1
|
Zhang SQ, Yuan HZ, Ma X, Wei DX. Carbon cycle of polyhydroxyalkanoates (CCP): Biosynthesis and biodegradation. ENVIRONMENTAL RESEARCH 2025; 269:120904. [PMID: 39842755 DOI: 10.1016/j.envres.2025.120904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 01/24/2025]
Abstract
Carbon neutrality of bioactive materials is vital in promoting sustainable development for human society. Polyhydroxyalkanoates (PHAs) is a class of typical carbon-cycle bio-polyesters synthesized by microorganisms using sugars, organic acids, and even carbon dioxide. PHAs first degrade into 3-hydroxybutyrate (3HB) before further breaking down into carbon dioxide and water, aligning with carbon-neutral goals. Due to their diverse molecular structures and material properties, excellent biocompatibility, and controlled biodegradability, PHAs have found widespread applications in environmental protection and biomedicine. However, challenges persist in achieving cost-effective PHA production and reusing degradation products. Additionally, understanding the carbon pathways in PHA synthesis and degradation remains limited. In this review, we first introduce the concept of the Carbon Cycle of Polyhydroxyalkanoates (CCP) and describe the biosynthetic pathways of aromatic monomers, carbon conversion processes, and PHA degradation in compost, soil, and marine environments. This will help us fully understand the sustainable utilization value of PHA as a biomaterial. Future trends point to integrating synthetic biology with emerging technologies to produce low-cost, high-value PHAs, supporting global green and low-carbon development.
Collapse
Affiliation(s)
- Si-Qin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China
| | - Hao-Zhe Yuan
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Xue Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China
| | - Dai-Xu Wei
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, School of Medicine, Department of Life Sciences and Medicine, Northwest University, Xi'an, 710069, China; Shaanxi Key Laboratory for Carbon Neutral Technology, Xi'an, 710069, China; Clinical Medical College and Affiliated Hospital of Chengdu University, Chengdu University, Chengdu, Sichuan, 610081 China.
| |
Collapse
|
2
|
Zhang B, Guo P, Sun X, Shang Y, Luo Y, Wu H. Enhancement of lactate fraction in poly(lactate-co-3-hydroxybutyrate) biosynthesized by metabolically engineered E. coli. BIORESOUR BIOPROCESS 2024; 11:88. [PMID: 39297980 PMCID: PMC11413402 DOI: 10.1186/s40643-024-00803-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 09/05/2024] [Indexed: 09/21/2024] Open
Abstract
Poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)] is a high-molecular-weight biomaterial with excellent biocompatibility and biodegradability. In this study, the properties of P(LA-co-3HB) were examined and found to be affected by its lactate fraction. The efficiency of lactyl-CoA biosynthesis from intracellular lactate significantly affected the microbial synthesis of P(LA-co-3HB). Two CoA transferases from Anaerotignum lactatifermentans and Bacillota bacterium were selected for use in copolymer biosynthesis from 11 candidates. We found that cotAl enhanced the lactate fraction by 31.56% compared to that of the frequently used modified form of propionyl-CoA transferase from Anaerotignum propionicum. In addition, utilizing xylose as a favorable carbon source and blocking the lactate degradation pathway further enhanced the lactate fraction to 30.42 mol% and 52.84 mol%, respectively. Furthermore, when a 5 L bioreactor was used for fermentation utilizing xylose as a carbon source, the engineered strain produced 60.60 wt% P(46.40 mol% LA-co-3HB), which was similar to the results of our flask experiments. Our results indicate that the application of new CoA transferases has great potential for the biosynthesis of other lactate-based copolymers.
Collapse
Affiliation(s)
- Binghao Zhang
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Pengye Guo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Xinye Sun
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yanzhe Shang
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- MOE Key Laboratory of Bio-Intelligent Manufacturing, School of Bioengineering, Dalian University of Technology, Dalian, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-based Material Engineering of China, National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
3
|
Mandal M, Roy A, Mitra D, Sarkar A. Possibilities and prospects of bioplastics production from agri-waste using bacterial communities: Finding a silver-lining in waste management. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100274. [PMID: 39310303 PMCID: PMC11416519 DOI: 10.1016/j.crmicr.2024.100274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024] Open
Abstract
To meet the need of the growing global population, the modern agriculture faces tremendous challenges to produce more food as well as fiber, timber, biofuels, etc.; hence generates more waste. This continuous growth of agricultural waste (agri-waste) and its management strategies have drawn the attention worldwide because of its severe environmental impacts including air, soil and water pollution. Similarly, growing concerns about the sustainable future have fuelled the development of biopolymers, substances occurring in and/or produced by living organisms, as substitute for different synthetic and harmful polymers, especially petroleum-based plastics. Now, the components of agri-waste offer encouraging opportunities for the production of bioplastics through mechanical and microbial procedures. Even the microbial, both bacterial and fungal, system results in lower energy consumption and better eco-friendly alternatives. The review mainly concentrates on cataloging and understanding the bacterial 'input' in developing bioplastics from diverse agri-waste. Especially, the bacteria like Cupriavidus necator, Chromatium vinosum, and Pseudomonas aeruginosa produce short- and medium-chain length poly(3-hydroxyalkanote) (P3HB) polymers using starch (from corn and potato waste), and cellulose (from sugarcane bagasse, corn husks waste). Similarly, C. necator, and transformant Wautersia eutropha produce P3HB polymer using lipid-based components (such as palm oil waste). Important to note that, the synthesis of these polymers are interconnected with the bacterial general metabolic activities, for example Krebs cycle, glycolysis cycle, β-oxidation, calvin cycle, de novo fatty acid syntheses, etc. Altogether, the agri-waste is reasonably low-cost feed for the production of bioplastics using bacterial communities; and the whole process certainly provide an opportunity towards sustainable waste management strategy.
Collapse
Affiliation(s)
- Mamun Mandal
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Anamika Roy
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| | - Debasis Mitra
- Department of Microbiology, Graphic Era (Deemed to be University), 566/6, Bell Road, Clement Town, Dehradun, Uttarakhand 248002 India
| | - Abhijit Sarkar
- Laboratory of Applied Stress Biology, Department of Botany, University of Gour Banga, Malda – 732 103, West Bengal, India
| |
Collapse
|
4
|
Koh S, Endo R, Kahar P, Mori Y, Ogino C, Tanaka S, Tanaka S, Imai Y, Taguchi S. Complete sequence randomness of lactate-based copolymers (LAHBs) with varied lactate monomer fractions employing a series of propionyl-CoA transferases. Int J Biol Macromol 2024; 274:133055. [PMID: 38866271 DOI: 10.1016/j.ijbiomac.2024.133055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/31/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Previously, we biosynthesized an evolved version of a bio-based polylactide (PLA) on microbial platforms using our engineered lactate-polymerizing enzyme (LPE). This lactate (LA)-based copolyester, LAHB, has advantages over PLA, including improved flexibility and biodegradability, and its properties can be regulated through the LA fraction. To expand the LA-incorporation capacity and improve polymer properties, in the state of in vivo LAHB production, propionyl-CoA transferases (PCTs) that exhibited enhanced production of LA-CoA than the conventional PCTs were selected. Here, the present study has demonstrated that the LA fraction of LAHB could be altered using various PCTs. Enhanced PCT performance was achieved by balancing polymer production and cell growth. Both events are governed by the use of acetyl-CoA, a commonly shared key metabolite. This could be attributed to the different reactivities of individual PCTs towards acetyl-CoA, which serves both as a CoA donor and a leading compound in the TCA cycle. Interestingly, we found complete sequence randomness in the LAHB copolymers, independent of the LA fraction. The mechanism of LA fraction-independent sequence randomness is discussed. This new PCT-based strategy synergistically combines with the evolution of LPE to advance the LAHB project, and enables us to perform advanced applications other than LAHB production utilizing CoA-linked substrates.
Collapse
Affiliation(s)
- Sangho Koh
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Ryota Endo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Prihardi Kahar
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Yutaro Mori
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Shinji Tanaka
- Interdisciplinary Research Center for Catalytic Chemistry, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki 305-8565, Japan
| | - Yusuke Imai
- Multi-Material Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama-ku, Nagoya, Aichi 463-8560, Japan
| | - Seiichi Taguchi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; Engineering Biology Research Center, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| |
Collapse
|
5
|
Hernández-Herreros N, Rivero-Buceta V, Pardo I, Prieto MA. Production of poly(3-hydroxybutyrate)/poly(lactic acid) from industrial wastewater by wild-type Cupriavidus necator H16. WATER RESEARCH 2024; 249:120892. [PMID: 38007895 DOI: 10.1016/j.watres.2023.120892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 11/28/2023]
Abstract
The massive production of urban and industrial wastes has created a clear need for alternative waste management processes. One of the more promising strategies is to use waste as raw material for the production of biopolymers such as polyhydroxyalkanoates (PHAs). In this work, a lactate-enriched stream obtained by anaerobic digestion (AD) of wastewater (WW) from a candy production plant was used as a feedstock for PHA production in wild-type Cupriavidus necator H16. Unexpectedly, we observed the accumulation of poly(3-hydroxybutyrate)/poly(lactic acid) (P(3HB)/PLA), suggesting that the non-engineered strain already possesses the metabolic potential to produce these polymers of interest. The systematic study of factors, such as incubation time, nitrogen and lactate concentration, influencing the synthesis of P(3HB)/PLA allowed the production of a panel of polymers in a resting cell system with tailored lactic acid (LA) content according to the GC-MS of the biomass. Further biomass extraction suggested the presence of methanol soluble low molecular weight molecules containing LA, while 1 % LA could be detected in the purified polymer fraction. These results suggested that the cells are producing a blend of polymers. A proteomic analysis of C. necator resting cells under P(3HB)/PLA production conditions provides new insights into the latent pathways involved in this process. This study is a proof of concept demonstrating that LA can polymerize in a non-modified organism and paves the way for new metabolic engineering approaches for lactic acid polymer production in the model bacterium C. necator H16.
Collapse
Affiliation(s)
- Natalia Hernández-Herreros
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Virginia Rivero-Buceta
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Isabel Pardo
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - M Auxiliadora Prieto
- Microbial & Plant Biotechnology Department. Polymer Biotechnology Group. Biological Research Centre Margarita Salas, Spanish National Research Council (CIB-CSIC), Madrid, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain.
| |
Collapse
|
6
|
Thomas AP, Kasa VP, Dubey BK, Sen R, Sarmah AK. Synthesis and commercialization of bioplastics: Organic waste as a sustainable feedstock. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167243. [PMID: 37741416 DOI: 10.1016/j.scitotenv.2023.167243] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/14/2023] [Accepted: 09/19/2023] [Indexed: 09/25/2023]
Abstract
Substituting synthetic plastics with bioplastics, primarily due to their inherent biodegradable properties, represents a highly effective strategy to address the current global issue of plastic waste accumulation in the environment. Advances in bioplastic research have led to the development of materials with improved properties, enabling their use in a wide range of applications in major commercial sectors. Bioplastics are derived from various natural sources such as plants, animals, and microorganisms. Polyhydroxyalkanoate (PHA), a biopolymer synthesized by bacteria through microbial fermentation, exhibits physicochemical and mechanical characteristics comparable to those of synthetic plastics. In response to the growing demand for these environmentally friendly plastics, researchers are actively investigating various cleaner production methods, including modification or derivatization of existing molecules for enhanced properties and new-generation applications to expand their market share in the coming decades. By 2026, the commercial manufacturing capacity of bioplastics is projected to reach 7.6 million tonnes, with Europe currently holding a significant market share of 43.5 %. Bioplastics are predominantly utilized in the packaging industry, indicating a strong focus of their application in the sector. With the anticipated rise in bioplastic waste volume over the next few decades, it is crucial to comprehend their fate in various environments to evaluate the overall environmental impact. Ensuring their complete biodegradation involves optimizing waste management strategies and appropriate disposal within these facilities. Future research efforts should prioritize exploration of their end-of-life management and toxicity assessment of degradation products. These efforts are crucial to ensure the economic viability and environmental sustainability of bioplastics as alternatives to synthetic plastics.
Collapse
Affiliation(s)
- Anjaly P Thomas
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Vara Prasad Kasa
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Brajesh Kumar Dubey
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| | - Ramkrishna Sen
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ajit K Sarmah
- Department of Civil & Environmental Engineering, Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand; The Institute of Agriculture, The University of Western Australia, Nedlands, Perth, WA 6009, Australia
| |
Collapse
|
7
|
Zhang FL, Zhang L, Zeng DW, Liao S, Fan Y, Champreda V, Runguphan W, Zhao XQ. Engineering yeast cell factories to produce biodegradable plastics and their monomers: Current status and prospects. Biotechnol Adv 2023; 68:108222. [PMID: 37516259 DOI: 10.1016/j.biotechadv.2023.108222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 07/31/2023]
Abstract
Traditional plastic products have caused serious environmental pollution due to difficulty to be degraded in the natural environment. In the recent years, biodegradable plastics are receiving increasing attention due to advantages in natural degradability and environmental friendliness. Biodegradable plastics have potential to be used in food, agriculture, industry, medicine and other fields. However, the high production cost of such plastics is the bottleneck that limits their commercialization and application. Yeasts, including budding yeast and non-conventional yeasts, are widely studied to produce biodegradable plastics and their organic acid monomers. Compared to bacteria, yeast strains are more tolerable to multiple stress conditions including low pH and high temperature, and also have other advantages such as generally regarded as safe, and no phage infection. In addition, synthetic biology and metabolic engineering of yeast have enabled its rapid and efficient engineering for bioproduction using various renewable feedstocks, especially lignocellulosic biomass. This review focuses on the recent progress in biosynthesis technology and strategies of monomeric organic acids for biodegradable polymers, including polylactic acid (PLA), polyhydroxyalkanoate (PHA), polybutylene succinate (PBS), and polybutylene adipate terephthalate (PBAT) using yeast cell factories. Improving the performance of yeast as a cell factory and strategies to improve yeast acid stress tolerance are also discussed. In addition, the critical challenges and future prospects for the production of biodegradable plastic monomer using yeast are also discussed.
Collapse
Affiliation(s)
- Feng-Li Zhang
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Lin Zhang
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Du-Wen Zeng
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Sha Liao
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Yachao Fan
- SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian 116045, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Weerawat Runguphan
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Phaholyothin Road, Khlong Luang, Pathumthani 12120, Thailand
| | - Xin-Qing Zhao
- Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
8
|
Lee GH, Kim DW, Jin YH, Kim SM, Lim ES, Cha MJ, Ko JK, Gong G, Lee SM, Um Y, Han SO, Ahn JH. Biotechnological Plastic Degradation and Valorization Using Systems Metabolic Engineering. Int J Mol Sci 2023; 24:15181. [PMID: 37894861 PMCID: PMC10607142 DOI: 10.3390/ijms242015181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Various kinds of plastics have been developed over the past century, vastly improving the quality of life. However, the indiscriminate production and irresponsible management of plastics have led to the accumulation of plastic waste, emerging as a pressing environmental concern. To establish a clean and sustainable plastic economy, plastic recycling becomes imperative to mitigate resource depletion and replace non-eco-friendly processes, such as incineration. Although chemical and mechanical recycling technologies exist, the prevalence of composite plastics in product manufacturing complicates recycling efforts. In recent years, the biodegradation of plastics using enzymes and microorganisms has been reported, opening a new possibility for biotechnological plastic degradation and bio-upcycling. This review provides an overview of microbial strains capable of degrading various plastics, highlighting key enzymes and their role. In addition, recent advances in plastic waste valorization technology based on systems metabolic engineering are explored in detail. Finally, future perspectives on systems metabolic engineering strategies to develop a circular plastic bioeconomy are discussed.
Collapse
Affiliation(s)
- Ga Hyun Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Do-Wook Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Yun Hui Jin
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Sang Min Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Eui Seok Lim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Min Ji Cha
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Gyeongtaek Gong
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jung Ho Ahn
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- Division of Energy and Environment Technology, KIST School, University of Science and Technology (UST), Daejeon 34113, Republic of Korea
| |
Collapse
|
9
|
Lee H, Jung Sohn Y, Jeon S, Yang H, Son J, Jin Kim Y, Jae Park S. Sugarcane wastes as microbial feedstocks: A review of the biorefinery framework from resource recovery to production of value-added products. BIORESOURCE TECHNOLOGY 2023; 376:128879. [PMID: 36921642 DOI: 10.1016/j.biortech.2023.128879] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 06/18/2023]
Abstract
Sugarcane industry is a major agricultural sector capable of producing sugars with byproducts including straw, bagasse, and molasses. Sugarcane byproducts are no longer wastes since they can be converted into carbon-rich resources for biorefinery if pretreatment of these is well established. Considerable efforts have been devoted to effective pretreatment techniques for each sugarcane byproduct to supply feedstocks in microbial fermentation to produce value-added fuels, chemicals, and polymers. These value-added chains, which start with low-value industrial wastes and end with high-value products, can make sugarcane-based biorefinery a more viable option for the modern chemical industry. In this review, recent advances in sugarcane valorization techniques are presented, ranging from sugarcane processing, pretreatment, and microbial production of value-added products. Three lucrative products, ethanol, 2,3-butanediol, and polyhydroxyalkanoates, whose production from sugarcane wastes has been widely researched, are being explored. Future studies and development in sugarcane waste biorefinery are discussed to overcome the challenges remaining.
Collapse
Affiliation(s)
- Haeyoung Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Subeen Jeon
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyoju Yang
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jin Kim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Republic of Korea.
| |
Collapse
|
10
|
Al-Khairy D, Fu W, Alzahmi AS, Twizere JC, Amin SA, Salehi-Ashtiani K, Mystikou A. Closing the Gap between Bio-Based and Petroleum-Based Plastic through Bioengineering. Microorganisms 2022; 10:microorganisms10122320. [PMID: 36557574 PMCID: PMC9787566 DOI: 10.3390/microorganisms10122320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022] Open
Abstract
Bioplastics, which are plastic materials produced from renewable bio-based feedstocks, have been investigated for their potential as an attractive alternative to petroleum-based plastics. Despite the harmful effects of plastic accumulation in the environment, bioplastic production is still underdeveloped. Recent advances in strain development, genome sequencing, and editing technologies have accelerated research efforts toward bioplastic production and helped to advance its goal of replacing conventional plastics. In this review, we highlight bioengineering approaches, new advancements, and related challenges in the bioproduction and biodegradation of plastics. We cover different types of polymers, including polylactic acid (PLA) and polyhydroxyalkanoates (PHAs and PHBs) produced by bacterial, microalgal, and plant species naturally as well as through genetic engineering. Moreover, we provide detailed information on pathways that produce PHAs and PHBs in bacteria. Lastly, we present the prospect of using large-scale genome engineering to enhance strains and develop microalgae as a sustainable production platform.
Collapse
Affiliation(s)
- Dina Al-Khairy
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Weiqi Fu
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Department of Marine Science, Ocean College, Zhejiang University & Donghai Laboratory, Zhoushan 316021, China
| | - Amnah Salem Alzahmi
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Jean-Claude Twizere
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Laboratory of Viral Interactomes Networks, Unit of Molecular Biology of Diseases, Interdisciplinary Cluster for Applied Genoproteomics (GIGA Institute), University of Liège, 4000 Liège, Belgium
| | - Shady A. Amin
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
| | - Kourosh Salehi-Ashtiani
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| | - Alexandra Mystikou
- Division of Science and Math, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Center for Genomics and Systems Biology (CGSB), Institute Abu Dhabi, New York University Abu Dhabi, Abu Dhabi 129188, United Arab Emirates
- Correspondence: (K.S.-A.); (A.M.)
| |
Collapse
|
11
|
He J, Shi H, Li X, Nie X, Yang Y, Li J, Wang J, Yao M, Tian B, Zhou J. A review on microbial synthesis of lactate-containing polyesters. World J Microbiol Biotechnol 2022; 38:198. [PMID: 35995888 DOI: 10.1007/s11274-022-03388-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 08/12/2022] [Indexed: 10/15/2022]
Abstract
Degradable polylactic acids (PLA) have been widely used in agriculture, textile, medicine and degradable plastics industry, and can completely replace petroleum-based plastics in the future. At present, polylactic acid was chemically synthesized by ring-opening polymerisation or the direct polycondensation of lactic acid, which inevitably leads to chemical and heavy metal catalyst pollution. The current research focus has gradually shifted to the development of recombinant industrial strains for the efficiently production of lactate-containing polyesters from renewable resources. This review summarizes various explorations of metabolic pathway optimization and production cost control in the industrialization of lactate-containing polyesters bio-production. In particular, the effects of key enzymes, including CoA transferase, polyhydroxyalkanoate synthase, and their mutants, culture conditions, low-cost carbon sources, and recombinant strains on the yield and composition of lactate-containing polyesters are summarized and discussed. Future prospects and challenges for the industrialization of lactate-containing polyesters are also pointed out.
Collapse
Affiliation(s)
- Junyi He
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Hao Shi
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xiangqian Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Xinling Nie
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Yuxiang Yang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jing Li
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jiahui Wang
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Mengdie Yao
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Baoxia Tian
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China
| | - Jia Zhou
- Faculty of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China. .,Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003, People's Republic of China.
| |
Collapse
|
12
|
Biopolymer production in microbiology by application of metabolic engineering. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03820-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Gao Q, Yang H, Wang C, Xie XY, Liu KX, Lin Y, Han SY, Zhu M, Neureiter M, Lin Y, Ye JW. Advances and trends in microbial production of polyhydroxyalkanoates and their building blocks. Front Bioeng Biotechnol 2022; 10:966598. [PMID: 35928942 PMCID: PMC9343942 DOI: 10.3389/fbioe.2022.966598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Accepted: 07/01/2022] [Indexed: 11/13/2022] Open
Abstract
With the rapid development of synthetic biology, a variety of biopolymers can be obtained by recombinant microorganisms. Polyhydroxyalkanoates (PHA) is one of the most popular one with promising material properties, such as biodegradability and biocompatibility against the petrol-based plastics. This study reviews the recent studies focusing on the microbial synthesis of PHA, including chassis engineering, pathways engineering for various substrates utilization and PHA monomer synthesis, and PHA synthase modification. In particular, advances in metabolic engineering of dominant workhorses, for example Halomonas, Ralstonia eutropha, Escherichia coli and Pseudomonas, with outstanding PHA accumulation capability, were summarized and discussed, providing a full landscape of diverse PHA biosynthesis. Meanwhile, we also introduced the recent efforts focusing on structural analysis and mutagenesis of PHA synthase, which significantly determines the polymerization activity of varied monomer structures and PHA molecular weight. Besides, perspectives and solutions were thus proposed for achieving scale-up PHA of low cost with customized material property in the coming future.
Collapse
Affiliation(s)
- Qiang Gao
- Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, QH, China
| | - Hao Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Chi Wang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xin-Ying Xie
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Kai-Xuan Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Shuang-Yan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Mingjun Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Markus Neureiter
- Institute for Environmental Biotechnology, Department of Agrobiotechnology, University of Natural Resources and Life Sciences, Tulln, Austria
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Yina Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| | - Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
- *Correspondence: Markus Neureiter, ; Yina Lin, ; Jian-Wen Ye,
| |
Collapse
|
14
|
Shi M, Li M, Yang A, Miao X, Yang L, Pandhal J, Zou H. Class I Polyhydroxyalkanoate (PHA) Synthase Increased Polylactic Acid Production in Engineered Escherichia Coli. Front Bioeng Biotechnol 2022; 10:919969. [PMID: 35814019 PMCID: PMC9261260 DOI: 10.3389/fbioe.2022.919969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 11/24/2022] Open
Abstract
Polylactic acid (PLA), a homopolymer of lactic acid (LA), is a bio-derived, biocompatible, and biodegradable polyester. The evolved class II PHA synthase (PhaC1Ps6-19) was commonly utilized in the de novo biosynthesis of PLA from biomass. This study tested alternative class I PHA synthase (PhaCCs) from Chromobacterium sp. USM2 in engineered Escherichia coli for the de novo biosynthesis of PLA from glucose. The results indicated that PhaCCs had better performance in PLA production than that of class II synthase PhaC1Ps6-19. In addition, the sulA gene was engineered in PLA-producing strains for morphological engineering. The morphologically engineered strains present increased PLA production. This study also tested fused propionyl-CoA transferase and lactate dehydrogenase A (fused PctCp/LdhA) in engineered E. coli and found that fused PctCp/LdhA did not apparently improve the PLA production. After systematic engineering, the highest PLA production was achieved by E. coli MS6 (with PhaCCs and sulA), which could produce up to 955.0 mg/L of PLA in fed-batch fermentation with the cell dry weights of 2.23%, and the average molecular weight of produced PLA could reach 21,000 Da.
Collapse
Affiliation(s)
- Mengxun Shi
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Mengdi Li
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Anran Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xue Miao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Liu Yang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Jagroop Pandhal
- Department of Chemical and Biological Engineering, The University of Sheffield, Sheffield, United Kingdom
| | - Huibin Zou
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, China
- *Correspondence: Huibin Zou, ,
| |
Collapse
|
15
|
Control of D-lactic acid content in P(LA-3HB) copolymer in the yeast Saccharomyces cerevisiae using a synthetic gene expression system. Metab Eng Commun 2022; 14:e00199. [PMID: 35571351 PMCID: PMC9095885 DOI: 10.1016/j.mec.2022.e00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/26/2022] [Accepted: 04/22/2022] [Indexed: 11/22/2022] Open
Abstract
The fully biobased polyhydroxyalkanoate (PHA) polymers provide interesting alternatives for petrochemical derived plastic materials. The mechanical properties of some PHAs, including the common poly(3-hydroxybutyrate) (PHB), are limited, but tunable by addition of other monomers into the polymer chain. In this study we present a precise synthetic biology method to adjust lactate monomer fraction of a polymer by controlling the monomer formation in vivo at gene expression level, independent of cultivation conditions. We used the modified doxycycline-based Tet-On approach to adjust the expression of the stereospecific D-lactate dehydrogenase gene (ldhA) from Leuconostoc mesenteroides to control D-lactic acid formation in yeast Saccharomyces cerevisiae. The synthetic Tet-On transcription factor with a VP16 activation domain was continuously expressed and its binding to a synthetic promoter with eight transcription factor specific binding sites upstream of the ldhA gene was controlled with the doxycycline concentration in the media. The increase in doxycycline concentration correlated positively with ldhA expression, D-lactic acid production, poly(D-lactic acid) (PDLA) accumulation in vivo, and D-lactic acid content in the poly(D-lactate-co-3-hydroxybutyrate) P(LA-3HB) copolymer. We demonstrated that the D-lactic acid content of the P(LA-3HB) copolymer can be adjusted linearly from 6 mol% to 93 mol% in vivo in S. cerevisiae. These results highlight the power of controlling gene expression and monomer formation in the tuning of the polymer composition. In addition, we obtained 5.6% PDLA and 19% P(LA-3HB) of the cell dry weight (CDW), which are over two- and five-fold higher accumulation levels, respectively, than reported in the previous studies with yeast. We also compared two engineered PHA synthases and discovered that in S. cerevisiae the PHA synthase PhaC1437Ps6-19 produced P(LA-3HB) copolymers with lower D-lactic acid content, but with higher molecular weight, in comparison to the PHA synthase PhaC1Pre. P(LA-3HB) monomer structure was adjusted with controlled gene expression. Expression of D-lactate dehydrogenase (ldhA) was controlled with Tet-On approach. Lactic acid content in copolymer P(LA-3HB) was adjusted from 6 mol% up to 93 mol%. 5.6% PDLA and 19% P(LA-3HB) of cell dry weight (CDW) were obtained in S. cerevisiae. PhaC1437Ps6-19 P(LA-3HB) had lower D-lactic acid % than PhaC1Pre P(LA-3HB).
Collapse
|
16
|
Hackmann TJ. Redefining the coenzyme A transferase superfamily with a large set of manually-annotated proteins. Protein Sci 2022; 31:864-881. [PMID: 35049101 PMCID: PMC8927868 DOI: 10.1002/pro.4277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/07/2021] [Accepted: 01/13/2022] [Indexed: 10/19/2022]
Abstract
The coenzyme A (CoA) transferases are a superfamily of proteins central to the metabolism of acetyl-CoA and other CoA thioesters. They are diverse group, catalyzing over a hundred biochemical reactions and spanning all three domains of life. A deeply rooted idea, proposed two decades ago, is these enzymes fall into three families (I, II, III). Here we find they fall into different families, which we achieve by analyzing all CoA transferases characterized to date. We manually annotated 94 CoA transferases with functional information (including rates of catalysis for 208 reactions) from 97 publications. This represents all enzymes we could find in the primary literature, and it is double the number annotated in four protein databases (BRENDA, KEGG, MetaCyc, UniProt). We found family I transferases are not closely related to each other in terms of sequence, structure, and reactions catalyzed. This family is not even monophyletic. These problems are solved by regrouping the three families into six, including one family with many non-CoA transferases. The problem (and solution) became apparent only by analyzing our large set of manually-annotated proteins. It would have been missed if we had used the small number of proteins annotated in UniProt and other databases. Our work is important to understanding the biology of CoA transferases. It also warns investigators doing phylogenetic analyses of proteins to go beyond information in databases. This article is protected by copyright. All rights reserved.
Collapse
|
17
|
Jo SY, Son J, Sohn YJ, Lim SH, Lee JY, Yoo JI, Park SY, Na JG, Park SJ. A shortcut to carbon-neutral bioplastic production: Recent advances in microbial production of polyhydroxyalkanoates from C1 resources. Int J Biol Macromol 2021; 192:978-998. [PMID: 34656544 DOI: 10.1016/j.ijbiomac.2021.10.066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/04/2021] [Accepted: 10/09/2021] [Indexed: 12/18/2022]
Abstract
Since the 20th century, plastics that are widely being used in general life and industries are causing enormous plastic waste problems since improperly discarded plastics barely degrade and decompose. Thus, the demand for polyhydroxyalkanoates (PHAs), biodegradable polymers with material properties similar to conventional petroleum-based plastics, has been increased so far. The microbial production of PHAs is an environment-friendly solution for the current plastic crisis, however, the carbon sources for the microbial PHA production is a crucial factor to be considered in terms of carbon-neutrality. One‑carbon (C1) resources, such as methane, carbon monoxide, and carbon dioxide, are greenhouse gases and are abundantly found in nature and industry. C1 resources as the carbon sources for PHA production have a completely closed carbon loop with much advances; i) fast carbon circulation with direct bioconversion process and ii) simple fermentation procedure without sterilization as non-preferable nutrients. This review discusses the biosynthesis of PHAs based on C1 resource utilization by wild-type and metabolically engineered microbial host strains via biorefinery processes.
Collapse
Affiliation(s)
- Seo Young Jo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jina Son
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Yu Jung Sohn
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Seo Hyun Lim
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Ji Yeon Lee
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jee In Yoo
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Se Young Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea.
| | - Si Jae Park
- Department of Chemical Engineering and Materials Science, Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul, 03760, Republic of Korea.
| |
Collapse
|
18
|
Vila-Santa A, Mendes FC, Ferreira FC, Prather KLJ, Mira NP. Implementation of Synthetic Pathways to Foster Microbe-Based Production of Non-Naturally Occurring Carboxylic Acids and Derivatives. J Fungi (Basel) 2021; 7:jof7121020. [PMID: 34947002 PMCID: PMC8706239 DOI: 10.3390/jof7121020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/15/2021] [Accepted: 11/20/2021] [Indexed: 11/20/2022] Open
Abstract
Microbially produced carboxylic acids (CAs) are considered key players in the implementation of more sustainable industrial processes due to their potential to replace a set of oil-derived commodity chemicals. Most CAs are intermediates of microbial central carbon metabolism, and therefore, a biochemical production pathway is described and can be transferred to a host of choice to enable/improve production at an industrial scale. However, for some CAs, the implementation of this approach is difficult, either because they do not occur naturally (as is the case for levulinic acid) or because the described production pathway cannot be easily ported (as it is the case for adipic, muconic or glucaric acids). Synthetic biology has been reshaping the range of molecules that can be produced by microbial cells by setting new-to-nature pathways that leverage on enzyme arrangements not observed in vivo, often in association with the use of substrates that are not enzymes’ natural ones. In this review, we provide an overview of how the establishment of synthetic pathways, assisted by computational tools for metabolic retrobiosynthesis, has been applied to the field of CA production. The translation of these efforts in bridging the gap between the synthesis of CAs and of their more interesting derivatives, often themselves non-naturally occurring molecules, is also reviewed using as case studies the production of methacrylic, methylmethacrylic and poly-lactic acids.
Collapse
Affiliation(s)
- Ana Vila-Santa
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, 1049-001 Lisbon, Portugal; (A.V.-S.); (F.C.M.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Fernão C. Mendes
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, 1049-001 Lisbon, Portugal; (A.V.-S.); (F.C.M.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Frederico C. Ferreira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, 1049-001 Lisbon, Portugal; (A.V.-S.); (F.C.M.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Kristala L. J. Prather
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA;
| | - Nuno P. Mira
- Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Department of Bioengineering, University of Lisbon, 1049-001 Lisbon, Portugal; (A.V.-S.); (F.C.M.); (F.C.F.)
- Associate Laboratory i4HB—Institute for Health and Bioeconomy at Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
19
|
Huang S, Xue Y, Yu B, Wang L, Zhou C, Ma Y. A Review of the Recent Developments in the Bioproduction of Polylactic Acid and Its Precursors Optically Pure Lactic Acids. Molecules 2021; 26:molecules26216446. [PMID: 34770854 PMCID: PMC8587312 DOI: 10.3390/molecules26216446] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/13/2021] [Accepted: 10/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lactic acid (LA) is an important organic acid with broad industrial applications. Considered as an environmentally friendly alternative to petroleum-based plastic with a wide range of applications, polylactic acid has generated a great deal of interest and therefore the demand for optically pure l- or d-lactic acid has increased accordingly. Microbial fermentation is the industrial route for LA production. LA bacteria and certain genetic engineering bacteria are widely used for LA production. Although some fungi, such as Saccharomyces cerevisiae, are not natural LA producers, they have recently received increased attention for LA production because of their acid tolerance. The main challenge for LA bioproduction is the high cost of substrates. The development of LA production from cost-effective biomasses is a potential solution to reduce the cost of LA production. This review examined and discussed recent progress in optically pure l-lactic acid and optically pure d-lactic acid fermentation. The utilization of inexpensive substrates is also focused on. Additionally, for PLA production, a complete biological process by one-step fermentation from renewable resources is also currently being developed by metabolically engineered bacteria. We also summarize the strategies and procedures for metabolically engineering microorganisms producing PLA. In addition, there exists some challenges to efficiently produce PLA, therefore strategies to overcome these challenges through metabolic engineering combined with enzyme engineering are also discussed.
Collapse
Affiliation(s)
- Shiyong Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanfen Xue
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| | - Bo Yu
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
| | - Limin Wang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China;
- Correspondence: (L.W.); (C.Z.)
| | - Cheng Zhou
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
- Correspondence: (L.W.); (C.Z.)
| | - Yanhe Ma
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; (S.H.); (Y.X.); (Y.M.)
| |
Collapse
|
20
|
Guo P, Luo Y, Wu J, Wu H. Recent advances in the microbial synthesis of lactate-based copolymer. BIORESOUR BIOPROCESS 2021; 8:106. [PMID: 38650297 PMCID: PMC10992027 DOI: 10.1186/s40643-021-00458-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/12/2021] [Indexed: 11/10/2022] Open
Abstract
Due to the increasing environmental pollution of un-degradable plastics and the consumption of non-renewable resources, more attention has been attracted by new bio-degradable/based polymers produced from renewable resources. Polylactic acid (PLA) is one of the most representative bio-based materials, with obvious advantages and disadvantages, and has a wide range of applications in industry, medicine, and research. By copolymerizing to make up for its deficiencies, the obtained copolymers have more excellent properties. The development of a one-step microbial metabolism production process of the lactate (LA)-based copolymers overcomes the inherent shortcomings in the traditional chemical synthesis process. The most common lactate-based copolymer is poly(lactate-co-3-hydroxybutyrate) [P(LA-co-3HB)], within which the difference of LA monomer fraction will cause the change in the material properties. It is necessary to regulate LA monomer fraction by appropriate methods. Based on synthetic biology and systems metabolic engineering, this review mainly focus on how did the different production strategies (such as enzyme engineering, fermentation engineering, etc.) of P(LA-co-3HB) optimize the chassis cells to efficiently produce it. In addition, the metabolic engineering strategies of some other lactate-based copolymers are also introduced in this article. These studies would facilitate to expand the application fields of the corresponding materials.
Collapse
Affiliation(s)
- Pengye Guo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yuanchan Luo
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Ju Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hui Wu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
- Shanghai Collaborative Innovation Center for Biomanufacturing Technology, 130 Meilong Road, Shanghai, 200237, China.
- Key Laboratory of Bio-Based Material Engineering of China National Light Industry Council, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
21
|
Luo ZW, Ahn JH, Chae TU, Choi SY, Park SY, Choi Y, Kim J, Prabowo CPS, Lee JA, Yang D, Han T, Xu H, Lee SY. Metabolic Engineering of
Escherichia
coli. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
22
|
Ylinen A, Maaheimo H, Anghelescu-Hakala A, Penttilä M, Salusjärvi L, Toivari M. Production of D-lactic acid containing polyhydroxyalkanoate polymers in yeast Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2021; 48:6253250. [PMID: 33899921 PMCID: PMC9113173 DOI: 10.1093/jimb/kuab028] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022]
Abstract
Polyhydroxyalkanoates (PHAs) provide biodegradable and bio-based alternatives to conventional plastics. Incorporation of 2-hydroxy acid monomers into polymer, in addition to 3-hydroxy acids, offers possibility to tailor the polymer properties. In this study, poly(D-lactic acid) (PDLA) and copolymer P(LA-3HB) were produced and characterized for the first time in the yeast Saccharomyces cerevisiae. Expression of engineered PHA synthase PhaC1437Ps6–19, propionyl-CoA transferase Pct540Cp, acetyl-CoA acetyltransferase PhaA, and acetoacetyl-CoA reductase PhaB1 resulted in accumulation of 3.6% P(LA-3HB) and expression of engineered enzymes PhaC1Pre and PctMe resulted in accumulation of 0.73% PDLA of the cell dry weight (CDW). According to NMR, P(LA-3HB) contained D-lactic acid repeating sequences. For reference, expression of PhaA, PhaB1, and PHA synthase PhaC1 resulted in accumulation 11% poly(hydroxybutyrate) (PHB) of the CDW. Weight average molecular weights of these polymers were comparable to similar polymers produced by bacterial strains, 24.6, 6.3, and 1 130 kDa for P(LA-3HB), PDLA, and PHB, respectively. The results suggest that yeast, as a robust and acid tolerant industrial production organism, could be suitable for production of 2-hydroxy acid containing PHAs from sugars or from 2-hydroxy acid containing raw materials. Moreover, the wide substrate specificity of PHA synthase enzymes employed increases the possibilities for modifying copolymer properties in yeast in the future.
Collapse
Affiliation(s)
- Anna Ylinen
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Hannu Maaheimo
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | | | - Merja Penttilä
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland.,Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, P.O. Box 11000, FI-00076 Aalto, Espoo, Finland
| | - Laura Salusjärvi
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| | - Mervi Toivari
- VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 VTT, Espoo, Finland
| |
Collapse
|
23
|
Folch PL, Bisschops MM, Weusthuis RA. Metabolic energy conservation for fermentative product formation. Microb Biotechnol 2021; 14:829-858. [PMID: 33438829 PMCID: PMC8085960 DOI: 10.1111/1751-7915.13746] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/16/2020] [Accepted: 12/21/2020] [Indexed: 12/02/2022] Open
Abstract
Microbial production of bulk chemicals and biofuels from carbohydrates competes with low-cost fossil-based production. To limit production costs, high titres, productivities and especially high yields are required. This necessitates metabolic networks involved in product formation to be redox-neutral and conserve metabolic energy to sustain growth and maintenance. Here, we review the mechanisms available to conserve energy and to prevent unnecessary energy expenditure. First, an overview of ATP production in existing sugar-based fermentation processes is presented. Substrate-level phosphorylation (SLP) and the involved kinase reactions are described. Based on the thermodynamics of these reactions, we explore whether other kinase-catalysed reactions can be applied for SLP. Generation of ion-motive force is another means to conserve metabolic energy. We provide examples how its generation is supported by carbon-carbon double bond reduction, decarboxylation and electron transfer between redox cofactors. In a wider perspective, the relationship between redox potential and energy conservation is discussed. We describe how the energy input required for coenzyme A (CoA) and CO2 binding can be reduced by applying CoA-transferases and transcarboxylases. The transport of sugars and fermentation products may require metabolic energy input, but alternative transport systems can be used to minimize this. Finally, we show that energy contained in glycosidic bonds and the phosphate-phosphate bond of pyrophosphate can be conserved. This review can be used as a reference to design energetically efficient microbial cell factories and enhance product yield.
Collapse
Affiliation(s)
- Pauline L. Folch
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Markus M.M. Bisschops
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| | - Ruud A. Weusthuis
- Bioprocess EngineeringWageningen University & ResearchPost office box 16Wageningen6700 AAThe Netherlands
| |
Collapse
|
24
|
Sindhu R, Madhavan A, Arun KB, Pugazhendhi A, Reshmy R, Awasthi MK, Sirohi R, Tarafdar A, Pandey A, Binod P. Metabolic circuits and gene regulators in polyhydroxyalkanoate producing organisms: Intervention strategies for enhanced production. BIORESOURCE TECHNOLOGY 2021; 327:124791. [PMID: 33579565 DOI: 10.1016/j.biortech.2021.124791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 06/12/2023]
Abstract
Worldwide worries upsurge concerning environmental pollutions triggered by the accumulation of plastic wastes. Biopolymers are promising candidates for resolving these difficulties by replacing non-biodegradable plastics. Among biopolymers, polyhydroxyalkanoates (PHAs), are natural polymers that are synthesized and accumulated in a range of microorganisms, are considered as promising biopolymers since they have biocompatibility, biodegradability, and other physico-chemical properties comparable to those of synthetic plastics. Consequently, considerable research have been attempted to advance a better understanding of mechanisms related to the metabolic synthesis and characteristics of PHAs and to develop native and recombinant microorganisms that can proficiently produce PHAs comprising desired monomers with high titer and productivity for industrial applications. Recent developments in metabolic engineering and synthetic biology applied to enhance PHA synthesis include, promoter engineering, ribosome-binding site (RBS) engineering, development of synthetic constructs etc. This review gives a brief overview of metabolic routes and regulators of PHA production and its intervention strategies.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695 014, Kerala, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi Province 712100, PR China
| | - Ranjna Sirohi
- Department of Post Harvest Process and Food Engineering, G.B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand 263 145, India
| | - Ayon Tarafdar
- Divison of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR- Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India.
| |
Collapse
|
25
|
Seo H, Lee JW, Giannone RJ, Dunlap NJ, Trinh CT. Engineering promiscuity of chloramphenicol acetyltransferase for microbial designer ester biosynthesis. Metab Eng 2021; 66:179-190. [PMID: 33872779 DOI: 10.1016/j.ymben.2021.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/06/2021] [Accepted: 04/11/2021] [Indexed: 02/07/2023]
Abstract
Robust and efficient enzymes are essential modules for metabolic engineering and synthetic biology strategies across biological systems to engineer whole-cell biocatalysts. By condensing an acyl-CoA and an alcohol, alcohol acyltransferases (AATs) can serve as interchangeable metabolic modules for microbial biosynthesis of a diverse class of ester molecules with broad applications as flavors, fragrances, solvents, and drop-in biofuels. However, the current lack of robust and efficient AATs significantly limits their compatibility with heterologous precursor pathways and microbial hosts. Through bioprospecting and rational protein engineering, we identified and engineered promiscuity of chloramphenicol acetyltransferases (CATs) from mesophilic prokaryotes to function as robust and efficient AATs compatible with at least 21 alcohol and 8 acyl-CoA substrates for microbial biosynthesis of linear, branched, saturated, unsaturated and/or aromatic esters. By plugging the best engineered CAT (CATec3 Y20F) into the gram-negative mesophilic bacterium Escherichia coli, we demonstrated that the recombinant strain could effectively convert various alcohols into desirable esters, for instance, achieving a titer of 13.9 g/L isoamyl acetate with 95% conversion by fed-batch fermentation. The recombinant E. coli was also capable of simulating the ester profile of roses with high conversion (>97%) and titer (>1 g/L) from fermentable sugars at 37 °C. Likewise, a recombinant gram-positive, cellulolytic, thermophilic bacterium Clostridium thermocellum harboring CATec3 Y20F could produce many of these esters from recalcitrant cellulosic biomass at elevated temperatures (>50 °C) due to the engineered enzyme's remarkable thermostability. Overall, the engineered CATs can serve as a robust and efficient platform for designer ester biosynthesis from renewable and sustainable feedstocks.
Collapse
Affiliation(s)
- Hyeongmin Seo
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Jong-Won Lee
- Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Richard J Giannone
- Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA; Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Noah J Dunlap
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA
| | - Cong T Trinh
- Department of Chemical and Biomolecular Engineering, The University of Tennessee, Knoxville, TN, USA; Bredesen Center for Interdisciplinary Research and Graduate Education, The University of Tennessee, Knoxville, TN, USA; Center of Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, USA.
| |
Collapse
|
26
|
Rai P, Mehrotra S, Priya S, Gnansounou E, Sharma SK. Recent advances in the sustainable design and applications of biodegradable polymers. BIORESOURCE TECHNOLOGY 2021; 325:124739. [PMID: 33509643 DOI: 10.1016/j.biortech.2021.124739] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
The progression of plastic pollution is a global concern. "Reuse, reduce and recycle" offers a solution to the burdening issue, although not enough to curb the rampant use of plastics. Biodegradable plastics are gaining acceptability in agriculture and food packaging industries; nevertheless, they occupy a rather small section of the plastic market. This review summarizes recent advances in the development of biodegradable plastics and their safe degradation potentials. Here, biodegradable plastics have been categorized and technology and developments in the field of biopolymers, their applicability, degradation and role in sustainable development has been reviewed. Also, the use of natural polymers with improved mechanical and physical properties that brings them at par with their counterparts has been discussed. Biodegradable polymers add value to the industries that would help in achieving sustainable development and consequently reinforce green economy, reducing the burden of greenhouse gases in the environment and valorisation of waste biomass.
Collapse
Affiliation(s)
- Pawankumar Rai
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India
| | - Srishti Mehrotra
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Smriti Priya
- Systems Toxicology & Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Edgard Gnansounou
- Bioenergy and Energy Planning Research Group, Ecole Polytechnique Federale de Lausanne (EFPL), Lausanne, Switzerland
| | - Sandeep K Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
27
|
Khang TU, Kim MJ, Yoo JI, Sohn YJ, Jeon SG, Park SJ, Na JG. Rapid analysis of polyhydroxyalkanoate contents and its monomer compositions by pyrolysis-gas chromatography combined with mass spectrometry (Py-GC/MS). Int J Biol Macromol 2021; 174:449-456. [PMID: 33485890 DOI: 10.1016/j.ijbiomac.2021.01.108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/12/2021] [Accepted: 01/16/2021] [Indexed: 12/19/2022]
Abstract
Here, we report an analysis method for determining PHA (polyhydroxyalkanoates) contents and their monomer composition in microbial cells based on pyrolysis gas chromatography combined with mass spectrometry (Py-GC/MS). Various kinds of microbial cells accumulating different PHA contents and monomer compositions were prepared through the cultivation of Ralstonia eutropha and recombinant Escherichia coli. Py-GC/MS could analyse these samples in a short time without complicated pretreatment steps. Characteristic peaks such as 2-butenoic acid, 2-pentenoic acid, and hexadecanoic acid regarding PHA compositions and cell components were identified. Considering constituents of cells and ratios of peak areas of dehydrated monomers to hexadecanoic acid, a simple equation for estimation of PHA contents in microbial cells was derived. Also, monomer compositions of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) in R. eutropha could be successfully determined based on peak area of 2-butenoic acid and 2-pentenoic acid of Py-GC/MS, which are the corresponding species of 3-hydroxybutyrate (3HB) and 3-hydroxyvalerate (3HV) in PHBV. Correlation of results between GC-FID and Py-GC/MS could be fitted very well. This method shows similar results for the samples obtained from same experimental conditions, allowing rapid and reliable analysis. Py-GC/MS can be a promising tool to rapidly screen PHA-positive strains based on polymer contents along with monomer compositions.
Collapse
Affiliation(s)
- Tae Uk Khang
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea
| | - Min-Jae Kim
- Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Jee In Yoo
- Division of Chemical Engineering and Materials Science, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yu Jung Sohn
- Division of Chemical Engineering and Materials Science, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Goo Jeon
- Korea Institute of Energy Research, 152 Gajeong-ro, Yuseong-gu, Daejeon 34129, Republic of Korea.
| | - Si Jae Park
- Division of Chemical Engineering and Materials Science, System Health & Engineering Major in Graduate School (BK21 Plus Program), Ewha Womans University, Seoul 03760, Republic of Korea.
| | - Jeong-Geol Na
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 04107, Republic of Korea.
| |
Collapse
|
28
|
Li Y, Yang S, Ma D, Song W, Gao C, Liu L, Chen X. Microbial engineering for the production of C 2-C 6 organic acids. Nat Prod Rep 2021; 38:1518-1546. [PMID: 33410446 DOI: 10.1039/d0np00062k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Covering: up to the end of 2020Organic acids, as building block compounds, have been widely used in food, pharmaceutical, plastic, and chemical industries. Until now, chemical synthesis is still the primary method for industrial-scale organic acid production. However, this process encounters some inevitable challenges, such as depletable petroleum resources, harsh reaction conditions and complex downstream processes. To solve these problems, microbial cell factories provide a promising approach for achieving the sustainable production of organic acids. However, some key metabolites in central carbon metabolism are strictly regulated by the network of cellular metabolism, resulting in the low productivity of organic acids. Thus, multiple metabolic engineering strategies have been developed to reprogram microbial cell factories to produce organic acids, including monocarboxylic acids, hydroxy carboxylic acids, amino carboxylic acids, dicarboxylic acids and monomeric units for polymers. These strategies mainly center on improving the catalytic efficiency of the enzymes to increase the conversion rate, balancing the multi-gene biosynthetic pathways to reduce the byproduct formation, strengthening the metabolic flux to promote the product biosynthesis, optimizing the metabolic network to adapt the environmental conditions and enhancing substrate utilization to broaden the substrate spectrum. Here, we describe the recent advances in producing C2-C6 organic acids by metabolic engineering strategies. In addition, we provide new insights as to when, what and how these strategies should be taken. Future challenges are also discussed in further advancing microbial engineering and establishing efficient biorefineries.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Sohn YJ, Kim HT, Jo SY, Song HM, Baritugo KA, Pyo J, Choi JI, Joo JC, Park SJ. Recent Advances in Systems Metabolic Engineering Strategies for the Production of Biopolymers. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-019-0508-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
30
|
Ren JY, Liu G, Chen YF, Jiang S, Ma YR, Zheng P, Guo XW, Xiao DG. Enhanced Production of Ethyl Lactate in Saccharomyces cerevisiae by Genetic Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13863-13870. [PMID: 33166457 DOI: 10.1021/acs.jafc.0c03967] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Ethyl lactate is an important flavor substance in baijiu, and it is also one of the common raw materials in the production of flavors and spices. In this study, we first established the ethyl lactate biosynthesis pathway in Saccharomyces cerevisiae α(L) by introducing propionyl coenzyme A transferase (Pct) and alcohol acyltransferase (AAT), and the results showed that strain α(L)-CP-Ae produced the most ethyl lactate 239.53 ± 5.45 mg/L. Subsequently, the copy number of the Pctcp gene and AeAT9 gene was increased, and the modified strain α(L)-tCP-tAe produced 346.39 ± 3.99 mg/L ethyl lactate. Finally, the porin gene (por2) and the mitochondrial pyruvate carrier gene (MPC2) were knocked to impede mitochondrial transport of pyruvate, and the final modified strain α(L)-tCP-tAeΔpor2 produced ethyl lactate 420.48 ± 6.03 mg/L.
Collapse
Affiliation(s)
- Jin-Ying Ren
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Gang Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Ye-Fu Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Sen Jiang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yan-Rui Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Peng Zheng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Xue-Wu Guo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Industrial Microbiology Key Laboratory, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
31
|
Mezzina MP, Manoli MT, Prieto MA, Nikel PI. Engineering Native and Synthetic Pathways in Pseudomonas putida for the Production of Tailored Polyhydroxyalkanoates. Biotechnol J 2020; 16:e2000165. [PMID: 33085217 DOI: 10.1002/biot.202000165] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Indexed: 12/16/2022]
Abstract
Growing environmental concern sparks renewed interest in the sustainable production of (bio)materials that can replace oil-derived goods. Polyhydroxyalkanoates (PHAs) are isotactic polymers that play a critical role in the central metabolism of producer bacteria, as they act as dynamic reservoirs of carbon and reducing equivalents. PHAs continue to attract industrial attention as a starting point toward renewable, biodegradable, biocompatible, and versatile thermoplastic and elastomeric materials. Pseudomonas species have been known for long as efficient biopolymer producers, especially for medium-chain-length PHAs. The surge of synthetic biology and metabolic engineering approaches in recent years offers the possibility of exploiting the untapped potential of Pseudomonas cell factories for the production of tailored PHAs. In this article, an overview of the metabolic and regulatory circuits that rule PHA accumulation in Pseudomonas putida is provided, and approaches leading to the biosynthesis of novel polymers (e.g., PHAs including nonbiological chemical elements in their structures) are discussed. The potential of novel PHAs to disrupt existing and future market segments is closer to realization than ever before. The review is concluded by pinpointing challenges that currently hinder the wide adoption of bio-based PHAs, and strategies toward programmable polymer biosynthesis from alternative substrates in engineered P. putida strains are proposed.
Collapse
Affiliation(s)
- Mariela P Mezzina
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| | - María Tsampika Manoli
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - M Auxiliadora Prieto
- Microbial and Plant Biotechnology Department, Centro de Investigaciones Biológicas «Margarita Salas» (CIB-CSIC), Polymer Biotechnology Group, Madrid, 28040, Spain.,Spanish National Research Council (SusPlast-CSIC), Interdisciplinary Platform for Sustainable Plastics Toward a Circular Economy, Madrid, 28040, Spain
| | - Pablo I Nikel
- Systems Environmental Microbiology Group, The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs Lyngby, 2800, Denmark
| |
Collapse
|
32
|
Lajus S, Dusséaux S, Verbeke J, Rigouin C, Guo Z, Fatarova M, Bellvert F, Borsenberger V, Bressy M, Nicaud JM, Marty A, Bordes F. Engineering the Yeast Yarrowia lipolytica for Production of Polylactic Acid Homopolymer. Front Bioeng Biotechnol 2020; 8:954. [PMID: 33195110 PMCID: PMC7609957 DOI: 10.3389/fbioe.2020.00954] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/23/2020] [Indexed: 12/17/2022] Open
Abstract
Polylactic acid is a plastic polymer widely used in different applications from printing filaments for 3D printer to mulching films in agriculture, packaging materials, etc. Here, we report the production of poly-D-lactic acid (PDLA) in an engineered yeast strain of Yarrowia lipolytica. Firstly, the pathway for lactic acid consumption in this yeast was identified and interrupted. Then, the heterologous pathway for PDLA production, which contains a propionyl-CoA transferase (PCT) converting lactic acid into lactyl-CoA, and an evolved polyhydroxyalkanoic acid (PHA) synthase polymerizing lactyl-CoA, was introduced into the engineered strain. Among the different PCT proteins that were expressed in Y. lipolytica, the Clostridium propionicum PCT exhibited the highest efficiency in conversion of D-lactic acid to D-lactyl-CoA. We further evaluated the lactyl-CoA and PDLA productions by expressing this PCT and a variant of Pseudomonas aeruginosa PHA synthase at different subcellular localizations. The best PDLA production was obtained by expressing the PCT in the cytosol and the variant of PHA synthase in peroxisome. PDLA homopolymer accumulation in the cell reached 26 mg/g-DCW, and the molecular weights of the polymer (Mw = 50.5 × 103 g/mol and Mn = 12.5 × 103 g/mol) were among the highest reported for an in vivo production.
Collapse
Affiliation(s)
- Sophie Lajus
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Simon Dusséaux
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Jonathan Verbeke
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| | - Coraline Rigouin
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Zhongpeng Guo
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Maria Fatarova
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | | | | | - Mélusine Bressy
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| | - Jean-Marc Nicaud
- INRAE, AgroParisTech, Université Paris-Saclay, Micalis Institute, Jouy-en-Josas, France
| | - Alain Marty
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
- Carbios, Biopôle Clermont Limagne, Saint-Beauzire, France
| | - Florence Bordes
- TBI, CNRS, INRAE, INSA, Université de Toulouse, Toulouse, France
| |
Collapse
|
33
|
Choi SY, Cho IJ, Lee Y, Kim YJ, Kim KJ, Lee SY. Microbial Polyhydroxyalkanoates and Nonnatural Polyesters. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1907138. [PMID: 32249983 DOI: 10.1002/adma.201907138] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 01/20/2020] [Indexed: 06/11/2023]
Abstract
Microorganisms produce diverse polymers for various purposes such as storing genetic information, energy, and reducing power, and serving as structural materials and scaffolds. Among these polymers, polyhydroxyalkanoates (PHAs) are microbial polyesters synthesized and accumulated intracellularly as a storage material of carbon, energy, and reducing power under unfavorable growth conditions in the presence of excess carbon source. PHAs have attracted considerable attention for their wide range of applications in industrial and medical fields. Since the first discovery of PHA accumulating bacteria about 100 years ago, remarkable advances have been made in the understanding of PHA biosynthesis and metabolic engineering of microorganisms toward developing efficient PHA producers. Recently, nonnatural polyesters have also been synthesized by metabolically engineered microorganisms, which opened a new avenue toward sustainable production of more diverse plastics. Herein, the current state of PHAs and nonnatural polyesters is reviewed, covering mechanisms of microbial polyester biosynthesis, metabolic pathways, and enzymes involved in biosynthesis of short-chain-length PHAs, medium-chain-length PHAs, and nonnatural polyesters, especially 2-hydroxyacid-containing polyesters, metabolic engineering strategies to produce novel polymers and enhance production capabilities and fermentation, and downstream processing strategies for cost-effective production of these microbial polyesters. In addition, the applications of PHAs and prospects are discussed.
Collapse
Affiliation(s)
- So Young Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - In Jin Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Yeo-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Kyung-Jin Kim
- School of Life Sciences (KNU Creative BioResearch Group), KNU Institute for Microorganisms, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu, 41566, Republic of Korea
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and Bioinformatics Research Center, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| |
Collapse
|
34
|
Sohn YJ, Kim HT, Baritugo K, Jo SY, Song HM, Park SY, Park SK, Pyo J, Cha HG, Kim H, Na J, Park C, Choi J, Joo JC, Park SJ. Recent Advances in Sustainable Plastic Upcycling and Biopolymers. Biotechnol J 2020; 15:e1900489. [DOI: 10.1002/biot.201900489] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 02/05/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Yu Jung Sohn
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hee Taek Kim
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Kei‐Anne Baritugo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Seo Young Jo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hye Min Song
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Se Young Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Su Kyeong Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Jiwon Pyo
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| | - Hyun Gil Cha
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Hoyong Kim
- Bio‐based Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology (KRICT) Ulsan 44429 Republic of Korea
| | - Jeong‐Geol Na
- Department of Chemical and Biomolecular EngineeringSogang University 35 Baekbumro Mapo‐gu Seoul 04107 Republic of Korea
| | - Chulhwan Park
- Department of Chemical EngineeringKwangwoon University 98‐2, Seokgye‐ro Nowon‐gu Seoul Republic of Korea
| | - Jong‐Il Choi
- Department of Biotechnology and Engineering, Interdisciplinary Program of Bioenergy and BiomaterialsChonnam National University Gwangju 61186 Republic of Korea
| | - Jeong Chan Joo
- Biobased Chemistry Research Center, Advanced Convergent Chemistry DivisionKorea Research Institute of Chemical Technology P.O.Box 107, 141 Gajeong‐ro, Yuseong‐gu Daejeon 34114 Republic of Korea
| | - Si Jae Park
- Division of Chemical Engineering and Materials ScienceEwha Womans University 52 Ewhayeodae‐gil Seodaemun‐gu Seoul 03760 Republic of Korea
| |
Collapse
|
35
|
Biosynthesis of polyhydroxyalkanoates from sucrose by metabolically engineered Escherichia coli strains. Int J Biol Macromol 2020; 149:593-599. [DOI: 10.1016/j.ijbiomac.2020.01.254] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 02/07/2023]
|
36
|
Tran TT, Charles TC. Lactic acid containing polymers produced in engineered Sinorhizobium meliloti and Pseudomonas putida. PLoS One 2020; 15:e0218302. [PMID: 32191710 PMCID: PMC7082056 DOI: 10.1371/journal.pone.0218302] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 02/18/2020] [Indexed: 01/17/2023] Open
Abstract
This study demonstrates that novel polymer production can be achieved by introducing pTAM, a broad-host-range plasmid expressing codon-optimized genes encoding Clostridium propionicum propionate CoA transferase (PctCp, Pct532) and a modified Pseudomonas sp. MBEL 6–19 polyhydroxyalkanoate (PHA) synthase 1 (PhaC1Ps6-19, PhaC1400), into phaC mutant strains of the native polymer producers Sinorhizobium meliloti and Pseudomonas putida. Both phenotypic analysis and gas chromatography analysis indicated the synthesis and accumulation of biopolymers in S. meliloti and P. putida strains. Expression in S. meliloti resulted in the production of PLA homopolymer up to 3.2% dried cell weight (DCW). The quaterpolymer P (3HB-co-LA-co-3HHx-co-3HO) was produced by expression in P. putida. The P. putida phaC mutant strain produced this type of polymer the most efficiently with polymer content of 42% DCW when cultured in defined media with the addition of sodium octanoate. This is the first report, to our knowledge, of the production of a range of different biopolymers using the same plasmid-based system in different backgrounds. In addition, it is the first time that the novel polymer (P(3HB-co-LA-co-3HHx-co-3HO)), has been reported being produced in bacteria.
Collapse
Affiliation(s)
- Tam T. Tran
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Trevor C. Charles
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
- * E-mail:
| |
Collapse
|
37
|
Metabolic engineering for the synthesis of polyesters: A 100-year journey from polyhydroxyalkanoates to non-natural microbial polyesters. Metab Eng 2020; 58:47-81. [DOI: 10.1016/j.ymben.2019.05.009] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/04/2019] [Accepted: 05/26/2019] [Indexed: 11/16/2022]
|
38
|
Thermomechanical and viscoelastic properties of green composites of PLA using chitin micro-particles as fillers. JOURNAL OF POLYMER RESEARCH 2020. [DOI: 10.1007/s10965-019-1991-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Singhvi MS, Zinjarde SS, Gokhale DV. Polylactic acid: synthesis and biomedical applications. J Appl Microbiol 2019; 127:1612-1626. [PMID: 31021482 DOI: 10.1111/jam.14290] [Citation(s) in RCA: 341] [Impact Index Per Article: 56.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 03/29/2019] [Accepted: 04/16/2019] [Indexed: 12/13/2022]
Abstract
Social and economic development has driven considerable scientific and engineering efforts on the discovery, development and utilization of polymers. Polylactic acid (PLA) is one of the most promising biopolymers as it can be produced from nontoxic renewable feedstock. PLA has emerged as an important polymeric material for biomedical applications on account of its properties such as biocompatibility, biodegradability, mechanical strength and process ability. Lactic acid (LA) can be obtained by fermentation of sugars derived from renewable resources such as corn and sugarcane. PLA is thus an eco-friendly nontoxic polymer with features that permit use in the human body. Although PLA has a wide spectrum of applications, there are certain limitations such as slow degradation rate, hydrophobicity and low impact toughness associated with its use. Blending PLA with other polymers offers convenient options to improve associated properties or to generate novel PLA polymers/blends for target applications. A variety of PLA blends have been explored for various biomedical applications such as drug delivery, implants, sutures and tissue engineering. PLA and their copolymers are becoming widely used in tissue engineering for function restoration of impaired tissues due to their excellent biocompatibility and mechanical properties. The relationship between PLA material properties, manufacturing processes and development of products with desirable characteristics is described in this article. LA production, PLA synthesis and their applications in the biomedical field are also discussed.
Collapse
Affiliation(s)
- M S Singhvi
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - S S Zinjarde
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, India
| | - D V Gokhale
- CSIR-National Chemical Laboratory, NCIM Resource Centre, Pune, India
| |
Collapse
|
40
|
Choi SY, Cho IJ, Lee Y, Park S, Lee SY. Biocatalytic synthesis of polylactate and its copolymers by engineered microorganisms. Methods Enzymol 2019; 627:125-162. [PMID: 31630738 DOI: 10.1016/bs.mie.2019.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Poly(lactate), also called poly(lactic acid) or poly(lactide) [PLA], has been one of the most attractive bio-based polymers since it possesses desirable material properties for its use in general performance plastics in addition to biodegradability and biocompatibility. PLA has been produced by biological and chemical hybrid process comprising microbial fermentation for lactate (LA) production followed by purification and chemical polymerization process of LA. Recently, the direct one-step fermentative processes for production of PLA and several LA-containing polyesters have been developed by employing metabolically engineered microorganisms. Since natural microorganisms cannot produce the LA-containing polymers, several engineering strategies have been employed together based on the polyhydroxyalkanoate (PHA) biosynthesis system. In this chapter, we summarize strategies and procedures on developing the engineered microorganisms producing PLA and its copolymers, cultivating the cells, and extracting the polymers from the cells. Focuses were given on construction of enzymatic polymerization process of LA: design of metabolic pathway for PLA by mimicking PHA biosynthetic pathway, examination of possible enzymes, and engineering of the enzymes for better performances. This synthetic pathway has been established in a microorganism producing LA that enabled one-step fermentative production of LA-containing polyesters from carbohydrates derived from renewable biomass. Polymer production has been further enhanced by implementing strain engineering to concentrate the metabolic fluxes toward PLA formation. In addition, various monomers such as glycolate, 2-hydroxybutyrate, and phenyllactate have been copolymerized with LA by the microbial system. These fermentative production systems developed by using the engineered microorganisms can be versatile and sustainable platforms for the production of LA-containing polyesters and other non-natural polymers.
Collapse
Affiliation(s)
- So Young Choi
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea
| | - In Jin Cho
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Youngjoon Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Seongjin Park
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea; Metabolic and Biomolecular Engineering National Research Laboratory and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea; Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, Republic of Korea; Applied Science Research Institute, KAIST, Daejeon, Republic of Korea.
| |
Collapse
|
41
|
Lee Y, Cho IJ, Choi SY, Lee SY. Systems Metabolic Engineering Strategies for Non-Natural Microbial Polyester Production. Biotechnol J 2019; 14:e1800426. [PMID: 30851138 DOI: 10.1002/biot.201800426] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 01/04/2019] [Indexed: 11/07/2022]
Abstract
Plastics, used everyday, are mostly synthetic polymers derived from fossil resources, and their accumulation is becoming a serious concern worldwide. Polyhydroxyalkanoates (PHAs) are naturally produced polyesters synthesized and intracellularly accumulated by many different microorganisms. PHAs are good alternatives to petroleum-based plastics because they possess a wide range of material properties depending on monomer types and molecular weights. In addition, PHAs are biodegradable and can be produced from renewable biomass. Thus, producing PHAs through the development of high-performance engineered microorganisms and efficient bioprocesses gained much interest. In addition, non-natural polyesters comprising 2-hydroxycarboxylic acids as monomers have been produced by fermentation of metabolically engineered bacteria. For example, poly(lactic acid) and poly(lactic acid-co-glycolic acid), which have been chemically synthesized using the corresponding monomers either fermentatively or chemically produced, can be produced by metabolically engineered bacteria by one-step fermentation. Recently, PHAs containing aromatic monomers could be produced by fermentation of metabolically engineered bacteria. Here, metabolic engineering strategies applied in developing microbial strains capable of producing non-natural polyesters in a stepwise manner are reviewed. It is hoped that the detailed strategies described will be helpful for designing metabolic engineering strategies for developing diverse microbial strains capable of producing various polymers that can replace petroleum-derived polymers.
Collapse
Affiliation(s)
- Youngjoon Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - In J Cho
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - So Y Choi
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Applied Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| | - Sang Y Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Plus Program), Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea.,Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,Applied Science Research Institute, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,BioInformatics Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea.,BioProcess Engineering Research Center, Korea Advanced Institute of Science and Technology, Daejeon, 34141, Republic of Korea
| |
Collapse
|
42
|
Zhang X, Mao Y, Wang B, Cui Z, Zhang Z, Wang Z, Chen T. Screening, expression, purification and characterization of CoA-transferases for lactoyl-CoA generation. J Ind Microbiol Biotechnol 2019; 46:899-909. [PMID: 30963328 DOI: 10.1007/s10295-019-02174-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/03/2019] [Indexed: 11/26/2022]
Abstract
Lactoyl-CoA is critical for the biosynthesis of biodegradable and biocompatible lactate-based copolymers, which have wide applications. However, reports on acetyl-CoA: lactate CoA-transferases (ALCTs) are rare. To exploit novel ALCTs, amino acid sequence similarity searches based on the CoA-transferases from Clostridium propionicum and Megasphaera elsdenii were conducted. Two known and three novel enzymes were expressed, purified and characterized. Three novel ALCTs were identified, one each from Megasphaera sp. DISK 18, Clostridium lactatifermentans An75 and Firmicutes bacterium CAG: 466. ME-PCT from Megasphaera elsdenii had the highest catalytic efficiency for both acetyl-CoA (264.22 s-1 mM-1) and D-lactate (84.18 s-1 mM-1) with a broad temperature range for activity and good stability. This study, therefore, offers novel and efficient enzymes for lactoyl-CoA generation. To our best knowledge, this is the first report on the systematic mining of ALCTs, which offers valuable new tools for the engineering of pathways that rely on these enzymes.
Collapse
Affiliation(s)
- Xiaoxia Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Yufeng Mao
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Baowei Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhenzhen Cui
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Zhidan Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Zhiwen Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China
| | - Tao Chen
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, People's Republic of China.
| |
Collapse
|
43
|
Butt FI, Muhammad N, Hamid A, Moniruzzaman M, Sharif F. Recent progress in the utilization of biosynthesized polyhydroxyalkanoates for biomedical applications – Review. Int J Biol Macromol 2018; 120:1294-1305. [DOI: 10.1016/j.ijbiomac.2018.09.002] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 07/20/2018] [Accepted: 09/02/2018] [Indexed: 01/10/2023]
|
44
|
Escherichia coli as a host for metabolic engineering. Metab Eng 2018; 50:16-46. [DOI: 10.1016/j.ymben.2018.04.008] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 04/11/2018] [Accepted: 04/12/2018] [Indexed: 12/21/2022]
|
45
|
Riaz S, Fatima N, Rasheed A, Riaz M, Anwar F, Khatoon Y. Metabolic Engineered Biocatalyst: A Solution for PLA Based Problems. Int J Biomater 2018; 2018:1963024. [PMID: 30302092 PMCID: PMC6158955 DOI: 10.1155/2018/1963024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/29/2018] [Indexed: 11/18/2022] Open
Abstract
Polylactic acid (PLA) is a biodegradable thermoplastic polyester. In 2010, PLA became the second highest consumed bioplastic in the world due to its wide application. Conventionally, PLA is produced by direct condensation of lactic acid monomer and ring opening polymerization of lactide, resulting in lower molecular weight and lesser strength of polymer. Furthermore, conventional methods of PLA production require a catalyst which makes it inappropriate for biomedical applications. Newer method utilizes metabolic engineering of microorganism for direct production of PLA through fermentation which produces good quality and high molecular weight and yield as compared to conventional methods. PLA is used as decomposing packaging material, sheet casting, medical implants in the form of screw, plate, and rod pin, etc. The main focus of the review is to highlight the synthesis of PLA by various polymerization methods that mainly include metabolic engineering fermentation as well as salient biomedical applications of PLA.
Collapse
Affiliation(s)
- Sundus Riaz
- Department of Biomedical Engineering and Sciences, National University of Sciences & Technology, Islamabad, Pakistan
- Pakistan Agricultural Research Council, FQSRI, SARC, Karachi, Pakistan
| | - Nosheen Fatima
- Department of Biomedical Engineering and Sciences, National University of Sciences & Technology, Islamabad, Pakistan
| | - Ahmed Rasheed
- PhD. Scholar, Sun Yat-Sen University (East Campus), Higher Education Mega Centre North, Guangzhou, China
| | | | - Faiza Anwar
- Pakistan Agricultural Research Council, FQSRI, SARC, Karachi, Pakistan
| | - Yamna Khatoon
- Postgraduate Scholar, Department of Agriculture and Agribusiness Management, University of Karachi, Karachi, Pakistan
| |
Collapse
|
46
|
Gadomska-Gajadhur A, Synoradzki L, Ruśkowski P. Poly(lactic acid) for Biomedical Application–Synthesis of Biocompatible Mg Catalyst and Optimization of Its Use in Polymerization of Lactide with the Aid of Design of Experiments. Org Process Res Dev 2018. [DOI: 10.1021/acs.oprd.8b00165] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Agnieszka Gadomska-Gajadhur
- Laboratory of Technological Process, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Ludwik Synoradzki
- Laboratory of Technological Process, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| | - Paweł Ruśkowski
- Laboratory of Technological Process, Faculty of Chemistry, Warsaw University of Technology, ul. Noakowskiego 3, 00-664 Warsaw, Poland
| |
Collapse
|
47
|
Free lactic acid production under acidic conditions by lactic acid bacteria strains: challenges and future prospects. Appl Microbiol Biotechnol 2018; 102:5911-5924. [DOI: 10.1007/s00253-018-9092-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022]
|
48
|
One-step fermentative production of aromatic polyesters from glucose by metabolically engineered Escherichia coli strains. Nat Commun 2018; 9:79. [PMID: 29311546 PMCID: PMC5758686 DOI: 10.1038/s41467-017-02498-w] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 12/01/2017] [Indexed: 02/01/2023] Open
|
49
|
David Y, Joo JC, Yang JE, Oh YH, Lee SY, Park SJ. Biosynthesis of 2-Hydroxyacid-Containing Polyhydroxyalkanoates by Employing butyryl-CoA Transferases in Metabolically Engineered Escherichia coli. Biotechnol J 2017; 12. [PMID: 28862377 DOI: 10.1002/biot.201700116] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Revised: 08/25/2017] [Indexed: 01/03/2023]
Abstract
The authors previously reported the production of polyhydroxyalkanoates (PHAs) containing 2-hydroxyacid monomers by expressing evolved Pseudomonas sp. 6-19 PHA synthase and Clostridium propionicum propionyl-CoA transferase in engineered microorganisms. Here, the authors examined four butyryl-CoA transferases from Roseburia sp., Eubacterium hallii, Faecalibacterium prausnitzii, and Anaerostipes caccae as potential CoA-transferases to support synthesis of polymers having 2HA monomer. In vitro activity analyses of the four butyryl-CoA transferases suggested that each butyryl-CoA transferase has different activities towards 2-hydroxybutyrate (2HB), 3-hydroxybutyrate (3HB), and lactate (LA). When Escherichia coli XL1-Blue expressing Pseudomonas sp. 6-19 PhaC1437 along with one butyryl-CoA transferase is cultured in chemically defined MR medium containing 20 g L-1 of glucose, 2 g L-1 of sodium 3-hydroxybutyrate, and various concentrations of sodium 2-hydroxybutyrate, PHAs consisting of 3HB, 2HB, and LA are produced. The monomer composition of PHAs agreed well with the substrate specificities of butyryl-CoA transferases from E. hallii, F. prausnitzii, and A. caccae, but not Roseburia sp. When E. coli XL1-Blue expressing PhaC1437 and E. hallii butyryl-CoA transferase is cultured in MR medium containing 20 g L-1 of glucose and 2 g L-1 of sodium 2-hydroxybutyrate, P(65.7 mol% 2HB-co-34.3 mol% LA) is produced with the highest PHA content of 30 wt%. Butyryl-CoA transferases also supported the production of P(3HB-co-2HB-co-LA) from glucose as the sole carbon source in E. coli XL1-Blue strains when one of these bct genes is expressed with phaC1437, cimA3.7, leuBCD, panE, and phaAB genes. Butyryl-CoA transferases characterized in this study can be used for engineering of microorganisms that produce PHAs containing novel 2-hydroxyacid monomers.
Collapse
Affiliation(s)
- Yokimiko David
- Y. David, Prof. S. J. Park, Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, Republic of Korea
| | - Jeong Chan Joo
- Dr. J. C. Joo, Y. H. Oh, Center for Bio-Based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Jung Eun Yang
- Dr. J. E. Yang, Prof. S. Y. Lee, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | - Young Hoon Oh
- Dr. J. C. Joo, Y. H. Oh, Center for Bio-Based Chemistry, Division of Convergence Chemistry, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea
| | - Sang Yup Lee
- Dr. J. E. Yang, Prof. S. Y. Lee, Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 Program), Center for Systems and Synthetic Biotechnology, and Institute for the BioCentury, KAIST, Daejeon, Republic of Korea
| | - Si Jae Park
- Y. David, Prof. S. J. Park, Division of Chemical Engineering and Materials Science, Ewha Womans University, Seoul, Republic of Korea
| |
Collapse
|
50
|
Metabolic engineering of Escherichia coli for the synthesis of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose. Metab Eng 2017; 44:38-44. [PMID: 28916461 DOI: 10.1016/j.ymben.2017.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/17/2017] [Accepted: 09/08/2017] [Indexed: 11/22/2022]
Abstract
Escherichia coli was metabolically engineered to effectively produce a series of biopolymers consisted of four types of monomers including glycolate, lactate, 3-hydroxybutyrate and 4-hydroxybutyrate from glucose as the carbon source. The biosynthetic route of novel quadripolymers was achieved by the overexpression of a range of homologous and heterologous enzymes including isocitrate lyase, isocitrate dehydrogenase kinase/phosphatase, glyoxylate/hydroxypyruvate reductase, propionyl-CoA transferase, β-ketothiolase, acetoacetyl-CoA reductase, succinate semialdehyde dehydrogenase, 4-hydroxybutyrate dehydrogenase, CoA transferase and PHA synthase. In shake flask cultures using Luria-Bertani medium supplemented with glucose, the recombinant E. coli reached 7.10g/l cell dry weight with 52.60wt% biopolymer content. In bioreactor study, the final cell dry weight was 19.61g/l, containing 14.29g/l biopolymer. The structure of the produced polymer was chemically characterized by proton NMR analysis. Assessment of thermal and mechanical properties demonstrated that the quadripolymer possessed decreased crystallinity and improved toughness, in comparison to poly-3-hydroxybutyrate homopolymer. This is the first study reporting efficient microbial production of the quadripolymer poly(glycolate-co-lactate-co-3-hydroxybutyrate-co-4-hydroxybutyrate) from glucose.
Collapse
|