1
|
Xu H, Zhang H, Qin C, Li X, Xu D, Zhao Y. Groundwater Cr(VI) contamination and remediation: A review from 1999 to 2022. CHEMOSPHERE 2024; 360:142395. [PMID: 38797207 DOI: 10.1016/j.chemosphere.2024.142395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Hexavalent chromium (Cr(VI)) contamination of groundwater has traditionally been an environmental issue of great concern due to its bioaccumulative and highly toxic nature. This paper presents a review and bibliometric analysis of the literature on the interest area "Cr(VI) in groundwater" published in the Web of Science Core Collection from 1999 to 2022. First, information on 203 actual Cr(VI)-contaminated groundwater sites around the world was summarized, and the basic characteristics of the sources and concentrations of contamination were derived. 68.95% of the sites were due to human causes and 56.43% of these sites had Cr(VI) concentrations in the range of 0-10 mg/L. At groundwater sites with high Cr(VI) contamination due to natural causes, 75.00% of the sites had Cr(VI) concentrations less than 0.2 mg/L. A total of 936 papers on "Cr(VI) in groundwater" were retrieved for bibliometric analysis: interest in research on Cr(VI) in groundwater has grown rapidly in recent years; 59.4% of the papers were published in the field of environmental sciences. A systematic review of the progress of studies on the Cr(VI) removal/remediation based on reduction, adsorption and biological processes is presented. Out of 666 papers on Cr(VI) removal/remediation, 512, 274, and 75 papers dealt with the topics of reduction, adsorption, and bioremediation, respectively. In addition, several studies have demonstrated the potential applicability of natural attenuation in the remediation of Cr(VI)-contaminated groundwater. This paper will help researchers to understand and investigate methodological strategies to remove Cr(VI) from groundwater in a more targeted and effective manner.
Collapse
Affiliation(s)
- Huichao Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Hui Zhang
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Chuanyu Qin
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Xiaoyu Li
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Dan Xu
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China
| | - Yongsheng Zhao
- Key Laboratory of Groundwater Resources and Environment of Ministry of Education, College of New Energy and Environment, Jilin University, Changchun, 130021, China; National and Local Joint Engineering Laboratory for Petrochemical Contaminated Site Control and Remediation Technology, Jilin University, Changchun, 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, College of New Energy and Environment, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Wu M, Xu Y, Zhao C, Huang H, Liu C, Duan X, Zhang X, Zhao G, Chen Y. Efficient nitrate and Cr(VI) removal by denitrifier: The mechanism of S. oneidensis MR-1 promoting electron production, transportation and consumption. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133675. [PMID: 38508109 DOI: 10.1016/j.jhazmat.2024.133675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/21/2024] [Accepted: 01/29/2024] [Indexed: 03/22/2024]
Abstract
When Cr(VI) and nitrate coexist, the efficiency of both bio-denitrification and Cr(VI) bio-reduction is poor because chromate hinders bacterial normal functions (i.e., electron production, transportation and consumption). Moreover, under anaerobic condition, the method about efficient nitrate and Cr(VI) removal remained unclear. In this paper, the addition of Shewanella oneidensis MR-1 to promote the electron production, transportation and consumption of denitrifier and cause an increase in the removal of nitrate and Cr(VI). The efficiency of nitrate and Cr(VI) removal accomplished by P. denitrificans as a used model denitrifier increased respectively from 51.3% to 96.1% and 34.3% to 99.8% after S. oneidensis MR-1 addition. The mechanism investigations revealed that P. denitrificans provided S. oneidensis MR-1 with lactate, which was utilized to secreted riboflavin and phenazine by S. oneidensis MR-1. The riboflavin served as coenzymes of cellular reductants (i.e., thioredoxin and glutathione) in P. denitrificans, which created favorable intracellular microenvironment conditions for electron generation. Meanwhile, phenazine promoted biofilm formation, which increased the adsorption of Cr(VI) on the cell surface and accelerated the Cr(VI) reduction by membrane bound chromate reductases thereby reducing damage to other enzymes respectively. Overall, this strategy reduced the negative effect of chromate, thus improved the generation, transportation, and consumption of electrons. SYNOPSIS: The presence of S. oneidensis MR-1 facilitated nitrate and Cr(VI) removal by P. denitrificans through decreasing the negative effect of chromate due to the metabolites' secretion.
Collapse
Affiliation(s)
- Meirou Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yanan Xu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chunxia Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Haining Huang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xu Duan
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Xuemeng Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Guohua Zhao
- School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| |
Collapse
|
3
|
Goethite and riboflavin synergistically enhance Cr(VI) reduction by Shewanella oneidensis MR-1. Biodegradation 2023; 34:155-167. [PMID: 36592293 DOI: 10.1007/s10532-022-10010-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 12/14/2022] [Indexed: 01/03/2023]
Abstract
Bioreduction of Cr(VI) is cost-effective and environmentally friendly, however, the slow bioreduction rate limits its application. In this study, the potential synergistic enhancement of Cr(VI) bioreduction by shewanella oneidensis MR-1 (S. oneidensis) with goethite and riboflavin (RF) was investigated. The results showed that the S. oneidensis reaction system reduce 29.2% of 20 mg/L Cr(VI) after 42 h reaction, while the S. oneidensis/goethite/RF reaction system increased the Cr(VI) reduction rate to 87.74%. RF as an efficient electron shuttle and Fe(II) from goethite bioreduction were identified as the crucial components in Cr(VI) reduction. XPS analysis showed that the final precipitates of Cr(VI) reduction were Cr(CH3C(O)CHC(O)CH3)3 and Cr2O3 and adhered to the bacterial cell surface. In this process, the microbial surface functional groups such as hydroxyl and carboxyl groups participated in the adsorption and reduction of Cr(VI). Meanwhile, an increase in cytochrome c led to an increase in electron transfer system activity (ETSA), causing a significant enhancement in extracellular electron transfer efficiency. This study provides insight into the mechanism of Cr(VI) reduction in a complex environment where microorganisms, iron minerals and RF coexist, and the synergistic treatment method of Fe(III) minerals and RF has great potential application for Cr(VI) detoxification in aqueous environment.
Collapse
|
4
|
Wang JF, Zhou HZ, Tang GH, Huang JW, Liu H, Cai ZX, He ZW, Zhu H, Song XS. Reducing the inhibitive effect of fluorine and heavy metals on nitrate reduction by hydroxyapatite substrate in constructed wetlands. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130692. [PMID: 36586330 DOI: 10.1016/j.jhazmat.2022.130692] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/09/2022] [Accepted: 12/27/2022] [Indexed: 06/17/2023]
Abstract
Bio-toxic inorganic pollutants, e.g., fluorine (F) and heavy metals (HMs), in wastewaters are the potential threats to nitrate (NO3--N) reduction by microorganisms in constructed wetlands (CWs). Selection of suitable substrate with high F and HMs adsorption efficiency and capacity is a potential alternative for simultaneous removal of these pollutants in CWs. Herein, this study investigated the feasibility of applying hydroxyapatite (HA)-gravel media for F and HMs adsorption and its effect on NO3--N reduction in CWs (HA CWs) by comparing the CWs filled with gravel substrate (CK CWs). The results indicated that the removal efficiency of F, Cr, As, and NO3--N in HA CWs increased by 113.6-, 3.3-, 2.7-, and 0.6-folds, respectively, compared to CK CWs. The NO3--N reduction rate decreased by 11-46% in CK CWs after the presence of F and HMs in influent, while for HA CWs, it was only 13-22%. Excellent F and HMs adsorption capacity of HA substrate availed for wetland plants resisting F/HMs toxicity and making catalase activity lower. The HA substrate in CWs resulted in the certain succession of nitrogen-transforming bacteria, e.g., nitrifiers (Nitrospira) and denitrifiers (Thiobacillus and Desulfobacterium). More importantly, key functional genes, including nirK/nirS, korA/korB, ChrA/ChrD, arsA/arsB, catalyzing the processes of nitrogen biotransformation, energy metabolism, NO3--N and metal ions reduction were also enriched in HA CWs. This study highlights HA substrate reduce the inhibitive effect of F and HMs on NO3--N reduction, and provides new insights into how microbiota structurally and functionally respond to different substrates in CWs.
Collapse
Affiliation(s)
- Jun-Feng Wang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Huan-Zhan Zhou
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Guan-Hui Tang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Jia-Wei Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Hai Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ze-Xiang Cai
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhang-Wei He
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Xin-Shan Song
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201600, China.
| |
Collapse
|
5
|
Zhan Y, Chen N, Feng C, Wang H, Wang Y. Does inorganic carbon species alter chromium reduction mechanism in sulfur-based autotrophic biosystem? THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 863:160858. [PMID: 36526198 DOI: 10.1016/j.scitotenv.2022.160858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/10/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Sulfur-based autotrophic bioremediation is recognized as an environmentally-friendly and effective method for the treatment of Cr(VI) in groundwater. However, inorganic carbon (IC), especially IC-rich solid kitchen waste, has rarely been reported as an important factor in the autotrophic process. In China, kitchen waste containing IC is generated in large quantities, and in combination with Cr(VI) autotrophic treatment technology in groundwater can achieve a win-win situation. Herein, the efficiency of Cr(VI)-bioreduction coupling solid inorganic carbon (SIC) (e.g. marble, egg shell, oyster shell, and NSAD synthetic material) and liquid inorganic carbon (LIC) was compared for the first time. After 18 d incubation, there were significant differences in Cr(VI) reduction efficiency and microbial community between SIC-bioreactors and LIC-bioreactors. Higher electron transfer activity, greater bioavailability of organics, and multiple Cr(VI) reductases were detected in SIC-biosystems, which effectively promoted Cr(VI) energy metabolism and enzyme-mediated biological reduction. High-throughput 16S rRNA gene sequencing reveled multiple cooperative mechanism in different substrate biosystems. This study not only advances the understanding of SIC coupled with Cr(VI) autotrophic bioreduction, but also provides new insights for the treatment of solid kitchen waste and groundwater bioremediation.
Collapse
Affiliation(s)
- Yongheng Zhan
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Nan Chen
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China.
| | - Chuanping Feng
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Haishuang Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| | - Yiheng Wang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
6
|
Mosquera-Romero S, Anaya-Garzon J, Garcia-Timermans C, Van Dorpe J, Hoorens A, Commenges-Bernole N, Verbeken K, Rabaey K, Varia J. Combined Gold Recovery and Nanoparticle Synthesis in Microbial Systems Using Fractional Factorial Design. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:83. [PMID: 36615993 PMCID: PMC9824045 DOI: 10.3390/nano13010083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Green synthesis of gold nanoparticles (AuNPs) using microorganisms has been generally studied aiming for high-yield production and morphologies appropriated for various applications, such as bioremediation, (bio)sensors, and (bio)catalysis. Numerous approaches showed the individual effect of factors influencing the synthesis of AuNPs with limited analysis of the governing factors enhancing the production and desired quality of the precipitates. This study proposes a fractional-factorial design to investigate the simultaneous influence of seven environmental factors (cell concentration, temperature, anoxic/oxic conditions, pH, gold concentration, electron donor type, and bacterial species) on the recovery yield and synthesis of targeted AuNPs. Various sizes and morphologies of the AuNPs were obtained by varying the environmental factors studied. The factors with significant effects (i.e., 0.2 mM Au and pH 5) were selected according to statistical analysis for optimal removal of 88.2 ± 3.5% of gold and with the production of valuable 50 nm AuNPs, which are known for their enhanced sensitivity. Implications of the cytochrome-C on the bacterial mechanisms and the provision of electron donors via an electrochemical system are further discussed. This study helps develop gold recovery and nanoparticle synthesis methods, focusing on the determining factor(s) for efficient, low-cost, green synthesis of valuable materials.
Collapse
Affiliation(s)
- Suanny Mosquera-Romero
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
- ESPOL Polytechnic University, Escuela Superior Politécnica del Litoral, ESPOL, Facultad de Ciencias Naturales y Matemáticas, Campus Gustavo Galindo km. 30.5 Vía Perimetral, Guayaquil P.O. Box 09-01-5863, Ecuador
| | - Juan Anaya-Garzon
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Cristina Garcia-Timermans
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Jo Van Dorpe
- Department of Pathology, Ghent University Hospital, Entrance 23, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Anne Hoorens
- Department of Pathology, Ghent University Hospital, Entrance 23, Corneel Heymanslaan 10, B-9000 Ghent, Belgium
| | - Nadine Commenges-Bernole
- University Grenoble Alpes, University Savoie Mont Blanc, CNRS, Grenoble INP (Institute of Engineering and Management University Grenoble Alpes), LEPMI, 38000 Grenoble, France
| | - Kim Verbeken
- Department of Materials, Textiles and Chemical Engineering, Ghent University, Technologiepark-Zwijnaarde 46, B-9052 Gent, Belgium
| | - Korneel Rabaey
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Frieda Saeysstraat 1, B-9000 Ghent, Belgium
| | - Jeet Varia
- Center for Microbial Ecology & Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| |
Collapse
|
7
|
Huang J, Cai XL, Peng JR, Fan YY, Xiao X. Extracellular pollutant degradation feedback regulates intracellular electron transfer process of exoelectrogens: Strategy and mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158630. [PMID: 36084783 DOI: 10.1016/j.scitotenv.2022.158630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/31/2022] [Accepted: 09/05/2022] [Indexed: 06/15/2023]
Abstract
Exoelectrogens possess extraordinary degradation ability to various pollutants through extracellular electron transfer (EET). Compared with extracellular electron release process, intracellular electron transfer network is not yet fully recognized. Especially, controversy remains regarding the role of CymA, an essential electron-transfer hub of Shewanella oneidensis MR-1, in EET process. In this study, we thoroughly surveyed the intracellular transfer strategies during EET through dye decolorization. Loss of CymA severely impaired the reduction ability of S. oneidensis MR-1 to methyl orange (MO), but hardly affected the decolorization of aniline blue (AB). Complement of cymA fully restored the MO decolorization ability of ΔcymA mutant. The contribution of CymA to extracellular decolorization was subjected to MO concentrations. The defect in the decolorization ability of ΔcymA mutant was not evident at low MO concentration, but severe at high MO concentration. Further investigation revealed that EET rate determined the significance of CymA in the extracellular bioremediation by S. oneidensis MR-1. Coupled with MO concentrations increasing from 15 to 120 mg/L, the initial electron transfer rates of S. oneidensis MR-1 increased accordingly from 2.69 × 104 to 11.21 × 104 electrons CFU-1 s-1, which led to a gradual increase of the dependencyCymA. Thus, we first revealed that extracellular degradation performance could feedback regulate the intracellular electron transfer process of S. oneidensis MR-1. This work is helpful to fully understand the complex EET process of exoelectrogens and facilitates the application of exoelectrogens in bioremediation of environmental pollutants.
Collapse
Affiliation(s)
- Jing Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xin-Lu Cai
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Jie-Ru Peng
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Yang-Yang Fan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiang Xiao
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China; School of Resources and Environmental Engineering, Anhui University, Hefei 230601, China.
| |
Collapse
|
8
|
Zhang B, Jiao W. Biochar facilitated bacterial reduction of Cr(VI) by Shewanella Putrefaciens CN32: Pathways and surface characteristics. ENVIRONMENTAL RESEARCH 2022; 214:113971. [PMID: 35952752 DOI: 10.1016/j.envres.2022.113971] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/29/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Biochar can facilitate the microbial reduction of various pollutants in soil and groundwater environments, but its impact on Cr(VI) reduction by dissimilatory metal reducing bacteria (DMRB) remains to be systematically investigated. In this study, we prepared biochars at 500 °C and 700 °C from wheat straw and grass, and investigated the impact of these biochars on Cr(VI) reduction by a model DMRB, Shewanella Putrefaciens CN32 (CN32). Pristine biochars abiotically reduced Cr(VI), which decreased the concentration and toxicity of chromium to CN32 cells, and brought about higher overall Cr(VI) removal extent after CN32 were added sequentially; on the other hand, no enhancement effect were observed when biochars and CN32 were added simultaneously. Further tests between biologically reduced biochars and Cr(VI) revealed that the reaction rates between bioreduced biochars and Cr(VI) are relatively sluggish compared to that of direct Cr(VI) reduction by CN32, which prohibited biochars from directly accelerating the Cr(VI) reduction by CN32 in simultaneous-addition scenario. The relative importance of biochars' surface functional groups and surface areas on their reactivities towards Cr(VI) reduction were also investigated. This study deepened our understanding towards the role of biochar played during bacterial Cr(VI) reduction and could potentially contribute to optimizing the biochar-based Cr(VI) bioremediation strategies.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Lab of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wentao Jiao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
9
|
Tumolo M, Volpe A, Leone N, Cotugno P, De Paola D, Losacco D, Locaputo V, de Pinto MC, Uricchio VF, Ancona V. Enhanced Natural Attenuation of Groundwater Cr(VI) Pollution Using Electron Donors: Yeast Extract vs. Polyhydroxybutyrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159622. [PMID: 35954976 PMCID: PMC9367865 DOI: 10.3390/ijerph19159622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 02/08/2023]
Abstract
Remediation interventions based on the native bacteria’s capability to reduce Cr(VI) represent a valid strategy in terms of economic and environmental sustainability. In this study, a bioremediation test was carried out using viable microcosms set with groundwater and deep soil (4:1), collected from the saturated zone of an industrial site in Southern Italy that was polluted by ~130 µg L−1 of Cr(VI). Conditions simulating the potential natural attenuation were compared to the enhanced natural attenuation induced by supplying yeast extract or polyhydroxybutyrate. Sterile controls were set up to study the possible Cr(VI) abiotic reduction. No pollution attenuation was detected in the unamended viable reactors, whereas yeast extract provided the complete Cr(VI) removal in 7 days, and polyhydroxybutyrate allowed ~70% pollutant removal after 21 days. The incomplete abiotic removal of Cr(VI) was observed in sterile reactors amended with yeast extract, thus suggesting the essential role of native bacteria in Cr(VI) remediation. This was in accordance with the results of Pearson’s coefficient test, which revealed that Cr(VI) removal was positively correlated with microbial proliferation (n = 0.724), and also negatively correlated with pH (n = −0.646), dissolved oxygen (n = −0.828) and nitrate (n = −0.940). The relationships between the Cr(VI) removal and other monitored parameters were investigated by principal component analysis, which explained 76.71% of the total variance.
Collapse
Affiliation(s)
- Marina Tumolo
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
- Department of Biology, University of Bari, 70126 Bari, BA, Italy
- Correspondence: (M.T.); (V.A.)
| | - Angela Volpe
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Natalia Leone
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Pietro Cotugno
- Department of Chemistry, University of Bari, 70126 Bari, BA, Italy
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, Italian National Research Council (IBBR-CNR), 70126 Bari, BA, Italy
| | - Daniela Losacco
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
- Department of Biology, University of Bari, 70126 Bari, BA, Italy
| | - Vito Locaputo
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | | | - Vito Felice Uricchio
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
| | - Valeria Ancona
- Water Research Institute, Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy
- Correspondence: (M.T.); (V.A.)
| |
Collapse
|
10
|
Reductive Cr(VI) Removal under Different Reducing and Electron Donor Conditions—A Soil Microcosm Study. WATER 2022. [DOI: 10.3390/w14142179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Increased groundwater and soil contamination by hexavalent chromium have led to the employment of a variety of detoxification methods. Biological remediation of Cr(VI) polluted aquifers is an eco-friendly method that can be performed in situ by stimulating the indigenous microbial population with organic and inorganic electron donors. In order to study the effect of different redox conditions on microbial remediated Cr(VI) reduction to Cr(III), microcosm experiments were conducted under anaerobic, anoxic, and sulfate-reducing conditions and at hexavalent chromium groundwater concentrations in the 0–3000 μg/L range, with groundwater and soil collected from an industrial area (Inofyta region). As electron donors, molasses, emulsified vegetable oil (EVO), and FeSO4 were employed. To quantitatively describe the degradation kinetics of Cr(VI), pseudo-first-order kinetics were adopted. The results indicate that an anaerobic system dosed with simple or complex external organic carbon sources can lead to practically complete Cr(VI) reduction to Cr(III), while the addition of Fe2+ can further increase Cr(VI) removal rate significantly. Furthermore, Cr(VI) microbial reduction is possible in the presence of NO3− at rates comparable to anaerobic Cr(VI) microbial reduction, while high sulfate concentrations have a negative effect on Cr(VI) bioreduction rates in comparison to lower sulfate concentrations.
Collapse
|
11
|
Chen Z, Zhang J, Lyu Q, Wang H, Ji X, Yan Z, Chen F, Dahlgren RA, Zhang M. Modular configurations of living biomaterials incorporating nano-based artificial mediators and synthetic biology to improve bioelectrocatalytic performance: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153857. [PMID: 35176368 DOI: 10.1016/j.scitotenv.2022.153857] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/24/2022] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Currently, the industrial application of bioelectrochemical systems (BESs) that are incubated with natural electrochemically active microbes (EABs) is limited due to inefficient extracellular electron transfer (EET) by natural EABs. Notably, recent studies have identified several novel living biomaterials comprising highly efficient electron transfer systems allowing unparalleled proficiency of energy conversion. Introduction of these biomaterials into BESs could fundamentally increase their utilization for a wide range of applications. This review provides a comprehensive assessment of recent advancements in the design of living biomaterials that can be exploited to enhance bioelectrocatalytic performance. Further, modular configurations of abiotic and biotic components promise a powerful enhancement through integration of nano-based artificial mediators and synthetic biology. Herein, recent advancements in BESs are synthesized and assessed, including heterojunctions between conductive nanomaterials and EABs, in-situ hybrid self-assembly of EABs and nano-sized semiconductors, cytoprotection in biohybrids, synthetic biological modifications of EABs and electroactive biofilms. Since living biomaterials comprise a broad range of disciplines, such as molecular biology, electrochemistry and material sciences, full integration of technological advances applied in an interdisciplinary framework will greatly enhance/advance the utility and novelty of BESs. Overall, emerging fundamental knowledge concerning living biomaterials provides a powerful opportunity to markedly boost EET efficiency and facilitate the industrial application of BESs to meet global sustainability challenges/goals.
Collapse
Affiliation(s)
- Zheng Chen
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China; Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China.
| | - Jing Zhang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Qingyang Lyu
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Honghui Wang
- School of Environmental Science & Engineering, Tan Kah Kee College, Xiamen University, Zhangzhou 363105, People's Republic of China
| | - Xiaoliang Ji
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Zhiying Yan
- CAS Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, People's Republic of China
| | - Fang Chen
- Fujian Provincial Key Lab of Coastal Basin Environment, Fujian Polytechnic Normal University, Fuqing 350300, People's Republic of China
| | - Randy A Dahlgren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| | - Minghua Zhang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325035, People's Republic of China; Department of Land, Air and Water Resources, University of California, Davis, CA 95616, USA
| |
Collapse
|
12
|
An H, Tian T, Wang Z, Jin R, Zhou J. Role of extracellular polymeric substances in the immobilization of hexavalent chromium by Shewanella putrefaciens CN32 unsaturated biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:151184. [PMID: 34699809 DOI: 10.1016/j.scitotenv.2021.151184] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 10/05/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Microbial remediation provides a promising avenue for the management and restoration of heavy metal-contaminated soils. Microorganisms in soils usually exist within unsaturated biofilms, however, their response to heavy metals is still limited compared to saturated biofilms. This work investigated the Cr(VI) immobilization by Shewanella putrefaciens CN32 unsaturated biofilms, and explored the underlying mechanisms of Cr(VI) complexation. Results reveal a dose-dependent toxicity of Cr(VI) to the growth of the unsaturated biofilms. During the early growth stage, the Cr(VI) addition stimulated more extracellular polymeric substances (EPS) production. In the meantime, the EPS were demonstrated to be the primary components for Cr(VI) immobilization, which accounted for more than 60% of the total adsorbed Cr(VI). The Fourier transform infrared spectra and X-ray photoelectron spectra corroborated that the binding sites for immobilizing Cr(VI) were hydroxyl, carboxyl, phosphoryl and amino functional groups of the proteins and polysaccharides in EPS. However, for the starved unsaturated biofilms, EPS were depleted and the EPS-bound Cr(VI) were released, which caused approximately 60% of the adsorbed Cr(VI) onto cell components and further aggravated the Cr(VI) stress to cells. This work extends our understanding about the Cr(VI) immobilization by unsaturated biofilms, and provides useful information for remediation of heavy metal-contaminated soils.
Collapse
Affiliation(s)
- Hui An
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Tian Tian
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ziting Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, School of Environment Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
13
|
Ri C, Tang J, Liu F, Lyu H, Li F. Enhanced microbial reduction of aqueous hexavalent chromium by Shewanella oneidensis MR-1 with biochar as electron shuttle. J Environ Sci (China) 2022; 113:12-25. [PMID: 34963522 DOI: 10.1016/j.jes.2021.05.023] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/14/2021] [Accepted: 05/14/2021] [Indexed: 06/14/2023]
Abstract
Biochar, carbonaceous material produced from biomass pyrolysis, has been demonstrated to have electron transfer property (associated with redox active groups and multi condensed aromatic moiety), and to be also involved in biogeochemical redox reactions. In this study, the enhanced removal of Cr(VI) by Shewanella oneidensis MR-1(MR-1) in the presence of biochars with different pyrolysis temperatures (300 to 800 °C) was investigated to understand how biochar interacts with Cr(VI) reducing bacteria under anaerobic condition. The promotion effects of biochar (as high as 1.07~1.47 fold) were discovered in this process, of which the synergistic effect of BMBC700(ball milled biochar) and BMBC800 with MR-1 was noticeable, in contrast, the synergistic effect of BMBCs (300-600 °C) with MR-1 was not recognized. The more enhanced removal effect was observed with the increase of BMBC dosage for BMBC700+MR-1 group. The conductivity and conjugated O-containing functional groups of BMBC700 particles themselves has been proposed to become a dominant factor for the synergistic action with this strain. And, the smallest negative Zeta potential of BMBC700 and BMBC800 is thought to favor decreasing the distance from microbe than other BMBCs. The results are expected to provide some technical considerations and scientific insight for the optimization of bioreduction by useful microbes combining with biochar composites to be newly developed.
Collapse
Affiliation(s)
- Cholnam Ri
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; State Academy of Sciences, Institute of Microbiology, Pyongyang, Democratic People's Republic of Korea
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| | - Feng Liu
- Tianjin Eco-Environmental Comprehensive Support Center, Tianjin, 300191, China
| | - Honghong Lyu
- Tianjin Key Laboratory of Clean Energy and pollution control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Fengxiang Li
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, China; Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, Tianjin 300350, China.
| |
Collapse
|
14
|
Moso Bamboo Invasion Reshapes Community Structure of Denitrifying Bacteria in Rhizosphere of Alsophila spinulosa. Microorganisms 2022; 10:microorganisms10010180. [PMID: 35056630 PMCID: PMC8780856 DOI: 10.3390/microorganisms10010180] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/04/2023] Open
Abstract
The uncontrolled invasion of moso bamboo (Phyllostachys pubescens) dramatically alters soil nitrogen cycling and destroys the natural habitat of Alsophila spinulosa. Nevertheless, no clear evidence points out the role of denitrifying bacteria in the invasion of bamboo into the habitat of A. spinulosa. In the present study, we found that low (importance value 0.0008), moderate (0.6551), and high (0.9326) bamboo invasions dramatically altered the underground root biomass of both P. pubescens and A. spinulosa. The root biomass of A. spinulosa was maximal at moderate invasion, indicating that intermediate disturbance might contribute to the growth and survival of the colonized plant. Successful bamboo invasion significantly increased rhizospheric soil available nitrogen content of A. spinulosa, coupled with elevated denitrifying bacterial abundance and diversity. Shewanella, Chitinophaga, and Achromobacter were the primary genera in the three invasions, whereas high bamboo invasion harbored more denitrifying bacteria and higher abundance than moderate and low invasions. Further correlation analysis found that most soil denitrifying bacteria were positively correlated with soil organic matter and available nitrogen but negatively correlated with pH and water content. In addition, our findings illustrated that two denitrifying bacteria, Chitinophaga and Sorangium, might be essential indicators for evaluating the effects of bamboo invasion on the growth of A. spinulosa. Collectively, this study found that moso bamboo invasion could change the nitrogen cycling of colonized habitats through alterations of denitrifying bacteria and provided valuable perspectives for profound recognizing the invasive impacts and mechanisms of bamboo expansion.
Collapse
|
15
|
Santomartino R, Zea L, Cockell CS. The smallest space miners: principles of space biomining. Extremophiles 2022; 26:7. [PMID: 34993644 PMCID: PMC8739323 DOI: 10.1007/s00792-021-01253-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022]
Abstract
As we aim to expand human presence in space, we need to find viable approaches to achieve independence from terrestrial resources. Space biomining of the Moon, Mars and asteroids has been indicated as one of the promising approaches to achieve in-situ resource utilization by the main space agencies. Structural and expensive metals, essential mineral nutrients, water, oxygen and volatiles could be potentially extracted from extraterrestrial regolith and rocks using microbial-based biotechnologies. The use of bioleaching microorganisms could also be applied to space bioremediation, recycling of waste and to reinforce regenerative life support systems. However, the science around space biomining is still young. Relevant differences between terrestrial and extraterrestrial conditions exist, including the rock types and ores available for mining, and a direct application of established terrestrial biomining techniques may not be a possibility. It is, therefore, necessary to invest in terrestrial and space-based research of specific methods for space applications to learn the effects of space conditions on biomining and bioremediation, expand our knowledge on organotrophic and community-based bioleaching mechanisms, as well as on anaerobic biomining, and investigate the use of synthetic biology to overcome limitations posed by the space environments.
Collapse
Affiliation(s)
- Rosa Santomartino
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK.
| | - Luis Zea
- BioServe Space Technologies, University of Colorado Boulder, Boulder, CO, USA
| | - Charles S Cockell
- UK Centre for Astrobiology, School of Physics and Astronomy, University of Edinburgh, Edinburgh, EH9 3FD, UK
| |
Collapse
|
16
|
Evaluation of Cr(VI) Reduction Using Indigenous Bacterial Consortium Isolated from a Municipal Wastewater Sludge: Batch and Kinetic Studies. Catalysts 2021. [DOI: 10.3390/catal11091100] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Hexavalent Chromium (Cr(VI)) has long been known to be highly mobile and toxic when compared with the other stable oxidation state, Cr(III). Cr(VI)-soluble environmental pollutants have been detected in soils and water bodies receiving industrial and agricultural waste. The reduction of Cr(VI) by microbial organisms is considered to be an environmentally compatible, less expensive and sustainable remediation alternative when compared to conventional treatment methods, such as chemical neutralization and chemical precipitation of Cr. This study aims to isolate and identify the composition of the microbial consortium culture isolated from waste activated sludge and digested sludge from a local wastewater treatment plant receiving high loads of Cr(VI) from an abandoned chrome foundry in Brits (North Waste Province, South Africa). Furthermore, the Cr(VI) reduction capability and efficiency by the isolated bacteria were investigated under a range of operational conditions, i.e., pH, temperature and Cr(VI) loading. The culture showed great efficiency in reduction capability, with 100% removal in less than 4 h at a nominal loading concentration of 50 mg Cr(VI)/L. The culture showed resilience by achieving total removal at concentrations as high as 400 mg Cr(VI)/L. The consortia exhibited considerable Cr(VI) removal efficiency in the pH range from 2 to 11, with 100% removal being achieved at a pH value of 7 at a 37 ± 1 °C incubation temperature. The time course reduction data fitted well on both first and second-order exponential rate equation yielding first-order rate constants in the range 0.615 to 0.011 h−1 and second order rate constants 0.0532 to 5 × 10−5 L·mg−1·h−1 for Cr(VI) concentration of 50–400 mg/L. This study demonstrated the bacterial consortium from municipal wastewater sludge has a high tolerance and reduction ability over a wide range of experimental conditions. Thus, show promise that bacteria could be used for hexavalent chromium remediate in contaminated sites.
Collapse
|
17
|
An Q, Deng S, Xu J, Nan H, Li Z, Song JL. Simultaneous reduction of nitrate and Cr(VI) by Pseudomonas aeruginosa strain G12 in wastewater. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110001. [PMID: 31812281 DOI: 10.1016/j.ecoenv.2019.110001] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/20/2019] [Accepted: 11/23/2019] [Indexed: 06/10/2023]
Abstract
The interference of toxic heavy metals in the process of microbial aerobic denitrification is a hot issue in industry wastewater treatment in recent years. In this study, a multifunctional aerobic denitrifying bacterium - Pseudomonas aeruginosa G12 isolated from sewage sludge was used to explore the simultaneous removal ability to NO3--N and Cr(VI) in wastewater by a series of batch experiments. The results showed that G12 could effectively remove NO3--N (500 mg L-1) and Cr(VI) (10 mg L-1) by 98% and 93%, respectively. Meanwhile, the study found that the strain G12 had the potential to adapt to the complex external environment, including different carbon resources, nitrogen sources, and the coexisting heavy metals (Mn2+ and Cu2+). The strain G12 also had the considerable tolerance to initial NO3--N (100-700 mg L-1) and Cr(VI) (1-20 mg L-1) concentrations. The instrument analysis methods-Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), from the molecular level, further confirmed that the strain G12 could remove NO3--N by aerobic denitrification, and the reduced functional groups (amino group, amide group, hydroxyl group and carboxyl group) on the surface of bacteria could transform Cr(VI) to Cr(III) (mainly CrCl3). This study will offer a promising new microbial resource for nitrogen and Cr(VI) removal in industry wastewater treatment.
Collapse
Affiliation(s)
- Qiang An
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China; The Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Chongqing University, Chongqing, 400045, PR China.
| | - Shuman Deng
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jia Xu
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Hongyan Nan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 2002405, PR China
| | - Zheng Li
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| | - Jia-Li Song
- College of Environment and Ecology, Chongqing University, Chongqing, 400045, PR China
| |
Collapse
|
18
|
Ancona V, Campanale C, Tumolo M, De Paola D, Ardito C, Volpe A, Uricchio VF. Enhancement of Chromium (VI) Reduction in Microcosms Amended with Lactate or Yeast Extract: A Laboratory-Scale Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17030704. [PMID: 31973238 PMCID: PMC7037453 DOI: 10.3390/ijerph17030704] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 01/16/2020] [Accepted: 01/19/2020] [Indexed: 12/19/2022]
Abstract
A laboratory-scale study was carried out to evaluate the groundwater bioremediation potential of hexavalent chromium (Cr(VI)), taking into account the chromate pollution of an industrial site located in Southern Italy (Apulia Region). The reduction of Cr(VI) was studied on laboratory microcosms, set up in different experimental conditions, namely: ABIO (soil and water sterilized), BIO (soil and water not sterilized), LATT (with the addition of lactate), and YE (with the addition of yeast extract). Control test lines, set up by using sterilized matrices and amendments, were employed to assess the occurrence of the pollutant reduction via chemical processes. By combining molecular (microbial abundance, specific chromate reductase genes (ChR) and the Shewanella oinedensis bacterial strain) with chemical analyses of chromium (VI and III) in the matrices (water and soil) of each microcosm, it was possible to investigate the response of microbial populations to different experimental conditions, and therefore, to assess their bioremediation capability in promoting Cr(VI) reduction. The overall results achieved within this work evidenced the key role of amendments (lactate and yeast extract) in enhancing the biological reduction of hexavalent chromium in the contaminated aqueous phase of laboratory microcosms. The highest value of Cr(VI) removal (99.47%) was obtained in the YE amended microcosms at seven days.
Collapse
Affiliation(s)
- Valeria Ancona
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (C.C.); (M.T.); (C.A.); (A.V.); (V.F.U.)
- Correspondence:
| | - Claudia Campanale
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (C.C.); (M.T.); (C.A.); (A.V.); (V.F.U.)
| | - Marina Tumolo
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (C.C.); (M.T.); (C.A.); (A.V.); (V.F.U.)
| | - Domenico De Paola
- Institute of Biosciences and Bioresources, Italian National Research Council (IBBR-CNR), 70126 Bari, Italy;
| | - Claudio Ardito
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (C.C.); (M.T.); (C.A.); (A.V.); (V.F.U.)
| | - Angela Volpe
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (C.C.); (M.T.); (C.A.); (A.V.); (V.F.U.)
| | - Vito Felice Uricchio
- Water Research Institute-Italian National Research Council (IRSA-CNR), 70132 Bari, BA, Italy; (C.C.); (M.T.); (C.A.); (A.V.); (V.F.U.)
| |
Collapse
|
19
|
Ceballos E, Margalef-Martí R, Carrey R, Frei R, Otero N, Soler A, Ayora C. Characterisation of the natural attenuation of chromium contamination in the presence of nitrate using isotopic methods. A case study from the Matanza-Riachuelo River basin, Argentina. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134331. [PMID: 31670212 DOI: 10.1016/j.scitotenv.2019.134331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/10/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
The groundwater contamination by hexavalent chromium (Cr(VI)) in a site of the Matanza-Riachuelo River basin (MRB), Argentina, has been evaluated by determining the processes that control the natural mobility and attenuation of Cr(VI) in the presence of high nitrate (NO3-) contents. The groundwater Cr(VI) concentrations ranged between 1.9E-5 mM and 0.04 mM, while the NO3- concentrations ranged between 0.5 mM and 3.9 mM. In order to evaluate the natural attenuation of Cr(VI) and NO3- in the MRB groundwater, Cr and N isotopes were measured in these contaminants. In addition, laboratory batch experiments were performed to determine the isotope fractionation (ε) during the reduction of Cr(VI) under denitrifying conditions. While the Cr(VI) reduction rate is not affected by the presence of NO3-, the NO3- attenuation is slower in the presence of Cr(VI). Nevertheless, no significant differences on ε values were observed when testing the absence or presence of each contaminant. The ε53Cr determined in the batch experiments describe a two- stage trend, in which Stage I is characterized by ε53Cr ~-1.8‰ and Stage II by ε53Cr ~-0.9‰. The respective ε15NNO3 obtained is -23.9‰ whereas ε18ONO3 amount to -25.7‰. Using these ε values and a Rayleigh fractionation model we estimate that an average of 60% of the original Cr(VI) is removed from the groundwater of the contaminated site. Moreover, the average degree of NO3- attenuation by denitrification is found to be about 20%. This study provides valuable information about the dynamics of a complex system that can serve as a basis for efficient management of contaminated groundwater in the most populated and industrialized basin of Argentina.
Collapse
Affiliation(s)
- Elina Ceballos
- Instituto de Hidrología de Llanuras "Dr. Eduardo J. Usunoff", CONICET-UNCPBA-CIC, República de Italia 780, 47 (B7300), Azul, Buenos Aires, Argentina.
| | - Rosanna Margalef-Martí
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, UB, C/Martí i Franquès, s/n, 08028 Barcelona, Spain
| | - Raul Carrey
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, UB, C/Martí i Franquès, s/n, 08028 Barcelona, Spain
| | - Robert Frei
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Neus Otero
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, UB, C/Martí i Franquès, s/n, 08028 Barcelona, Spain; Serra Húnter Fellow, Generalitat de Catalunya, Spain
| | - Albert Soler
- Grup MAiMA, SGR Mineralogia Aplicada, Geoquímica i Geomicrobiologia, Departament de Mineralogia, Petrologia i Geologia Aplicada, Facultat de Ciències de la Terra, Universitat de Barcelona, UB, C/Martí i Franquès, s/n, 08028 Barcelona, Spain
| | - Carlos Ayora
- Department of Geoscience, Institute of Environmental Assessment and Water Research, IDAEA-CSIC, C/Jordi Girona, 18, 08028 Barcelona, Spain
| |
Collapse
|
20
|
Kapahi M, Sachdeva S. Bioremediation Options for Heavy Metal Pollution. J Health Pollut 2019; 9:191203. [PMID: 31893164 PMCID: PMC6905138 DOI: 10.5696/2156-9614-9.24.191203] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 08/20/2019] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rapid industrialization and anthropogenic activities such as the unmanaged use of agro-chemicals, fossil fuel burning and dumping of sewage sludge have caused soils and waterways to be severely contaminated with heavy metals. Heavy metals are non-biodegradable and persist in the environment. Hence, remediation is required to avoid heavy metal leaching or mobilization into environmental segments and to facilitate their extraction. OBJECTIVES The present work briefly outlines the environmental occurrence of heavy metals and strategies for using microorganisms for bioremediation processes as reported in the scientific literature. METHODS Databases were searched from different libraries, including Google Scholar, Medline and Scopus. Observations across studies were then compared with the standards for discharge of environmental pollutants. DISCUSSION Bioremediation employs microorganisms for removing heavy metals. Microorganisms have adopted different mechanisms for bioremediation. These mechanisms are unique in their specific requirements, advantages, and disadvantages, the success of which depends chiefly upon the kind of organisms and the contaminants involved in the process. CONCLUSIONS Heavy metal pollution creates environmental stress for human beings, plants, animals and other organisms. A complete understanding of the process and various alternatives for remediation at different steps is needed to ensure effective and economic processes. COMPETING INTERESTS The authors declare no competing financial interests.
Collapse
Affiliation(s)
- Meena Kapahi
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
- Department of Chemistry, Manav Rachna University, Faridabad, India
| | - Sarita Sachdeva
- Department of Biotechnology, Manav Rachna International Institute of Research and Studies, Faridabad, India
| |
Collapse
|
21
|
Mengke-Li, Yuting-Zhuo, Yuting-Hu, Shuzhen-Li, Liang-Hu, Hui-Zhong, Zhiguo-He. Exploration on the bioreduction mechanism of Cr(Ⅵ) by a gram-positive bacterium: Pseudochrobactrum saccharolyticum W1. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 184:109636. [PMID: 31536849 DOI: 10.1016/j.ecoenv.2019.109636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/30/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
Bioremediation of chromium (Cr(Ⅵ)) contaminations has been widely reported, but the research on its removal mechanism is still scarce. Studies on Cr(Ⅵ) removal by strains affiliated to genus Pseudochobactrum revealed the Cr(Ⅵ) efficiency removal through the reduction of Cr(Ⅵ) to Cr(Ⅲ). However, the location of Cr(Ⅵ) reduction reaction and exact mechanism are still unspecified. In this work, a Gram-positive bacterial strain, Pseudochrobactrum saccharolyticum W1 (P. saccharolyticum W1) was isolated and tested to remove approximately 53.7% of Cr(Ⅵ) (initial concentration was 200 mg L-1) from the MSM medium. Analysis of SEM-EDS and TEM-EDS indicated that chromium-containing particles precipitated both on the cell surface and in the cytoplasm. Batch experiments indicated that the heat-treated bacterial cells almost had no ability to remove Cr(Ⅵ) from solution, while the resting cells could remove 62.0% of Cr(Ⅵ) at the initial concentration of 10 mg L-1. Additionally, at this concentration, 64.8% and 70.8% of Cr(Ⅵ) was reduced by cell envelope components and intracellular soluble substances after 6 h, respectively. These results suggested that the removal of Cr(Ⅵ) by P. saccharolyticum W1 was through direct reduction, which occurred on both cell envelop and cytoplasm. The results also showed that cytoplasm was the main site for Cr(Ⅵ) reduction compared to the cell envelop. Further analysis of FTIR and XPS verified that C-H, C-C, CO, C-OH and C-O-C groups of cells involved in correlation with chromium during Cr(Ⅵ) reduction. The study offered an insight into the Cr(VI) reduction mechanism of P. saccharolyticum W1.
Collapse
|
22
|
Huang XN, Min D, Liu DF, Cheng L, Qian C, Li WW, Yu HQ. Formation mechanism of organo-chromium (III) complexes from bioreduction of chromium (VI) by Aeromonas hydrophila. ENVIRONMENT INTERNATIONAL 2019; 129:86-94. [PMID: 31121519 DOI: 10.1016/j.envint.2019.05.016] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
Chromium is a common heavy metal widely present in aquatic environments. Cost-effective remediation of chromium-contaminated environment can be realized by microbial reduction of Cr(VI) to Cr(III). The genus Aeromonas species is one of such Cr(VI) reducers, whose reduction mechanism remains unrevealed and the main factors governing the Cr(VI) reduction pathways are unknown yet. In this work, the performances and mechanisms of Cr(VI) anaerobic reduction by Aeromonas hydrophila ATCC 7966 were investigated. This strain exhibited excellent Cr(VI) resistance and could utilize a suite of electron donors to support Cr(VI) bioreduction. The Cr(VI) bioreduction processes involved both extracellular (the metal-reducing and respiratory pathway) and intracellular reaction pathways. Adding anthraquinone-2,6-disulfonate or humic acid as a mediator substantially enhanced the Cr(VI) bioreduction. The forms and distribution of the Cr(VI) bioreduction products were affected by the medium composition. Soluble organo-Cr(III) complexes were identified as the main Cr(VI) reduction products when basal salts medium was adopted. Given the environmental ubiquity of the genus Aeromonas, the findings in this work may facilitate a better understanding about the transformation behaviors and fates of Cr(VI) in environments and provide useful clues to tune the bioremediation of chromium-contaminated environments.
Collapse
Affiliation(s)
- Xue-Na Huang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Di Min
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| | - Lei Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Chen Qian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei 230026, China.
| |
Collapse
|
23
|
Kumar M, Saini HS. Reduction of hexavalent chromium (VI) by indigenous alkaliphilic and halotolerant Microbacterium sp. M5: comparative studies under growth and nongrowth conditions. J Appl Microbiol 2019; 127:1057-1068. [PMID: 31260173 DOI: 10.1111/jam.14366] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/29/2019] [Accepted: 06/24/2019] [Indexed: 01/26/2023]
Abstract
AIMS To evaluate hexavalent chromium (Cr (VI)) reduction potential of indigenous isolate M5, under growing and nongrowing conditions. METHODS AND RESULTS Microbacterium sp. M5 was isolated from soil samples collected from a common effluent treatment plant, after enrichment of indigenous microbial diversity in the presence of 200 mg l-1 of Cr (VI). The isolate achieved complete reduction of 400 mg l-1 Cr (VI) supplement to Luria Bertani medium having initial pH of 9·0 after 48 h incubation. Furthermore, the reduction potential of resting and surfactant treated cell membrane compromised cells of M5 was evaluated. The control and biosurfactant treated cells achieved 22·71 ± 0·5% and 40·56 ± 0·5% reduction of 50 mg l-1 Cr (VI) in Tris-HCl buffer, under resting cells conditions. To the best of our knowledge, this is the first report where cells with compromised cell membrane obtained after exposure to biosurfactant have been evaluated for Cr (VI) reduction. CONCLUSION The Cr (VI) reduction potential of Microbacterium sp. M5 could be effectively exploited for treatment of chromium-rich effluents, under nongrowing conditions. SIGNIFICANCE AND IMPACT OF THE STUDY The isolate M5 could be a potential inoculum for effluent treatment plants as it is able to support Cr (VI) reduction under wide range of pH, salinity and in the presence of different metal ions.
Collapse
Affiliation(s)
- M Kumar
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| | - H S Saini
- Department of Microbiology, Guru Nanak Dev University, Amritsar, India
| |
Collapse
|
24
|
Ng CK, Karahan HE, Loo SCJ, Chen Y, Cao B. Biofilm-Templated Heteroatom-Doped Carbon-Palladium Nanocomposite Catalyst for Hexavalent Chromium Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:24018-24026. [PMID: 31251015 DOI: 10.1021/acsami.9b04095] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this study, we report an interdisciplinary and novel strategy toward biofilm engineering for the development of a biofilm-templated heteroatom-doped catalytic system through bioreduction and biofilm matrix-facilitated immobilization of the in situ-formed catalytic nanoparticles followed by controlled pyrolysis. We showed that (i) even under room temperature and bulk aerobic conditions, Shewanella oneidensis MR-1 biofilms reduced Pd(II) to form Pd(0) nanocrystals (∼10 to 20 nm) that were immobilized in the biofilm matrix and in cellular membranes, (ii) the MR-1 biofilms with the immobilized Pd(0) nanocrystals exhibited nanocatalytic activity, (iii) exposure to Pd(II) greatly increased the rate of cell detachment from the biofilm and posed a risk of biofilm dispersal, (iv) controlled pyrolysis (carbonization) of the biofilm led to the formation of a stable heteroatom-doped carbon-palladium (C-Pd) nanocomposite catalyst, and (v) the biofilm-templated C-Pd nanocomposite catalyst exhibited a high Cr(VI) reduction activity and maintained a high reduction rate over multiple catalytic cycles. Considering that bacteria are capable of synthesizing a wide range of metal and metalloid nanoparticles, the biofilm-templated approach for the fabrication of the catalytic C-Pd nanocomposite we have demonstrated here should prove to be widely applicable for the production of different nanocomposites that are of importance to various environmental applications.
Collapse
Affiliation(s)
- Chun Kiat Ng
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
- Department of Engineering Science , University of Oxford , Oxford OX1 3PJ , United Kingdom
| | - H Enis Karahan
- School of Chemical and Biomedical Engineering , Nanyang Technological University , 637459 Singapore
| | - Say Chye Joachim Loo
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
| | - Yuan Chen
- The University of Sydney, School of Chemical and Biomolecular Engineering , Sydney , New South Wales 2006 , Australia
| | - Bin Cao
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School , Nanyang Technological University , 637551 Singapore
| |
Collapse
|
25
|
Liu X, Chu G, Du Y, Li J, Si Y. The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1. World J Microbiol Biotechnol 2019; 35:64. [DOI: 10.1007/s11274-019-2634-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Accepted: 03/08/2019] [Indexed: 01/20/2023]
|
26
|
Tamindžija D, Chromikova Z, Spaić A, Barak I, Bernier-Latmani R, Radnović D. Chromate tolerance and removal of bacterial strains isolated from uncontaminated and chromium-polluted environments. World J Microbiol Biotechnol 2019; 35:56. [PMID: 30900044 DOI: 10.1007/s11274-019-2638-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
Investigation of bacterial chromate tolerance has mostly focused on strains originating from polluted sites. In the present study, we isolated 33 chromate tolerant strains from diverse environments harbouring varying concentrations of chromium (Cr). All of these strains were able to grow on minimal media with at least 2 mM hexavalent chromium (Cr(VI)) and their classification revealed that they belonged to 12 different species and 8 genera, with a majority (n = 20) being affiliated to the Bacillus cereus group. Selected B. cereus group strains were further characterised for their chromate tolerance level and the ability to remove toxic Cr(VI) from solution. A similar level of chromate tolerance was observed in isolates originating from environments harbouring high or low Cr. Reference B. cereus strains exhibited the same Cr(VI) tolerance which indicates that a high chromate tolerance could be an intrinsic group characteristic. Cr(VI) removal varied from 22.9% (strain PCr2a) to 98.5% (strain NCr4). Strains NCr1a and PCr12 exhibited the ability to grow to the greatest extent in Cr(VI) containing media (maximum growth of 65.3% and 64.9% relative to that in the absence of Cr(VI), respectively) accompanied with high chromate removal activity (73.7% and 74.4%, respectively), making them prime candidates for the investigation of chromate tolerance mechanisms in Gram-positive bacteria and Cr(VI) bioremediation applications.
Collapse
Affiliation(s)
- Dragana Tamindžija
- Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, University of Novi Sad, Trg Dositeja Obradovića 3, Novi Sad, 21000, Serbia
| | - Zuzana Chromikova
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Andrea Spaić
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia
| | - Imrich Barak
- Department of Microbial Genetics, Institute of Molecular Biology, Slovak Academy of Sciences, Dubravska cesta 21, Bratislava, 845 51, Slovakia
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne, 1015, Lausanne, Switzerland
| | - Dragan Radnović
- Faculty of Sciences, Department of Biology and Ecology, University of Novi Sad, Trg Dositeja Obradovića 2, Novi Sad, 21000, Serbia.
| |
Collapse
|
27
|
Yang Y, Fang Z, Yu YY, Wang YZ, Naraginti S, Yong YC. A mediator-free whole-cell electrochemical biosensing system for sensitive assessment of heavy metal toxicity in water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2019; 79:1071-1080. [PMID: 31070587 DOI: 10.2166/wst.2019.101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A bioelectrochemical sensing system (BES) based on electroactive bacteria (EAB) has been used as a new and promising tool for water toxicity assessment. However, most EAB can reduce heavy metals, which usually results in low toxicity response. Herein, a starvation pre-incubation strategy was developed which successfully avoided the metal reduction during the toxicity sensing period. By integrating this starvation pre-incubation procedure with the amperometric BES, a sensitive, robust and mediator-free biosensing method for heavy metal toxicity assessment was developed. Under the optimized conditions, the IC50 (half maximal inhibitory concentration) values for Cu2+, Ni2+, Cd2+, and Cr6+ obtained were 0.35, 3.49, 6.52, 2.48 mg L-1, respectively. The measurement with real water samples also suggested this method was reliable for practical application. This work demonstrates that it is feasible to use EAB for heavy metal toxicity assessment and provides a new tool for water toxicity warning.
Collapse
Affiliation(s)
- Yuan Yang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Zhen Fang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yang-Yang Yu
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yan-Zhai Wang
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Saraschandra Naraginti
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail:
| | - Yang-Chun Yong
- Biofuels Institute, School of Environment and Safety Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China E-mail: ; Zhenjiang Key Laboratory for Advanced Sensing Materials and Devices, School of Mechanical Engineering, Jiangsu University, 301 Xuefu Road, Zhenjiang, Jiangsu 212013, China
| |
Collapse
|
28
|
Chen G, Han J, Mu Y, Yu H, Qin L. Two-stage chromium isotope fractionation during microbial Cr(VI) reduction. WATER RESEARCH 2019; 148:10-18. [PMID: 30343194 DOI: 10.1016/j.watres.2018.09.034] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 06/08/2023]
Abstract
Chromium isotope fractionation analysis is a promising approach for the assessment of microbial Cr(VI) reduction in groundwater. Understanding the mechanisms and other parameters that control Cr isotope fractionation factors (between the product Cr(III) and reactant Cr (VI)) in microbial Cr(VI) reduction is critical to this application. To date, such studies are very limited. Here, the influence of critical factors on observed Cr isotope fractionation during Cr(VI) reduction by Shewanella oneidensis MR-1 under various conditions was investigated. The Cr(VI) concentration and Cr isotope ratio measurements were conducted on unreacted Cr(VI) remaining in solution to determine Cr isotope fractionation factors. The changes in ambient environmental conditions (e.g., pH, temperature) have limited influence on Cr isotope fractionation factors. However, as a result of Cr(VI) consumption as the experiments proceed, the change in bioavailability of Cr(VI) has a significant impact on Cr isotope fractionation factors. For example, in temperature-controlled experiments, Cr isotope fractionation showed two-stage behavior: during Stage I, the values of ε were -2.81 ± 0.19‰ and -2.60 ± 0.14‰ at 18 °C and 34 °C, respectively; during Stage II, as Cr(VI) reduction progressed, Cr isotope fractionation was significantly masked, and the ε values decreased to -0.98 ± 0.49‰ and -1.01 ± 0.11‰ at 18 °C and 34 °C, respectively. Similar two-stage isotope fractionation behaviors were observed in pH-controlled experiments (pH = 6.0 and 7.2) and in experiments with and without the addition of a competing electron acceptor (nitrate). Masking of isotope fractionation in Stage II indicated restrictions on the bioavailability of Cr(VI) and mass-transfer limitations. This study provides an explanation for the variation in Cr isotope fractionation factors during microbial Cr(VI) reduction in the environment, furthering the viability of Cr isotope ratio analysis as an approach in understanding Cr biogeochemical cycling.
Collapse
Affiliation(s)
- Guojun Chen
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Juncheng Han
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Yang Mu
- CAS Key Laboratory for Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei, 230026, China
| | - Huimin Yu
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Liping Qin
- CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, China; State Key Laboratory of Geological Processes and Mineral Resources, University of Geosciences, Beijing, China.
| |
Collapse
|
29
|
Igiehon NO, Babalola OO. Fungal bio-sorption potential of chromium in Norkrans liquid medium by shake flask technique. J Basic Microbiol 2018; 59:62-73. [PMID: 30288769 DOI: 10.1002/jobm.201800011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 07/08/2018] [Accepted: 09/01/2018] [Indexed: 11/06/2022]
Abstract
In this study, the myco-reduction potential of fungi isolated from soil was ascertained by Norkrans shake flask experiment contaminated with chromium(VI). Fungal tolerance assay and induced tolerance training of the fungi were also carried out. Aspergillus niger, Penicillium, and Saccharomyces strains were isolated from the soil samples using culture based technique. Norkrans samples were collected and analyzed for Cr(VI) concentration using diphenylcarbazide spectrophotometric method. Penicillium strain was observed to be most effect at Cr(VI) concentrations of 16.1 and 8.1 mg L-1 since it was able to reduce Cr(VI) more than Saccharomyces strain and A. niger on day 20. Bio-sorption kinetics for this study was better described by pseudo second order model while Langmuir isotherm model fitted better to the equilibrium data. There was virtually steady increase in fungal growth for all the treatments through-out the experimental period. Significant negative correlation (p < 0.05) was observed between fungal growth and Cr(VI) reduction rate. The results from the induced tolerance training showed that Penicillium had the highest tolerance index (TI) values at 18, 20, and 25 mg L-1 concentrations of Cr(VI) compared to A. niger and Saccharomyces strain. These results demonstrated that these fungi have the potential to bio-absorb Cr(VI) and if properly harnessed, could be used in place of conventional remediation technology to clean-up the Cr(VI) contaminant in the field.
Collapse
Affiliation(s)
- Nicholas O Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Olubukola O Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| |
Collapse
|
30
|
Li BB, Cheng YY, Fan YY, Liu DF, Fang CY, Wu C, Li WW, Yang ZC, Yu HQ. Estimates of abundance and diversity of Shewanella genus in natural and engineered aqueous environments with newly designed primers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:926-933. [PMID: 29763873 DOI: 10.1016/j.scitotenv.2018.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Shewanella species have a diverse respiratory ability and wide distribution in environments and play an important role in bioremediation and the biogeochemical cycles of elements. Primers with more accuracy and broader coverage are required with consideration of the increasing number of Shewanella species and evaluation of their roles in various environments. In this work, a new primer set of 640F/815R was developed to quantify the abundance of Shewanella species in natural and engineered environments. In silico tools for primer evaluation, quantitative polymerase chain reaction (qPCR) and clone library results showed that 640F/815R had a higher specificity and coverage than the previous primers in quantitative analysis of Shewanella. Another newly developed primer pair of 211F/815cR was also adopted to analyze the Shewanella diversity and demonstrated to be the best candidate in terms of specificity and coverage. We detected more Shewanella-related species in freshwater environments and found them to be substantially different from those in marine environments. Abundance and diversity of Shewanella species in wastewater treatment plants were largely affected by the process and operating conditions. Overall, this study suggests that investigations of abundance and diversity of Shewanella in various environments are of great importance to evaluate their ecophysiology and potential ecological roles.
Collapse
Affiliation(s)
- Bing-Bing Li
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yuan-Yuan Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yang-Yang Fan
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Cai-Yun Fang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Chao Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Zong-Chuang Yang
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
31
|
Gong Y, Werth CJ, He Y, Su Y, Zhang Y, Zhou X. Intracellular versus extracellular accumulation of Hexavalent chromium reduction products by Geobacter sulfurreducens PCA. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 240:485-492. [PMID: 29754098 DOI: 10.1016/j.envpol.2018.04.046] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/06/2018] [Accepted: 04/09/2018] [Indexed: 06/08/2023]
Abstract
Hexavalent chromium (Cr(VI)) reduction by Geobacter sulfurreducens PCA was evaluated in batch experiments, and the form and amounts of intracellular and extra-cellular Cr(VI) reduction products were determined over time. The first-order Cr(VI) reduction rate per unit mass of cells was consistent for different initial cell concentrations, and approximately equal to (2.065 ± 0.389) x 10-9 mL CFU-1 h-1. A portion of the reduced Cr(VI) products precipitated on Geobacter cell walls as Cr(III) and was bound via carboxylate functional groups, a portion accumulated inside Geobacter cells, and another portion existed as soluble Cr(III) or organo-Cr(III) released to solution. A mass balance analysis of total chromium in aqueous media, on cell walls, and inside cells was determined as a function of time, and with different initial cell concentrations. Mass balances were between 92% and 98%, and indicated Cr(VI) reduction products accumulate more on cell walls and inside cells with time and with increasing initial cell concentration, as opposed to particulates in aqueous solution. Reduced Cr(VI) products both in solution and on cell surfaces appear to form organo-Cr(III) complexes, and our results suggest that such complexes are more stable to reoxidation than aqueous Cr(III) or Cr(OH)3. Chromium inside cells is also likely more stable to reoxidation, both because it can form organic complexes, and it is separated by the cell membrane from solution conditions. Hence, Cr(VI) reduction products in groundwater during bioremediation may become more stable against re-oxidation, and may pose a lower risk to human health, over time and with greater initial biomass densities.
Collapse
Affiliation(s)
- Yufeng Gong
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Charles J Werth
- Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 East Dean Keeton St., Stop C1786, Austin, TX, 78712, USA
| | - Yaxue He
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Yiming Su
- Department of Civil and Environmental Engineering, University of California, Los Angeles, CA, 90095, USA
| | - Yalei Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China
| | - Xuefei Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China; State Key Laboratory of Pollution Control and Resources Reuse, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
32
|
Senatore G, Mastroleo F, Leys N, Mauriello G. Effect of microgravity & space radiation on microbes. Future Microbiol 2018; 13:831-847. [PMID: 29745771 DOI: 10.2217/fmb-2017-0251] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
One of the new challenges facing humanity is to reach increasingly further distant space targets. It is therefore of upmost importance to understand the behavior of microorganisms that will unavoidably reach the space environment together with the human body and equipment. Indeed, microorganisms could activate their stress defense mechanisms, modifying properties related to human pathogenesis. The host-microbe interactions, in fact, could be substantially affected under spaceflight conditions and the study of microorganisms' growth and activity is necessary for predicting these behaviors and assessing precautionary measures during spaceflight. This review gives an overview of the effects of microgravity and space radiation on microorganisms both in real and simulated conditions.
Collapse
Affiliation(s)
- Giuliana Senatore
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| | - Felice Mastroleo
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Natalie Leys
- Microbiology Unit, Belgian Nuclear Research Centre (SCK•CEN), 2400 Mol, Belgium
| | - Gianluigi Mauriello
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Naples, Italy
| |
Collapse
|
33
|
Bai YN, Lu YZ, Shen N, Lau TC, Zeng RJ. Investigation of Cr(VI) reduction potential and mechanism by Caldicellulosiruptor saccharolyticus under glucose fermentation condition. JOURNAL OF HAZARDOUS MATERIALS 2018; 344:585-592. [PMID: 29102641 DOI: 10.1016/j.jhazmat.2017.10.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 10/25/2017] [Accepted: 10/28/2017] [Indexed: 06/07/2023]
Abstract
This study examined the microbial reduction of hexavalent chromium [Cr(VI)] by an extremely thermophilic bacterium, Caldicellulosiruptor saccharolyticus, under glucose fermentation conditions at 70°C. Experimentation with different initial Cr(VI) concentrations confirmed that C. saccharolyticus had the ability to reduce Cr(VI) and immobilize Cr(III). At a concentration of 40mg/L, Cr(VI) was completely reduced within 12h, and 97% of the reduction product Cr(III) precipitated on the cell surface. Cr(VI) reduction was accelerated by the addition of neutral red (NR, an electron mediator), resulting in the reduction time shortened to 1h. The addition of CuCl2, a Ni-Fe hydrogenase inhibitor, also enhanced Cr(VI) reduction. Additionally, analysis of the relationship between Cr(VI) reduction and glucose fermentation suggested that different electron sources acted during CuCl2 and NR conditions. Hydrogen served as an electron donor under normal fermentation and NR conditions with the catalysis of Ni-Fe hydrogenase. However, when the activity of Ni-Fe hydrogenase was inhibited by CuCl2, C. saccharolyticus directly used reduction equivalents during glucose fermentation for intracellular Cr(VI) reduction. Therefore, our findings demonstrated high Cr(VI) reduction ability and different electron transfer pathways during Cr(VI) reduction by C. saccharolyticus.
Collapse
Affiliation(s)
- Ya-Nan Bai
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China
| | - Yong-Ze Lu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Nan Shen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China
| | - Tai-Chu Lau
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; State Key Laboratory in Marine Pollution, Department of Biology and Chemistry, City University of Hong Kong, Kowloon, Hong Kong
| | - Raymond Jianxiong Zeng
- Advanced Laboratory for Environmental Research and Technology, USTC-CityU, Suzhou, PR China; School of Life Sciences, University of Science and Technology of China, Hefei 230026, PR China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei 230026, PR China.
| |
Collapse
|
34
|
Kiran Kumar Reddy G, Nancharaiah YV. Sustainable bioreduction of toxic levels of chromate in a denitrifying granular sludge reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:1969-1979. [PMID: 29105040 DOI: 10.1007/s11356-017-0600-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Biological removal of chromate [Cr(VI)] in the presence or absence of nitrate by granular sludge biofilms was investigated in batch experiments and in a sequencing batch reactor (SBR). Denitrifying granular sludge cultivated from activated sludge was able to directly reduce Cr(VI) in the presence of an electron donor. Bioreduction was dependent on the initial Cr(VI) and the granular sludge concentrations. Bioreduction of Cr(VI) was followed by Cr(III) precipitation or entrapment in the granular sludge which was corroborated with decrease in total soluble Cr and increase in inorganic content of biomass. Batch experiments revealed that Cr(VI) addition has no major influence on high-strength nitrate (3000 mg L-1) denitrification, but nitrite denitrification was slowed-down. However, SBR experiment demonstrated successful denitrification as well as Cr(VI) removal due to enrichment of Cr(VI)-tolerant denitrifying bacteria. In fact, stable SBR performance in terms of complete and sustained removal of 0.05, 0.1, 0.2, 0.3, 0.5 and 0.75 mM Cr(VI) and denitrification of 3000 mg L-1 was observed during 2 months of operation. Active biomass and electron donor-dependent Cr(VI) removal, detection of Cr(III) in the biomass and recovery of ~ 92% of the Cr from the granular sludge biofilms confirms bioreduction followed by precipitation or entrapment of Cr(III) as the principal chromate removal mechanism. Metagenomic bacterial community analysis showed enrichment of Halomonas sp. in denitrifying granular sludge performing either denitrification or simultaneous reduction of nitrate and chromate.
Collapse
Affiliation(s)
- G Kiran Kumar Reddy
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Water and Steam Chemistry Division, Bhabha Atomic Research Centre, Kalpakkam, 603102, India.
- Homi Bhabha National Institute, Anushakti Nagar Complex, Mumbai, 400 094, India.
| |
Collapse
|
35
|
Zhong L, Lai CY, Shi LD, Wang KD, Dai YJ, Liu YW, Ma F, Rittmann BE, Zheng P, Zhao HP. Nitrate effects on chromate reduction in a methane-based biofilm. WATER RESEARCH 2017; 115:130-137. [PMID: 28273443 DOI: 10.1016/j.watres.2017.03.003] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/27/2017] [Accepted: 03/01/2017] [Indexed: 06/06/2023]
Abstract
The effects of nitrate (NO3-) on chromate (Cr(VI)) reduction in a membrane biofilm reactor (MBfR) were studied when CH4 was the sole electron donor supplied with a non-limiting delivery capacity. A high surface loading of NO3- gave significant and irreversible inhibition of Cr(VI) reduction. At a surface loading of 500 mg Cr/m2-d, the Cr(VI)-removal percentage was 100% when NO3- was absent (Stage 1), but was dramatically lowered to < 25% with introduction of 280 mg N m-2-d NO3- (Stage 2). After ∼50 days operation in Stage 2, the Cr(VI) reduction recovered to only ∼70% in Stage 3, when NO3- was removed from the influent; thus, NO3- had a significant long-term inhibition effect on Cr(VI) reduction. Weighted PCoA and UniFrac analyses proved that the introduction of NO3- had a strong impact on the microbial community in the biofilms, and the changes possibly were linked to the irreversible inhibition of Cr(VI) reduction. For example, Meiothermus, the main genus involved in Cr(VI) reduction at first, declined with introduction of NO3-. The denitrifier Chitinophagaceae was enriched after the addition of NO3-, while Pelomonas became important when nitrate was removed, suggesting its potential role as a Cr(VI) reducer. Moreover, introducing NO3- led to a decrease in the number of genes predicted (by PICRUSt) to be related to chromate reduction, but genes predicted to be related to denitrification, methane oxidation, and fermentation increased.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Chun-Yu Lai
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ling-Dong Shi
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Kai-Di Wang
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yu-Jie Dai
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Yao-Wei Liu
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Bruce E Rittmann
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, P.O. Box 875701, Tempe, AZ 85287-5701, USA
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - He-Ping Zhao
- Department of Environmental Engineering, College of Environmental and Resource Science, Zhejiang University, Hangzhou, China; Zhejiang Province Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
36
|
Wang G, Zhang B, Li S, Yang M, Yin C. Simultaneous microbial reduction of vanadium (V) and chromium (VI) by Shewanella loihica PV-4. BIORESOURCE TECHNOLOGY 2017; 227:353-358. [PMID: 28061419 DOI: 10.1016/j.biortech.2016.12.070] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/16/2016] [Accepted: 12/21/2016] [Indexed: 06/06/2023]
Abstract
Toxic vanadium (V) and chromium (VI) often co-exist in wastewater from vanadium ore smelting and their reductions by bacterial strain Shewanella loihica PV-4 is realized simultaneously. After 27-d operation, 71.3% of V(V) and 91.2% of Cr(VI) were removed respectively, with citrate as organic carbon source. Enhancement of Cr(VI) bioreduction was observed with the suppressed V(V) reduction. V(IV) and Cr(III), the main reduction products, precipitated inside the organisms and attached on cell surfaces. Both membrane components containing cytochrome c and cytoplasmic fractions containing soluble proteins as well as NADH may contribute to these microbial reductions. Most Cr(VI) were reduced extracellularly and V(V) tended to be reduced through intracellular process, as revealed by mapping the microbial surface and a line scan across the cell, performed by scanning transmission electron microscopy. This study provides an efficient alternative for controlling combined pollution caused by these two metals based on microbial technology.
Collapse
Affiliation(s)
- Guangyu Wang
- Department of Biophysics, College of Basic Medical Sciences, Peking University Health Science Centre, Beijing 100191, China
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Shuang Li
- Department of Biophysics, College of Basic Medical Sciences, Peking University Health Science Centre, Beijing 100191, China
| | - Meng Yang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing 100083, China
| | - Changcheng Yin
- Department of Biophysics, College of Basic Medical Sciences, Peking University Health Science Centre, Beijing 100191, China.
| |
Collapse
|
37
|
Karthik C, Ramkumar VS, Pugazhendhi A, Gopalakrishnan K, Arulselvi PI. Biosorption and biotransformation of Cr(VI) by novel Cellulosimicrobium funkei strain AR6. J Taiwan Inst Chem Eng 2017. [DOI: 10.1016/j.jtice.2016.11.006] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
38
|
Liu T, Li X, Li F, Han R, Wu Y, Yuan X, Wang Y. In Situ Spectral Kinetics of Cr(VI) Reduction by c-Type Cytochromes in A Suspension of Living Shewanella putrefaciens 200. Sci Rep 2016; 6:29592. [PMID: 27405048 PMCID: PMC4939527 DOI: 10.1038/srep29592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 06/22/2016] [Indexed: 11/24/2022] Open
Abstract
Although c-type cytochromes (c-Cyts) mediating metal reduction have been mainly investigated with in vitro purified proteins of dissimilatory metal reducing bacteria, the in vivo behavior of c-Cyts is still unclear given the difficulty in measuring the proteins of intact cells. Here, c-Cyts in living Shewanella putrefaciens 200 (SP200) was successfully quantified using diffuse-transmission UV/Vis spectroscopy due to the strong absorbance of hemes, and the in situ spectral kinetics of Cr(VI) reduction by c-Cyts were examined over time. The reduced product Cr(III) observed on the cell surface may play a role in inhibiting the Cr(VI) reduction and reducing the cell numbers with high concentrations (>200 μM) of Cr(VI) evidenced by the 16S rRNA analysis. A brief kinetic model was established with two predominant reactions, redox transformation of c-Cyts and Cr(VI) reduction by reduced c-Cyts, but the fitting curves were not well-matched with c-Cyts data. The Cr(III)-induced inhibitory effect to the cellular function of redox transformation of c-Cyts was then added to the model, resulting in substantially improved the model fitting. This study provides a case of directly examining the reaction properties of outer-membrane enzyme during microbial metal reduction processes under physiological conditions.
Collapse
Affiliation(s)
- Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 P. R. China
| | - Xiaomin Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 P. R. China.,School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 P. R. China
| | - Rui Han
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 P. R. China
| | - Yundang Wu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 P. R. China
| | - Xiu Yuan
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, NSW, 2052 Australia
| | - Ying Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences, Guangzhou, 510650 P. R. China
| |
Collapse
|
39
|
Han R, Li F, Liu T, Li X, Wu Y, Wang Y, Chen D. Effects of Incubation Conditions on Cr(VI) Reduction by c-type Cytochromes in Intact Shewanella oneidensis MR-1 Cells. Front Microbiol 2016; 7:746. [PMID: 27242759 PMCID: PMC4872037 DOI: 10.3389/fmicb.2016.00746] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 05/03/2016] [Indexed: 11/13/2022] Open
Abstract
It is widely recognized that the outer membrane c-type cytochromes (OM c-Cyts) of metal-reducing bacteria play a key role in microbial metal reduction processes. However, the in situ redox status of OM c-Cyts during microbial metal reduction processes remain poorly understood. In this study, diffuse-transmission UV/Vis spectroscopy is used to investigate the in situ spectral reaction of Cr(VI) reduction by c-Cyts in intact Shewanella oneidensis MR-1 cells under different incubation conditions. The reduced c-Cyts decreased transiently at the beginning and then recovered gradually over time. The Cr(VI) reduction rates decreased with increasing initial Cr(VI) concentrations, and Cr(III) was identified as a reduced product. The presence of Cr(III) substantially inhibited Cr(VI) reduction and the recovery of reduced c-Cyts, indicating that Cr(III) might inhibit cell growth. Cr(VI) reduction rates increased with increasing cell density. The highest Cr(VI) reduction rate and fastest recovery of c-Cyts were obtained at pH 7.0 and 30°C, with sodium lactate serving as an electron donor. The presence of O2 strongly inhibited Cr(VI) reduction, suggesting that O2 might compete with Cr(VI) as an electron acceptor in cells. This study provides a case of directly examining in vivo reaction properties of an outer-membrane enzyme during microbial metal reduction processes under non-invasive physiological conditions.
Collapse
Affiliation(s)
- Rui Han
- School of Environment and Energy, South China University of TechnologyGuangzhou, China; Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil SciencesGuangzhou, China
| | - Fangbai Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Tongxu Liu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Xiaomin Li
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Yundang Wu
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Ying Wang
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| | - Dandan Chen
- Guangdong Key Laboratory of Agricultural Environment Pollution Integrated Control, Guangdong Institute of Eco-Environmental and Soil Sciences Guangzhou, China
| |
Collapse
|
40
|
|
41
|
Peng L, Liu Y, Gao SH, Chen X, Ni BJ. Evaluating simultaneous chromate and nitrate reduction during microbial denitrification processes. WATER RESEARCH 2016; 89:1-8. [PMID: 26619398 DOI: 10.1016/j.watres.2015.11.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Revised: 11/10/2015] [Accepted: 11/13/2015] [Indexed: 06/05/2023]
Abstract
Sulfur-based autotrophic denitrification and heterotrophic denitrification have been demonstrated to be promising technological processes for simultaneous removal of nitrate NO3(-) and chromate (Cr (VI)), two common contaminants in surface and ground waters. In this work, a mathematical model was developed to describe and evaluate the microbial and substrate interactions among sulfur oxidizing denitrifying organism, methanol-based heterotrophic denitrifiers and chromate reducing bacteria in the biofilm systems for simultaneous nitrate and chromate removal. The concomitant multiple chromate reduction pathways by these microbes were taken into account in this model. The validity of the model was tested using experimental data from three independent biofilm reactors under autotrophic, heterotrophic and mixotrophic conditions. The model sufficiently described the nitrate, chromate, methanol, and sulfate dynamics under varying conditions. The modeling results demonstrated the coexistence of sulfur-oxidizing denitrifying bacteria and heterotrophic denitrifying bacteria in the biofilm under mixotrophic conditions, with chromate reducing bacteria being outcompeted. The sulfur-oxidizing denitrifying bacteria substantially contributed to both nitrate and chromate reductions although heterotrophic denitrifying bacteria dominated in the biofilm. The mixotrophic denitrification could improve the tolerance of autotrophic denitrifying bacteria to Cr (VI) toxicity. Furthermore, HRT would play an important role in affecting the microbial distribution and system performance, with HRT of higher than 0.15 day being critical for a high level removal of nitrate and chromate (over 90%).
Collapse
Affiliation(s)
- Lai Peng
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia; Laboratory of Microbial Ecology and Technology (LabMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Yiwen Liu
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Shu-Hong Gao
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Xueming Chen
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia
| | - Bing-Jie Ni
- Advanced Water Management Centre, The University of Queensland, St Lucia, Brisbane, Queensland, 4072, Australia.
| |
Collapse
|
42
|
Ng IS, Ndive CI, Zhou Y, Wu X. Cultural optimization and metal effects of Shewanella xiamenensis BC01 growth and swarming motility. BIORESOUR BIOPROCESS 2015. [DOI: 10.1186/s40643-015-0055-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
43
|
Singh R, Dong H, Liu D, Zhao L, Marts AR, Farquhar E, Tierney DL, Almquist CB, Briggs BR. Reduction of hexavalent chromium by the thermophilic methanogen Methanothermobacter thermautotrophicus. GEOCHIMICA ET COSMOCHIMICA ACTA 2015; 148:442-456. [PMID: 26120143 PMCID: PMC4477973 DOI: 10.1016/j.gca.2014.10.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Despite the significant progress on iron reduction by thermophilic microorganisms, studies on their ability to reduce toxic metals are still limited, despite their common co-existence in high temperature environments (up to 70°C). In this study, Methanothermobacter thermautotrophicus, an obligate thermophilic methanogen, was used to reduce hexavalent chromium. Experiments were conducted in a growth medium with H2/CO2 as substrate with various Cr6+ concentrations (0.2, 0.4, 1, 3, and 5 mM) in the form of potassium dichromate (K2Cr2O7). Time-course measurements of aqueous Cr6+ concentrations with the 1, 5-diphenylcarbazide colorimetric method showed complete reduction of the 0.2 and 0.4 mM Cr6+ solutions by this methanogen. However, much lower reduction extents of 43.6%, 13.0%, and 3.7% were observed at higher Cr6+ concentrations of 1, 3 and 5 mM, respectively. These lower extents of bioreduction suggest a toxic effect of aqueous Cr6+ to cells at this concentration range. At these higher Cr6+ concentrations, methanogenesis was inhibited and cell growth was impaired as evidenced by decreased total cellular protein production and live/dead cell ratio. Likewise, Cr6+ bioreduction rates decreased with increased initial concentrations of Cr6+ from 13.3 to1.9 µM h-1. X-ray absorption near-edge structure (XANES) spectroscopy revealed a progressive reduction of soluble Cr6+ to insoluble Cr3+ precipitates, which was confirmed as amorphous chromium hydroxide by X-ray diffraction and selected area electron diffraction pattern. However, a small fraction of reduced Cr occurred as aqueous Cr3+. Scanning and transmission electron microscope observations of M. thermautotrophicus cells after Cr6+ exposure suggest both extra- and intracellular chromium reduction mechanisms. Results of this study demonstrate the ability of M. thermautotrophicus cells to reduce toxic Cr6+ to less toxic Cr3+ and its potential application in metal bioremediation, especially at high temperature subsurface radioactive waste disposal sites, where the temperature may reach ∼70°C.
Collapse
Affiliation(s)
- Rajesh Singh
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
| | - Hailiang Dong
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, 100083, China
| | - Deng Liu
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Linduo Zhao
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
| | - Amy R. Marts
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH-45056
| | - Erik Farquhar
- Case Western Reserve University Center for Synchrotron Biosciences, National Synchrotron Light Source, Brookhaven National Laboratory, Upton, NY 11973
| | - David L. Tierney
- Department of Chemistry and Biochemistry, Miami University, Oxford, OH-45056
| | | | - Brandon R. Briggs
- Department of Geology and Environmental Earth Science, Miami University, Oxford, OH-45056
| |
Collapse
|
44
|
Kim DH, Park S, Kim MG, Hur HG. Accumulation of amorphous Cr(III)-Te(IV) nanoparticles on the surface of Shewanella oneidensis MR-1 through reduction of Cr(VI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14599-14606. [PMID: 25393562 DOI: 10.1021/es504587s] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Industrial effluents constitute a major source of metal pollution of aquatic bodies. Moreover, due to their environmental persistence, toxic metal pollution is of special concern. Microbial reduction is considered a promising strategy for toxic metal removal among the several methods available for metal remediation. Here, we describe the coremediation of toxic Cr(VI) and Te(IV) by the dissimilatory metal reducing bacterium-Shewanella oneidensis MR-1. In the presence of both Cr(VI) and Te(IV), S. oneidensis MR-1 reduced Cr(VI) to the less toxic Cr(III) form, but not Te(IV) to Te(0). The reduced Cr(III) ions complexed rapidly with Te(IV) ions and were precipitated from the cell cultures. Electron microscopic analyses revealed that the Cr-Te complexed nanoparticles localized on the bacterial outer membranes. K-edge X-ray absorption spectrometric analyses demonstrated that Cr(III) produced by S. oneidensis MR-1 was rapidly complexed with Te(IV) ions, followed by formation of amorphous Cr(III)-Te(IV) nanoparticles on the cell surface. Our results could be applied for the simultaneous sequestration and detoxification of both Cr(VI) and Te(IV) as well as for the preparation of nanomaterials through environmental friendly processes.
Collapse
Affiliation(s)
- Dong-Hun Kim
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology , Gwangju 500-712, Republic of Korea
| | | | | | | |
Collapse
|
45
|
Malaviya P, Singh A. Bioremediation of chromium solutions and chromium containing wastewaters. Crit Rev Microbiol 2014; 42:607-33. [DOI: 10.3109/1040841x.2014.974501] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Piyush Malaviya
- Department of Environmental Sciences, University of Jammu, Jammu, India
| | - Asha Singh
- Department of Environmental Sciences, University of Jammu, Jammu, India
| |
Collapse
|
46
|
Tahri Joutey N, Bahafid W, Sayel H, Ananou S, El Ghachtouli N. Hexavalent chromium removal by a novel Serratia proteamaculans isolated from the bank of Sebou River (Morocco). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:3060-3072. [PMID: 24194414 DOI: 10.1007/s11356-013-2249-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2013] [Accepted: 10/15/2013] [Indexed: 06/02/2023]
Abstract
The novel Serratia proteamaculans isolated from a chromium-contaminated site was tolerant to a concentration of 500 mg Cr(VI)/l. The optimum pH and temperature for reduction of Cr(VI) by S. proteamaculans were found to be 7.0 and 30 °C, respectively. The Cr(VI) reduction rate decreased with the increase in Cr(VI) concentration from 100 to 400 mg/l, suggesting the enzymatic chromium reduction. Resting and permeabilised cell assays provided the better evidence that chromate reduction in S. proteamaculans is enzymatic. Reduction by cell-free filtrate shows no extracellular chromate-reducing activity, revealing that this activity may be associated to membrane fraction and/or cytosolic fraction. Assays conducted with cytosolic and particulate fraction of S. proteamaculans confirmed the role of membrane-bound proteins in Cr(VI) reduction. Furthermore, chromium reduced by heat-treated cells suggests that membrane-associated chromate reductase activity of S. proteamaculans is preceded by its adsorption on the cell surface.
Collapse
Affiliation(s)
- Nezha Tahri Joutey
- Microbial Biotechnology Laboratory, Faculty of Sciences and Techniques, Sidi Mohamed Ben Abdellah University, Route Immouzer, P. O. Box 2202, Fez, Morocco
| | | | | | | | | |
Collapse
|
47
|
Yan FF, Wu C, Cheng YY, He YR, Li WW, Yu HQ. Carbon nanotubes promote Cr(VI) reduction by alginate-immobilized Shewanella oneidensis MR-1. Biochem Eng J 2013. [DOI: 10.1016/j.bej.2013.06.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
48
|
Long D, Tang X, Cai K, Chen G, Chen L, Duan D, Zhu J, Chen Y. Cr(VI) reduction by a potent novel alkaliphilic halotolerant strain Pseudochrobactrum saccharolyticum LY10. JOURNAL OF HAZARDOUS MATERIALS 2013; 256-257:24-32. [PMID: 23669787 DOI: 10.1016/j.jhazmat.2013.04.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 03/21/2013] [Accepted: 04/15/2013] [Indexed: 06/02/2023]
Abstract
A novel Cr(VI)-reducing strain, Pseudochrobactrum saccharolyticum LY10, was isolated and characterized for its high Cr(VI)-reducing ability. Strain LY10 had typical characteristics of alkali-tolerance and halotolerance. Kinetic analysis indicated that the maximum reduction rate was achieved under optimum conditions with initial pH 8.3, 20gL(-1) NaCl, 55mgL(-1) Cr(VI), and 1.47×10(9)cellsmL(-1) of cell concentration. Further mechanism studies verified that the removal of Cr(VI) was mainly achieved by a metabolism-dependent bioreduction process. Strain LY10 accumulated chromium both in and around the cells, with cell walls acting as the major binding sites for chromium. X-ray absorption near-edge structure (XANES) analysis further confirmed that the chromium immobilized by the cells was in the Cr(III) state. In the present study, Pseudochrobactrum saccharolyticum was, for the first time, reported to be a Cr(VI)-reducing bacteria. Results from this research would provide a potential candidate for bioremediation of Cr(VI)-contaminated environments, especially alkaline and saline milieus with Cr(VI) at low-to-mid concentrations.
Collapse
Affiliation(s)
- Dongyan Long
- Institute of Environmental Science and Technology, Zhejiang University, Yuhangtang Road 388, Hangzhou, 310058, Zhejiang, PR China
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Dhal B, Thatoi HN, Das NN, Pandey BD. Chemical and microbial remediation of hexavalent chromium from contaminated soil and mining/metallurgical solid waste: a review. JOURNAL OF HAZARDOUS MATERIALS 2013; 250-251:272-91. [PMID: 23467183 DOI: 10.1016/j.jhazmat.2013.01.048] [Citation(s) in RCA: 523] [Impact Index Per Article: 47.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 01/07/2013] [Accepted: 01/21/2013] [Indexed: 05/11/2023]
Abstract
Chromium is a highly toxic non-essential metal for microorganisms and plants, and its occurrence is rare in nature. Lower to higher chromium containing effluents and solid wastes released by activities such as mining, metal plating, wood preservation, ink manufacture, dyes, pigments, glass and ceramics, tanning and textile industries, and corrosion inhibitors in cooling water, induce pollution and may cause major health hazards. Besides, natural processes (weathering and biochemical) also contribute to the mobility of chromium which enters in to the soil affecting the plant growth and metabolic functions of the living species. Generally, chemical processes are used for Cr- remediation. However, with the inference derived from the diverse Cr-resistance mechanism displayed by microorganisms and the plants including biosorption, diminished accumulation, precipitation, reduction of Cr(VI) to Cr(III), and chromate efflux, bioremediation is emerging as a potential tool to address the problem of Cr(VI) pollution. This review focuses on the chemistry of chromium, its use, and toxicity and mobility in soil, while assessing its concentration in effluents/wastes which becomes the source of pollution. In order to conserve the environment and resources, the chemical/biological remediation processes for Cr(VI) and their efficiency have been summarised in some detail. The interaction of chromium with various microbial/bacterial strains isolated and their reduction capacity towards Cr(VI) are also discussed.
Collapse
Affiliation(s)
- B Dhal
- Metal Extraction & Forming Division, CSIR-National Metallurgical Laboratory, Jamshedpur 831 007, Jharkhand, India
| | | | | | | |
Collapse
|
50
|
Wang Y, Sevinc PC, Balchik SM, Fridrickson J, Shi L, Lu HP. Single-cell imaging and spectroscopic analyses of Cr(VI) reduction on the surface of bacterial cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:950-6. [PMID: 23249294 PMCID: PMC3671764 DOI: 10.1021/la303779y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We investigate the single-cell reduction of toxic Cr(VI) by the dissimilatory metal-reducing bacterium Shewanella oneidensis MR-1 (MR-1), an important bioremediation process, using Raman spectroscopy and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). Our experiments indicate that the toxic, highly soluble Cr(VI) can be efficiently reduced to less toxic, nonsoluble Cr(2)O(3) nanoparticles by MR-1. Cr(2)O(3) is observed to emerge as nanoparticles adsorbed on the cell surface and its chemical nature is identified by EDX imaging and Raman spectroscopy. Co-localization of Cr(2)O(3) and cytochromes by EDX imaging and Raman spectroscopy suggests a terminal reductase role for MR-1 surface-exposed cytochromes MtrC and OmcA. Our experiments revealed that the cooperation of surface proteins OmcA and MtrC makes the reduction reaction most efficient, and the sequence of the reducing reactivity of MR-1 is wild type > single mutant ΔmtrC or mutant ΔomcA > double mutant (ΔomcA-ΔmtrC). Moreover, our results also suggest that direct microbial Cr(VI) reduction and Fe(II) (hematite)-mediated Cr(VI) reduction mechanisms may coexist in the reduction processes.
Collapse
Affiliation(s)
- Yuanmin Wang
- Bowling Green State University, Department of Chemistry, Center for Photochemical Sciences, Bowling Green, OH 43403
| | - Papatya C. Sevinc
- Bowling Green State University, Department of Chemistry, Center for Photochemical Sciences, Bowling Green, OH 43403
| | - Sara M. Balchik
- Pacific Northwest National Laboratory, Microbiology Group, Biological Sciences Division, Richland, WA 99352
| | - Jim Fridrickson
- Pacific Northwest National Laboratory, Microbiology Group, Biological Sciences Division, Richland, WA 99352
| | - Liang Shi
- Pacific Northwest National Laboratory, Microbiology Group, Biological Sciences Division, Richland, WA 99352
| | - H. Peter Lu
- Bowling Green State University, Department of Chemistry, Center for Photochemical Sciences, Bowling Green, OH 43403
| |
Collapse
|