1
|
Wu Y, An C, Guo Y, Zong Y, Jiang N, Zheng Q, Yu ZZ. Highly Aligned Graphene Aerogels for Multifunctional Composites. NANO-MICRO LETTERS 2024; 16:118. [PMID: 38361077 PMCID: PMC10869679 DOI: 10.1007/s40820-024-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/17/2024]
Abstract
Stemming from the unique in-plane honeycomb lattice structure and the sp2 hybridized carbon atoms bonded by exceptionally strong carbon-carbon bonds, graphene exhibits remarkable anisotropic electrical, mechanical, and thermal properties. To maximize the utilization of graphene's in-plane properties, pre-constructed and aligned structures, such as oriented aerogels, films, and fibers, have been designed. The unique combination of aligned structure, high surface area, excellent electrical conductivity, mechanical stability, thermal conductivity, and porous nature of highly aligned graphene aerogels allows for tailored and enhanced performance in specific directions, enabling advancements in diverse fields. This review provides a comprehensive overview of recent advances in highly aligned graphene aerogels and their composites. It highlights the fabrication methods of aligned graphene aerogels and the optimization of alignment which can be estimated both qualitatively and quantitatively. The oriented scaffolds endow graphene aerogels and their composites with anisotropic properties, showing enhanced electrical, mechanical, and thermal properties along the alignment at the sacrifice of the perpendicular direction. This review showcases remarkable properties and applications of aligned graphene aerogels and their composites, such as their suitability for electronics, environmental applications, thermal management, and energy storage. Challenges and potential opportunities are proposed to offer new insights into prospects of this material.
Collapse
Affiliation(s)
- Ying Wu
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China.
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China.
| | - Chao An
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yaru Guo
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Yangyang Zong
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Naisheng Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
- Institute of Materials Intelligent Technology, Liaoning Academy of Materials, Shenyang, 110004, People's Republic of China
| | - Qingbin Zheng
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Shenzhen, Guangdong, 518172, People's Republic of China.
| | - Zhong-Zhen Yu
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
2
|
Ketabat F, Maris T, Duan X, Yazdanpanah Z, Kelly ME, Badea I, Chen X. Optimization of 3D printing and in vitro characterization of alginate/gelatin lattice and angular scaffolds for potential cardiac tissue engineering. Front Bioeng Biotechnol 2023; 11:1161804. [PMID: 37304145 PMCID: PMC10248470 DOI: 10.3389/fbioe.2023.1161804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023] Open
Abstract
Background: Engineering cardiac tissue that mimics the hierarchical structure of cardiac tissue remains challenging, raising the need for developing novel methods capable of creating structures with high complexity. Three-dimensional (3D)-printing techniques are among promising methods for engineering complex tissue constructs with high precision. By means of 3D printing, this study aims to develop cardiac constructs with a novel angular structure mimicking cardiac architecture from alginate (Alg) and gelatin (Gel) composite. The 3D-printing conditions were optimized and the structures were characterized in vitro, with human umbilical vein endothelial cells (HUVECs) and cardiomyocytes (H9c2 cells), for potential cardiac tissue engineering. Methods: We synthesized the composites of Alg and Gel with varying concentrations and examined their cytotoxicity with both H9c2 cells and HUVECs, as well as their printability for creating 3D structures of varying fibre orientations (angular design). The 3D-printed structures were characterized in terms of morphology by both scanning electron microscopy (SEM) and synchrotron radiation propagation-based imaging computed tomography (SR-PBI-CT), and elastic modulus, swelling percentage, and mass loss percentage as well. The cell viability studies were conducted via measuring the metabolic activity of the live cells with MTT assay and visualizing the cells with live/dead assay kit. Results: Among the examined composite groups of Alg and Gel, two combinations with ratios of 2 to 1 and 3 to 1 (termed as Alg2Gel1 and Alg3Gel1) showed the highest cell survival; they accordingly were used to fabricate two different structures: a novel angular and a conventional lattice structure. Scaffolds made of Alg3Gel1 showed higher elastic modulus, lower swelling percentage, less mass loss, and higher cell survival compared to that of Alg2Gel1. Although the viability of H9c2 cells and HUVECs on all scaffolds composed of Alg3Gel1 was above 99%, the group of the constructs with the angular design maintained significantly more viable cells compared to other investigated groups. Conclusion: The group of angular 3D-ptinted constructs has illustrated promising properties for cardiac tissue engineering by providing high cell viability for both endothelial and cardiac cells, high mechanical strength as well as appropriate swelling, and degradation properties during 21 days of incubation. Statement of Significance: 3D-printing is an emerging method to create complex constructs with high precision in a large scale. In this study, we have demonstrated that 3D-printing can be used to create compatible constructs from the composite of Alg and Gel with endothelial cells and cardiac cells. Also, we have demonstrated that these constructs are able to enhance the viability of cardiac and endothelial cells via creating a 3D structure mimicking the alignment and orientation of the fibers in the native heart.
Collapse
Affiliation(s)
- Farinaz Ketabat
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Titouan Maris
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Institut Catholique des arts et métiers (ICAM)- Site de Toulouse, Toulouse, France
| | - Xiaoman Duan
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Zahra Yazdanpanah
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael E. Kelly
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Surgery, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ildiko Badea
- College of Pharmacy and Nutrition, University of Saskatchewan, Saskatoon, SK, Canada
| | - Xiongbiao Chen
- Division of Biomedical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
- Department of Mechanical Engineering, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
3
|
Belanger K, Koppes AN, Koppes RA. Impact of Non-Muscle Cells on Excitation-Contraction Coupling in the Heart and the Importance of In Vitro Models. Adv Biol (Weinh) 2023; 7:e2200117. [PMID: 36216583 DOI: 10.1002/adbi.202200117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 08/07/2022] [Indexed: 05/13/2023]
Abstract
Excitation-coupling (ECC) is paramount for coordinated contraction to maintain sufficient cardiac output. The study of ECC regulation has primarily been limited to cardiomyocytes (CMs), which conduct voltage waves via calcium fluxes from one cell to another, eliciting contraction of the atria followed by the ventricles. CMs rapidly transmit ionic flux via gap junction proteins, predominantly connexin 43. While the expression of connexin isoforms has been identified in each of the individual cell populations comprising the heart, the formation of gap junctions with nonmuscle cells (i.e., macrophages and Schwann cells) has gained new attention. Evaluating nonmuscle contributions to ECC in vivo or in situ remains difficult and necessitates the development of simple, yet biomimetic in vitro models to better understand and prevent physiological dysfunction. Standard 2D cell culture often consists of homogenous cell populations and lacks the dynamic mechanical environment of native tissue, confounding the phenotypic and proteomic makeup of these highly mechanosensitive cell populations in prolonged culture conditions. This review will highlight the recent developments and the importance of new microphysiological systems to better understand the complex regulation of ECC in cardiac tissue.
Collapse
Affiliation(s)
- Kirstie Belanger
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Abigail N Koppes
- Department of Bioengineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
- Department of Biology, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| | - Ryan A Koppes
- Department of Chemical Engineering, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
4
|
Hsiao SK, Liang CW, Chang TL, Sung YC, Chen YT, Chen Y, Wang J. An in vitro fibrotic liver lobule model through sequential cell-seeding of HSCs and HepG2 on 3D-printed poly(glycerol sebacate) acrylate scaffolds. J Mater Chem B 2022; 10:9590-9598. [PMID: 36106522 DOI: 10.1039/d1tb02686k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cirrhosis is a major cause of global morbidity and mortality, and significantly leads to a heightened risk of liver cancer. Despite decades of efforts in seeking for cures for cirrhosis, this disease remains irreversible. To assist in the advancement of understanding toward cirrhosis as well as therapeutic options, various disease models, each with different strengths, are developed. With the development of three-dimensional (3D) cell culture in recent years, more realistic biochemical properties are observed in 3D cell models, which have gradually taken over the responsibilities of traditional 2D cell culture, and are expected to replace some of the animal models in the near future. Here, we propose a 3D fibrotic liver model inspired by liver lobules. In the model, 3D-printed poly(glycerol sebacate) acrylate (PGSA) scaffolds facilitated the formation of 3D tissues and guided the deposition of fibrotic structures. Through the sequential seeding of hepatic stellate cells (HSCs), HepG2 and HSCs, fibrotic septum-like tissues were created on PGSA scaffolds. As albumin secretion is considered a rather important function of the liver and is found only among hepatic cells, the detection of albumin secretion up to 30 days indicates the mimicking of basic liver functions. Moreover, the in vivo fibrotic tissue shows a high similarity to fibrotic septa. Finally, via complete encapsulation of HSCs, a down-regulated albumin secretion profile was observed in the capped model, which is a metabolic indicator that is important for the prognosis for liver cirrhosis. Looking forward, the incorporation of the vasculature will further upgrade the model into a sound tool for liver research and associated treatments.
Collapse
Affiliation(s)
- Syuan-Ku Hsiao
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Cheng-Wei Liang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Tze-Ling Chang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Yun-Chieh Sung
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China. .,Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Yi-Ting Chen
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| | - Yunching Chen
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Jane Wang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China.
| |
Collapse
|
5
|
Mancino C, Hendrickson T, Whitney LV, Paradiso F, Abasi S, Tasciotti E, Taraballi F, Guiseppi-Elie A. Electrospun electroconductive constructs of aligned fibers for cardiac tissue engineering. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 44:102567. [PMID: 35595015 DOI: 10.1016/j.nano.2022.102567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/26/2021] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
Myocardial infarction remains the leading cause of death in the western world. Since the heart has limited regenerative capabilities, several cardiac tissue engineering (CTE) strategies have been proposed to repair the damaged myocardium. A novel electrospun construct with aligned and electroconductive fibers combining gelatin, poly(lactic-co-glycolic) acid and polypyrrole that may serve as a cardiac patch is presented. Constructs were characterized for fiber alignment, surface wettability, shrinkage and swelling behavior, porosity, degradation rate, mechanical properties, and electrical properties. Cell-biomaterial interactions were studied using three different types of cells, Neonatal Rat Ventricular Myocytes (NRVM), human lung fibroblasts (MRC-5) and induced pluripotent stem cells (iPSCs). All cell types showed good viability and unique organization on construct surfaces depending on their phenotype. Finally, we assessed the maturation status of NRVMs after 14 days by confocal images and qRT-PCR. Overall evidence supports a proof-of-concept that this novel biomaterial construct could be a good candidate patch for CTE applications.
Collapse
Affiliation(s)
- Chiara Mancino
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Electronics, Information and Bioengineering, Politecnico di Milano, Milano, Italy.
| | - Troy Hendrickson
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Molecular Medicine, Texas A&M MD/PhD Program, Texas A&M Health Science Center, College Station, TX, USA.
| | - Lauren V Whitney
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - Francesca Paradiso
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Reproductive Biology and Gynaecological Oncology Group, Swansea University Medical School, Swansea, UK.
| | - Sara Abasi
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA.
| | - Ennio Tasciotti
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Academic Institute, Houston, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| | - Anthony Guiseppi-Elie
- Center for Bioelectronics, Biosensors and Biochips (C3B®), Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA; Department of Cardiovascular Sciences, Houston Methodist Institute for Academic Medicine and Houston Methodist Research Institute, Houston, TX, USA; ABTECH Scientific, Inc., Biotechnology Research Park, 800 East Leigh Street, Richmond, VA, USA.
| |
Collapse
|
6
|
Do Human iPSC-Derived Cardiomyocytes Cultured on PLA Scaffolds Induce Expression of CD28/CTLA-4 by T Lymphocytes? J Funct Biomater 2022; 13:jfb13010006. [PMID: 35076538 PMCID: PMC8788528 DOI: 10.3390/jfb13010006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/29/2021] [Accepted: 01/07/2022] [Indexed: 02/05/2023] Open
Abstract
Many research groups have developed various types of tissue-engineered cardiac constructs. However, the immunological properties of such artificial tissues are not yet fully understood. Previously, we developed microfiber scaffolds carrying human iPSC-derived cardiomyocytes (hiPSC-CM). In this work, we evaluated the ability of these tissue-engineered constructs to activate the expression of CD28 and CTLA-4 proteins on T lymphocytes, which are early markers of the immune response. For this purpose, electrospun PLA microfiber scaffolds were seeded with hiPSC-CM and cultured for 2 weeks. Allogeneic mononuclear cells were then co-cultured for 48 h with three groups of samples: bare scaffolds, pure cardiomyocyte culture and tissue-engineered constructs, followed by analysis of CD28/CTLA-4 expression on T lymphocytes using flow cytometry. PLA scaffolds and concanavalin A stimulation (positive control) statistically significantly increased CD28 expression on CD4+ T cells (up to 61.3% and 66.3%) CD8+ T cells (up to 17.8% and 21.7%). CD28/CTLA-4 expression was not increased when T lymphocytes were co-cultured with cardiac tissue-engineered constructs and iPSC-CM monolayers. Thus, iPSC-CM in monolayers and on PLA microfiber scaffolds did not induce T cell activation, which suggests that such cardiac constructs would not be a cause of rejection after implantation.
Collapse
|
7
|
Camman M, Joanne P, Agbulut O, Hélary C. 3D models of dilated cardiomyopathy: Shaping the chemical, physical and topographical properties of biomaterials to mimic the cardiac extracellular matrix. Bioact Mater 2022; 7:275-291. [PMID: 34466733 PMCID: PMC8379361 DOI: 10.1016/j.bioactmat.2021.05.040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 05/21/2021] [Accepted: 05/21/2021] [Indexed: 12/12/2022] Open
Abstract
The pathophysiology of dilated cardiomyopathy (DCM), one major cause of heart failure, is characterized by the dilation of the heart but remains poorly understood because of the lack of adequate in vitro models. Current 2D models do not allow for the 3D organotypic organization of cardiomyocytes and do not reproduce the ECM perturbations. In this review, the different strategies to mimic the chemical, physical and topographical properties of the cardiac tissue affected by DCM are presented. The advantages and drawbacks of techniques generating anisotropy required for the cardiomyocytes alignment are discussed. In addition, the different methods creating macroporosity and favoring organotypic organization are compared. Besides, the advances in the induced pluripotent stem cells technology to generate cardiac cells from healthy or DCM patients will be described. Thanks to the biomaterial design, some features of the DCM extracellular matrix such as stiffness, porosity, topography or chemical changes can impact the cardiomyocytes function in vitro and increase their maturation. By mimicking the affected heart, both at the cellular and at the tissue level, 3D models will enable a better understanding of the pathology and favor the discovery of novel therapies.
Collapse
Affiliation(s)
- Marie Camman
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu (case 174), F-75005, Paris, France
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005, Paris, France
| | - Pierre Joanne
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005, Paris, France
| | - Onnik Agbulut
- Sorbonne Université, Institut de Biologie Paris-Seine (IBPS), CNRS UMR 8256, Inserm ERL U1164, Biological Adaptation and Ageing, 7 quai St-Bernard (case 256), F-75005, Paris, France
| | - Christophe Hélary
- Sorbonne Université, CNRS, UMR 7574, Laboratoire de Chimie de la Matière Condensée de Paris, 4 place Jussieu (case 174), F-75005, Paris, France
| |
Collapse
|
8
|
Basnett P, Matharu RK, Taylor CS, Illangakoon U, Dawson JI, Kanczler JM, Behbehani M, Humphrey E, Majid Q, Lukasiewicz B, Nigmatullin R, Heseltine P, Oreffo ROC, Haycock JW, Terracciano C, Harding SE, Edirisinghe M, Roy I. Harnessing Polyhydroxyalkanoates and Pressurized Gyration for Hard and Soft Tissue Engineering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32624-32639. [PMID: 34228435 DOI: 10.1021/acsami.0c19689] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organ dysfunction is a major cause of morbidity and mortality. Transplantation is typically the only definitive cure, challenged by the lack of sufficient donor organs. Tissue engineering encompasses the development of biomaterial scaffolds to support cell attachment, proliferation, and differentiation, leading to tissue regeneration. For efficient clinical translation, the forming technology utilized must be suitable for mass production. Herein, uniaxial polyhydroxyalkanoate scaffolds manufactured by pressurized gyration, a hybrid scalable spinning technique, are successfully used in bone, nerve, and cardiovascular applications. Chorioallantoic membrane and in vivo studies provided evidence of vascularization, collagen deposition, and cellular invasion for bone tissue engineering. Highly efficient axonal outgrowth was observed in dorsal root ganglion-based 3D ex vivo models. Human induced pluripotent stem cell derived cardiomyocytes exhibited a mature cardiomyocyte phenotype with optimal calcium handling. This study confirms that engineered polyhydroxyalkanoate-based gyrospun fibers provide an exciting and unique toolbox for the development of scalable scaffolds for both hard and soft tissue regeneration.
Collapse
Affiliation(s)
- Pooja Basnett
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Rupy K Matharu
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Caroline S Taylor
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Upulitha Illangakoon
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Jonathan I Dawson
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Janos M Kanczler
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - Mehrie Behbehani
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Eleanor Humphrey
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Qasim Majid
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | | | - Rinat Nigmatullin
- School of Life Sciences, University of Westminster, London W1W 6UW, U.K
| | - Phoebe Heseltine
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Richard O C Oreffo
- Centre for Human Development, Stem Cells and Regeneration, University of Southampton, Southampton SO16 6YD, U.K
| | - John W Haycock
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Cesare Terracciano
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Sian E Harding
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London WC1E 7JE, U.K
| | - Ipsita Roy
- Department of Materials Science and Engineering, University of Sheffield, Sheffield S1 3JD, U.K
- National Heart and Lung Institute, Imperial College London, London SW3 6LY, U.K
| |
Collapse
|
9
|
Fakhrali A, Nasari M, Poursharifi N, Semnani D, Salehi H, Ghane M, Mohammadi S. Biocompatible graphene‐embedded
PCL
/
PGS
‐based nanofibrous scaffolds: A potential application for cardiac tissue regeneration. J Appl Polym Sci 2021. [DOI: 10.1002/app.51177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Aref Fakhrali
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Mina Nasari
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Nazanin Poursharifi
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Dariush Semnani
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | - Hossein Salehi
- Department of Anatomical Sciences and Molecular Biology, School of Medicine Isfahan University of Medical Sciences Isfahan Iran
| | - Mohammad Ghane
- Department of Textile Engineering Isfahan University of Technology Isfahan Iran
| | | |
Collapse
|
10
|
Ye J, Xiao Z, Gao L, Zhang J, He L, Zhang H, Liu Q, Yang G. Assessment of the effects of four crosslinking agents on gelatin hydrogel for myocardial tissue engineering applications. BIOMEDICAL MATERIALS (BRISTOL, ENGLAND) 2021; 16. [PMID: 33975301 DOI: 10.1088/1748-605x/abfff2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/11/2021] [Indexed: 02/08/2023]
Abstract
Cardiomyocyte (CM) transplantation is a promising option for regenerating infarcted myocardium. However, poor cell survival and residence rates reduce the efficacy of cell transplantation. Gelatin (GA) hydrogel as a frequently-used cell carrier is a possible approach to increase the survival rate of CMs. In this study, microbial transglutaminase (mTG) and chemical crosslinkers glutaraldehyde, genipin, and 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide were employed to prepare GA hydrogels. The mechanical properties and degradation characteristics of these hydrogels were then evaluated. Neonatal rat CMs (NRCMs) were isolated and inoculated on the surface of these hydrogels or encapsulated in mTG-hydrogels. Cellular growth morphology and beating behavior were observed. Cellular viability and immunofluorescence were analyzed. Intracellular Ca2+transient and membrane potential propagation were detected using fluorescence dyes (Fluo-3 and di-4-ANEPPS, respectively). Results showed that the chemical crosslinkers exhibited high cytotoxicity and resulted in high rates of cell death. By contrast, mTG-hydrogels showed excellent cell compatibility. The CMs cultured in mTG-hydrogels for a week expressed CM maturation markers. The NRCMs begun independently beating on the third day of culture, and their beating synchronized after a week of culture. Furthermore, intracellular Ca2+transient events with periodicity were observed. In conclusion, the novel mTG-crosslinked GA hydrogel synthesized herein has good biocompatibility, and it supports CM adhesion, growth, and maturation.
Collapse
Affiliation(s)
- Jing Ye
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Zhenghua Xiao
- Department of Cardiovascular Surgery, West China Hospital of Sichuan University, No. 37 Guo Xue Alley, Chengdu 610041, People's Republic of China
| | - Lu Gao
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Ling He
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Han Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Qi Liu
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| | - Gang Yang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, Sichuan, People's Republic of China
| |
Collapse
|
11
|
Colucci F, Mancini V, Mattu C, Boffito M. Designing Multifunctional Devices for Regenerative Pharmacology Based on 3D Scaffolds, Drug-Loaded Nanoparticles, and Thermosensitive Hydrogels: A Proof-of-Concept Study. Pharmaceutics 2021; 13:pharmaceutics13040464. [PMID: 33808138 PMCID: PMC8066789 DOI: 10.3390/pharmaceutics13040464] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/22/2021] [Indexed: 12/25/2022] Open
Abstract
Regenerative pharmacology combines tissue engineering/regenerative medicine (TERM) with drug delivery with the aim to improve the outcomes of traditional TERM approaches. In this work, we aimed to design a multicomponent TERM platform comprising a three-dimensional scaffold, a thermosensitive hydrogel, and drug-loaded nanoparticles. We used a thermally induced phase separation method to obtain scaffolds with anisotropic mechanical properties, suitable for soft tissue engineering. A thermosensitive hydrogel was developed using a Poloxamer® 407-based poly(urethane) to embed curcumin-loaded nanoparticles, obtained by the single emulsion nanoprecipitation method. We found that encapsulated curcumin could retain its antioxidant activity and that embedding nanoparticles within the hydrogel did not affect the hydrogel gelation kinetics nor the possibility to progressively release the drug. The porous scaffold was easily loaded with the hydrogel, resulting in significantly enhanced (4-fold higher) absorption of a model molecule of nutrients (fluorescein isothiocyanate dextran 4kDa) from the surrounding environment compared to pristine scaffold. The developed platform could thus represent a valuable alternative in the treatment of many pathologies affecting soft tissues, by concurrently exploiting the therapeutic effects of drugs, with the 3D framework acting as a physical support for tissue regeneration and the cell-friendly environment represented by the hydrogel.
Collapse
Affiliation(s)
- Francesco Colucci
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
| | - Vanessa Mancini
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
- Department of Anatomy & Embryology, Leiden University Medical Center, 2333 ZC Leiden, The Netherlands
| | - Clara Mattu
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
- PolitoBIOMed Laboratory, Politecnico di Torino, 10129 Turin, Italy
- Correspondence: (C.M.); (M.B.)
| | - Monica Boffito
- Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Turin, Italy; (F.C.); (V.M.)
- PolitoBIOMed Laboratory, Politecnico di Torino, 10129 Turin, Italy
- Institute for Chemical-Physical Processes, National Research Council (CNR-IPCF), 56124 Pisa, Italy
- Correspondence: (C.M.); (M.B.)
| |
Collapse
|
12
|
Preparation and characterization of polyurethane/chitosan/CNT nanofibrous scaffold for cardiac tissue engineering. Int J Biol Macromol 2021; 180:590-598. [PMID: 33711373 DOI: 10.1016/j.ijbiomac.2021.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/07/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022]
Abstract
Myocardial infarction of cardiomyocytes is a leading cause of heart failure (HF) worldwide. Since heart has very limited regeneration capacity, cardiac tissue engineering (TE) to produce a bioactive scaffold is considered. In this study, a series of polyurethane solutions (5-7%wt) in aqueous acetic acid were prepared using electrospinning. A variety of Polyurethane (PU)/Chitosan (Cs)/carbon nanotubes (CNT) composite nanofibrous scaffolds with random and aligned orientation were fabricated to structurally mimic the extracellular matrix (ECM). Electrospun nanofibers were then characterized using field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), water contact angle, degradation studies, tensile tests, electrical resistance measurement and cell viability assay. The biocompatibility of electrospun random and aligned nanofibrous scaffolds with H9C2 Cells was confirmed. The results revealed that fabricated PU/Cs/CNT composite nanofibrous scaffolds were electro-conductive and aligned nanofibers could be considered as promising scaffolds with nano-scale features for regeneration of infarcted myocardium.
Collapse
|
13
|
A Concise Review on Induced Pluripotent Stem Cell-Derived Cardiomyocytes for Personalized Regenerative Medicine. Stem Cell Rev Rep 2020; 17:748-776. [PMID: 33098306 DOI: 10.1007/s12015-020-10061-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 02/07/2023]
Abstract
The induced pluripotent stem cells (iPSCs) are derived from somatic cells by using reprogramming factors such as Oct4, Sox2, Klf4, and c-Myc (OSKM) or Oct4, Sox2, Nanog and Lin28 (OSNL). They resemble embryonic stem cells (ESCs) and have the ability to differentiate into cell lineage of all three germ-layer, including cardiomyocytes (CMs). The CMs can be generated from iPSCs by inducing embryoid bodies (EBs) formation and treatment with activin A, bone morphogenic protein 4 (BMP4), and inhibitors of Wnt signaling. However, these iPSC-derived CMs are a heterogeneous population of cells and require purification and maturation to mimic the in vivo CMs. The matured CMs can be used for various therapeutic purposes in regenerative medicine by cardiomyoplasty or through the development of tissue-engineered cardiac patches. In recent years, significant advancements have been made in the isolation of iPSC and their differentiation, purification, and maturation into clinically usable CMs. Newer small molecules have also been identified to substitute the reprogramming factors for iPSC generation as well as for direct differentiation of somatic cells into CMs without an intermediary pluripotent state. This review provides a concise update on the generation of iPSC-derived CMs and their application in personalized cardiac regenerative medicine. It also discusses the current limitations and challenges in the application of iPSC-derived CMs. Graphical abstract.
Collapse
|
14
|
Ning Y, Shen W, Ao F. Application of blocking and immobilization of electrospun fiber in the biomedical field. RSC Adv 2020; 10:37246-37265. [PMID: 35521229 PMCID: PMC9057162 DOI: 10.1039/d0ra06865a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 09/22/2020] [Indexed: 12/13/2022] Open
Abstract
The fiber obtained by electrospinning technology is a kind of biomaterial with excellent properties, which not only has a unique micro-nanostructure that gives it a large specific surface area and porosity, but also has satisfactory biocompatibility and degradability (if the spinning material used is a degradable polymer). These biomaterials provide a suitable place for cell attachment and proliferation, and can also achieve immobilization. On the other hand, its large porosity and three-dimensional spatial structure show unique blocking properties in drug delivery applications in order to achieve the purpose of slow release or even controlled release. The immobilization effect or blocking effect of these materials is mainly reflected in the hollow or core-shell structure. The purpose of this paper is to understand the application of the electrospun fiber based on biodegradable polymers (aliphatic polyesters) in the biomedical field, especially the immobilization or blocking effect of the electrospun fiber membrane on cells, drugs or enzymes. This paper focuses on the performance of these materials in tissue engineering, wound dressing, drug delivery system, and enzyme immobilization technology. Finally, based on the existing research basis of the electrospun fiber in the biomedical field, a potential research direction in the future is put forward, and few suggestions are also given for the technical problems that urgently need to be solved.
Collapse
Affiliation(s)
- Yuanlan Ning
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Wen Shen
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| | - Fen Ao
- School of Food and Biological Engineering, Shaanxi University of Science & Technology Xi'an 710021 PR China +86-187-2925-6877 +86-187-1726-7199
| |
Collapse
|
15
|
Nguyen-Truong M, Li YV, Wang Z. Mechanical Considerations of Electrospun Scaffolds for Myocardial Tissue and Regenerative Engineering. Bioengineering (Basel) 2020; 7:E122. [PMID: 33022929 PMCID: PMC7711753 DOI: 10.3390/bioengineering7040122] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 10/01/2020] [Indexed: 12/13/2022] Open
Abstract
Biomaterials to facilitate the restoration of cardiac tissue is of emerging importance. While there are many aspects to consider in the design of biomaterials, mechanical properties can be of particular importance in this dynamically remodeling tissue. This review focuses on one specific processing method, electrospinning, that is employed to generate materials with a fibrous microstructure that can be combined with material properties to achieve the desired mechanical behavior. Current methods used to fabricate mechanically relevant micro-/nanofibrous scaffolds, in vivo studies using these scaffolds as therapeutics, and common techniques to characterize the mechanical properties of the scaffolds are covered. We also discuss the discrepancies in the reported elastic modulus for physiological and pathological myocardium in the literature, as well as the emerging area of in vitro mechanobiology studies to investigate the mechanical regulation in cardiac tissue engineering. Lastly, future perspectives and recommendations are offered in order to enhance the understanding of cardiac mechanobiology and foster therapeutic development in myocardial regenerative medicine.
Collapse
Affiliation(s)
- Michael Nguyen-Truong
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
| | - Yan Vivian Li
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Design and Merchandising, Colorado State University, Fort Collins, CO 80523, USA
- School of Advanced Materials Discovery, Colorado State University, Fort Collins, CO 80523, USA
| | - Zhijie Wang
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO 80523, USA; (M.N.-T.); (Y.V.L.)
- Department of Mechanical Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
16
|
Veldhuizen J, Cutts J, Brafman DA, Migrino RQ, Nikkhah M. Engineering anisotropic human stem cell-derived three-dimensional cardiac tissue on-a-chip. Biomaterials 2020; 256:120195. [DOI: 10.1016/j.biomaterials.2020.120195] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 05/15/2020] [Accepted: 06/09/2020] [Indexed: 01/02/2023]
|
17
|
Vyas C, Ates G, Aslan E, Hart J, Huang B, Bartolo P. Three-Dimensional Printing and Electrospinning Dual-Scale Polycaprolactone Scaffolds with Low-Density and Oriented Fibers to Promote Cell Alignment. 3D PRINTING AND ADDITIVE MANUFACTURING 2020; 7:105-113. [PMID: 32851115 PMCID: PMC7313635 DOI: 10.1089/3dp.2019.0091] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Complex and hierarchically functionalized scaffolds composed of micro- and nanoscale structures are a key goal in tissue engineering. The combination of three-dimensional (3D) printing and electrospinning enables the fabrication of these multiscale structures. This study presents a polycaprolactone 3D-printed and electrospun scaffold with multiple mesh layers and fiber densities. The results show successful fabrication of a dual-scale scaffold with the 3D-printed scaffold acting as a gap collector with the printed microfibers as the electrodes and the pores a series of insulating gaps resulting in aligned nanofibers. The electrospun fibers are highly aligned perpendicular to the direction of the printed fiber and form aligned meshes within the pores of the scaffold. Mechanical testing showed no significant difference between the number of mesh layers whereas the hydrophobicity of the scaffold increased with increasing fiber density. Biological results indicate that increasing the number of mesh layers improves cell proliferation, migration, and adhesion. The aligned nanofibers within the microscale pores allowed enhanced cell bridging and cell alignment that was not observed in the 3D-printed only scaffold. These results demonstrate a facile method of incorporating low-density and aligned fibers within a 3D-printed scaffold that is a promising development in multiscale hierarchical scaffolds where alignment of cells can be desirable.
Collapse
Affiliation(s)
- Cian Vyas
- Department of Mechanical, Aerospace, and Civil Engineering and University of Manchester, Manchester, United Kingdom
| | - Gokhan Ates
- Department of Mechanical, Aerospace, and Civil Engineering and University of Manchester, Manchester, United Kingdom
| | - Enes Aslan
- Department of Mechanical, Aerospace, and Civil Engineering and University of Manchester, Manchester, United Kingdom
| | - Jack Hart
- Department of Physics and Astronomy, University of Manchester, Manchester, United Kingdom
| | - Boyang Huang
- Department of Mechanical, Aerospace, and Civil Engineering and University of Manchester, Manchester, United Kingdom
| | - Paulo Bartolo
- Department of Mechanical, Aerospace, and Civil Engineering and University of Manchester, Manchester, United Kingdom
| |
Collapse
|
18
|
Talebi A, Labbaf S, Karimzadeh F, Masaeli E, Nasr Esfahani MH. Electroconductive Graphene-Containing Polymeric Patch: A Promising Platform for Future Cardiac Repair. ACS Biomater Sci Eng 2020; 6:4214-4224. [DOI: 10.1021/acsbiomaterials.0c00266] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Alireza Talebi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Fathallah Karimzadeh
- Department of Materials Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran
| | - Elahe Masaeli
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| | - Mohammad-Hossein Nasr Esfahani
- Department of Cellular Biotechnology, Cell Science Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran
| |
Collapse
|
19
|
Rusu LC, Ardelean LC, Jitariu AA, Miu CA, Streian CG. An Insight into the Structural Diversity and Clinical Applicability of Polyurethanes in Biomedicine. Polymers (Basel) 2020; 12:E1197. [PMID: 32456335 PMCID: PMC7285236 DOI: 10.3390/polym12051197] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/13/2020] [Accepted: 05/22/2020] [Indexed: 01/16/2023] Open
Abstract
Due to their mechanical properties, ranging from flexible to hard materials, polyurethanes (PUs) have been widely used in many industrial and biomedical applications. PUs' characteristics, along with their biocompatibility, make them successful biomaterials for short and medium-duration applications. The morphology of PUs includes two structural phases: hard and soft segments. Their high mechanical resistance featuresare determined by the hard segment, while the elastomeric behaviour is established by the soft segment. The most important biomedical applications of PUs include antibacterial surfaces and catheters, blood oxygenators, dialysis devices, stents, cardiac valves, vascular prostheses, bioadhesives/surgical dressings/pressure-sensitive adhesives, drug delivery systems, tissue engineering scaffolds and electrospinning, nerve generation, pacemaker lead insulation and coatings for breast implants. The diversity of polyurethane properties, due to the ease of bulk and surface modification, plays a vital role in their applications.
Collapse
Affiliation(s)
- Laura-Cristina Rusu
- Department of Oral Pathology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Lavinia Cosmina Ardelean
- Department of Technology of Materials and Devices in Dental Medicine, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania
| | - Adriana-Andreea Jitariu
- Department of Microscopic Morphology/Histology and Angiogenesis Research Center Timisoara, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Catalin Adrian Miu
- 3rd Department of Orthopaedics-Traumatology, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| | - Caius Glad Streian
- Department of Cardiac Surgery, “Victor Babes” University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu sq, 300041 Timisoara, Romania;
| |
Collapse
|
20
|
Bar A, Cohen S. Inducing Endogenous Cardiac Regeneration: Can Biomaterials Connect the Dots? Front Bioeng Biotechnol 2020; 8:126. [PMID: 32175315 PMCID: PMC7056668 DOI: 10.3389/fbioe.2020.00126] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 02/10/2020] [Indexed: 12/19/2022] Open
Abstract
Heart failure (HF) after myocardial infarction (MI) due to blockage of coronary arteries is a major public health issue. MI results in massive loss of cardiac muscle due to ischemia. Unfortunately, the adult mammalian myocardium presents a low regenerative potential, leading to two main responses to injury: fibrotic scar formation and hypertrophic remodeling. To date, complete heart transplantation remains the only clinical option to restore heart function. In the last two decades, tissue engineering has emerged as a promising approach to promote cardiac regeneration. Tissue engineering aims to target processes associated with MI, including cardiomyogenesis, modulation of extracellular matrix (ECM) remodeling, and fibrosis. Tissue engineering dogmas suggest the utilization and combination of two key components: bioactive molecules and biomaterials. This chapter will present current therapeutic applications of biomaterials in cardiac regeneration and the challenges still faced ahead. The following biomaterial-based approaches will be discussed: Nano-carriers for cardiac regeneration-inducing biomolecules; corresponding matrices for their controlled release; injectable hydrogels for cell delivery and cardiac patches. The concept of combining cardiac patches with controlled release matrices will be introduced, presenting a promising strategy to promote endogenous cardiac regeneration.
Collapse
Affiliation(s)
- Assaf Bar
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
| | - Smadar Cohen
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beersheba, Israel
- Regenerative Medicine and Stem Cell Research Center, Ben-Gurion University of the Negev, Beersheba, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beersheba, Israel
| |
Collapse
|
21
|
Pushp P, Sahoo B, Ferreira FC, Sampaio Cabral JM, Fernandes‐Platzgummer A, Gupta MK. Functional comparison of beating cardiomyocytes differentiated from umbilical cord‐derived mesenchymal/stromal stem cells and human foreskin‐derived induced pluripotent stem cells. J Biomed Mater Res A 2019; 108:496-514. [DOI: 10.1002/jbm.a.36831] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 01/26/2023]
Affiliation(s)
- Pallavi Pushp
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
- Department of Biotechnology Institute of Engineering and Technology, Bundelkhand University Jhansi Uttar Pradesh India
| | - Bijayalaxmi Sahoo
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| | - Frederico C. Ferreira
- Department of Bioengineering, Instituto Superior Técnico iBB – Institute for Bioengineering and Biosciences, Universidade de Lisboa Lisbon Portugal
| | - Joaquim M. Sampaio Cabral
- Department of Bioengineering, Instituto Superior Técnico iBB – Institute for Bioengineering and Biosciences, Universidade de Lisboa Lisbon Portugal
| | - Ana Fernandes‐Platzgummer
- Department of Bioengineering, Instituto Superior Técnico iBB – Institute for Bioengineering and Biosciences, Universidade de Lisboa Lisbon Portugal
| | - Mukesh K. Gupta
- Department of Biotechnology and Medical Engineering National Institute of Technology Rourkela Odisha India
| |
Collapse
|
22
|
Mantha S, Pillai S, Khayambashi P, Upadhyay A, Zhang Y, Tao O, Pham HM, Tran SD. Smart Hydrogels in Tissue Engineering and Regenerative Medicine. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E3323. [PMID: 31614735 PMCID: PMC6829293 DOI: 10.3390/ma12203323] [Citation(s) in RCA: 353] [Impact Index Per Article: 70.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 10/08/2019] [Accepted: 10/09/2019] [Indexed: 01/01/2023]
Abstract
The field of regenerative medicine has tremendous potential for improved treatment outcomes and has been stimulated by advances made in bioengineering over the last few decades. The strategies of engineering tissues and assembling functional constructs that are capable of restoring, retaining, and revitalizing lost tissues and organs have impacted the whole spectrum of medicine and health care. Techniques to combine biomimetic materials, cells, and bioactive molecules play a decisive role in promoting the regeneration of damaged tissues or as therapeutic systems. Hydrogels have been used as one of the most common tissue engineering scaffolds over the past two decades due to their ability to maintain a distinct 3D structure, to provide mechanical support for the cells in the engineered tissues, and to simulate the native extracellular matrix. The high water content of hydrogels can provide an ideal environment for cell survival, and structure which mimics the native tissues. Hydrogel systems have been serving as a supportive matrix for cell immobilization and growth factor delivery. This review outlines a brief description of the properties, structure, synthesis and fabrication methods, applications, and future perspectives of smart hydrogels in tissue engineering.
Collapse
Affiliation(s)
- Somasundar Mantha
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Sangeeth Pillai
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Parisa Khayambashi
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Akshaya Upadhyay
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Yuli Zhang
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Owen Tao
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Hieu M Pham
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| | - Simon D Tran
- McGill Craniofacial Tissue Engineering and Stem Cells Laboratory, Faculty of Dentistry, McGill University, 3640 University Street, Montreal, QC H3A 0C7, Canada.
| |
Collapse
|
23
|
Vieira T, Carvalho Silva J, Botelho do Rego A, Borges JP, Henriques C. Electrospun biodegradable chitosan based-poly(urethane urea) scaffolds for soft tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 103:109819. [DOI: 10.1016/j.msec.2019.109819] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 01/04/2019] [Accepted: 05/27/2019] [Indexed: 10/26/2022]
|
24
|
Allen AC, Barone E, Momtahan N, Crosby CO, Tu C, Deng W, Polansky K, Zoldan J. Temporal Impact of Substrate Anisotropy on Differentiating Cardiomyocyte Alignment and Functionality. Tissue Eng Part A 2019; 25:1426-1437. [PMID: 30727863 PMCID: PMC6939589 DOI: 10.1089/ten.tea.2018.0258] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 01/29/2019] [Indexed: 01/14/2023] Open
Abstract
Anisotropic biomaterials can affect cell function by driving cell alignment, which is critical for cardiac engineered tissues. Recent work, however, has shown that pluripotent stem cell-derived cardiomyocytes may self-align over long periods of time. To determine how the degree of biomaterial substrate anisotropy impacts differentiating cardiomyocyte structure and function, we differentiated mouse embryonic stem cells to cardiomyocytes on nonaligned, semialigned, and aligned fibrous substrates and evaluated cell alignment, contractile displacement, and calcium transient synchronicity over time. Although cardiomyocyte gene expression was not affected by fiber alignment, we observed gradient- and threshold-based differences in cardiomyocyte alignment and function. Cardiomyocyte alignment increased with the degree of fiber alignment in a gradient-based manner at early time points and in a threshold-based manner at later time points. Calcium transient synchronization tightly followed cardiomyocyte alignment behavior, allowing highly anisotropic biomaterials to drive calcium transient synchronization within 8 days, while such synchronized cardiomyocyte behavior required 20 days of culture on nonaligned biomaterials. In contrast, cardiomyocyte contractile displacement had no directional preference on day 8 yet became anisotropic in the direction of fiber alignment on aligned fibers by day 20. Biomaterial anisotropy impact on differentiating cardiomyocyte structure and function is temporally dependent. Impact Statement This work demonstrates that biomaterial anisotropy can quickly drive desired pluripotent stem cell-derived cardiomyocyte structure and function. Such an understanding of matrix anisotropy's time-dependent influence on stem cell-derived cardiomyocyte function will have future applications in the development of cardiac cell therapies and in vitro cardiac tissues for drug testing. Furthermore, our work has broader implications concerning biomaterial anisotropy effects on other cell types in which function relies on alignment, such as myocytes and neurons.
Collapse
Affiliation(s)
- Alicia C.B. Allen
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Elissa Barone
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Nima Momtahan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Cody O. Crosby
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Chengyi Tu
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Wei Deng
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Krista Polansky
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| | - Janet Zoldan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
25
|
Wanjare M, Kawamura M, Hu C, Alcazar C, Wang H, Woo YJ, Huang NF. Vascularization of Engineered Spatially Patterned Myocardial Tissue Derived From Human Pluripotent Stem Cells in vivo. Front Bioeng Biotechnol 2019; 7:208. [PMID: 31552234 PMCID: PMC6733921 DOI: 10.3389/fbioe.2019.00208] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 08/19/2019] [Indexed: 12/28/2022] Open
Abstract
Tissue engineering approaches to regenerate myocardial tissue after disease or injury is promising. Integration with the host vasculature is critical to the survival and therapeutic efficacy of engineered myocardial tissues. To create more physiologically oriented engineered myocardial tissue with organized cellular arrangements and endothelial interactions, randomly oriented or parallel-aligned microfibrous polycaprolactone scaffolds were seeded with human pluripotent stem cell-derived cardiomyocytes (iCMs) and/or endothelial cells (iECs). The resultant engineered myocardial tissues were assessed in a subcutaneous transplantation model and in a myocardial injury model to evaluate the effect of scaffold anisotropy and endothelial interactions on vascular integration of the engineered myocardial tissue. Here we demonstrated that engineered myocardial tissue composed of randomly oriented scaffolds seeded with iECs promoted the survival of iECs for up to 14 days. However, engineered myocardial tissue composed of aligned scaffolds preferentially guided the organization of host capillaries along the direction of the microfibers. In a myocardial injury model, epicardially transplanted engineered myocardial tissues composed of randomly oriented scaffolds seeded with iCMs augmented microvessel formation leading to a significantly higher arteriole density after 4 weeks, compared to engineered tissues derived from aligned scaffolds. These findings that the scaffold microtopography imparts differential effect on revascularization, in which randomly oriented scaffolds promote pro-survival and pro-angiogenic effects, and aligned scaffolds direct the formation of anisotropic vessels. These findings suggest a dominant role of scaffold topography over endothelial co-culture in modulating cellular survival, vascularization, and microvessel architecture.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
| | - Masashi Kawamura
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Caroline Hu
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Cynthia Alcazar
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Hanjay Wang
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Y Joseph Woo
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States.,Department of Bioengineering, Stanford University, Stanford, CA, United States
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States.,Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
26
|
Pekkanen-Mattila M, Häkli M, Pölönen RP, Mansikkala T, Junnila A, Talvitie E, Koivisto JT, Kellomäki M, Aalto-Setälä K. Polyethylene Terephthalate Textiles Enhance the Structural Maturation of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E1805. [PMID: 31163704 PMCID: PMC6600740 DOI: 10.3390/ma12111805] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 05/28/2019] [Accepted: 05/30/2019] [Indexed: 12/23/2022]
Abstract
Human-induced pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs) have the potential to serve as a model for human cardiomyocytes. However, hiPSC-CMs are still considered immature. CMs differentiated from hiPSCs more resemble fetal than adult cardiomyocytes. Putative factors enhancing maturation include in vitro culture duration, culture surface topography, and mechanical, chemical, and electrical stimulation. Stem cell-derived cardiomyocytes are traditionally cultured on glass surfaces coated with extracellular matrix derivatives such as gelatin. hiPSC-CMs are flat and round and their sarcomeres are randomly distributed and unorganized. Morphology can be enhanced by culturing cells on surfaces providing topographical cues to the cells. In this study, a textile based-culturing method used to enhance the maturation status of hiPSC-CMs is presented. Gelatin-coated polyethylene terephthalate (PET)-based textiles were used as the culturing surface for hiPSC-CMs and the effects of the textiles on the maturation status of the hiPSC-CMs were assessed. The hiPSC-CMs were characterized by analyzing their morphology, sarcomere organization, expression of cardiac specific genes, and calcium handling. We show that the topographical cues improve the structure of the hiPSC-CMs in vitro. Human iPSC-CMs grown on PET textiles demonstrated improved structural properties such as rod-shape structure and increased sarcomere orientation.
Collapse
Affiliation(s)
- Mari Pekkanen-Mattila
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Martta Häkli
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Risto-Pekka Pölönen
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Tuomas Mansikkala
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Anni Junnila
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Elina Talvitie
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | - Janne T Koivisto
- Microelectronics Research Unit, University of Oulu, FI-90014 Oulu, Finland.
| | - Minna Kellomäki
- BioMediTech, Faculty of Medicine and Health Technology, Tampere University, 33140 Tampere, Finland.
| | | |
Collapse
|
27
|
Wu F, Gao A, Liu J, Shen Y, Xu P, Meng J, Wen T, Xu L, Xu H. High Modulus Conductive Hydrogels Enhance In Vitro Maturation and Contractile Function of Primary Cardiomyocytes for Uses in Drug Screening. Adv Healthc Mater 2018; 7:e1800990. [PMID: 30565899 DOI: 10.1002/adhm.201800990] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/13/2018] [Indexed: 12/20/2022]
Abstract
Effective and quick screening and cardiotoxicity assessment are very crucial for drug development. Here, a novel composite hydrogel composed of carbon fibers (CFs) with high conductivity and modulus with polyvinyl alcohol (PVA) is reported. The conductivity of the composite hydrogel PVA/CFs is similar to that of natural heart tissue, and the elastic modulus is close to that of natural heart tissue during systole, due to the incorporation of CFs. PVA/CFs remarkably enhance the maturation of neonatal rat cardiomyocytes (NRCM) in vitro by upregulating the expression of α-actinin, troponin T, and connexin-43, activating the signaling pathway of α5 and β1 integrin-dependent ILK/p-AKT, and increasing the level of RhoA and hypoxia-inducible factor-1α. As a result, the engineered cell sheet-like constructs NRCM@PVA/CFs display much more synchronous, stable, and robust beating behavior than NRCM@PVA. When exposed to doxorubicin or isoprenaline, NRCM@PVA/CFs can retain effective beating for much longer time or change the contractile rate much faster than NRCM@PVA, respectively, therefore representing a promising heart-like platform for in vitro drug screening and cardiotoxicity assessment.
Collapse
Affiliation(s)
- Fengxin Wu
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Aijun Gao
- National Carbon Fiber Engineering Technology Center; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jian Liu
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Yaoyi Shen
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Panpan Xu
- National Carbon Fiber Engineering Technology Center; Beijing University of Chemical Technology; Beijing 100029 China
| | - Jie Meng
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Tao Wen
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| | - Lianghua Xu
- National Carbon Fiber Engineering Technology Center; Beijing University of Chemical Technology; Beijing 100029 China
| | - Haiyan Xu
- Institute of Basic Medical Sciences; Chinese Academy of Medical Sciences & Peking Union Medical College; Beijing 100010 China
| |
Collapse
|
28
|
Jin G, He R, Sha B, Li W, Qing H, Teng R, Xu F. Electrospun three-dimensional aligned nanofibrous scaffolds for tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 92:995-1005. [DOI: 10.1016/j.msec.2018.06.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 06/07/2018] [Accepted: 06/28/2018] [Indexed: 01/24/2023]
|
29
|
Zamani M, Karaca E, Huang NF. Multicellular Interactions in 3D Engineered Myocardial Tissue. Front Cardiovasc Med 2018; 5:147. [PMID: 30406114 PMCID: PMC6205951 DOI: 10.3389/fcvm.2018.00147] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/01/2018] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease is a leading cause of death in the US and many countries worldwide. Current cell-based clinical trials to restore cardiomyocyte (CM) health by local delivery of cells have shown only moderate benefit in improving cardiac pumping capacity. CMs have highly organized physiological structure and interact dynamically with non-CM populations, including endothelial cells and fibroblasts. Within engineered myocardial tissue, non-CM populations play an important role in CM survival and function, in part by secreting paracrine factors and cell-cell interactions. In this review, we summarize the progress of engineering myocardial tissue with pre-formed physiological multicellular organization, and present the challenges toward clinical translation.
Collapse
Affiliation(s)
- Maedeh Zamani
- School of Medicine, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
| | - Esra Karaca
- School of Medicine, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| | - Ngan F. Huang
- School of Medicine, The Stanford Cardiovascular Institute, Stanford University, Stanford, CA, United States
- Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, United States
- Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, United States
| |
Collapse
|
30
|
Ariyasinghe NR, Lyra-Leite DM, McCain ML. Engineering cardiac microphysiological systems to model pathological extracellular matrix remodeling. Am J Physiol Heart Circ Physiol 2018; 315:H771-H789. [PMID: 29906229 PMCID: PMC6230901 DOI: 10.1152/ajpheart.00110.2018] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/27/2018] [Accepted: 06/08/2018] [Indexed: 12/11/2022]
Abstract
Many cardiovascular diseases are associated with pathological remodeling of the extracellular matrix (ECM) in the myocardium. ECM remodeling is a complex, multifactorial process that often contributes to declines in myocardial function and progression toward heart failure. However, the direct effects of the many forms of ECM remodeling on myocardial cell and tissue function remain elusive, in part because conventional model systems used to investigate these relationships lack robust experimental control over the ECM. To address these shortcomings, microphysiological systems are now being developed and implemented to establish direct relationships between distinct features in the ECM and myocardial function with unprecedented control and resolution in vitro. In this review, we will first highlight the most prominent characteristics of ECM remodeling in cardiovascular disease and describe how these features can be mimicked with synthetic and natural biomaterials that offer independent control over multiple ECM-related parameters, such as rigidity and composition. We will then detail innovative microfabrication techniques that enable precise regulation of cellular architecture in two and three dimensions. We will also describe new approaches for quantifying multiple aspects of myocardial function in vitro, such as contractility, action potential propagation, and metabolism. Together, these collective technologies implemented as cardiac microphysiological systems will continue to uncover important relationships between pathological ECM remodeling and myocardial cell and tissue function, leading to new fundamental insights into cardiovascular disease, improved human disease models, and novel therapeutic approaches.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Davi M Lyra-Leite
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
| | - Megan L McCain
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California , Los Angeles, California
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California , Los Angeles, California
| |
Collapse
|
31
|
Ariyasinghe NR, Reck CH, Viscio AA, Petersen AP, Lyra-Leite DM, Cho N, McCain ML. Engineering micromyocardium to delineate cellular and extracellular regulation of myocardial tissue contractility. Integr Biol (Camb) 2018; 9:730-741. [PMID: 28726917 DOI: 10.1039/c7ib00081b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cardiovascular diseases are a leading cause of death, in part due to limitations of existing models of the myocardium. Myocardium consists of aligned, contractile cardiac myocytes interspersed with fibroblasts that synthesize extracellular matrix (ECM). The cellular demographics and biochemical and mechanical properties of the ECM remodel in many different cardiac diseases. However, the impact of diverse cellular and extracellular remodeling on the contractile output of the myocardium are poorly understood. To address this, we micropatterned 13 kPa and 90 kPa polyacrylamide gels with aligned squares of fibronectin (FN) or laminin (LN). We seeded gels with two concentrations of primary neonatal rat ventricular myocytes, which naturally contain fibroblasts. Cells assembled into aligned "μMyocardia" with fibroblast : myocyte ratios dependent on initial seeding concentration. Using traction force microscopy (TFM), we found that the peak systolic longitudinal cross-sectional force was similar across conditions, but the peak systolic work was significantly lower on 90 kPa gels. This indicates that ECM elasticity dominates over ECM ligand and cell demographics in regulating contractile output. Because our platform provides independent control over cell-cell and cell-matrix interactions, it has many applications for cardiac disease modeling.
Collapse
Affiliation(s)
- Nethika R Ariyasinghe
- Laboratory for Living Systems Engineering, Department of Biomedical Engineering, USC Viterbi School of Engineering, University of Southern California, 1042 Downey Way, DRB 140, Los Angeles, CA 90089, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Sasaki D, Matsuura K, Seta H, Haraguchi Y, Okano T, Shimizu T. Contractile force measurement of human induced pluripotent stem cell-derived cardiac cell sheet-tissue. PLoS One 2018; 13:e0198026. [PMID: 29791489 PMCID: PMC5965888 DOI: 10.1371/journal.pone.0198026] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Accepted: 05/11/2018] [Indexed: 12/21/2022] Open
Abstract
We have developed our original tissue engineering technology “cell sheet engineering” utilizing temperature-responsive culture dishes. The cells are confluently grown on a temperature-responsive culture dish and can be harvested as a cell sheet by lowering temperature without enzymatic digestion. Cell sheets are high-cell-density tissues similar to actual living tissues, maintaining their structure and function. Based on this “cell sheet engineering”, we are trying to create functional cardiac tissues from human induced pluripotent stem cells, for regenerative therapy and in vitro drug testing. Toward this purpose, it is necessary to evaluate the contractility of engineered cardiac cell sheets. Therefore, in the present study, we developed a contractile force measurement system and evaluated the contractility of human iPSC-derived cardiac cell sheet-tissues. By attaching the cardiac cell sheets on fibrin gel sheets, we created dynamically beating cardiac cell sheet-tissues. They were mounted to the force measurement system and the contractile force was measured stably and clearly. The absolute values of contractile force were around 1 mN, and the mean force value per cross-sectional area was 3.3 mN/mm2. These values are equivalent to or larger than many previously reported values, indicating the functionality of our engineered cardiac cell sheets. We also confirmed that both the contractile force and beating rate were significantly increased by the administration of adrenaline, which are the physiologically relevant responses for cardiac tissues. In conclusion, the force measurement system developed in the present study is valuable for the evaluation of engineered cardiac cell sheet-tissues, and for in vitro drug testing as well.
Collapse
Affiliation(s)
- Daisuke Sasaki
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Katsuhisa Matsuura
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Hiroyoshi Seta
- Department of Cardiovascular Surgery, Tokyo Women’s Medical University, Tokyo, Japan
| | - Yuji Haraguchi
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Teruo Okano
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
| | - Tatsuya Shimizu
- Institute of Advanced Biomedical Engineering and Science, Tokyo Women’s Medical University, Tokyo, Japan
- * E-mail:
| |
Collapse
|
33
|
Das S, Jang J. 3D bioprinting and decellularized ECM-based biomaterials for in vitro CV tissue engineering. ACTA ACUST UNITED AC 2018. [DOI: 10.2217/3dp-2018-0002] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advanced extrusion-based 3D printing strategies allow the rapid fabrication of complex anatomically relevant architectures. Moreover, they have the potential to fabricate 3D-bioprinted cardiac constructs by depositing cardiac cells with appropriate biomaterials. Heart-derived decellularized extracellular matrices containing a complex mixture of various extracellular molecules provide a comprehensive microenvironmental niche similar to native cardiac tissue. Nonetheless, a major concern persists pertaining to insufficient vascularization and mimicking of the complex 3D architectural features, which can be tackled using 3D printing approaches. In this review, we discuss the advantage and application of decellularized extracellular matrix-based hydrogels for the 3D printing of engineered cardiac tissues. We also briefly talk about the integration of electroactive materials within cardiac patches to improve the myocardium's electrophysiological properties.
Collapse
Affiliation(s)
- Sanskrita Das
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
| | - Jinah Jang
- Department of Creative IT Engineering, Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (IBIO), Pohang University of Science & Technology, Pohang, 37673, Republic of Korea
| |
Collapse
|
34
|
Wanjare M, Hou L, Nakayama KH, Kim JJ, Mezak NP, Abilez OJ, Tzatzalos E, Wu JC, Huang NF. Anisotropic microfibrous scaffolds enhance the organization and function of cardiomyocytes derived from induced pluripotent stem cells. Biomater Sci 2018; 5:1567-1578. [PMID: 28715029 DOI: 10.1039/c7bm00323d] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Engineering of myocardial tissue constructs is a promising approach for treatment of coronary heart disease. To engineer myocardial tissues that better mimic the highly ordered physiological arrangement and function of native cardiomyocytes, we generated electrospun microfibrous polycaprolactone scaffolds with either randomly oriented (14 μm fiber diameter) or parallel-aligned (7 μm fiber diameter) microfiber arrangement and co-seeded the scaffolds with human induced pluripotent stem cell-derived cardiomyocytes (iCMs) and endothelial cells (iECs) for up to 12 days after iCM seeding. Here we demonstrated that aligned microfibrous scaffolds induced iCM alignment along the direction of the aligned microfibers after 2 days of iCM seeding, as well as promoted greater iCM maturation by increasing the sarcomeric length and gene expression of myosin heavy chain adult isoform (MYH7), in comparison to randomly oriented scaffolds. Furthermore, the benefit of scaffold anisotropy was evident in the significantly higher maximum contraction velocity of iCMs on the aligned scaffolds, compared to randomly oriented scaffolds, at 12 days of culture. Co-seeding of iCMs with iECs led to reduced contractility, compared to when iCMs were seeded alone. These findings demonstrate a dominant role of scaffold anisotropy in engineering cardiovascular tissues that maintain iCM organization and contractile function.
Collapse
Affiliation(s)
- Maureen Wanjare
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Luqia Hou
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Karina H Nakayama
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Joseph J Kim
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Nicholas P Mezak
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.
| | - Oscar J Abilez
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | | | - Joseph C Wu
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA
| | - Ngan F Huang
- Center for Tissue Regeneration, Repair and Restoration, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA. and Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA and Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
35
|
Baudequin T, Tabrizian M. Multilineage Constructs for Scaffold-Based Tissue Engineering: A Review of Tissue-Specific Challenges. Adv Healthc Mater 2018; 7. [PMID: 29193897 DOI: 10.1002/adhm.201700734] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/28/2017] [Indexed: 12/11/2022]
Abstract
There is a growing interest in the regeneration of tissue in interfacial regions, where biological, physical, and chemical attributes vary across tissue type. The simultaneous use of distinct cell lineages can help in developing in vitro structures, analogous to native composite tissues. This literature review gathers the recent reports that have investigated multiple cell types of various sources and lineages in a coculture system for tissue-engineered constructs. Such studies aim at mimicking the native organization of tissues and their interfaces, and/or to improve the development of complex tissue substitutes. This paper thus distinguishes itself from those focusing on technical aspects of coculturing for a single specific tissue. The first part of this review is dedicated to variables of cocultured tissue engineering such as scaffold, cells, and in vitro culture environment. Next, tissue-specific coculture methods and approaches are covered for the most studied tissues. Finally, cross-analysis is performed to highlight emerging trends in coculture principles and to discuss how tissue-specific challenges can inspire new approaches for regeneration of different interfaces to improve the outcomes of various tissue engineering strategies.
Collapse
Affiliation(s)
- Timothée Baudequin
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
| | - Maryam Tabrizian
- Faculty of Medicine; Biomat'X Laboratory; Department of Biomedical Engineering; McGill University; 740 ave. Dr. Penfield, Room 4300 Montréal QC H3A 0G1 Québec Canada
- Faculty of Dentistry; McGill University; 3775 rue University, Room 313/308B Montréal QC H3A 2B4 Québec Canada
| |
Collapse
|
36
|
Gorabi AM, Tafti SHA, Soleimani M, Panahi Y, Sahebkar A. Cells, Scaffolds and Their Interactions in Myocardial Tissue Regeneration. J Cell Biochem 2017; 118:2454-2462. [DOI: 10.1002/jcb.25912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 01/25/2017] [Indexed: 01/08/2023]
Affiliation(s)
| | | | - Masoud Soleimani
- Faculty of Medical Sciences; Hematology Department; Tarbiat Modarres University; Tehran Iran
| | - Yunes Panahi
- Chemical Injuries Research Center; Baqiyatallah University of Medical Sciences; Tehran Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center; Mashhad University of Medical Sciences; Mashhad Iran
| |
Collapse
|
37
|
Wu S, Duan B, Qin X, Butcher JT. Living nano-micro fibrous woven fabric/hydrogel composite scaffolds for heart valve engineering. Acta Biomater 2017; 51:89-100. [PMID: 28110071 DOI: 10.1016/j.actbio.2017.01.051] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/27/2016] [Accepted: 01/17/2017] [Indexed: 02/07/2023]
Abstract
Regeneration and repair of injured or diseased heart valves remains a clinical challenge. Tissue engineering provides a promising treatment approach to facilitate living heart valve repair and regeneration. Three-dimensional (3D) biomimetic scaffolds that possess heterogeneous and anisotropic features that approximate those of native heart valve tissue are beneficial to the successful in vitro development of tissue engineered heart valves (TEHV). Here we report the development and characterization of a novel composite scaffold consisting of nano- and micro-scale fibrous woven fabrics and 3D hydrogels by using textile techniques combined with bioactive hydrogel formation. Embedded nano-micro fibrous scaffolds within hydrogel enhanced mechanical strength and physical structural anisotropy of the composite scaffold (similar to native aortic valve leaflets) and also reduced its compaction. We determined that the composite scaffolds supported the growth of human aortic valve interstitial cells (HAVIC), balanced the remodeling of heart valve ECM against shrinkage, and maintained better physiological fibroblastic phenotype in both normal and diseased HAVIC over single materials. These fabricated composite scaffolds enable the engineering of a living heart valve graft with improved anisotropic structure and tissue biomechanics important for maintaining valve cell phenotypes. STATEMENT OF SIGNIFICANCE Heart valve-related disease is an important clinical problem, with over 300,000 surgical repairs performed annually. Tissue engineering offers a promising strategy for heart valve repair and regeneration. In this study, we developed and tissue engineered living nano-micro fibrous woven fabric/hydrogel composite scaffolds by using textile technique combined with bioactive hydrogel formation. The novelty of our technique is that the composite scaffolds can mimic physical structure anisotropy and the mechanical strength of natural aortic valve leaflet. Moreover, the composite scaffolds prevented the matrix shrinkage, which is major problem that causes the failure of TEHV, and better maintained physiological fibroblastic phenotype in both normal and diseased HAVIC. This work marks the first report of a combination composite scaffold using 3D hydrogel enhanced by nano-micro fibrous woven fabric, and represents a promising tissue engineering strategy to treat heart valve injury.
Collapse
|
38
|
Kofron CM, Mende U. In vitro models of the cardiac microenvironment to study myocyte and non-myocyte crosstalk: bioinspired approaches beyond the polystyrene dish. J Physiol 2017; 595:3891-3905. [PMID: 28116799 DOI: 10.1113/jp273100] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 12/22/2016] [Indexed: 12/17/2022] Open
Abstract
The heart is a complex pluricellular organ composed of cardiomyocytes and non-myocytes including fibroblasts, endothelial cells and immune cells. Myocytes are responsible for electrical conduction and contractile force generation, while the other cell types are responsible for matrix deposition, vascularization, and injury response. Myocytes and non-myocytes are known to communicate and exert mutual regulatory effects. In concert, they determine the structural, electrical and mechanical characteristics in the healthy and remodelled myocardium. Dynamic crosstalk between myocytes and non-myocytes plays a crucial role in stress/injury-induced hypertrophy and fibrosis development that can ultimately lead to heart failure and arrhythmias. Investigations of heterocellular communication in the myocardium are hampered by the intricate interspersion of the different cell types and the complexity of the tissue architecture. In vitro models have facilitated investigations of cardiac cells in a direct and controllable manner and have provided important functional and mechanistic insights. However, these cultures often lack regulatory input from the other cell types as well as additional topographical, electrical, mechanical and biochemical cues from the cardiac microenvironment that all contribute to modulating cell differentiation, maturation, alignment, function and survival. Advancements in the development of more complex pluricellular physiological platforms that incorporate diverse cues from the myocardial microenvironment are expected to lead to more physiologically relevant cardiac tissue-like in vitro models for mechanistic biological research, disease modelling, therapeutic target identification, drug testing and regeneration.
Collapse
Affiliation(s)
- Celinda M Kofron
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | - Ulrike Mende
- Cardiovascular Research Center, Cardiovascular Institute, Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| |
Collapse
|
39
|
Wanjare M, Huang NF. Regulation of the microenvironment for cardiac tissue engineering. Regen Med 2017; 12:187-201. [PMID: 28244821 DOI: 10.2217/rme-2016-0132] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The microenvironment of myocardium plays an important role in the fate and function of cardiomyocytes (CMs). Cardiovascular tissue engineering strategies commonly utilize stem cell sources in conjunction with microenvironmental cues that often include biochemical, electrical, spatial and biomechanical factors. Microenvironmental stimulation of CMs, in addition to the incorporation of intercellular interactions from non-CMs, results in the generation of engineered cardiac constructs. Current studies suggest that use of these factors when engineering cardiac constructs improve cardiac function when implanted in vivo. In this review, we summarize the approaches to modulate biochemical, electrical, biomechanical and spatial factors to induce CM differentiation and their subsequent organization for cardiac tissue engineering application.
Collapse
Affiliation(s)
- Maureen Wanjare
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Ngan F Huang
- Stanford Cardiovascular Institute, Stanford University, Stanford, CA, USA.,Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA.,Department of Cardiothoracic Surgery, Stanford University, Stanford, CA, USA
| |
Collapse
|
40
|
Kitsara M, Agbulut O, Kontziampasis D, Chen Y, Menasché P. Fibers for hearts: A critical review on electrospinning for cardiac tissue engineering. Acta Biomater 2017; 48:20-40. [PMID: 27826001 DOI: 10.1016/j.actbio.2016.11.014] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 10/17/2016] [Accepted: 11/03/2016] [Indexed: 12/11/2022]
Abstract
Cardiac cell therapy holds a real promise for improving heart function and especially of the chronically failing myocardium. Embedding cells into 3D biodegradable scaffolds may better preserve cell survival and enhance cell engraftment after transplantation, consequently improving cardiac cell therapy compared with direct intramyocardial injection of isolated cells. The primary objective of a scaffold used in tissue engineering is the recreation of the natural 3D environment most suitable for an adequate tissue growth. An important aspect of this commitment is to mimic the fibrillar structure of the extracellular matrix, which provides essential guidance for cell organization, survival, and function. Recent advances in nanotechnology have significantly improved our capacities to mimic the extracellular matrix. Among them, electrospinning is well known for being easy to process and cost effective. Consequently, it is becoming increasingly popular for biomedical applications and it is most definitely the cutting edge technique to make scaffolds that mimic the extracellular matrix for industrial applications. Here, the desirable physico-chemical properties of the electrospun scaffolds for cardiac therapy are described, and polymers are categorized to natural and synthetic.Moreover, the methods used for improving functionalities by providing cells with the necessary chemical cues and a more in vivo-like environment are reported.
Collapse
|
41
|
Suhaeri M, Subbiah R, Kim SH, Kim CH, Oh SJ, Kim SH, Park K. Novel Platform of Cardiomyocyte Culture and Coculture via Fibroblast-Derived Matrix-Coupled Aligned Electrospun Nanofiber. ACS APPLIED MATERIALS & INTERFACES 2017; 9:224-235. [PMID: 27936534 DOI: 10.1021/acsami.6b14020] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
For cardiac tissue engineering, much attention has been given to the artificial cardiac microenvironment in which anisotropic design of scaffold and extracellular matrix (ECM) are the major cues. Here we propose poly(l-lactide-co-caprolactone) and fibroblast-derived ECM (PLCL/FDM), a hybrid scaffold that combines aligned electrospun PLCL fibers and FDM. Fibroblasts were grown on the PLCL fibers for 5-7 days and subsequently decellularized to produce PLCL/FDM. Various analyses confirmed aligned, FDM-deposited PLCL fibers. Compared to fibronectin (FN)-coated electrospun PLCL fibers (control), H9c2 cardiomyoblast differentiation was significantly effective, and neonatal rat cardiomyocyte (CM) phenotype and maturation was improved on PLCL/FDM. Moreover, a coculture platform was created using multilayer PLCL/FDM in which two different cells make indirect or direct cell-cell contacts. Such coculture platforms demonstrate their feasibility in terms of higher cell viability, efficiency of target cell harvest (>95% in noncontact; 85% in contact mode), and molecular diffusion through the PLCL/FDM layer. Coculture of primary CMs and fibroblasts exhibited much better CM phenotype and improvement of CM maturity upon either direct or indirect interactions, compared to the conventional coculture systems (transwell insert and tissue culture plate (TCP)). Taken together, our platform should be very useful and have significant contributions in investigating some scientific or practical issues of crosstalks between multiple cell types.
Collapse
Affiliation(s)
- Muhammad Suhaeri
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) , Daejon 34113, Republic of Korea
| | - Ramesh Subbiah
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) , Daejon 34113, Republic of Korea
| | | | | | | | - Sang-Heon Kim
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) , Daejon 34113, Republic of Korea
| | - Kwideok Park
- Department of Biomedical Engineering, Korea University of Science and Technology (UST) , Daejon 34113, Republic of Korea
| |
Collapse
|
42
|
Extracellular Recordings of Patterned Human Pluripotent Stem Cell-Derived Cardiomyocytes on Aligned Fibers. Stem Cells Int 2016; 2016:2634013. [PMID: 27446217 PMCID: PMC4942673 DOI: 10.1155/2016/2634013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 05/29/2016] [Indexed: 11/30/2022] Open
Abstract
Human induced pluripotent stem cell (hiPSC) derived cardiomyocytes (CMs) hold high potential for use in drug assessment and myocardial regeneration. To create tissue-like constructs of CMs for extracellular monitoring, we placed aligned fibers (AFs) on the surface of a microelectrode array and then seeded hiPSC-CMs for subsequent monitoring for 14 days. As expected, the CMs organized into anisotropic and matured tissue and the extracellular recordings showed reduced premature beating higher signal amplitude and a higher probability of T-wave detection as compared to the culture without fibers. The CMs on the aligned fibers samples also exhibited anisotropic propagation of the field potential. These results therefore suggest that the hiPSC-CMs cultured on AFs can be used more reliably for cell based assays.
Collapse
|
43
|
Pellman J, Zhang J, Sheikh F. Myocyte-fibroblast communication in cardiac fibrosis and arrhythmias: Mechanisms and model systems. J Mol Cell Cardiol 2016; 94:22-31. [PMID: 26996756 DOI: 10.1016/j.yjmcc.2016.03.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/27/2016] [Accepted: 03/14/2016] [Indexed: 12/17/2022]
Abstract
Development of cardiac fibrosis and arrhythmias is controlled by the activity of and communication between cardiomyocytes and fibroblasts in the heart. Myocyte-fibroblast interactions occur via both direct and indirect means including paracrine mediators, extracellular matrix interactions, electrical modulators, mechanical junctions, and membrane nanotubes. In the diseased heart, cardiomyocyte and fibroblast ratios and activity, and thus myocyte-fibroblast interactions, change and are thought to contribute to the course of disease including development of fibrosis and arrhythmogenic activity. Fibroblasts have a developing role in modulating cardiomyocyte electrical and hypertrophic activity, however gaps in knowledge regarding these interactions still exist. Research in this field has necessitated the development of unique approaches to isolate and control myocyte-fibroblast interactions. Numerous methods for 2D and 3D co-culture systems have been developed, while a growing part of this field is in the use of better tools for in vivo systems including cardiomyocyte and fibroblast specific Cre mouse lines for cell type specific genetic ablation. This review will focus on (i) mechanisms of myocyte-fibroblast communication and their effects on disease features such as cardiac fibrosis and arrhythmias as well as (ii) methods being used and currently developed in this field.
Collapse
Affiliation(s)
- Jason Pellman
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Jing Zhang
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Farah Sheikh
- Department of Medicine, University of California-San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| |
Collapse
|
44
|
Ganji Y, Li Q, Quabius ES, Böttner M, Selhuber-Unkel C, Kasra M. Cardiomyocyte behavior on biodegradable polyurethane/gold nanocomposite scaffolds under electrical stimulation. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 59:10-18. [PMID: 26652343 DOI: 10.1016/j.msec.2015.09.074] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 09/11/2015] [Accepted: 09/19/2015] [Indexed: 11/15/2022]
Abstract
Following a myocardial infarction (MI), cardiomyocytes are replaced by scar tissue, which decreases ventricular contractile function. Tissue engineering is a promising approach to regenerate such damaged cardiomyocyte tissue. Engineered cardiac patches can be fabricated by seeding a high density of cardiac cells onto a synthetic or natural porous polymer. In this study, nanocomposite scaffolds made of gold nanotubes/nanowires incorporated into biodegradable castor oil-based polyurethane were employed to make micro-porous scaffolds. H9C2 cardiomyocyte cells were cultured on the scaffolds for one day, and electrical stimulation was applied to improve cell communication and interaction in neighboring pores. Cells on scaffolds were examined by fluorescence microscopy and scanning electron microscopy, revealing that the combination of scaffold design and electrical stimulation significantly increased cell confluency of H9C2 cells on the scaffolds. Furthermore, we showed that the gene expression levels of Nkx2.5, atrial natriuretic peptide (ANF) and natriuretic peptide precursor B (NPPB), which are functional genes of the myocardium, were up-regulated by the incorporation of gold nanotubes/nanowires into the polyurethane scaffolds, in particular after electrical stimulation.
Collapse
Affiliation(s)
- Yasaman Ganji
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran; Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Qian Li
- Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Elgar Susanne Quabius
- Dept. of Otorhinolaryngology, Head and Neck Surgery, University of Kiel, Arnold-Heller-Str. 3, Building 27, D-24105 Kiel, Germany; Institute of Immunology, University of Kiel, Arnold-Heller-Str. 3, Building 17, D-24105 Kiel, Germany
| | - Martina Böttner
- Department of Anatomy, University of Kiel, Otto-Hahn-Platz 8, 24118 Kiel, Germany
| | - Christine Selhuber-Unkel
- Institute for Materials Science, Dept. Biocompatible Nanomaterials, University of Kiel, Kaiserstr. 2, D-24143 Kiel, Germany.
| | - Mehran Kasra
- Faculty of Biomedical Engineering, Amirkabir University of Technology, 424 Hafez Ave, Tehran, Iran
| |
Collapse
|
45
|
Saini H, Navaei A, Van Putten A, Nikkhah M. 3D cardiac microtissues encapsulated with the co-culture of cardiomyocytes and cardiac fibroblasts. Adv Healthc Mater 2015; 4:1961-71. [PMID: 26129820 DOI: 10.1002/adhm.201500331] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Revised: 05/29/2015] [Indexed: 12/13/2022]
Abstract
Cardiac tissue engineering has major applications in regenerative medicine, disease modeling and biological studies. Despite the significance, numerous questions still need to be explored to enhance the functionalities of engineered tissue substitutes. In this study, 3D cardiac microtissues are developed through encapsulation of cardiomyocytes and cardiac fibroblasts, as the main cellular constituents of native myocardium. The geometries of the constructs are precisely controlled and assessed for their role on synchronous contraction of the cells. Cardiomyocytes exhibit a native-like phenotype when co-cultured with cardiac fibroblasts as compared to the monoculture condition. Particularly, elongated F-actin fibers with abundance of sarcomeric α-actinin and troponin-I are observed within all layers of the constructs. Higher expressions of connexin-43 and integrin-β1 indicate improved cell-cell and cell-matrix interactions. Amongst co-culture conditions, 2:1 (cardiomyocytes: cardiac fibroblasts) ratio exhibits enhanced functionalities, whereas decreasing the construct size adversely affects the synchronous contraction of the cells. Overall, the study here indicates that the cell-cell ratio and the construct geometry are crucial parameters, which need to be optimized to enhance the functionalities of the engineered tissue substitutes.
Collapse
Affiliation(s)
- Harpinder Saini
- Harrington Department of Bioengineering; School of Biological and Health Systems Engineering (SBHSE); Arizona State University; Tempe AZ 85287 USA
| | - Ali Navaei
- Harrington Department of Bioengineering; School of Biological and Health Systems Engineering (SBHSE); Arizona State University; Tempe AZ 85287 USA
| | - Alison Van Putten
- Harrington Department of Bioengineering; School of Biological and Health Systems Engineering (SBHSE); Arizona State University; Tempe AZ 85287 USA
| | - Mehdi Nikkhah
- Harrington Department of Bioengineering; School of Biological and Health Systems Engineering (SBHSE); Arizona State University; Tempe AZ 85287 USA
| |
Collapse
|
46
|
Khan M, Xu Y, Hua S, Johnson J, Belevych A, Janssen PML, Gyorke S, Guan J, Angelos MG. Evaluation of Changes in Morphology and Function of Human Induced Pluripotent Stem Cell Derived Cardiomyocytes (HiPSC-CMs) Cultured on an Aligned-Nanofiber Cardiac Patch. PLoS One 2015; 10:e0126338. [PMID: 25993466 PMCID: PMC4437999 DOI: 10.1371/journal.pone.0126338] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 04/01/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Dilated cardiomyopathy is a major cause of progressive heart failure. Utilization of stem cell therapy offers a potential means of regenerating viable cardiac tissue. However, a major obstacle to stem cell therapy is the delivery and survival of implanted stem cells in the ischemic heart. To address this issue, we have developed a biomimetic aligned nanofibrous cardiac patch and characterized the alignment and function of human inducible pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) cultured on this cardiac patch. This hiPSC-CMs seeded patch was compared with hiPSC-CMs cultured on standard flat cell culture plates. Methods hiPSC-CMs were cultured on; 1) a highly aligned polylactide-co-glycolide (PLGA) nanofiber scaffold (~50 microns thick) and 2) on a standard flat culture plate. Scanning electron microscopy (SEM) was used to determine alignment of PLGA nanofibers and orientation of the cells on the respective surfaces. Analysis of gap junctions (Connexin-43) was performed by confocal imaging in both the groups. Calcium cycling and patch-clamp technique were performed to measure calcium transients and electrical coupling properties of cardiomyocytes. Results SEM demonstrated >90% alignment of the nanofibers in the patch which is similar to the extracellular matrix of decellularized rat myocardium. Confocal imaging of the cardiomyocytes demonstrated symmetrical alignment in the same direction on the aligned nanofiber patch in sharp contrast to the random appearance of cardiomyocytes cultured on a tissue culture plate. The hiPSC-CMs cultured on aligned nanofiber cardiac patches showed more efficient calcium cycling compared with cells cultured on standard flat surface culture plates. Quantification of mRNA with qRT-PCR confirmed that these cardiomyocytes expressed α-actinin, troponin-T and connexin-43 in-vitro. Conclusions Overall, our results demonstrated changes in morphology and function of human induced pluripotent derived cardiomyocytes cultured in an anisotropic environment created by an aligned nanofiber patch. In this environment, these cells better approximate normal cardiac tissue compared with cells cultured on flat surface and can serve as the basis for bioengineering of an implantable cardiac patch.
Collapse
Affiliation(s)
- Mahmood Khan
- Department of Emergency Medicine, Davis Heart Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Yanyi Xu
- Department of Materials Science and Engineering, Davis Heart Lung Research Institute, Ohio State University, Columbus, OH, United States of America
| | - Serena Hua
- Department of Emergency Medicine, Davis Heart Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Jed Johnson
- Nanofiber Solutions, Columbus, OH, United States of America
| | - Andriy Belevych
- Department of Physiology and Cell Biology, Davis Heart Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Paul M. L. Janssen
- Department of Physiology and Cell Biology, Davis Heart Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Sandor Gyorke
- Department of Physiology and Cell Biology, Davis Heart Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
| | - Jianjun Guan
- Department of Materials Science and Engineering, Davis Heart Lung Research Institute, Ohio State University, Columbus, OH, United States of America
| | - Mark G. Angelos
- Department of Emergency Medicine, Davis Heart Lung Research Institute, The Ohio State University Wexner Medical Center, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
47
|
Farouz Y, Chen Y, Terzic A, Menasché P. Concise Review: Growing Hearts in the Right Place: On the Design of Biomimetic Materials for Cardiac Stem Cell Differentiation. Stem Cells 2015; 33:1021-35. [DOI: 10.1002/stem.1929] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 11/10/2014] [Accepted: 12/01/2014] [Indexed: 12/25/2022]
Affiliation(s)
- Yohan Farouz
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
| | - Yong Chen
- Department of Chemistry, Paris Sciences et Lettres, Ecole Normale Supérieure de Paris; CNRS UMR; Paris France
| | | | - Philippe Menasché
- Sorbonne Paris Cité; Paris Descartes University; Paris France
- INSERM U970; Paris France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou; Department of Cardiovascular Surgery; Paris France
| |
Collapse
|
48
|
Hughes LA, Gaston J, McAlindon K, Woodhouse KA, Thibeault SL. Electrospun fiber constructs for vocal fold tissue engineering: effects of alignment and elastomeric polypeptide coating. Acta Biomater 2015; 13:111-20. [PMID: 25462850 DOI: 10.1016/j.actbio.2014.10.039] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Revised: 10/03/2014] [Accepted: 10/28/2014] [Indexed: 11/18/2022]
Abstract
Vocal fold lamina propria extracellular matrix (ECM) is highly aligned and when injured, becomes disorganized with loss of the tissue's critical biomechanical properties. This study examines the effects of electrospun fiber scaffold architecture and elastin-like polypeptide (ELP4) coating on human vocal fold fibroblast (HVFF) behavior for applications toward tissue engineering the vocal fold lamina propria. Electrospun Tecoflex™ scaffolds were made with aligned and unaligned fibers, and were characterized using scanning electron microscopy and uniaxial tensile testing. ELP4 was successfully adsorbed onto the scaffolds; HVFFs were seeded and their viability, proliferation, morphology and gene expression were characterized. Aligned and unaligned scaffolds had initial elastic moduli of ∼14 MPa, ∼5 MPa and ∼0.3 MPa, ∼0.6 MPa in the preferred and cross-preferred directions, respectively. Scaffold topography had an effect on the orientation of the cells, with HVFFs seeded on aligned scaffolds having a significantly different (p<0.001) angle of orientation than HVFFs cultured on unaligned scaffolds. This same effect and significant difference (p<0.001) was seen on aligned and unaligned scaffolds coated with ELP4. Scaffold alignment and ELP4 coating impacted ECM gene expression. ELP4 coating, and aligned scaffolds upregulated elastin synthesis when tested on day 7 without a concomitant upregulation of collagen III synthesis. Collectively, results indicate that aligned electrospun scaffolds and ELP4 coating are promising candidates in the development of biodegradeable vocal fold lamina propria constructs.
Collapse
Affiliation(s)
- Lindsay A Hughes
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Joel Gaston
- Department of Surgery and Biomedical Engineering, University of Wisconsin-Madison, 5118 WIMR, 1111 Highland Ave, Madison, WI 53705, USA
| | - Katherine McAlindon
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Kimberly A Woodhouse
- Department of Chemical Engineering, Queen's University, 201 Dupuis Hall, 19 Division Street, Kingston, ON K7L 3N6, Canada
| | - Susan L Thibeault
- Departments of Surgery, Biomedical Engineering and Communication Sciences and Disorders, University of Wisconsin-Madison, 5107 WIMR, 1111 Highland Ave, Madison, WI 53705, USA.
| |
Collapse
|
49
|
Chen PH, Liao HC, Hsu SH, Chen RS, Wu MC, Yang YF, Wu CC, Chen MH, Su WF. A novel polyurethane/cellulose fibrous scaffold for cardiac tissue engineering. RSC Adv 2015. [DOI: 10.1039/c4ra12486c] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A high mechanical strength and biomimetic scaffold is electrospun from a blend of polyurethane and ethyl cellulose, being promising in applications for therapeutic purposes as a cardiac graft for reconstructing or regeneration of damaged myocardium.
Collapse
Affiliation(s)
- Po-Hsuen Chen
- Institute of Oral Biology
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Hsueh-Chung Liao
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Sheng-Hao Hsu
- Institute of Polymer Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| | - Rung-Shu Chen
- Graduate Institute of Clinical Dentistry
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Ming-Chung Wu
- Department of Chemical and Materials Engineering
- Chang Gung University
- Taoyuan 33302
- Taiwan
| | - Yi-Fan Yang
- Department of Internal Medicine
- National Taiwan University Hospital
- Taipei 10002
- Taiwan
| | - Chau-Chung Wu
- Department of Primary Care Medicine
- College of Medicine
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Min-Huey Chen
- Graduate Institute of Clinical Dentistry
- School of Dentistry
- National Taiwan University
- Taipei 10002
- Taiwan
| | - Wei-Fang Su
- Department of Materials Science and Engineering
- National Taiwan University
- Taipei 10617
- Taiwan
| |
Collapse
|
50
|
Lücker PB, Javaherian S, Soleas JP, Halverson D, Zandstra PW, McGuigan AP. A microgroove patterned multiwell cell culture plate for high-throughput studies of cell alignment. Biotechnol Bioeng 2014; 111:2537-48. [DOI: 10.1002/bit.25298] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Revised: 05/21/2014] [Accepted: 05/21/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Petra B. Lücker
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St. Toronto Ontario M5T 3J9 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Sahar Javaherian
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St. Toronto Ontario M5T 3J9 Canada
| | - John P. Soleas
- Institute of Medical Science; University of Toronto; Toronto Ontario Canada
| | - Duncan Halverson
- Department of Chemistry; University of Toronto; Toronto Ontario Canada
| | - Peter W. Zandstra
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| | - Alison P. McGuigan
- Department of Chemical Engineering and Applied Chemistry; University of Toronto; 200 College St. Toronto Ontario M5T 3J9 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario Canada
| |
Collapse
|