1
|
Bernstein ZJ, Gierke TR, Dammen-Brower K, Tzeng SY, Zhu S, Chen SS, Wilson DS, Green JJ, Yarema KJ, Spangler JB. Production of site-specific antibody conjugates using metabolic glycoengineering and novel Fc glycovariants. J Biol Chem 2024; 300:108005. [PMID: 39551135 PMCID: PMC11697773 DOI: 10.1016/j.jbc.2024.108005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/06/2024] [Indexed: 11/19/2024] Open
Abstract
Molecular conjugation to antibodies has emerged as a growing strategy to combine the mechanistic activities of the attached molecule with the specificity of antibodies. A variety of technologies have been applied for molecular conjugation; however, these approaches face several limitations, including disruption of antibody structure, destabilization of the antibody, and/or heterogeneous conjugation patterns. Collectively, these challenges lead to reduced yield, purity, and function of conjugated antibodies. While glycoengineering strategies have largely been applied to study protein glycosylation and manipulate cellular metabolism, these approaches also harbor great potential to enhance the production and performance of protein therapeutics. Here, we devise a novel glycoengineering workflow for the development of site-specific antibody conjugates. This approach combines metabolic glycoengineering using azido-sugar analogs with newly installed N-linked glycosylation sites in the antibody constant domain to achieve specific conjugation to the antibody via the introduced N-glycans. Our technique allows facile and efficient manufacturing of well-defined antibody conjugates without the need for complex or destructive chemistries. Moreover, the introduction of conjugation sites in the antibody fragment crystallizable (Fc) domain renders this approach widely applicable and target agnostic. Our platform can accommodate up to three conjugation sites in tandem, and the extent of conjugation can be tuned through the use of different sugar analogs or production in different cell lines. We demonstrated that our platform is compatible with various use-cases, including fluorescent labeling, antibody-drug conjugation, and targeted gene delivery. Overall, this study introduces a versatile and effective yet strikingly simple approach to producing antibody conjugates for research, industrial, and medical applications.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Taylor R Gierke
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stephany Y Tzeng
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Stanley Zhu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Sabrina S Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - D Scott Wilson
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jordan J Green
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA; Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA; Department of Molecular Microbiology & Immunology, Johns Hopkins University School of Public Health, Baltimore, Maryland, USA.
| |
Collapse
|
2
|
Kranjc J, Kramer L, Mikelj M, Anderluh M, Pišlar A, Brinc M. Modulating antibody N-glycosylation through feed additives using a multi-tiered approach. Front Bioeng Biotechnol 2024; 12:1448925. [PMID: 39253702 PMCID: PMC11381414 DOI: 10.3389/fbioe.2024.1448925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 08/09/2024] [Indexed: 09/11/2024] Open
Abstract
Glycosylation of recombinant proteins is a post-translational modification that affects multiple physicochemical and biological properties of proteins. As such, it is a critical quality attribute that must be carefully controlled during protein production in the pharmaceutical industry. Glycosylation can be modulated by various conditions, including the composition of production media and feeds. In this study, the N-glycosylation-modulating effects of numerous compounds, including metal enzyme cofactors, enzyme inhibitors, and metabolic intermediates, were evaluated. Chinese hamster ovary cells producing three different IgG antibodies were cultivated in a fed-batch mode. First, a one-factor-at-a-time experiment was performed in 24-well deep well plates to identify the strongest modulators and appropriate concentration ranges. Then, a full response surface experiment was designed to gauge the effects and interactions of the 14 most effective hit compounds in an Ambr® 15 bioreactor system. A wide range of glycoform content was achieved, with an up to eight-fold increase in individual glycoforms compared to controls. The resulting model can be used to determine modulator combinations that will yield desired glycoforms in the final product.
Collapse
Affiliation(s)
- Jaka Kranjc
- Institute of Pharmacy, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Lovro Kramer
- Cell Line Engineering and Characterization, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Mengeš, Slovenia
| | - Miha Mikelj
- Process Analytical Science, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Mengeš, Slovenia
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Anja Pišlar
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Ljubljana, Ljubljana, Slovenia
| | - Matjaž Brinc
- Process Development, Technical Research & Development, Novartis Pharmaceutical Manufacturing LLC, Mengeš, Slovenia
| |
Collapse
|
3
|
Babulic JL, De León González FV, Capicciotti CJ. Recent advances in photoaffinity labeling strategies to capture Glycan-Protein interactions. Curr Opin Chem Biol 2024; 80:102456. [PMID: 38705088 DOI: 10.1016/j.cbpa.2024.102456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 05/07/2024]
Abstract
Glycans decorate all cells and are critical mediators of cellular processes through recognition by glycan-binding proteins (GBPs). While targeting glycan-protein interactions has great therapeutic potential, these interactions are challenging to study as they are generally transient and exhibit low binding affinities. Glycan-based photo-crosslinkable probes have enabled covalent capture and identification of unknown GBP receptors and glycoconjugate ligands. Here, we review recent progress in photo-crosslinking approaches targeting glycan-mediated interactions. We discuss two prominent emerging strategies: 1) development of photo-crosslinkable oligosaccharide ligands to identify GBP receptors; and 2) cell-surface glyco-engineering to identify glycoconjugate ligands of GBPs. Overall, photoaffinity labeling affords valuable insights into complex glycan-protein networks and is poised to help elucidate the glycan-protein interactome, providing novel targets for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada
| | | | - Chantelle J Capicciotti
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, K7L 3N6, Canada; Department of Chemistry, Queen's University, Kingston, K7L 2S8, Canada; Department of Surgery, Queen's University, Kingston, K7L 2V7, Canada.
| |
Collapse
|
4
|
Mut J, Altmann S, Reising S, Meißner-Weigl J, Driessen MD, Ebert R, Seibel J. SiaNAl can be efficiently incorporated in glycoproteins of human mesenchymal stromal cells by metabolic glycoengineering. ACS Biomater Sci Eng 2024; 10:139-148. [PMID: 36946521 DOI: 10.1021/acsbiomaterials.2c01534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Metabolic glycoengineering involves the stimulation of cells with functionalized monosaccharides. Glucosamine, galactosamine, and mannosamine derivatives are commercially available, but their application may lead to undirected (i.e., chemical) incorporation into proteins. However, sialic acids are attached to the ends of complex sugar chains of glycoproteins, which might be beneficial for cell surface modification via click chemistry. Thus, we studied the incorporation of chemically synthesized unnatural alkyne modified sialic acid (SiaNAl) into glycoproteins of human telomerase-immortalized mesenchymal stromal cells (hMSC-TERT) and we show that SiaNAl can be efficiently incorporated in glycoproteins involved in signal transduction and cell junction.
Collapse
Affiliation(s)
- Jürgen Mut
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Stephan Altmann
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Sabine Reising
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| | - Jutta Meißner-Weigl
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Marc D Driessen
- Institute for Molecular Medicine, Proteome Research, University Hospital and Medical Faculty, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
| | - Regina Ebert
- Department of Musculoskeletal Tissue Regeneration, University of Würzburg, Friedrich-Bergius-Ring 15, Würzburg 97076, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, Würzburg 97074, Germany
| |
Collapse
|
5
|
Sun J, Huang Z, Du Y, Lv P, Fan X, Dai P, Chen X. Metabolic Glycan Labeling in Primary Neurons Enabled by Unnatural Sugars with No S-Glyco-Modification. ACS Chem Biol 2023; 18:1416-1424. [PMID: 37253229 DOI: 10.1021/acschembio.3c00152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
It is of great interest to probe glycosylation in primary neuron cultures. However, per-O-acetylated clickable unnatural sugars, which have been routinely utilized in metabolic glycan labeling (MGL) for analyzing glycans, showed cytotoxicity to cultured primary neurons and thus led to the speculation that MGL was not compatible with primary neuron cell cultures. Here, we uncovered that neuron cytotoxicity of per-O-acetylated unnatural sugars was related to their reactions with protein cysteines via non-enzymatic S-glyco-modification. The modified proteins were enriched in biological functions related to microtubule cytoskeleton organization, positive regulation of axon extension, neuron projection development, and axonogenesis. We thus established MGL in cultured primary neurons without cytotoxicity using S-glyco-modification-free unnatural sugars including ManNAz, 1,3-Pr2ManNAz, and 1,6-Pr2ManNAz, which allowed for visualization of cell-surface sialylated glycans, probing the dynamics of sialylation, and large-scale identification of sialylated N-linked glycoproteins and the modification sites in primary neurons. Particularly, a total of 505 sialylated N-glycosylation sites distributed on 345 glycoproteins were identified by 1,6-Pr2ManNAz.
Collapse
Affiliation(s)
- Jiayu Sun
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
| | - Zhimin Huang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Yifei Du
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Pinou Lv
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Xinqi Fan
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
| | - Peng Dai
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| | - Xing Chen
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
- Beijing National Laboratory for Molecular Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China
- Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Peking University, Beijing 100871, China
| |
Collapse
|
6
|
Metabolic Glycoengineering: A Promising Strategy to Remodel Microenvironments for Regenerative Therapy. Stem Cells Int 2023; 2023:1655750. [PMID: 36814525 PMCID: PMC9940976 DOI: 10.1155/2023/1655750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 09/27/2022] [Accepted: 01/17/2023] [Indexed: 02/15/2023] Open
Abstract
Cell-based regenerative therapy utilizes the differentiation potential of stem cells to rejuvenate tissues. But the dynamic fate of stem cells is calling for precise control to optimize their therapeutic efficiency. Stem cell fate is regulated by specific conditions called "microenvironments." Among the various factors in the microenvironment, the cell-surface glycan acts as a mediator of cell-matrix and cell-cell interactions and manipulates the behavior of cells. Herein, metabolic glycoengineering (MGE) is an easy but powerful technology for remodeling the structure of glycan. By presenting unnatural glycans on the surface, MGE provides us an opportunity to reshape the microenvironment and evoke desired cellular responses. In this review, we firstly focused on the determining role of glycans on cellular activity; then, we introduced how MGE influences glycosylation and subsequently affects cell fate; at last, we outlined the application of MGE in regenerative therapy, especially in the musculoskeletal system, and the future direction of MGE is discussed.
Collapse
|
7
|
Saeui CT, Shah SR, Fernandez-Gil BI, Zhang C, Agatemor C, Dammen-Brower K, Mathew MP, Buettner M, Gowda P, Khare P, Otamendi-Lopez A, Yang S, Zhang H, Le A, Quinoñes-Hinojosa A, Yarema KJ. Anticancer Properties of Hexosamine Analogs Designed to Attenuate Metabolic Flux through the Hexosamine Biosynthetic Pathway. ACS Chem Biol 2023; 18:151-165. [PMID: 36626752 DOI: 10.1021/acschembio.2c00784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Altered cellular metabolism is a hallmark of cancer pathogenesis and progression; for example, a near-universal feature of cancer is increased metabolic flux through the hexosamine biosynthetic pathway (HBP). This pathway produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc), a potent oncometabolite that drives multiple facets of cancer progression. In this study, we synthesized and evaluated peracetylated hexosamine analogs designed to reduce flux through the HBP. By screening a panel of analogs in pancreatic cancer and glioblastoma multiform (GBM) cells, we identified Ac4Glc2Bz─a benzyl-modified GlcNAc mimetic─as an antiproliferative cancer drug candidate that down-regulated oncogenic metabolites and reduced GBM cell motility at concentrations non-toxic to non-neoplastic cells. More specifically, the growth inhibitory effects of Ac4Glc2Bz were linked to reduced levels of UDP-GlcNAc and concomitant decreases in protein O-GlcNAc modification in both pancreatic cancer and GBM cells. Targeted metabolomics analysis in GBM cells showed that Ac4Glc2Bz disturbed glucose metabolism, amino acid pools, and nucleotide precursor biosynthesis, consistent with reduced proliferation and other anti-oncogenic properties of this analog. Furthermore, Ac4Glc2Bz reduced the invasion, migration, and stemness of GBM cells. Importantly, normal metabolic functions mediated by UDP-GlcNAc were not disrupted in non-neoplastic cells, including maintenance of endogenous levels of O-GlcNAcylation with no global disruption of N-glycan production. Finally, a pilot in vivo study showed that a potential therapeutic window exists where animals tolerated 5- to 10-fold higher levels of Ac4Glc2Bz than projected for in vivo efficacy. Together, these results establish GlcNAc analogs targeting the HBP through salvage mechanisms as a new therapeutic approach to safely normalize an important facet of aberrant glucose metabolism associated with cancer.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | | | - Cissy Zhang
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | - Christian Agatemor
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Kris Dammen-Brower
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Mohit P Mathew
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Matthew Buettner
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Prateek Gowda
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| | - Pratik Khare
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Shuang Yang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Hui Zhang
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland 21287, United States
| | - Anne Le
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, Maryland 21205, United States
| | | | - Kevin J Yarema
- Department of Biomedical Engineering and The Translational Tissue Engineering Center, The Johns Hopkins University and Johns Hopkins School of Medicine, Baltimore, Maryland 21231, United States
| |
Collapse
|
8
|
Switching azide and alkyne tags on bioorthogonal reporters in metabolic labeling of sialylatedglycoconjugates: a comparative study. Sci Rep 2022; 12:22129. [PMID: 36550357 PMCID: PMC9780200 DOI: 10.1038/s41598-022-26521-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Sialylation of cell surface glycans plays an essential role in cell-cell interaction and communication of cells with their microenvironment. Among the tools that have been developed for the study of sialylation in living cells, metabolic oligosaccharide engineering (MOE) exploits the biosynthetic pathway of sialic acid (Sia) to incorporate unnatural monosaccharides into nascent sialylatedglycoconjugates, followed by their detection by a bioorthogonal ligation of a molecular probe. Among bioorthogonal reactions, the copper-catalyzed azide-alkyne cycloaddition (CuAAC) is the only ligation where both reactive tags can be switched on the chemical reporter or on the probe, making this reaction very flexible and adaptable to various labeling strategies. Azide- and alkyne-modified ManNAc and Sia reporters have been widely used, but per-O-acetylated ManNAz (Ac4ManNAz) remains the most popular choice so far for tracking intracellular processing of sialoglycans and cell surface sialylation in various cells. Taking advantage of CuAAC, we compared the metabolic incorporation of ManNAl, ManNAz, SiaNAl, SiaNAz and Ac4ManNAz in the human colon cell lines CCD841CoN, HT29 and HCT116, and in the two gold standard cell lines, HEK293 and HeLa. Using complementary approaches, we showed marked differences in the efficiency of labeling of sialoglycoproteins between the different chemical reporters in a given cell line, and that switching the azide and alkyne bioorthogonal tags on the analogs highly impacted their metabolic incorporation in the human colon cell lines. Our results also indicated that ManNAz was the most promiscuous metabolized reporter to study sialylation in these cells.
Collapse
|
9
|
Hu W, Zhang G, Zhou Y, Xia J, Zhang P, Xiao W, Xue M, Lu Z, Yang S. Recent development of analytical methods for disease-specific protein O-GlcNAcylation. RSC Adv 2022; 13:264-280. [PMID: 36605671 PMCID: PMC9768672 DOI: 10.1039/d2ra07184c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022] Open
Abstract
The enzymatic modification of protein serine or threonine residues by N-acetylglucosamine, namely O-GlcNAcylation, is a ubiquitous post-translational modification that frequently occurs in the nucleus and cytoplasm. O-GlcNAcylation is dynamically regulated by two enzymes, O-GlcNAc transferase and O-GlcNAcase, and regulates nearly all cellular processes in epigenetics, transcription, translation, cell division, metabolism, signal transduction and stress. Aberrant O-GlcNAcylation has been shown in a variety of diseases, including diabetes, neurodegenerative diseases and cancers. Deciphering O-GlcNAcylation remains a challenge due to its low abundance, low stoichiometry and extreme lability in most tandem mass spectrometry. Separation or enrichment of O-GlcNAc proteins or peptides from complex mixtures has been of great interest because quantitative analysis of protein O-GlcNAcylation can elucidate their functions and regulatory mechanisms in disease. However, valid and specific analytical methods are still lacking, and efforts are needed to further advance this direction. Here, we provide an overview of recent advances in various analytical methods, focusing on chemical oxidation, affinity of antibodies and lectins, hydrophilic interaction, and enzymatic addition of monosaccharides in conjugation with these methods. O-GlcNAcylation quantification has been described in detail using mass-spectrometric or non-mass-spectrometric techniques. We briefly summarized dysregulated changes in O-GlcNAcylation in disease.
Collapse
Affiliation(s)
- Wenhua Hu
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| | - Guolin Zhang
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Yu Zhou
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Jun Xia
- Laboratory Medicine Center, Department of Clinical Laboratory, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College Hangzhou Zhejiang 310014 China
| | - Peng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Man Xue
- Suzhou Institute for Drug Control Suzhou Jiangsu 215104 China
| | - Zhaohui Lu
- Health Examination Center, The Second Affiliated Hospital of Soochow University Suzhou Jiangsu 215004 China
| | - Shuang Yang
- Center for Clinical Mass Spectrometry, College of Pharmaceutical Sciences, Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
10
|
de Jong H, Moure MJ, Hartman JEM, Bosman GP, Ong JY, Bardoel BW, Boons G, Wösten MMSM, Wennekes T. Selective Exoenzymatic Labeling of Lipooligosaccharides of Neisseria gonorrhoeae with α2,6-Sialoside Analogues. Chembiochem 2022; 23:e202200340. [PMID: 35877976 PMCID: PMC9804176 DOI: 10.1002/cbic.202200340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/23/2022] [Indexed: 01/05/2023]
Abstract
The interactions between bacteria and their host often rely on recognition processes that involve host or bacterial glycans. Glycoengineering techniques make it possible to modify and study the glycans on the host's eukaryotic cells, but only a few are available for the study of bacterial glycans. Here, we have adapted selective exoenzymatic labeling (SEEL), a chemical reporter strategy, to label the lipooligosaccharides of the bacterial pathogen Neisseria gonorrhoeae, using the recombinant glycosyltransferase ST6Gal1, and three synthetic CMP-sialic acid derivatives. We show that SEEL treatment does not affect cell viability and can introduce an α2,6-linked sialic acid with a reporter group on the lipooligosaccharides by Western blot, flow cytometry and fluorescent microscopy. This new bacterial glycoengineering technique allows for the precise modification, here with α2,6-sialoside derivatives, and direct detection of specific surface glycans on live bacteria, which will aid in further unravelling the precise biological functions of bacterial glycans.
Collapse
Affiliation(s)
- Hanna de Jong
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
- Department of Biomolecular Health SciencesUtrecht UniversityYalelaan 13584 CLUtrechtThe Netherlands
| | - Maria J. Moure
- Complex Carbohydrate Research Center and Department of ChemistryUniversity of Georgia315 Riverbend RoadAthensGA 30602USA
- Chemical Glycobiology Lab, CIC bioGUNEBasque Research & Technology Alliance (BRTA)Bizkaia Technology Park, Building 80048160DerioSpain
| | - Jet E. M. Hartman
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Gerlof P. Bosman
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Jun Yang Ong
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| | - Bart W. Bardoel
- Department of Medical MicrobiologyUniversity Medical Center UtrechtHeidelberglaan 100 HP G04.6143584 CXUtrechtThe Netherlands
| | - Geert‐Jan Boons
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
- Complex Carbohydrate Research Center and Department of ChemistryUniversity of Georgia315 Riverbend RoadAthensGA 30602USA
| | - Marc M. S. M. Wösten
- Department of Biomolecular Health SciencesUtrecht UniversityYalelaan 13584 CLUtrechtThe Netherlands
| | - Tom Wennekes
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomedical ResearchUtrecht UniversityUniversiteitsweg 993584 CGUtrechtThe Netherlands
| |
Collapse
|
11
|
Parle D, Bulat F, Fouad S, Zecchini H, Brindle KM, Neves AA, Leeper FJ. Metabolic Glycan Labeling of Cancer Cells Using Variably Acetylated Monosaccharides. Bioconjug Chem 2022; 33:1467-1473. [PMID: 35876696 PMCID: PMC9389531 DOI: 10.1021/acs.bioconjchem.2c00169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 07/06/2022] [Indexed: 11/30/2022]
Abstract
Methylcyclopropene (Cyoc)-tagged tetra-acetylated monosaccharides, and in particular mannosamine derivatives, are promising tools for medical imaging of cancer using metabolic oligosaccharide engineering and the extremely fast inverse electron-demand Diels-Alder bioorthogonal reaction. However, the in vivo potential of these monosaccharide derivatives has yet to be fully explored due to their low aqueous solubility. To address this issue, we sought to vary the extent of acetylation of Cyoc-tagged monosaccharides and probe its effect on the extent of glycan labeling in various cancer cell lines. We demonstrate that, in the case of AcxManNCyoc, tri- and diacetylated derivatives generated significantly enhanced cell labeling compared to the tetra-acetylated monosaccharide. In contrast, for the more readily soluble azide-tagged sugars, a decrease in acetylation led to decreased glycan labeling. Ac3ManNCyoc gave better labeling than the azido-tagged Ac4ManNAz and has significant potential for in vitro and in vivo imaging of glycosylated cancer biomarkers.
Collapse
Affiliation(s)
- Daniel
R. Parle
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Flaviu Bulat
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Shahd Fouad
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Heather Zecchini
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Kevin M. Brindle
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - André A. Neves
- Cancer
Research UK Cambridge Institute, University
of Cambridge, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, United Kingdom
| | - Finian J. Leeper
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
12
|
Kondor CA, Gorantla JN, Leonard GD, Fehl C. Synthesis and mammalian cell compatibility of light-released glycan precursors for controlled metabolic engineering. Bioorg Med Chem 2022; 70:116918. [PMID: 35810714 DOI: 10.1016/j.bmc.2022.116918] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 11/19/2022]
Abstract
Sugar additions to biomolecules, or glycans, are some of the most abundant biomolecule modifications in biology because they enable cells to adapt to changing nutrient and stress conditions. An unmet challenge for the field of glycobiology is the study of glycan biosynthetic pathways with chemical control, especially in live cell settings. The objective of this study was to create biocompatible glycan precursors with controlled release properties. Here, we report eleven "caged" sugar probes that release glycan biosynthetic precursor molecules upon light exposure. The specific sugar pathways we target with our probes regulate the addition of the N-acetyl sugars GlcNAc, GalNAc, and sialic acid onto biomolecules in cells, each of which has the potential to alter glycan processes involved in cell morphology, signaling, and behavior. We hypothesized that our glycan precursor probes would remain biologically inert until light-initiated decaging conditions were met, avoiding biological activities including metabolism and cytotoxicity. The photocaged analogs of GlcNAc, GalNAc, and ManNAc (sialic acid precursor) sugars, which we call "photo-sugars," were released within minutes of light exposure at their optimal wavelengths. During the course of the study, we characterized the cell compatibility of these sugars under their respective decaging conditions, and found highly cell compatible GlcNAc, GalNAc, and ManNAc photocaged precursors. Release of GlcNAc-1-phosphate precursors led to altered ATP levels in cells, demonstrating preliminary metabolic engineering. We envision these probes as useful additions to the chemical glycobiology field that will enable spatiotemporal control over glycosylation pathways in living mammalian cells.
Collapse
Affiliation(s)
- Courtney A Kondor
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Jaggaiah N Gorantla
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Garry D Leonard
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Ave, Detroit, MI 48202, USA.
| |
Collapse
|
13
|
Babulic JL, Capicciotti CJ. Exo-Enzymatic Cell-Surface Glycan Labeling for Capturing Glycan–Protein Interactions through Photo-Cross-Linking. Bioconjug Chem 2022; 33:773-780. [DOI: 10.1021/acs.bioconjchem.2c00043] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jonathan L. Babulic
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| | - Chantelle J. Capicciotti
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario K7L 3N6, Canada
- Department of Chemistry, and Department of Surgery, Queen’s University, Kingston, Ontario K7L 3N6, Canada
| |
Collapse
|
14
|
Dammen-Brower K, Epler P, Zhu S, Bernstein ZJ, Stabach PR, Braddock DT, Spangler JB, Yarema KJ. Strategies for Glycoengineering Therapeutic Proteins. Front Chem 2022; 10:863118. [PMID: 35494652 PMCID: PMC9043614 DOI: 10.3389/fchem.2022.863118] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/25/2022] [Indexed: 12/14/2022] Open
Abstract
Almost all therapeutic proteins are glycosylated, with the carbohydrate component playing a long-established, substantial role in the safety and pharmacokinetic properties of this dominant category of drugs. In the past few years and moving forward, glycosylation is increasingly being implicated in the pharmacodynamics and therapeutic efficacy of therapeutic proteins. This article provides illustrative examples of drugs that have already been improved through glycoengineering including cytokines exemplified by erythropoietin (EPO), enzymes (ectonucleotide pyrophosphatase 1, ENPP1), and IgG antibodies (e.g., afucosylated Gazyva®, Poteligeo®, Fasenra™, and Uplizna®). In the future, the deliberate modification of therapeutic protein glycosylation will become more prevalent as glycoengineering strategies, including sophisticated computer-aided tools for "building in" glycans sites, acceptance of a broad range of production systems with various glycosylation capabilities, and supplementation methods for introducing non-natural metabolites into glycosylation pathways further develop and become more accessible.
Collapse
Affiliation(s)
- Kris Dammen-Brower
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paige Epler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Stanley Zhu
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Zachary J. Bernstein
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| | - Paul R. Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Demetrios T. Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | - Jamie B. Spangler
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, United States
- Department of Oncology, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Bloomberg-Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Kevin J. Yarema
- Translational Tissue Engineering Center, Johns Hopkins School of Medicine, Baltimore, MD, United States
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
15
|
Du J, Liu X, Yarema KJ, Jia X. Glycoengineering human neural stem cells (hNSCs) for adhesion improvement using a novel thiol-modified N-acetylmannosamine (ManNAc) analog. BIOMATERIALS ADVANCES 2022; 134:112675. [PMID: 35599100 PMCID: PMC9300770 DOI: 10.1016/j.msec.2022.112675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/16/2022] [Accepted: 01/18/2022] [Indexed: 12/20/2022]
Abstract
This study sets the stage for the therapeutic use of Ac5ManNTProp, an N-acetylmannosamine (ManNAc) analog that installs thiol-modified sialoglycans onto the surfaces of human neural stem cells (hNSC). First, we compared hNSC adhesion to the extracellular matrix (ECM) proteins laminin, fibronectin, and collagen and found preferential adhesion and concomitant changes to cell morphology and cell spreading for Ac5ManNTProp-treated cells to laminin, compared to fibronectin where there was a modest response, and collagen where there was no observable increase. PCR array transcript analysis identified several classes of cell adhesion molecules that responded to combined Ac5ManNTProp treatment and hNSC adhesion to laminin. Of these, we focused on integrin α6β1 expression, which was most strongly upregulated in analog-treated cells incubated on laminin. We also characterized downstream responses including vinculin display as well as the phosphorylation of focal adhesion kinase (FAK) and extracellular signal-related kinase (ERK). In these experiments, Ac5ManNTProp more strongly induced all tested biological endpoints compared to Ac5ManNTGc, showing that the single methylene unit that structurally separates the two analogs finely tunes biological responses. Together, the concerted modulation of multiple pro-regenerative activities through Ac5ManNTProp treatment, in concert with crosstalk with ECM components, lays a foundation for using our metabolic glycoengineering approach to treat neurological disorders by favorably modulating endpoints that contribute to the viability of transplanted NSCs.
Collapse
Affiliation(s)
- Jian Du
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Xiao Liu
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Kevin J. Yarema
- Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD, 21205,Translational Cell and Tissue Engineering Center, The Johns Hopkins School of Medicine, Baltimore, MD, 21231
| | - Xiaofeng Jia
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Biomedical Engineering, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA; Department of Orthopedics, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA; Department of Anesthesiology and Critical Care Medicine, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| |
Collapse
|
16
|
Ludwig SD, Bernstein ZJ, Agatemor C, Dammen-Brower K, Ruffolo J, Rosas JM, Post JD, Cole RN, Yarema KJ, Spangler JB. A versatile design platform for glycoengineering therapeutic antibodies. MAbs 2022; 14:2095704. [PMID: 35815437 PMCID: PMC9272841 DOI: 10.1080/19420862.2022.2095704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 06/24/2022] [Indexed: 11/21/2022] Open
Abstract
Manipulation of glycosylation patterns, i.e., glycoengineering, is incorporated in the therapeutic antibody development workflow to ensure clinical safety, and this approach has also been used to modulate the biological activities, functions, or pharmacological properties of antibody drugs. Whereas most existing glycoengineering strategies focus on the canonical glycans found in the constant domain of immunoglobulin G (IgG) antibodies, we report a new strategy to leverage the untapped potential of atypical glycosylation patterns in the variable domains, which naturally occur in 15% to 25% of IgG antibodies. Glycosylation sites were added to the antigen-binding regions of two functionally divergent, interleukin-2-binding monoclonal antibodies. We used computational tools to rationally install various N-glycosylation consensus sequences into the antibody variable domains, creating "glycovariants" of these molecules. Strikingly, almost all the glycovariants were successfully glycosylated at their newly installed N-glycan sites, without reduction of the antibody's native function. Importantly, certain glycovariants exhibited modified activities compared to the parent antibody, showing the potential of our glycoengineering strategy to modulate biological function of antibodies involved in multi-component receptor systems. Finally, when coupled with a high-flux sialic acid precursor, a glycovariant with two installed glycosylation sites demonstrated superior in vivo half-life. Collectively, these findings validate a versatile glycoengineering strategy that introduces atypical glycosylation into therapeutic antibodies in order to improve their efficacy and, in certain instances, modulate their activity early in the drug development process.
Collapse
Affiliation(s)
- Seth D. Ludwig
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Zachary J. Bernstein
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Christian Agatemor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kris Dammen-Brower
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jeffrey Ruffolo
- Program in Molecular Biophysics, the Johns Hopkins University, Baltimore, MD, USA
| | - Jonah M. Rosas
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Jeremy D. Post
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert N. Cole
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kevin J. Yarema
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg–Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jamie B. Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Bloomberg–Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Ophthalmology, Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
17
|
Show your true color: Mammalian cell surface staining for tracking cellular identity in multiplexing and beyond. Curr Opin Chem Biol 2021; 66:102102. [PMID: 34861482 DOI: 10.1016/j.cbpa.2021.102102] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 10/18/2021] [Accepted: 10/27/2021] [Indexed: 12/23/2022]
Abstract
Fluorescence microscopy revolutionized cell biology and changed requirements for dyes towards higher brightness, novel capacities, and specific targets. With the need for multiplexing assays in high-throughput methodologies, surface staining gained particular interest because it allows rapid application of exogenous stains to track cellular identity in mixed populations. Indeed, the last decade has enriched the toolbox of general lipid stains, fluorescent lipid analogues, sugar-binding lectins, and protein-specific antibodies enabling the first rationally designed plasma membrane-specific dyes. Still, multiple challenges exist, and the unique properties of each dye must be considered when selecting a staining approach for a specific application. Recent advances are also promising that future dyes will provide ultimate brightness and photostability in diverse colors and reduced sizes for high-resolution imaging.
Collapse
|
18
|
Brown AR, Wodzanowski KA, Santiago CC, Hyland SN, Follmar JL, Asare-Okai P, Grimes CL. Protected N-Acetyl Muramic Acid Probes Improve Bacterial Peptidoglycan Incorporation via Metabolic Labeling. ACS Chem Biol 2021; 16:1908-1916. [PMID: 34506714 DOI: 10.1021/acschembio.1c00268] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Metabolic glycan probes have emerged as an excellent tool to investigate vital questions in biology. Recently, methodology to incorporate metabolic bacterial glycan probes into the cell wall of a variety of bacterial species has been developed. In order to improve this method, a scalable synthesis of the peptidoglycan precursors is developed here, allowing for access to essential peptidoglycan immunological fragments and cell wall building blocks. The question was asked if masking polar groups of the glycan probe would increase overall incorporation, a common strategy exploited in mammalian glycobiology. Here, we show, through cellular assays, that E. coli do not utilize peracetylated peptidoglycan substrates but do employ methyl esters. The 10-fold improvement of probe utilization indicates that (i) masking the carboxylic acid is favorable for transport and (ii) bacterial esterases are capable of removing the methyl ester for use in peptidoglycan biosynthesis. This investigation advances bacterial cell wall biology, offering a prescription on how to best deliver and utilize bacterial metabolic glycan probes.
Collapse
Affiliation(s)
- Ashley R. Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Kimberly A. Wodzanowski
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Cintia C. Santiago
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N. Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Julianna L. Follmar
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - PapaNii Asare-Okai
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
19
|
Affiliation(s)
- Vincent Rigolot
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| | - Christophe Biot
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| | - Cedric Lion
- UMR 8576 CNRS Unité de Glycobiologie Structurale et Fonctionnelle Université de Lille Faculté des Sciences et Technologies Bât. C9, 59655 Villeneuve d'Ascq France
| |
Collapse
|
20
|
Rigolot V, Biot C, Lion C. To View Your Biomolecule, Click inside the Cell. Angew Chem Int Ed Engl 2021; 60:23084-23105. [PMID: 34097349 DOI: 10.1002/anie.202101502] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Indexed: 12/13/2022]
Abstract
The surging development of bioorthogonal chemistry has profoundly transformed chemical biology over the last two decades. Involving chemical partners that specifically react together in highly complex biological fluids, this branch of chemistry now allows researchers to probe biomolecules in their natural habitat through metabolic labelling technologies. Chemical reporter strategies include metabolic glycan labelling, site-specific incorporation of unnatural amino acids in proteins, and post-synthetic labelling of nucleic acids. While a majority of literature reports mark cell-surface exposed targets, implementing bioorthogonal ligations in the interior of cells constitutes a more challenging task. Owing to limiting factors such as membrane permeability of reagents, fluorescence background due to hydrophobic interactions and off-target covalent binding, and suboptimal balance between reactivity and stability of the designed molecular reporters and probes, these strategies need mindful planning to achieve success. In this review, we discuss the hurdles encountered when targeting biomolecules localized in cell organelles and give an easily accessible summary of the strategies at hand for imaging intracellular targets.
Collapse
Affiliation(s)
- Vincent Rigolot
- UMR 8576 CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Faculté des Sciences et Technologies, Bât. C9, 59655, Villeneuve d'Ascq, France
| | - Christophe Biot
- UMR 8576 CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Faculté des Sciences et Technologies, Bât. C9, 59655, Villeneuve d'Ascq, France
| | - Cedric Lion
- UMR 8576 CNRS, Unité de Glycobiologie Structurale et Fonctionnelle, Université de Lille, Faculté des Sciences et Technologies, Bât. C9, 59655, Villeneuve d'Ascq, France
| |
Collapse
|
21
|
Hamala V, Červenková Šťastná L, Kurfiřt M, Cuřínová P, Balouch M, Hrstka R, Voňka P, Karban J. The effect of deoxyfluorination and O-acylation on the cytotoxicity of N-acetyl-D-gluco- and D-galactosamine hemiacetals. Org Biomol Chem 2021; 19:4497-4506. [PMID: 33949602 DOI: 10.1039/d1ob00497b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fully acetylated deoxyfluorinated hexosamine analogues and non-fluorinated 3,4,6-tri-O-acylated N-acetyl-hexosamine hemiacetals have previously been shown to display moderate anti-proliferative activity. We prepared a set of deoxyfluorinated GlcNAc and GalNAc hemiacetals that comprised both features: O-acylation at the non-anomeric positions with an acetyl, propionyl and butanoyl group, and deoxyfluorination at selected positions. Determination of the in vitro cytotoxicity towards the MDA-MB-231 breast cancer and HEK-293 cell lines showed that deoxyfluorination enhanced cytotoxicity in most analogues. Increasing the ester alkyl chain length had a variable effect on the cytotoxicity of fluoro analogues, which contrasted with non-fluorinated hemiacetals where butanoyl derivatives had always higher cytotoxicity than acetates. Reaction with 2-phenylethanethiol indicated that the recently described S-glyco-modification is an unlikely cause of cytotoxicity.
Collapse
Affiliation(s)
- Vojtěch Hamala
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic. and University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| | - Martin Kurfiřt
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic. and University of Chemistry and Technology Prague, Technická 5, 16628 Praha 6, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| | - Martin Balouch
- Department of Chemical Engineering, University of Chemistry and Technology, Technická 3, 166 28 Prague 6, Prague, Czech Republic
| | - Roman Hrstka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, žlutý kopec 7, Brno, 65653, Czech Republic
| | - Petr Voňka
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, žlutý kopec 7, Brno, 65653, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS, v. v. i., Rozvojová 135, 16502 Praha 6, Czech Republic.
| |
Collapse
|
22
|
Huxley KE, Willems LI. Chemical reporters to study mammalian O-glycosylation. Biochem Soc Trans 2021; 49:903-913. [PMID: 33860782 PMCID: PMC8106504 DOI: 10.1042/bst20200839] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 03/17/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022]
Abstract
Glycans play essential roles in a range of cellular processes and have been shown to contribute to various pathologies. The diversity and dynamic nature of glycan structures and the complexities of glycan biosynthetic pathways make it challenging to study the roles of specific glycans in normal cellular function and disease. Chemical reporters have emerged as powerful tools to characterise glycan structures and monitor dynamic changes in glycan levels in a native context. A variety of tags can be introduced onto specific monosaccharides via the chemical modification of endogenous glycan structures or by metabolic or enzymatic incorporation of unnatural monosaccharides into cellular glycans. These chemical reporter strategies offer unique opportunities to study and manipulate glycan functions in living cells or whole organisms. In this review, we discuss recent advances in metabolic oligosaccharide engineering and chemoenzymatic glycan labelling, focusing on their application to the study of mammalian O-linked glycans. We describe current barriers to achieving glycan labelling specificity and highlight innovations that have started to pave the way to overcome these challenges.
Collapse
Affiliation(s)
- Kathryn E. Huxley
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| | - Lianne I. Willems
- York Structural Biology Laboratory, Department of Chemistry, The University of York, York YO10 5DD, U.K
| |
Collapse
|
23
|
Metabolic Glycoengineering in hMSC-TERT as a Model for Skeletal Precursors by Using Modified Azide/Alkyne Monosaccharides. Int J Mol Sci 2021; 22:ijms22062820. [PMID: 33802220 PMCID: PMC7999278 DOI: 10.3390/ijms22062820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/03/2021] [Accepted: 03/08/2021] [Indexed: 12/28/2022] Open
Abstract
Metabolic glycoengineering enables a directed modification of cell surfaces by introducing target molecules to surface proteins displaying new features. Biochemical pathways involving glycans differ in dependence on the cell type; therefore, this technique should be tailored for the best results. We characterized metabolic glycoengineering in telomerase-immortalized human mesenchymal stromal cells (hMSC-TERT) as a model for primary hMSC, to investigate its applicability in TERT-modified cell lines. The metabolic incorporation of N-azidoacetylmannosamine (Ac4ManNAz) and N-alkyneacetylmannosamine (Ac4ManNAl) into the glycocalyx as a first step in the glycoengineering process revealed no adverse effects on cell viability or gene expression, and the in vitro multipotency (osteogenic and adipogenic differentiation potential) was maintained under these adapted culture conditions. In the second step, glycoengineered cells were modified with fluorescent dyes using Cu-mediated click chemistry. In these analyses, the two mannose derivatives showed superior incorporation efficiencies compared to glucose and galactose isomers. In time-dependent experiments, the incorporation of Ac4ManNAz was detectable for up to six days while Ac4ManNAl-derived metabolites were absent after two days. Taken together, these findings demonstrate the successful metabolic glycoengineering of immortalized hMSC resulting in transient cell surface modifications, and thus present a useful model to address different scientific questions regarding glycosylation processes in skeletal precursors.
Collapse
|
24
|
Glycoengineering Human Neural and Adipose Stem Cells with Novel Thiol-Modified N-Acetylmannosamine (ManNAc) Analogs. Cells 2021; 10:cells10020377. [PMID: 33673061 PMCID: PMC7918483 DOI: 10.3390/cells10020377] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/28/2022] Open
Abstract
This report describes novel thiol-modified N-acetylmannosamine (ManNAc) analogs that extend metabolic glycoengineering (MGE) applications of Ac5ManNTGc, a non-natural monosaccharide that metabolically installs the thio-glycolyl of sialic acid into human glycoconjugates. We previously found that Ac5ManNTGc elicited non-canonical activation of Wnt signaling in human embryoid body derived (hEBD) cells but only in the presence of a high affinity, chemically compatible scaffold. Our new analogs Ac5ManNTProp and Ac5ManNTBut overcome the requirement for a complementary scaffold by displaying thiol groups on longer, N-acyl linker arms, thereby presumably increasing their ability to interact and crosslink with surrounding thiols. These new analogs showed increased potency in human neural stem cells (hNSCs) and human adipose stem cells (hASCs). In the hNSCs, Ac5ManNTProp upregulated biochemical endpoints consistent with Wnt signaling in the absence of a thiol-reactive scaffold. In the hASCs, both Ac5ManNTProp and Ac5ManNTBut suppressed adipogenic differentiation, with Ac5ManNTBut providing a more potent response, and they did not interfere with differentiation to a glial lineage (Schwann cells). These results expand the horizon for using MGE in regenerative medicine by providing new tools (Ac5ManNTProp and Ac5ManNTBut) for manipulating human stem cells.
Collapse
|
25
|
Stabach PR, Zimmerman K, Adame A, Kavanagh D, Saeui CT, Agatemor C, Gray S, Cao W, De La Cruz EM, Yarema KJ, Braddock DT. Improving the Pharmacodynamics and In Vivo Activity of ENPP1-Fc Through Protein and Glycosylation Engineering. Clin Transl Sci 2020; 14:362-372. [PMID: 33064927 PMCID: PMC7877847 DOI: 10.1111/cts.12887] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/24/2020] [Indexed: 02/06/2023] Open
Abstract
Enzyme replacement with ectonucleotide pyrophosphatase phospodiesterase‐1 (ENPP1) eliminates mortality in a murine model of the lethal calcification disorder generalized arterial calcification of infancy. We used protein engineering, glycan optimization, and a novel biomanufacturing platform to enhance potency by using a three‐prong strategy. First, we added new N‐glycans to ENPP1; second, we optimized pH‐dependent cellular recycling by protein engineering of the Fc neonatal receptor; finally, we used a two‐step process to improve sialylation by first producing ENPP1‐Fc in cells stably transfected with human α‐2,6‐sialyltransferase (ST6) and further enhanced terminal sialylation by supplementing production with 1,3,4‐O‐Bu3ManNAc. These steps sequentially increased the half‐life of the parent compound in rodents from 37 hours to ~ 67 hours with an added N‐glycan, to ~ 96 hours with optimized pH‐dependent Fc recycling, to ~ 204 hours when the therapeutic was produced in ST6‐overexpressing cells with 1,3,4‐O‐Bu3ManNAc supplementation. The alterations were demonstrated to increase drug potency by maintaining efficacious levels of plasma phosphoanhydride pyrophosphate in ENPP1‐deficient mice when the optimized biologic was administered at a 10‐fold lower mass dose less frequently than the parent compound—once every 10 days vs. 3 times a week. We believe these improvements represent a general strategy to rationally optimize protein therapeutics.
Collapse
Affiliation(s)
- Paul R Stabach
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kristin Zimmerman
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Aaron Adame
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dillon Kavanagh
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Christian Agatemor
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Shawn Gray
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Wenxiang Cao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Enrique M De La Cruz
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Demetrios T Braddock
- Department of Pathology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
26
|
Saeui CT, Cho KC, Dharmarha V, Nairn AV, Galizzi M, Shah SR, Gowda P, Park M, Austin M, Clarke A, Cai E, Buettner MJ, Ariss R, Moremen KW, Zhang H, Yarema KJ. Cell Line-, Protein-, and Sialoglycosite-Specific Control of Flux-Based Sialylation in Human Breast Cells: Implications for Cancer Progression. Front Chem 2020; 8:13. [PMID: 32117864 PMCID: PMC7013041 DOI: 10.3389/fchem.2020.00013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
Sialylation, a post-translational modification that impacts the structure, activity, and longevity of glycoproteins has been thought to be controlled primarily by the expression of sialyltransferases (STs). In this report we explore the complementary impact of metabolic flux on sialylation using a glycoengineering approach. Specifically, we treated three human breast cell lines (MCF10A, T-47D, and MDA-MB-231) with 1,3,4-O-Bu3ManNAc, a "high flux" metabolic precursor for the sialic acid biosynthetic pathway. We then analyzed N-glycan sialylation using solid phase extraction of glycopeptides (SPEG) mass spectrometry-based proteomics under conditions that selectively captured sialic acid-containing glycopeptides, referred to as "sialoglycosites." Gene ontology (GO) analysis showed that flux-based changes to sialylation were broadly distributed across classes of proteins in 1,3,4-O-Bu3ManNAc-treated cells. Only three categories of proteins, however, were "highly responsive" to flux (defined as two or more sialylation changes of 10-fold or greater). Two of these categories were cell signaling and cell adhesion, which reflect well-known roles of sialic acid in oncogenesis. A third category-protein folding chaperones-was unexpected because little precedent exists for the role of glycosylation in the activity of these proteins. The highly flux-responsive proteins were all linked to cancer but sometimes as tumor suppressors, other times as proto-oncogenes, or sometimes both depending on sialylation status. A notable aspect of our analysis of metabolically glycoengineered breast cells was decreased sialylation of a subset of glycosites, which was unexpected because of the increased intracellular levels of sialometabolite "building blocks" in the 1,3,4-O-Bu3ManNAc-treated cells. Sites of decreased sialylation were minor in the MCF10A (<25% of all glycosites) and T-47D (<15%) cells but dominated in the MDA-MB-231 line (~60%) suggesting that excess sialic acid could be detrimental in advanced cancer and cancer cells can evolve mechanisms to guard against hypersialylation. In summary, flux-driven changes to sialylation offer an intriguing and novel mechanism to switch between context-dependent pro- or anti-cancer activities of the several oncoproteins identified in this study. These findings illustrate how metabolic glycoengineering can uncover novel roles of sialic acid in oncogenesis.
Collapse
Affiliation(s)
- Christopher T Saeui
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kyung-Cho Cho
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Vrinda Dharmarha
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Alison V Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Sagar R Shah
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Prateek Gowda
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Marian Park
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Melissa Austin
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Amelia Clarke
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Edward Cai
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Matthew J Buettner
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kelley W Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, United States
| | - Hui Zhang
- Department of Pathology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering, Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, The Johns Hopkins University, Baltimore, MD, United States.,Department of Oncology, The Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
27
|
Moons SJ, Adema GJ, Derks MT, Boltje TJ, Büll C. Sialic acid glycoengineering using N-acetylmannosamine and sialic acid analogs. Glycobiology 2020; 29:433-445. [PMID: 30913290 DOI: 10.1093/glycob/cwz026] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 03/07/2019] [Accepted: 03/21/2019] [Indexed: 12/16/2022] Open
Abstract
Sialic acids cap the glycans of cell surface glycoproteins and glycolipids. They are involved in a multitude of biological processes and aberrant sialic acid expression is associated with several pathologies. Sialic acids modulate the characteristics and functions of glycoproteins and regulate cell-cell as well as cell-extracellular matrix interactions. Pathogens such as influenza virus use sialic acids to infect host cells and cancer cells exploit sialic acids to escape from the host's immune system. The introduction of unnatural sialic acids with different functionalities into surface glycans enables the study of the broad biological functions of these sugars and presents a therapeutic option to intervene with pathological processes involving sialic acids. Multiple chemically modified sialic acid analogs can be directly utilized by cells for sialoglycan synthesis. Alternatively, analogs of the natural sialic acid precursor sugar N-Acetylmannosamine (ManNAc) can be introduced into the sialic acid biosynthesis pathway resulting in the intracellular conversion into the corresponding sialic acid analog. Both, ManNAc and sialic acid analogs, have been employed successfully for a large variety of glycoengineering applications such as glycan imaging, targeting toxins to tumor cells, inhibiting pathogen binding, or altering immune cell activity. However, there are significant differences between ManNAc and sialic acid analogs with respect to their chemical modification potential and cellular metabolism that should be considered in sialic acid glycoengineering experiments.
Collapse
Affiliation(s)
- Sam J Moons
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| | - Max Tgm Derks
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Thomas J Boltje
- Cluster for Molecular Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Heyendaalseweg 135, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, Nijmegen, The Netherlands
| |
Collapse
|
28
|
Kranaster P, Karreman C, Dold JEGA, Krebs A, Funke M, Holzer AK, Klima S, Nyffeler J, Helfrich S, Wittmann V, Leist M. Time and space-resolved quantification of plasma membrane sialylation for measurements of cell function and neurotoxicity. Arch Toxicol 2019; 94:449-467. [PMID: 31828357 DOI: 10.1007/s00204-019-02642-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/02/2019] [Indexed: 12/28/2022]
Abstract
While there are many methods to quantify the synthesis, localization, and pool sizes of proteins and DNA during physiological responses and toxicological stress, only few approaches allow following the fate of carbohydrates. One of them is metabolic glycoengineering (MGE), which makes use of chemically modified sugars (CMS) that enter the cellular biosynthesis pathways leading to glycoproteins and glycolipids. The CMS can subsequently be coupled (via bio-orthogonal chemical reactions) to tags that are quantifiable by microscopic imaging. We asked here, whether MGE can be used in a quantitative and time-resolved way to study neuronal glycoprotein synthesis and its impairment. We focused on the detection of sialic acid (Sia), by feeding human neurons the biosynthetic precursor N-acetyl-mannosamine, modified by an azide tag. Using this system, we identified non-toxic conditions that allowed live cell labeling with high spatial and temporal resolution, as well as the quantification of cell surface Sia. Using combinations of immunostaining, chromatography, and western blotting, we quantified the percentage of cellular label incorporation and effects on glycoproteins such as polysialylated neural cell adhesion molecule. A specific imaging algorithm was used to quantify Sia incorporation into neuronal projections, as potential measure of complex cell function in toxicological studies. When various toxicants were studied, we identified a subgroup (mitochondrial respiration inhibitors) that affected neurite glycan levels several hours before any other viability parameter was affected. The MGE-based neurotoxicity assay, thus allowed the identification of subtle impairments of neurochemical function with very high sensitivity.
Collapse
Affiliation(s)
- Petra Kranaster
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Christiaan Karreman
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Jeremias E G A Dold
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Alice Krebs
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany
| | - Melina Funke
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Anna-Katharina Holzer
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany
| | - Stefanie Klima
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Kooperatives Promotionskolleg (KPK) InViTe, University of Konstanz, 78457, Konstanz, Germany
| | - Johanna Nyffeler
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany.,Environmental Protection Agency, Durham, NC, USA
| | - Stefan Helfrich
- The Bioimaging Center, University of Konstanz, 78457, Konstanz, Germany.,KNIME GmbH, 78467, Konstanz, Germany
| | - Valentin Wittmann
- Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.,Department of Chemistry, University of Konstanz, 78457, Konstanz, Germany
| | - Marcel Leist
- In Vitro Toxicology and Biomedicine, Dept Inaugurated by the Doerenkamp-Zbinden Foundation, University of Konstanz, 78457, Konstanz, Germany. .,Konstanz Research School Chemical Biology (KoRS-CB), University of Konstanz, 78457, Konstanz, Germany.
| |
Collapse
|
29
|
Agatemor C, Buettner MJ, Ariss R, Muthiah K, Saeui CT, Yarema KJ. Exploiting metabolic glycoengineering to advance healthcare. Nat Rev Chem 2019; 3:605-620. [PMID: 31777760 DOI: 10.1038/s41570-019-0126-y] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Metabolic glycoengineering (MGE) is a technique for manipulating cellular metabolism to modulate glycosylation. MGE is used to increase the levels of natural glycans and, more importantly, to install non-natural monosaccharides into glycoconjugates. In this Review, we summarize the chemistry underlying MGE that has been developed over the past three decades and highlight several recent advances that have set the stage for clinical translation. In anticipation of near-term application to human healthcare, we describe emerging efforts to deploy MGE in diverse applications, ranging from the glycoengineering of biotherapeutic proteins and the diagnosis and treatment of complex diseases such as cancer to the development of new immunotherapies.
Collapse
Affiliation(s)
- Christian Agatemor
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Keerthana Muthiah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center (TTEC), The Johns Hopkins University, Baltimore, MD, USA.,Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
30
|
Next-generation unnatural monosaccharides reveal that ESRRB O-GlcNAcylation regulates pluripotency of mouse embryonic stem cells. Nat Commun 2019; 10:4065. [PMID: 31492838 PMCID: PMC6731260 DOI: 10.1038/s41467-019-11942-y] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 08/13/2019] [Indexed: 12/15/2022] Open
Abstract
Unnatural monosaccharides such as azidosugars that can be metabolically incorporated into cellular glycans are currently used as a major tool for glycan imaging and glycoproteomic profiling. As a common practice to enhance membrane permeability and cellular uptake, the unnatural sugars are per-O-acetylated, which, however, can induce a long-overlooked side reaction, non-enzymatic S-glycosylation. Herein, we develop 1,3-di-esterified N-azidoacetylgalactosamine (GalNAz) as next-generation chemical reporters for metabolic glycan labeling. Both 1,3-di-O-acetylated GalNAz (1,3-Ac2GalNAz) and 1,3-di-O-propionylated GalNAz (1,3-Pr2GalNAz) exhibit high efficiency for labeling protein O-GlcNAcylation with no artificial S-glycosylation. Applying 1,3-Pr2GalNAz in mouse embryonic stem cells (mESCs), we identify ESRRB, a critical transcription factor for pluripotency, as an O-GlcNAcylated protein. We show that ESRRB O-GlcNAcylation is important for mESC self-renewal and pluripotency. Mechanistically, ESRRB is O-GlcNAcylated by O-GlcNAc transferase at serine 25, which stabilizes ESRRB, promotes its transcription activity and facilitates its interactions with two master pluripotency regulators, OCT4 and NANOG. Per-O-acetylated unnatural monosaccharides are popular tools for glycan labeling in live cells but can undergo unwanted side reactions with cysteines. Here, the authors develop unnatural sugars in a partially esterified form that are inert towards cysteines, and use them to probe O-GlcNAcylation in mESCs.
Collapse
|
31
|
Gutmann M, Bechold J, Seibel J, Meinel L, Lühmann T. Metabolic Glycoengineering of Cell-Derived Matrices and Cell Surfaces: A Combination of Key Principles and Step-by-Step Procedures. ACS Biomater Sci Eng 2018; 5:215-233. [DOI: 10.1021/acsbiomaterials.8b00865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Marcus Gutmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Julian Bechold
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Jürgen Seibel
- Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Lorenz Meinel
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| | - Tessa Lühmann
- Institute of Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, 97074 Wuerzburg, Germany
| |
Collapse
|
32
|
Buettner MJ, Shah SR, Saeui CT, Ariss R, Yarema KJ. Improving Immunotherapy Through Glycodesign. Front Immunol 2018; 9:2485. [PMID: 30450094 PMCID: PMC6224361 DOI: 10.3389/fimmu.2018.02485] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 10/08/2018] [Indexed: 01/04/2023] Open
Abstract
Immunotherapy is revolutionizing health care, with the majority of high impact "drugs" approved in the past decade falling into this category of therapy. Despite considerable success, glycosylation-a key design parameter that ensures safety, optimizes biological response, and influences the pharmacokinetic properties of an immunotherapeutic-has slowed the development of this class of drugs in the past and remains challenging at present. This article describes how optimizing glycosylation through a variety of glycoengineering strategies provides enticing opportunities to not only avoid past pitfalls, but also to substantially improve immunotherapies including antibodies and recombinant proteins, and cell-based therapies. We cover design principles important for early stage pre-clinical development and also discuss how various glycoengineering strategies can augment the biomanufacturing process to ensure the overall effectiveness of immunotherapeutics.
Collapse
Affiliation(s)
- Matthew J Buettner
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Sagar R Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Christopher T Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States.,Pharmacology/Toxicology Branch I, Division of Clinical Evaluation and Pharmacology/Toxicology, Office of Tissues and Advanced Therapies, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Bethesda, MD, United States
| | - Ryan Ariss
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| | - Kevin J Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
33
|
Choi JY, Seo J, Park M, Kim MH, Kang K, Choi IS. Multiplexed Metabolic Labeling of Glycoconjugates in Polarized Primary Cerebral Cortical Neurons. Chem Asian J 2018; 13:3480-3484. [PMID: 30204301 DOI: 10.1002/asia.201800996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 09/07/2018] [Indexed: 12/11/2022]
Abstract
The spatial distribution of cell-surface glycoconjugates in the brain changes continuously, reflecting neurophysiology especially in the developing phase, but their functions and fates mostly remain unexplored. Their spatiotemporal distribution is particularly important in polarized neuronal cells, such as cerebral cortical neurons composed of a soma and neurites. In this work, we dually labeled sialic acid (Sia5Ac) and N-acetylgalactosamine/glucosamine (GalNAc/GlcNAc) by a neurocompatible strategy of metabolic glycan labeling, metabolism-by-tissues (MbT), and obtained the multiplexed information on their spatiotemporal distribution on polarized cortical neurons. The analyses showed the preferentially distinct distribution of each saccharide set at the late developmental stage after randomized, heterogeneous distribution at the early stage, suggesting that Sia5Ac and GalNAc/GlcNAc are translocated anisotropically during neuronal development.
Collapse
Affiliation(s)
- Ji Yu Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Jeongyeon Seo
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Matthew Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Mi-Hee Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| | - Kyungtae Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin, Gyeonggi, 17104, Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon, 34141, Korea
| |
Collapse
|
34
|
Whited J, Zhang X, Nie H, Wang D, Li Y, Sun XL. Recent Chemical Biology Approaches for Profiling Cell Surface Sialylation Status. ACS Chem Biol 2018; 13:2364-2374. [PMID: 30053371 DOI: 10.1021/acschembio.8b00456] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Sialic acids (SAs) often exist as the terminal sugars of glycans of either glycoproteins or glycolipids on the cell surface and thus are directly involved in biological processes, such as cell-cell, cell-ligand, and cell-pathogen interactions. Cell surface SA expression levels and their linkages are collectively termed cell surface sialylation status, which represent varying cellular states and contribute to the overall functionality of a cell. Accordingly, systemic and specific profiling of the cell surface sialyation status is critical in deciphering the structures and functions of cell surface glycoconjugates and the molecular mechanisms of their underlying biological processes. In recent decades, several advanced chemical biology approaches have been developed to profile the cell surface sialyation status of both in vitro and in vivo samples, including metabolic labeling, direct chemical modification, and boronic acid coupling approaches. Various investigative technologies have also been explored for their unique competence, including fluorescent imaging, flow cytometry, Raman imaging, magnetic resonance imaging (MRI), and matrix-assisted laser desorption ionization imaging mass spectrometry. In particular, the sialylation status of a specific glycoprotein on the cell surface has been investigated. This review highlights the recent advancements in chemical biology approaches for profiling cell surface sialyation status. It is expected that this review will provide researchers different choices for both biological and biomedical research and applications.
Collapse
Affiliation(s)
- Joshua Whited
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Xiaoqing Zhang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Huan Nie
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Dan Wang
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang-jie, Harbin, Heilongjiang 5001, China
| | - Xue-Long Sun
- Department of Chemistry, Department of Chemical and Biomedical Engineering, and Center for Gene Regulation in Health and Disease (GRHD), Cleveland State University, 2121 Euclid Avenue, Cleveland, Ohio 44115, United States
| |
Collapse
|
35
|
Saeui CT, Nairn AV, Galizzi M, Douville C, Gowda P, Park M, Dharmarha V, Shah SR, Clarke A, Austin M, Moremen KW, Yarema KJ. Integration of genetic and metabolic features related to sialic acid metabolism distinguishes human breast cell subtypes. PLoS One 2018; 13:e0195812. [PMID: 29847599 PMCID: PMC5976204 DOI: 10.1371/journal.pone.0195812] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 03/29/2018] [Indexed: 11/18/2022] Open
Abstract
In this report we use 'high-flux' tributanoyl-modified N-acetylmannosamine (ManNAc) analogs with natural N-acetyl as well as non-natural azido- and alkyne N-acyl groups (specifically, 1,3,4-O-Bu3ManNAc, 1,3,4-O-Bu3ManNAz, and 1,3,4-O-Bu3ManNAl respectively) to probe intracellular sialic acid metabolism in the near-normal MCF10A human breast cell line in comparison with earlier stage T-47D and more advanced stage MDA-MB-231 breast cancer lines. An integrated view of sialic acid metabolism was gained by measuring intracellular sialic acid production in tandem with transcriptional profiling of genes linked to sialic acid metabolism. The transcriptional profiling showed several differences between the three lines in the absence of ManNAc analog supplementation that helps explain the different sialoglycan profiles naturally associated with cancer. Only minor changes in mRNA transcript levels occurred upon exposure to the compounds confirming that metabolic flux alone can be a key determinant of sialoglycoconjugate display in breast cancer cells; this result complements the well-established role of genetic control (e.g., the transcription of STs) of sialylation abnormalities ubiquitously associated with cancer. A notable result was that the different cell lines produced significantly different levels of sialic acid upon exogenous ManNAc supplementation, indicating that feedback inhibition of UDP-GlcNAc 2-epimerase/ManNAc kinase (GNE)-generally regarded as the 'gatekeeper' enzyme for titering flux into sialic acid biosynthesis-is not the only regulatory mechanism that limits production of this sugar. A notable aspect of our metabolic glycoengineering approach is its ability to discriminate cell subtype based on intracellular metabolism by illuminating otherwise hidden cell type-specific features. We believe that this strategy combined with multi-dimensional analysis of sialic acid metabolism will ultimately provide novel insights into breast cancer subtypes and provide a foundation for new methods of diagnosis.
Collapse
Affiliation(s)
- Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Alison V. Nairn
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Melina Galizzi
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
| | - Christopher Douville
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Prateek Gowda
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Marian Park
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Vrinda Dharmarha
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Sagar R. Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Amelia Clarke
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Melissa Austin
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Kelley W. Moremen
- Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, United States of America
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia, United States of America
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
36
|
Yin B, Wang Q, Chung CY, Ren X, Bhattacharya R, Yarema KJ, Betenbaugh MJ. Butyrated ManNAc analog improves protein expression in Chinese hamster ovary cells. Biotechnol Bioeng 2018; 115:1531-1541. [DOI: 10.1002/bit.26560] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Bojiao Yin
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Xiaozhi Ren
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| | - Rahul Bhattacharya
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland
| | - Kevin J. Yarema
- Department of Biomedical Engineering; Johns Hopkins University; Baltimore Maryland
| | - Michael J. Betenbaugh
- Department of Chemical and Biomolecular Engineering; Johns Hopkins University; Baltimore Maryland
| |
Collapse
|
37
|
Saeui CT, Liu L, Urias E, Morrissette-McAlmon J, Bhattacharya R, Yarema KJ. Pharmacological, Physiochemical, and Drug-Relevant Biological Properties of Short Chain Fatty Acid Hexosamine Analogues Used in Metabolic Glycoengineering. Mol Pharm 2018; 15:705-720. [PMID: 28853901 PMCID: PMC6292510 DOI: 10.1021/acs.molpharmaceut.7b00525] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this study, we catalog structure activity relationships (SAR) of several short chain fatty acid (SCFA)-modified hexosamine analogues used in metabolic glycoengineering (MGE) by comparing in silico and experimental measurements of physiochemical properties important in drug design. We then describe the impact of these compounds on selected biological parameters that influence the pharmacological properties and safety of drug candidates by monitoring P-glycoprotein (Pgp) efflux, inhibition of cytochrome P450 3A4 (CYP3A4), hERG channel inhibition, and cardiomyocyte cytotoxicity. These parameters are influenced by length of the SCFAs (e.g., acetate vs n-butyrate), which are added to MGE analogues to increase the efficiency of cellular uptake, the regioisomeric arrangement of the SCFAs on the core sugar, the structure of the core sugar itself, and by the type of N-acyl modification (e.g., N-acetyl vs N-azido). By cataloging the influence of these SAR on pharmacological properties of MGE analogues, this study outlines design considerations for tuning the pharmacological, physiochemical, and the toxicological parameters of this emerging class of small molecule drug candidates.
Collapse
Affiliation(s)
- Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Esteban Urias
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Justin Morrissette-McAlmon
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Rahul Bhattacharya
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
38
|
Metabolic flux-driven sialylation alters internalization, recycling, and drug sensitivity of the epidermal growth factor receptor (EGFR) in SW1990 pancreatic cancer cells. Oncotarget 2018; 7:66491-66511. [PMID: 27613843 PMCID: PMC5341816 DOI: 10.18632/oncotarget.11582] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/01/2016] [Indexed: 12/12/2022] Open
Abstract
In prior work we reported that advanced stage, drug-resistant pancreatic cancer cells (the SW1990 line) can be sensitized to the EGFR-targeting tyrosine kinase inhibitors (TKIs) erlotinib and gefitinib by treatment with 1,3,4-O-Bu3ManNAc (Bioorg. Med. Chem. Lett. (2015) 25(6):1223-7). Here we provide mechanistic insights into how this compound inhibits EGFR activity and provides synergy with TKI drugs. First, we showed that the sialylation of the EGFR receptor was at most only modestly enhanced (by ∼20 to 30%) compared to overall ∼2-fold increase in cell surface levels of this sugar. Second, flux-driven sialylation did not alter EGFR dimerization as has been reported for cancer cell lines that experience increased sialylation due to spontaneous mutations. Instead, we present evidence that 1,3,4-O-Bu3ManNAc treatment weakens the galectin lattice, increases the internalization of EGFR, and shifts endosomal trafficking towards non-clathrin mediated (NCM) endocytosis. Finally, by evaluating downstream targets of EGFR signaling, we linked synergy between 1,3,4-O-Bu3ManNAc and existing TKI drugs to a shift from clathrin-coated endocytosis (which allows EGFR signaling to continue after internalization) towards NCM endocytosis, which targets internalized moieties for degradation and thereby rapidly diminishes signaling.
Collapse
|
39
|
Lee TS, Kim Y, Zhang W, Song IH, Tung CH. Facile metabolic glycan labeling strategy for exosome tracking. Biochim Biophys Acta Gen Subj 2018; 1862:1091-1100. [PMID: 29410228 DOI: 10.1016/j.bbagen.2018.02.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 01/26/2018] [Accepted: 02/01/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND Exosomes are nano-sized vesicles derived from the fusion of multivesicular bodies with the surrounding plasma membrane. Exosomes have various diagnostic and therapeutic potentials in cancer and other diseases, thus tracking exosomes is an important issue. METHODS Here, we report a facile exosome labeling strategy using a natural metabolic incorporation of an azido-sugar into the glycan, and a strain-promoted azide-alkyne click reaction. In culture, tetra-acetylated N-azidoacetyl-D-mannosamine (Ac4ManNAz) was spontaneously incorporated into glycans within the cells and later redistributed onto their exosomes. These azido-containing exosomes were then labeled with azadibenzylcyclooctyne (ADIBO)-fluorescent dyes by a bioorthogonal click reaction. RESULTS Cellular uptake and the in vivo tracking of fluorescent labeled exosomes were evaluated in various cells and tumor bearing mice. Highly metastatic cancer-derived exosomes showed an increased self-homing in vitro and selective organ distribution in vivo. CONCLUSION Our metabolic exosome labeling strategy could be a promising tool in studying the biology and distribution of exosomes, and optimizing exosome based therapeutic approaches. GENERAL SIGNIFICANT A facile and effective exosome labeling strategy was introduced by presenting azido moiety on the surface of exosome through metabolic glycan synthesis, and then conjugating a strain-promoted fluorescent dye.
Collapse
Affiliation(s)
- Tae Sup Lee
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA; Division of RI-convergence Research, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Republic of Korea
| | - Young Kim
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - Weiqi Zhang
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA
| | - In Ho Song
- Division of RI-convergence Research, Korea Institute of Radiology and Medical Sciences, Seoul 01812, Republic of Korea
| | - Ching-Hsuan Tung
- Molecular Imaging Innovations Institute, Department of Radiology, Weill Cornell Medicine, New York, NY 10021, USA.
| |
Collapse
|
40
|
Bragg JT, D'Ambrosio HK, Smith TJ, Gorka CA, Khan FA, Rose JT, Rouff AJ, Fu TS, Bisnett BJ, Boyce M, Khetan S, Paulick MG. Esterified Trehalose Analogues Protect Mammalian Cells from Heat Shock. Chembiochem 2017; 18:1863-1870. [DOI: 10.1002/cbic.201700302] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Indexed: 01/19/2023]
Affiliation(s)
- Jack T. Bragg
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | | | - Timothy J. Smith
- Department of Biochemistry Duke University Medical School 307 Research Drive Durham NC 27710 USA
| | - Caroline A. Gorka
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Faraz A. Khan
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Joshua T. Rose
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Andrew J. Rouff
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| | - Terence S. Fu
- Department of Biological Sciences Union College 807 Union Street Schenectady NY 12308 USA
| | - Brittany J. Bisnett
- Department of Biochemistry Duke University Medical School 307 Research Drive Durham NC 27710 USA
| | - Michael Boyce
- Department of Biochemistry Duke University Medical School 307 Research Drive Durham NC 27710 USA
| | - Sudhir Khetan
- Bioengineering Program Union College 807 Union Street Schenectady NY 12308 USA
| | - Margot G. Paulick
- Department of Chemistry Union College 807 Union Street Schenectady NY 12308 USA
| |
Collapse
|
41
|
Mathew MP, Tan E, Labonte JW, Shah S, Saeui CT, Liu L, Bhattacharya R, Bovonratwet P, Gray JJ, Yarema KJ. Glycoengineering of Esterase Activity through Metabolic Flux-Based Modulation of Sialic Acid. Chembiochem 2017; 18:1204-1215. [PMID: 28218815 PMCID: PMC5757160 DOI: 10.1002/cbic.201600698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Indexed: 01/09/2023]
Abstract
This report describes the metabolic glycoengineering (MGE) of intracellular esterase activity in human colon cancer (LS174T) and Chinese hamster ovary (CHO) cells. In silico analysis of carboxylesterases CES1 and CES2 suggested that these enzymes are modified with sialylated N-glycans, which are proposed to stabilize the active multimeric forms of these enzymes. This premise was supported by treating cells with butanolylated ManNAc to increase sialylation, which in turn increased esterase activity. By contrast, hexosamine analogues not targeted to sialic acid biosynthesis (e.g., butanoylated GlcNAc or GalNAc) had minimal impact. Measurement of mRNA and protein confirmed that esterase activity was controlled through glycosylation and not through transcription or translation. Azide-modified ManNAc analogues widely used in MGE also enhanced esterase activity and provided a way to enrich targeted glycoengineered proteins (such as CES2), thereby providing unambiguous evidence that the compounds were converted to sialosides and installed into the glycan structures of esterases as intended. Overall, this study provides a pioneering example of the modulation of intracellular enzyme activity through MGE, which expands the value of this technology from its current status as a labeling strategy and modulator of cell surface biological events.
Collapse
Affiliation(s)
- Mohit P. Mathew
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Elaine Tan
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Jason W. Labonte
- Department of Chemical and Biochemical Engineering The Johns Hopkins University, Baltimore, Maryland, USA
| | - Shivam Shah
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Christopher T. Saeui
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Lingshu Liu
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Rahul Bhattacharya
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Patawut Bovonratwet
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
| | - Jeffrey J. Gray
- Department of Chemical and Biochemical Engineering The Johns Hopkins University, Baltimore, Maryland, USA
| | - Kevin J. Yarema
- Department of Biomedical Engineering and the Translational Tissue Engineering Center
- Department of Chemical and Biochemical Engineering The Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
42
|
Abstract
Structural glycobiology has traditionally been a challenging field due to a limited set of tools available to investigate the diverse and complex glycan molecules. However, we cannot ignore that glycans play critical roles in health as well as in disease, and are present in more than 50% of all proteins and on over 80% of all surface proteins. Chemoenzymatic glycoengineering (CGE) methods are a powerful set of tools to synthesize complex glycans, but the full potential of these methods have not been explored in cell biology yet. Herein, we report the labeling of live Chinese hamster ovary (CHO) cells by employing three highly specific glycosyltransferases: a sialyltransferase, a galactosyltransferase, and an N-acetyl-glucosaminyl transferase. We verified our results by bio-orthogonal blots and further rationalized them by computational modeling. We expect CGE applications in cell biology to rise and their implementation will assist in structural-functional discoveries in glycobiology. This research will contribute to this effort. Summary: A novel chemoenzymatic glycoengineering method was developed to selectively modify and label surface glycoconjugates in living cells by implementing glycosyltransferases and azido-modified activated sugar analogs.
Collapse
Affiliation(s)
- Ruben T Almaraz
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| | - Yanhong Li
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
43
|
Yin B, Wang Q, Chung CY, Bhattacharya R, Ren X, Tang J, Yarema KJ, Betenbaugh MJ. A novel sugar analog enhances sialic acid production and biotherapeutic sialylation in CHO cells. Biotechnol Bioeng 2017; 114:1899-1902. [PMID: 28295160 DOI: 10.1002/bit.26291] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/18/2017] [Accepted: 03/09/2017] [Indexed: 02/05/2023]
Abstract
A desirable feature of many therapeutic glycoprotein production processes is to maximize the final sialic acid content. In this study, the effect of applying a novel chemical analog of the sialic acid precursor N-acetylmannosamine (ManNAc) on the sialic acid content of cellular proteins and a model recombinant glycoprotein, erythropoietin (EPO), was investigated in CHO-K1 cells. By introducing the 1,3,4-O-Bu3 ManNAc analog at 200-300 µM into cell culture media, the intracellular sialic acid content of EPO-expressing cells increased ∼8-fold over untreated controls while the level of cellular sialylated glycoconjugates increased significantly as well. For example, addition of 200-300 µM 1,3,4-O-Bu3 ManNAc resulted in >40% increase in final sialic acid content of recombinant EPO, while natural ManNAc at ∼100 times higher concentration of 20 mM produced a less profound change in EPO sialylation. Collectively, these results indicate that butyrate-derivatization of ManNAc improves the capacity of cells to incorporate exogenous ManNAc into the sialic acid biosynthetic pathway and thereby increase sialylation of recombinant EPO and other glycoproteins. This study establishes 1,3,4-O-Bu3 ManNAc as a novel chemical supplement to improve glycoprotein quality and sialylation levels at concentrations orders of magnitude lower than alternative approaches. Biotechnol. Bioeng. 2017;114: 1899-1902. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Bojiao Yin
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Qiong Wang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Cheng-Yu Chung
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Rahul Bhattacharya
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Xiaozhi Ren
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Juechun Tang
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218
| | - Kevin J Yarema
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218.,Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland
| | - Michael J Betenbaugh
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, 221 Maryland Hall, 3400 N. Charles St., Baltimore, Maryland 21218
| |
Collapse
|
44
|
Ruff S, Keller S, Wieland D, Wittmann V, Tovar G, Bach M, Kluger P. clickECM: Development of a cell-derived extracellular matrix with azide functionalities. Acta Biomater 2017; 52:159-170. [PMID: 27965173 DOI: 10.1016/j.actbio.2016.12.022] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 10/21/2016] [Accepted: 12/07/2016] [Indexed: 01/06/2023]
Abstract
In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6-tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this "clickECM" could be accessed by small molecules (such as an alkyne-modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM. STATEMENT OF SIGNIFICANCE The clickECM was produced by the incorporation of azide-functionalized sugar analogues into the extracellular glycans of fibroblast cell cultures by metabolic oligosaccharide engineering. By introducing these azide groups into the glycan structures, we enabled this cell-derived ECM for bioorthogonal click reactions. Click chemistry provides extremely specific reactions with high efficiency, high selectivity, and high reaction yields. We could show that the azide functionalities within the clickECM are chemically accessible. Based on our here described clickECM technique it will be possible to create and investigate new clickECM materials with tunable bioactive properties and additional functionalities, which offers a promising approach for basic and applied research in the field of biomaterial science, biomedical applications, and tissue engineering.
Collapse
|
45
|
Badr HA, AlSadek DMM, El-Houseini ME, Saeui CT, Mathew MP, Yarema KJ, Ahmed H. Harnessing cancer cell metabolism for theranostic applications using metabolic glycoengineering of sialic acid in breast cancer as a pioneering example. Biomaterials 2017; 116:158-173. [PMID: 27926828 PMCID: PMC5193387 DOI: 10.1016/j.biomaterials.2016.11.044] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/14/2016] [Accepted: 11/24/2016] [Indexed: 12/18/2022]
Abstract
Abnormal cell surface display of sialic acids - a family of unusual 9-carbon sugars - is widely recognized as distinguishing feature of many types of cancer. Sialoglycans, however, typically cannot be identified with sufficiently high reproducibility and sensitivity to serve as clinically accepted biomarkers and similarly, almost all efforts to exploit cancer-specific differences in sialylation signatures for therapy remain in early stage development. In this report we provide an overview of important facets of glycosylation that contribute to cancer in general with a focus on breast cancer as an example of malignant disease characterized by aberrant sialylation. We then describe how cancer cells experience nutrient deprivation during oncogenesis and discuss how the resulting metabolic reprogramming, which endows breast cancer cells with the ability to obtain nutrients during scarcity, constitutes an "Achilles' heel" that we believe can be exploited by metabolic glycoengineering (MGE) strategies to develop new diagnostic methods and therapeutic approaches. In particular, we hypothesize that adaptations made by breast cancer cells that allow them to efficiently scavenge sialic acid during times of nutrient deprivation renders them vulnerable to MGE, which refers to the use of exogenously-supplied, non-natural monosaccharide analogues to modulate targeted aspects of glycosylation in living cells and animals. In specific, once non-natural sialosides are incorporated into the cancer "sialome" they can be exploited as epitopes for immunotherapy or as chemical tags for targeted delivery of imaging or therapeutic agents selectively to tumors.
Collapse
Affiliation(s)
- Haitham A Badr
- Department of Biochemistry, Faculty of Agriculture, Zagazig University, Zagazig 44511, Egypt
| | - Dina M M AlSadek
- Department of Histology and Cytology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44511, Egypt
| | - Motawa E El-Houseini
- Cancer Biology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Christopher T Saeui
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Mohit P Mathew
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA
| | - Kevin J Yarema
- Department of Biomedical Engineering and Translational Tissue Engineering Center, The Johns Hopkins University, Baltimore, MD 21231, USA.
| | - Hafiz Ahmed
- GlycoMantra, Inc., Baltimore, MD 21227, USA.
| |
Collapse
|
46
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
47
|
Horník Š, Červenková Šťastná L, Cuřínová P, Sýkora J, Káňová K, Hrstka R, Císařová I, Dračínský M, Karban J. Synthesis and in vitro cytotoxicity of acetylated 3-fluoro, 4-fluoro and 3,4-difluoro analogs of D-glucosamine and D-galactosamine. Beilstein J Org Chem 2016; 12:750-9. [PMID: 27340467 PMCID: PMC4901990 DOI: 10.3762/bjoc.12.75] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 03/30/2016] [Indexed: 11/23/2022] Open
Abstract
Background: Derivatives of D-glucosamine and D-galactosamine represent an important family of the cell surface glycan components and their fluorinated analogs found use as metabolic inhibitors of complex glycan biosynthesis, or as probes for the study of protein–carbohydrate interactions. This work is focused on the synthesis of acetylated 3-deoxy-3-fluoro, 4-deoxy-4-fluoro and 3,4-dideoxy-3,4-difluoro analogs of D-glucosamine and D-galactosamine via 1,6-anhydrohexopyranose chemistry. Moreover, the cytotoxicity of the target compounds towards selected cancer cells is determined. Results: Introduction of fluorine at C-3 was achieved by the reaction of 1,6-anhydro-2-azido-2-deoxy-4-O-benzyl-β-D-glucopyranose or its 4-fluoro analog with DAST. The retention of configuration in this reaction is discussed. Fluorine at C-4 was installed by the reaction of 1,6:2,3-dianhydro-β-D-talopyranose with DAST, or by fluoridolysis of 1,6:3,4-dianhydro-2-azido-β-D-galactopyranose with KHF2. The amino group was introduced and masked as an azide in the synthesis. The 1-O-deacetylated 3-fluoro and 4-fluoro analogs of acetylated D-galactosamine inhibited proliferation of the human prostate cancer cell line PC-3 more than cisplatin and 5-fluorouracil (IC50 28 ± 3 μM and 54 ± 5 μM, respectively). Conclusion: A complete series of acetylated 3-fluoro, 4-fluoro and 3,4-difluoro analogs of D-glucosamine and D-galactosamine is now accessible by 1,6-anhydrohexopyranose chemistry. Intermediate fluorinated 1,6-anhydro-2-azido-hexopyranoses have potential as synthons in oligosaccharide assembly.
Collapse
Affiliation(s)
- Štěpán Horník
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 02 Praha, Czech Republic
| | - Lucie Červenková Šťastná
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 02 Praha, Czech Republic
| | - Petra Cuřínová
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 02 Praha, Czech Republic
| | - Jan Sýkora
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 02 Praha, Czech Republic
| | - Kateřina Káňová
- Regional Centre for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied and Molecular Oncology, Masaryk Memorial Cancer Institute, Žlutý kopec 7, 656 53 Brno, Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry, Charles University, Hlavova 2030, 128 43 Praha 2, Czech Republic
| | - Martin Dračínský
- Institute of Organic Chemistry and Biochemistry, Flemingovo nám. 2, 166 10 Praha 6, Czech Republic
| | - Jindřich Karban
- Institute of Chemical Process Fundamentals of the CAS, Rozvojová 135, 165 02 Praha, Czech Republic
| |
Collapse
|
48
|
Nischan N, Kohler JJ. Advances in cell surface glycoengineering reveal biological function. Glycobiology 2016; 26:789-96. [PMID: 27066802 DOI: 10.1093/glycob/cww045] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 04/04/2016] [Indexed: 12/31/2022] Open
Abstract
Cell surface glycans are critical mediators of cell-cell, cell-ligand, and cell-pathogen interactions. By controlling the set of glycans displayed on the surface of a cell, it is possible to gain insight into the biological functions of glycans. Moreover, control of glycan expression can be used to direct cellular behavior. While genetic approaches to manipulate glycosyltransferase gene expression are available, their utility in glycan engineering has limitations due to the combinatorial nature of glycan biosynthesis and the functional redundancy of glycosyltransferase genes. Biochemical and chemical strategies offer valuable complements to these genetic approaches, notably by enabling introduction of unnatural functionalities, such as fluorophores, into cell surface glycans. Here, we describe some of the most recent developments in glycoengineering of cell surfaces, with an emphasis on strategies that employ novel chemical reagents. We highlight key examples of how these advances in cell surface glycan engineering enable study of cell surface glycans and their function. Exciting new technologies include synthetic lipid-glycans, new chemical reporters for metabolic oligosaccharide engineering to allow tandem and in vivo labeling of glycans, improved chemical and enzymatic methods for glycoproteomics, and metabolic glycosyltransferase inhibitors. Many chemical and biochemical reagents for glycan engineering are commercially available, facilitating their adoption by the biological community.
Collapse
Affiliation(s)
- Nicole Nischan
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jennifer J Kohler
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
49
|
Bodnar E, Raymond C, Lopez PG, Villacrés C, Butler M, Schoenhofen IC, Durocher Y, Perreault H. Mass spectrometric analysis of products of metabolic glycan engineering with azido-modification of sialic acids. Anal Bioanal Chem 2015; 407:8945-58. [PMID: 26362153 DOI: 10.1007/s00216-015-9010-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 07/22/2015] [Accepted: 08/26/2015] [Indexed: 12/18/2022]
Abstract
Metabolic engineering of glycans present on antibodies and other glycoproteins is becoming an interesting research area for improving our understanding of the glycome. With knowledge of the sialic acid biosynthetic pathways, the experiments described in this report are based on a published procedure involving the addition of a synthesized azido-mannosamine sugar into cell culture media and evaluation of downstream expression as azido-sialic acid. This unique bioorthogonal sugar has the potential for a variety of "click chemistry" reactions through the azide linkage, which allow for it to be isolated and quantified given the choice of label. In this report, mass spectrometry was used to investigate and optimize the cellular absorption of peracetylated N-azidoacetylmannosamine (Ac4ManNAz) to form N-azidoacetylneuraminic acid (SiaNAz) in a Chinese hamster ovary (CHO) cell line transiently expressing a double mutant trastuzumab (TZMm2), human galactosyltransferase 1 (GT), and human α-2,6-sialyltransferase (ST6). This in vivo approach is compared to in vitro enzymatic addition SiaNAz onto TZMm2 using soluble β-galactosamide α-2,6-sialyltransferase 1 and CMP-SiaNAz as donor. The in vivo results suggest that for this mAb, concentrations above 100 μM of Ac4ManNAz are necessary to allow for observation of terminal SiaNAz on tryptic peptides of TZMm2 by matrix-assisted laser desorption ionization (MALDI) mass spectrometry. This is further confirmed by a parallel study on the production of EG2-hFc monoclonal antibody (Zhang J et al. Prot Expr Purific 65(1); 77-82, 2009) in the presence of increasing concentrations of Ac4ManNAz.
Collapse
Affiliation(s)
- Edward Bodnar
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Céline Raymond
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, H4P 2R2, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Paul G Lopez
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Carina Villacrés
- Microbiology Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Michael Butler
- Microbiology Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Ian C Schoenhofen
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, K1A 0R6, Canada
| | - Yves Durocher
- Human Health Therapeutics Portfolio, National Research Council Canada, Montreal, QC, H4P 2R2, Canada.,Département de biochimie et médecine moléculaire, Université de Montréal, Montreal, QC, H3C 3J7, Canada
| | - Hélène Perreault
- Chemistry Department, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
| |
Collapse
|
50
|
Badur MG, Zhang H, Metallo CM. Enzymatic passaging of human embryonic stem cells alters central carbon metabolism and glycan abundance. Biotechnol J 2015; 10:1600-11. [PMID: 26289220 DOI: 10.1002/biot.201400749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 07/10/2015] [Accepted: 08/18/2015] [Indexed: 12/26/2022]
Abstract
To realize the potential of human embryonic stem cells (hESCs) in regenerative medicine and drug discovery applications, large numbers of cells that accurately recapitulate cell and tissue function must be robustly produced. Previous studies have suggested that genetic instability and epigenetic changes occur as a consequence of enzymatic passaging. However, the potential impacts of such passaging methods on the metabolism of hESCs have not been described. Using stable isotope tracing and mass spectrometry-based metabolomics, we have explored how different passaging reagents impact hESC metabolism. Enzymatic passaging caused significant decreases in glucose utilization throughout central carbon metabolism along with attenuated de novo lipogenesis. In addition, we developed and validated a method for rapidly quantifying glycan abundance and isotopic labeling in hydrolyzed biomass. Enzymatic passaging reagents significantly altered levels of glycans immediately after digestion but surprisingly glucose contribution to glycans was not affected. These results demonstrate that there is an immediate effect on hESC metabolism after enzymatic passaging in both central carbon metabolism and biosynthesis. HESCs subjected to enzymatic passaging are routinely placed in a state requiring re-synthesis of biomass components, subtly influencing their metabolic needs in a manner that may impact cell performance in regenerative medicine applications.
Collapse
Affiliation(s)
- Mehmet G Badur
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Hui Zhang
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | | |
Collapse
|