDa. After hybridization with mucin cDNA probe TH 29 described by Crepin et al. [Crepin, M., Porchet, N., Aubert, J. P. & Degand, P. (1990) Biorheology 27, 471-484] respiratory mucin mRNAs also appeared polydisperse. Although degradation or incomplete translation of high-molecular-mass mRNA cannot be entirely ruled out, these results suggest that human respiratory apomucins consist of a family of peptides which share some common epitopes. This possibility is in agreement with (a) the diversity of mucin precursors observed previously with pulse/chase experiments performed with explants of human respiratory mucosa and (b) the polydispersity of secreted respiratory mucins observed by electron microscopy.
Collapse
Affiliation(s)
- J M Perini
- Unité No 16 de l'Institut National de la Santé et de la Recherche Médicale and Groupement de Recherche No 139, Centre National de la Recherche Scientifique, Lille, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Thornton DJ, Davies JR, Kraayenbrink M, Richardson PS, Sheehan JK, Carlstedt I. Mucus glycoproteins from 'normal' human tracheobronchial secretion. Biochem J 1990; 265:179-86. [PMID: 2302164 PMCID: PMC1136628 DOI: 10.1042/bj2650179] [Citation(s) in RCA: 101] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Mucous secretions were collected from tracheas of patients undergoing minor surgery under general anaesthesia with tracheal intubation, and mucus glycoproteins were isolated by using isopycnic density-gradient centrifugation in CsCl/guanidinium chloride. 'Whole' mucins were excluded from a Sepharose CL-2B gel, whereas subunits obtained after reduction were included. Trypsin digestion of subunits afforded high-Mr glycopeptides (T-domains), which were further included in the gel. The latter fragments are heterogeneous and comprise two or three populations, as indicated by gel chromatography and ion-exchange h.p.l.c. Rate-zonal centrifugation showed that the 'whole' mucins are polydisperse in size, with a weight-average Mr of (14-16) x 10(6). The macromolecules were observed by electron microscopy, as linear and apparently flexible thread-like structures. Subunits and T-domains had weight-average contour lengths of 490 nm and 160 nm respectively. It is concluded that mucus glycoproteins are present in secretions from the healthy lower respiratory tract. The 'whole' tracheal mucins are assembled from subunits, which in turn can be fragmented into high-Mr glycopeptides corresponding to the oligosaccharide domains typically found in mucus glycoproteins. The size and macromolecular architecture of the tracheal mucins is thus similar to that observed for mucins from human cervical mucus, chronic bronchitic sputum and pig stomach, providing yet another example of this general design of these macromolecules, i.e. subunits assembled end-to-end into very large linear and flexible macromolecules.
Collapse
Affiliation(s)
- D J Thornton
- Department of Biochemistry and Molecular Biology, University of Manchester, U.K
| | | | | | | | | | | |
Collapse
|
20
|
Sheehan JK, Carlstedt I. Electron microscopy of cervical-mucus glycoproteins and fragments therefrom. The use of colloidal gold to make visible 'naked' protein regions. Biochem J 1990; 265:169-77. [PMID: 2302163 PMCID: PMC1136627 DOI: 10.1042/bj2650169] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Subunits of human cervical-mucus glycoproteins obtained by reductive cleavage of whole mucins and high-Mr glycopeptides (T-domains) obtained after their trypsin digestion were studied with electron microscopy after spreading the macromolecules in a monolayer of benzyldimethylalkylammonium chloride. Subunits were observed as linear and apparently flexible particles, with number- and weight-average lengths of 390 nm and 460 nm respectively. T-domains randomly distributed on the grid have number- and weight-average lengths of 90 nm and 103 nm respectively, whereas when aligned (possibly stretched by flow) they were longer, with number-average and weight-average lengths of 150 nm and 170 nm respectively. Subunits complexed with gold appeared as segmented structures, with a distribution of inter-gold distances similar to the length distribution for the relaxed T-domains. The whole mucins had few binding sites for gold, suggesting that reduction exposes hydrophobic protein-rich regions with high affinity for gold. Most T-domains had a binding site at one end, indicating the presence of a residual protruding naked peptide region. We conclude that mucins are assembled from subunits joined end-to-end, and that each subunit consists of alternating oligosaccharide 'clusters' (approx. 100 nm) and naked peptide regions which have (after reduction) a high affinity for colloidal gold.
Collapse
Affiliation(s)
- J K Sheehan
- Department of Biochemistry and Molecular Biology, University of Manchester, U.K
| | | |
Collapse
|
21
|
Chace KV, Naziruddin B, Desai VC, Flux M, Sachdev GP. Physical properties of purified human respiratory mucus glycoproteins: effects of sodium chloride concentration on the aggregation properties and shape. Exp Lung Res 1989; 15:721-37. [PMID: 2806194 DOI: 10.3109/01902148909062857] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The biophysical properties of purified native (nonreduced) mucus glycoproteins (mucins) isolated from lung mucus secretions of cystic fibrosis (CF) patients and subjects with normal lungs were studied using the technique of light scattering. The effects of different NaCl concentrations and 6 M guanidine hydrochloride on the molecular size of mucins, their ability to form aggregates, and their shape were investigated. Under the concentration range studied (0.05-3.5 mg/ml), in buffered 0.03 and 0.01 M NaCl, the CF mucins had higher molecular weights (12.2 x 10(6) to 17.1 x 10(6) and 9.5 x 10(6) to 10.4 x 10(6), respectively) than those observed in buffered 0.15 M NaCl (4.3 x 10(6) to 6.6 x 10(6]. These results were interpreted in terms of CF mucins self-aggregating in buffered 0.03 and 0.01 M NaCl. In contrast, in the both buffered 0.3 and 0.15 M NaCl, the normal respiratory mucins had molecular weights of 6.3 x 10(6) to 8.6 x 10(6), thus suggesting the absence of normal mucin aggregation in buffered 0.03 M NaCl. In the presence of 6 M guanidine HCl both CF and normal mucins had molecular weights of about 5 x 10(6) and showed more extended structure (i.e., larger radius of gyration) than in the presence of 0.03 or 0.15 M NaCl. Studies of the relationship of the light scattering intensity with scattering angle showed that, under the above experimental conditions studied, both CF and normal respiratory mucins were polydisperse flexible coil-shaped molecules. The increased aggregation of CF mucins observed at lower salt concentrations may alter the viscoelastic properties of CF lung mucus secretions.
Collapse
Affiliation(s)
- K V Chace
- College of Pharmacy, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | | | | | | | |
Collapse
|
22
|
Stokke BT, Foss P, Christensen BE, Kierulf C, Sutherland IW. Long-term storage of xanthan in seawater at elevated temperature: physical dimensions and chemical composition of degradation products. Int J Biol Macromol 1989; 11:137-44. [PMID: 2489073 DOI: 10.1016/0141-8130(89)90057-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Commercial xanthan and xanthan from Xanthomonas strain 646 produced in the laboratory have been subjected to heat treatment for various periods of time in oxygen depleted, high salinity, aqueous solutions. Both the viscosity and the carbohydrate content decreased with increasing incubation time at a specified temperature. The losses increased with increasing temperature. Data from electron micrographs and dialysable sugar content indicate that random cleavage of the double-stranded xanthan chain is the main mechanism responsible for the decreasing viscosity. Removal of pyruvate and acetate substituents on the side chains was apparently not related to the change in physical dimensions. The mannose/glucose ratio in the non-diffusible fraction decreased with incubation time, apparently not related to change in physical dimensions. Electron micrographs showed that one of the samples appeared as highly aggregated in the native condition. After 1 month at 80 degrees C, we observed that the aggregates had dissolved and that the viscosity had increased fivefold. This suggests that heat treatment can be used to avoid microgels and to obtain higher viscosifying power of the native xanthan.
Collapse
Affiliation(s)
- B T Stokke
- Institute of Physics/Institute of Biotechnology, University of Trondheim, Norway
| | | | | | | | | |
Collapse
|
23
|
Affiliation(s)
- S E Harding
- Department of Applied Biochemistry and Food Science, University of Nottingham, Sutton, Bonington, England
| |
Collapse
|
24
|
Roussel P, Lamblin G, Lhermitte M, Houdret N, Lafitte JJ, Perini JM, Klein A, Scharfman A. The complexity of mucins. Biochimie 1988; 70:1471-82. [PMID: 3149516 DOI: 10.1016/0300-9084(88)90284-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mucins represent the main components of gel-like secretions, or mucus, secreted by mucosae or some exocrine glands. These high-molecular-weight glycoproteins are characterized by the large number of carbohydrate chains O-glycosidically linked to the peptide. The determination of mucin molecular weight and conformation has been controversial for several reasons: 1) the methods used to solubilize mucus and to purify mucins are different and 2) the molecules have a strong tendency to aggregate or to bind to other molecules (peptides or lipids). Recently, electron microscopy has shown the filamentous shape of most mucins and their polydisperse character which, in some secretions, might correspond to a polymorphism of the peptide part of these molecules. The recent development of high pressure liquid chromatography and high-resolution proton NMR spectroscopy has allowed major progress in the structural study of mucin carbohydrate chains. These chains may have from 1 to about 20 sugars and bear different antigenic determinants, such as A, B, H, I, i, X, Y or Cad antigens. In some mucins, such as human respiratory mucins, the carbohydrate chain diversity is remarkable, which raises many questions. Mucins are molecules located at the interface between mucosae and the external environment. The carbohydrate chain diversity might allow many interactions between mucins and microorganisms and play a major role in the colonization or the defense of mucosae.
Collapse
|
25
|
Marianne T, Perini JM, Lafitte JJ, Houdret N, Pruvot FR, Lamblin G, Slayter HS, Roussel P. Peptides of human bronchial mucus glycoproteins. Size determination by electron microscopy and by biosynthetic experiments. Biochem J 1987; 248:189-95. [PMID: 2449163 PMCID: PMC1148517 DOI: 10.1042/bj2480189] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Secreted human bronchial mucins, directly collected from macroscopically healthy bronchial mucosa, were prepared in the presence of six proteinase inhibitors, and analysed by electron microscopy. These mucins were similar in length distribution to molecules prepared from sputum [Slayter, Lamblin, Le Treut, Galabert, Houdret, Degand & Roussel (1984) Eur. J. Biochem. 142, 209-218], although they were a little longer, their lengths ranging up to about 1,650 nm. This length corresponds to an extended mucin peptide of about 450 kDa. In order to compare these peptide lengths with the molecular size of biosynthetic precursors, an antiserum raised against trifluoromethanesulphonic acid-treated highly glycosylated regions of human bronchial mucins was used to isolate mucin precursors synthesized in explants of human bronchial mucosa during pulse-labelling with [3H]threonine or [3H]glucosamine. A main precursor labelled with [3H]threonine and with an apparent molecular mass of about 400 kDa was detected by fluorography following SDS/polyacrylamide-gel electrophoresis. This band was observed as early as 20 min; it was more intense after a 40 min chase and had disappeared after a chase period of 280 min in unlabelled medium, presumably owing to glycosylation. Much fainter bands at about 200 kDa and between 200 and 400 kDa, also labelled with [3H]threonine, were observed mainly after a 40 min chase and had disappeared after a 280 min chase. None of these bands was labelled with [3H]glucosamine, nor did they disappear after multiple treatments with immobilized lectins. After a 280 min chase, [3H]threonine-labelled material appeared in the stacking gel, which also contained [3H]glucosamine label. The results indicate that the 200-400 kDa species are mucin precursors, whose size is comparable with that obtained by electron microscopy for respiratory mucins collected directly from the macroscopically healthy bronchial mucosa.
Collapse
|
26
|
Sheehan JK, Carlstedt I. Size heterogeneity of human cervical mucus glycoproteins. Studies performed with rate-zonal centrifugation and laser light-scattering. Biochem J 1987; 245:757-62. [PMID: 3663189 PMCID: PMC1148195 DOI: 10.1042/bj2450757] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Mucus glycoproteins (mucins) from cervical pregnancy mucus were fractionated by using rate-zonal centrifugation in a gradient of guanidinium chloride. The distribution of the macromolecules, as assessed by using sialic acid determination, suggested the presence of three populations of different size. Individual fractions were subjected to laser light-scattering performed as total-intensity measurements as well as photon correlation spectroscopy. The results showed that points of inflexion were present in the distribution of both Mr and DT (translational diffusion coefficient) and that the three populations have Mr values of approx. 24 X 10(6), 16 X 10(6) and 6 X 10(6) respectively. The weight-average Mr for the whole distribution, as calculated from the values obtained for the individual fractions, was 13.6 X 10(6), which is in good agreement with that found for the unfractionated material (11.1 X 10(6]. Plots of log RG (radius of gyration) and log (1/DT) versus log Mr are in keeping with the macromolecules being linear flexible chains.
Collapse
Affiliation(s)
- J K Sheehan
- Department of Biological Sciences, University of Lancaster, U.K
| | | |
Collapse
|
27
|
Stokke BT, Elgsaeter A, Skjåk-Braek G, Smidsrød O. The molecular size and shape of xanthan, xylinan, bronchial mucin, alginate, and amylose as revealed by electron microscopy. Carbohydr Res 1987; 160:13-28. [PMID: 3567991 DOI: 10.1016/0008-6215(87)80300-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Electron microscopy of some selected, vacuum-dried and rotary-shadowed, polyelectrolytic polysaccharides and glycoproteins adsorbed to mica indicates that this technique can yield reliable information about polymer conformation for chains with persistence lengths q exceeding about 10 nm. Statistical analyses of the local polymer tangent-direction yield q = 150 nm for double-stranded xanthan, q = 60 nm for single-stranded xanthan, q = 45 nm for xylinan, q = 16 nm for alginate (90% beta-D-mannuronic acid), and q = 15 nm for human-bronchial mucin. These values are all in adequate agreement with values of q obtained by using other techniques. Amylose, on the other hand, appears as non-randomly aligned chains. The observed contour lengths of amylose indicate a mass per unit length of 1440 dalton/nm, consistent with a pseudo-helical conformation.
Collapse
|
28
|
Sheehan JK, Oates K, Carlstedt I. Electron microscopy of cervical, gastric and bronchial mucus glycoproteins. Biochem J 1986; 239:147-53. [PMID: 3800974 PMCID: PMC1147252 DOI: 10.1042/bj2390147] [Citation(s) in RCA: 126] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mucus glycoproteins (mucins) were obtained from human cervical and pig gastric mucus as well as from chronic-bronchitic sputum after low-shear extraction. The mucus gel was solubilized in guanidinium chloride supplemented with proteinase inhibitors, and the macromolecules were purified by using isopycnic density-gradient centrifugation. The macromolecules were spread in monolayers of benzyldimethylalkyl-ammonium chloride and studied with electron microscopy after staining with uranyl acetate and/or shadowing with platinum/carbon. The mucins appeared as flexible linear threads with lengths varying from approx. 200 nm to about 400 nm. No regularly branched or star-shaped structures were observed. The macromolecular architecture of cervical, respiratory and gastric mucins is thus similar.
Collapse
|
29
|
|