1
|
Azizi P, Drobek C, Budday S, Seitz H. Simulating the mechanical stimulation of cells on a porous hydrogel scaffold using an FSI model to predict cell differentiation. Front Bioeng Biotechnol 2023; 11:1249867. [PMID: 37799813 PMCID: PMC10549991 DOI: 10.3389/fbioe.2023.1249867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/07/2023] [Indexed: 10/07/2023] Open
Abstract
3D-structured hydrogel scaffolds are frequently used in tissue engineering applications as they can provide a supportive and biocompatible environment for the growth and regeneration of new tissue. Hydrogel scaffolds seeded with human mesenchymal stem cells (MSCs) can be mechanically stimulated in bioreactors to promote the formation of cartilage or bone tissue. Although in vitro and in vivo experiments are necessary to understand the biological response of cells and tissues to mechanical stimulation, in silico methods are cost-effective and powerful approaches that can support these experimental investigations. In this study, we simulated the fluid-structure interaction (FSI) to predict cell differentiation on the entire surface of a 3D-structured hydrogel scaffold seeded with cells due to dynamic compressive load stimulation. The computational FSI model made it possible to simultaneously investigate the influence of both mechanical deformation and flow of the culture medium on the cells on the scaffold surface during stimulation. The transient one-way FSI model thus opens up significantly more possibilities for predicting cell differentiation in mechanically stimulated scaffolds than previous static microscale computational approaches used in mechanobiology. In a first parameter study, the impact of the amplitude of a sinusoidal compression ranging from 1% to 10% on the phenotype of cells seeded on a porous hydrogel scaffold was analyzed. The simulation results show that the number of cells differentiating into bone tissue gradually decreases with increasing compression amplitude, while differentiation into cartilage cells initially multiplied with increasing compression amplitude in the range of 2% up to 7% and then decreased. Fibrous cell differentiation was predicted from a compression of 5% and increased moderately up to a compression of 10%. At high compression amplitudes of 9% and 10%, negligible areas on the scaffold surface experienced high stimuli where no cell differentiation could occur. In summary, this study shows that simulation of the FSI system is a versatile approach in computational mechanobiology that can be used to study the effects of, for example, different scaffold designs and stimulation parameters on cell differentiation in mechanically stimulated 3D-structured scaffolds.
Collapse
Affiliation(s)
- Pedram Azizi
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Christoph Drobek
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| | - Silvia Budday
- Department of Mechanical Engineering, Institute of Applied Mechanics, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
| | - Hermann Seitz
- Chair of Microfluidics, Faculty of Mechanical Engineering and Marine Technology, University of Rostock, Rostock, Germany
| |
Collapse
|
2
|
Xu W, Zhu J, Hu J, Xiao L. Engineering the biomechanical microenvironment of chondrocytes towards articular cartilage tissue engineering. Life Sci 2022; 309:121043. [DOI: 10.1016/j.lfs.2022.121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Accepted: 10/02/2022] [Indexed: 11/28/2022]
|
3
|
A Critical Aspect of Bioreactor Designing and Its Application for the Generation of Tissue Engineered Construct: Emphasis on Clinical Translation of Bioreactor. BIOTECHNOL BIOPROC E 2022. [DOI: 10.1007/s12257-021-0128-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
CyMAD bioreactor: A cyclic magnetic actuation device for magnetically mediated mechanical stimulation of 3D bioprinted hydrogel scaffolds. J Mech Behav Biomed Mater 2022; 131:105253. [DOI: 10.1016/j.jmbbm.2022.105253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 12/23/2022]
|
5
|
Zhang J, Zhang M, Lin R, Du Y, Wang L, Yao Q, Zannettino A, Zhang H. Chondrogenic preconditioning of mesenchymal stem/stromal cells within a magnetic scaffold for osteochondral repair. Biofabrication 2022; 14. [PMID: 35226893 DOI: 10.1088/1758-5090/ac5935] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 02/28/2022] [Indexed: 12/11/2022]
Abstract
Stem cell therapy using mesenchymal stromal/stem cells (MSCs) represents a novel approach to treating severe diseases, including osteoarthritis (OA). However, the therapeutic benefit of MSCs is highly dependent on their differentiation state, which can be regulated by many factors. Herein, three-dimensional (3D) magnetic scaffolds were successfully fabricated by incorporating magnetic nanoparticles (MNPs) into electrospun gelatin nanofibers. When positioned near a rotating magnet (f= 0.5 Hz), the magnetic scaffolds with the embedded MSCs were driven upward/downward in the culture container to induce mechanical stimulation to MSCs due to spatial confinement and fluid flow. The extracellular matrix-mimicking scaffold and the alternating magnetic field significantly enhanced chondrogenesis instead of osteogenesis. Furthermore, the fibre topography could be tuned with different compositions of the coating layer on MNPs, and the topography had a significant impact on MSC differentiation. Selective up-regulation of chondrogenesis-related genes (COL2A1andACAN) was found for the magnetic scaffolds with citric acid-coated MNPs (CAG). In contrast, osteogenesis-related genes (RUNX2andSPARC) were selectively and significantly up-regulated for the magnetic scaffolds with polyvinylpyrrolidone-coated MNPs (PVPG). Prior to implantation in vivo, chondrogenic preconditioning of MSCs within the CAG scaffolds under a dynamic magnetic field resulted in superior osteochondral repair. Hence, the magnetic scaffolds together with an in-house rotating magnet device could be a novel platform to initiate multiple stimuli on stem cell differentiation for effective repair of osteochondral defects.
Collapse
Affiliation(s)
- Jiabin Zhang
- Sun Yat-Sen University, Sun Yat-Sen University, Guangzhou, 510275, CHINA
| | - Ming Zhang
- Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Department of Orthopedics, Zhongda Hospital, School of Medicine, Southeast University, Nanjing , Jiangsu Province, China, Nangjing, Jiangsu, 210009, CHINA
| | - Rongcai Lin
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, 210006, CHINA
| | - Yuguang Du
- Institute of Process Engineering Chinese Academy of Sciences, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China, Beijing, Beijing, 100190, CHINA
| | - Liming Wang
- Department of Orthopaedic Surgery Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, Jiangsu Province, 210006, CHINA
| | - Qingqiang Yao
- Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Department of Orthopaedic Surgery, Institute of Digital Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, China, Nanjing, 210006, CHINA
| | - Andrew Zannettino
- Adelaide Medical School Research, The University of Adelaide, Adelaide, Australia, Adelaide, South Australia, 5005, AUSTRALIA
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, CA 91711, USA, 535 Watson Drive, Claremont, CA, USA, Claremont, California, 91711, UNITED STATES
| |
Collapse
|
6
|
Szojka ARA, Liang Y, Marqueti RDC, Moore CN, Erkut EJN, Kunze M, Mulet-Sierra A, Jomha NM, Adesida AB. Time course of 3D fibrocartilage formation by expanded human meniscus fibrochondrocytes in hypoxia. J Orthop Res 2022; 40:495-503. [PMID: 33788325 DOI: 10.1002/jor.25046] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Revised: 03/04/2021] [Accepted: 03/24/2021] [Indexed: 02/04/2023]
Abstract
Adult human meniscus fibrocartilage is avascular and nonhealing after injury. Meniscus tissue engineering aims to replace injured meniscus with lab-grown fibrocartilage. Dynamic culture systems may be necessary to generate fibrocartilage of sufficient mechanical properties for implantation; however, the optimal static preculture conditions before initiation of dynamic culture are unknown. This study thus investigated the time course of fibrocartilage formation by human meniscus fibrochondrocytes on a three-dimensional biomaterial scaffold under various static conditions. Human meniscus fibrochondrocytes from partial meniscectomy were expanded to passage 1 (P1) or P2 (3.0 ± 0.4 and 6.5 ± 0.6 population doublings), seeded onto type I collagen scaffolds, and grown in hypoxia (HYP, 3% O2 ) or normoxia (NRX, 20% O2 ) for 3, 6, and 9 weeks. Mechanical properties were not different between P1 and P2 cell-based constructs. Mechanical properties were lower in HYP, increased continually in NRX only, and were positively correlated with glycosaminoglycan content and accumulation of hyaline cartilage-like matrix components. The most mechanically competent tissues (NRX/9 weeks) reached 1/5 of the native meniscus instantaneous compression modulus but had an increasingly hypertrophic matrix-forming phenotype. HYP consistently suppressed the hypertrophic phenotype. The results provide baselines of engineered meniscus fibrocartilage properties under static conditions, which can be used to select a preculture strategy for dynamic culture depending on the desired combination of mechanical properties, hyaline cartilage-like matrix abundance, and hypertrophic phenotype.
Collapse
Affiliation(s)
- Alexander R A Szojka
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Yan Liang
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Rita de Cássia Marqueti
- Graduate Program of Rehabilitation Sciences, University of Brasília (UnB), Brasília, Distrito Federal, Brazil
| | - Colleen N Moore
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Esra J N Erkut
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Melanie Kunze
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Aillette Mulet-Sierra
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Nadr M Jomha
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| | - Adetola B Adesida
- Department of Surgery, Divisions of Orthopedic Surgery and Surgical Research, Faculty of Medicine and Dentistry, Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
7
|
In vitro chondral culture under compression and shear stimuli. From mesenchymal stem cells to hyaline cartilage. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020. [DOI: 10.1016/j.recote.2020.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
8
|
Sánchez-Pérez C, Fernández-Santos ME, Chana-Rodríguez F, Vaquero-Martín J, Crego-Vita D, Carbó Laso E, González de Torre I, Narbona-Cárceles J. In vitro chondral culture under compression and shear stimuli. From mesenchymal stem cells to hyaline cartilage. Rev Esp Cir Ortop Traumatol (Engl Ed) 2020; 64:380-387. [PMID: 32792287 DOI: 10.1016/j.recot.2020.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 04/29/2020] [Accepted: 06/14/2020] [Indexed: 11/30/2022] Open
Abstract
INTRODUCTION The in vitro creation of hyaline joint cartilage is a challenge since, to date, the ex vivo synthesis of a structured tissue with the same biomechanical and histological properties of the joint cartilage has not been achieved. To simulate the physiological conditions we have designed an in vitro culture system that reproduces joint movement. MATERIAL AND METHOD We have developed a cell culture bioreactor that prints a mechanical stimulus on an elastin matrix, in which mesenchymal stem cells (MSC) are embedded. The first phase of study corresponds to the development of a bioreactor for hyaline cartilage culture and the verification of cell viability in the elastin matrix in the absence of stimulus. The second phase of the study includes the MSC culture under mechanical stimulus and the analysis of the resulting tissue. RESULTS After culture under mechanical stimulation we did not obtain hyaline tissue due to lack of cellularity and matrix destructuring. CONCLUSION The stimulus pattern used has not been effective in generating hyaline cartilage, so other combinations should be explored in future research.
Collapse
Affiliation(s)
- C Sánchez-Pérez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España.
| | - M E Fernández-Santos
- Unidad de Producción Celular, Instituto de Investigación Sanitaria Gregorio Marañón, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - F Chana-Rodríguez
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - J Vaquero-Martín
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | - D Crego-Vita
- Servicio de Cirugía Ortopédica y Traumatología, Hospital Central de la Defensa Gómez Ulla, Madrid, España
| | - E Carbó Laso
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| | | | - J Narbona-Cárceles
- Servicio de Cirugía Ortopédica y Traumatología, Hospital General Universitario Gregorio Marañón, Madrid, España
| |
Collapse
|
9
|
Qu P, Qi J, Han Y, Zhou L, Xie D, Song H, Geng C, Zhang K, Wang G. Effects of Rolling-Sliding Mechanical Stimulation on Cartilage Preserved In Vitro. Cell Mol Bioeng 2019; 12:301-310. [PMID: 31719916 DOI: 10.1007/s12195-019-00584-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 06/26/2019] [Indexed: 12/18/2022] Open
Abstract
Introduction Mechanical stimulation is important for maintaining cartilage function. We used a loading device to exert rolling-sliding mechanical stimulation on cartilage preserved in vitro to investigate cartilage viability and the involved mechanisms. Methods Osteochondral grafts from pig knees were randomly classified into loading and control groups. The loading group cartilage was subjected to cycles of mechanical stimulation with specified frequency/time/pressure combinations every 3 days; Then the DMEM was refreshed, and the cartilage was preserved in vitro. The control group cartilage was preserved in DMEM throughout the process and was changed every 3 days. On days 14 and 28, the chondrocyte survival rate, histology, and Young's modulus of the cartilage were measured. Western blots were performed after 2 h of loading to evaluate the protein expression. Results The loading group showed a significantly higher chondrocyte survival rate, proteoglycan and type II collagen content, and Young's modulus than did the control group on day 14, but no statistically significant differences were found on day 28. After two hours of the loading, the phosphorylation levels of MEK and ERK1/2 increased, and the expression of caspase-3, cleaved caspase-3 and bax decreased. Conclusion These results suggest that periodic rolling-sliding mechanical stimulation can increase cartilage vitality in 2 weeks; a possible mechanism is that mechanical stimulation activates the MEK/ERK signalling pathway, thus inhibiting apoptotic protein expression. This loading preservation scheme could be used by cartilage tissue banks to improve cartilage preservation in vitro and enhance the quality of cartilage repair.
Collapse
Affiliation(s)
- Pengwei Qu
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Jianhong Qi
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Yunning Han
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Lu Zhou
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Di Xie
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Hongqiang Song
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Caiyun Geng
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Kaihong Zhang
- Institute of Sports Medicine, Shandong First Medical University&Shandong Academy of Medical Science, 619 Changcheng Road, Taian, 271016 Shandong China
| | - Guozhu Wang
- College of Radiology, Shandong First Medical University&Shandong Academy of Medical Science, Taian, 271016 Shandong China
| |
Collapse
|
10
|
Cao W, Lin W, Cai H, Chen Y, Man Y, Liang J, Wang Q, Sun Y, Fan Y, Zhang X. Dynamic mechanical loading facilitated chondrogenic differentiation of rabbit BMSCs in collagen scaffolds. Regen Biomater 2019; 6:99-106. [PMID: 30967964 PMCID: PMC6446999 DOI: 10.1093/rb/rbz005] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/10/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Mechanical signals have been played close attention to regulate chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs). In this study, dynamic mechanical loading simulation with natural frequencies and intensities were applied to the 3D cultured BMSCs-collagen scaffold constructs. We investigated the effects of dynamic mechanical loading on cell adhesion, uniform distribution, proliferation, secretion of extracellular matrix (ECM) and chondrogenic differentiation of BMSCs-collagen scaffold constructs. The results indicated that dynamic mechanical loading facilitated the BMSCs adhesion, uniform distribution, proliferation and secretion of ECM with a slight contraction, which significantly improved the mechanical strength of the BMSCs-collagen scaffold constructs for better mimicking the structure and function of a native cartilage. Gene expression results indicated that dynamic mechanical loading contributed to the chondrogenic differentiation of BMSCs with higher levels of AGG, COL2A1 and SOX9 genes, and prevented of hypertrophic process with lower levels of COL10A1, and reduced the possibility of fibrocartilage formation due to down-regulated COL1A2. In conclusion, this study emphasized the important role of dynamic mechanical loading on promoting BMSCs chondrogenic differentiation and maintaining the cartilage phenotype for in vitro reconstruction of tissue-engineered cartilage, which provided an attractive prospect and a feasibility strategy for cartilage repair.
Collapse
Affiliation(s)
- Wanxu Cao
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Weimin Lin
- State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hanxu Cai
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yafang Chen
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yi Man
- State Key Laboratory of Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jie Liang
- Sichuan Testing Center for Biomaterials and Medical Devices, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yong Sun
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Yujiang Fan
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, China
| |
Collapse
|
11
|
Pan YL, Ma Y, Guo Y, Tu J, Guo GP, Ma SM, Zheng SY, Tu PC, Yu BB, Huang GC. Effects of Clematis chinensis Osbeck mediated by low-intensity pulsed ultrasound on transforming growth factor-β/Smad signaling in rabbit articular chondrocytes. J Med Ultrason (2001) 2019; 46:177-186. [DOI: 10.1007/s10396-018-0920-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 11/16/2018] [Indexed: 10/27/2022]
|
12
|
Huang X, Das R, Patel A, Nguyen TD. Physical Stimulations for Bone and Cartilage Regeneration. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2018; 4:216-237. [PMID: 30740512 PMCID: PMC6366645 DOI: 10.1007/s40883-018-0064-0] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 06/07/2018] [Indexed: 12/26/2022]
Abstract
A wide range of techniques and methods are actively invented by clinicians and scientists who are dedicated to the field of musculoskeletal tissue regeneration. Biological, chemical, and physiological factors, which play key roles in musculoskeletal tissue development, have been extensively explored. However, physical stimulation is increasingly showing extreme importance in the processes of osteogenic and chondrogenic differentiation, proliferation and maturation through defined dose parameters including mode, frequency, magnitude, and duration of stimuli. Studies have shown manipulation of physical microenvironment is an indispensable strategy for the repair and regeneration of bone and cartilage, and biophysical cues could profoundly promote their regeneration. In this article, we review recent literature on utilization of physical stimulation, such as mechanical forces (cyclic strain, fluid shear stress, etc.), electrical and magnetic fields, ultrasound, shock waves, substrate stimuli, etc., to promote the repair and regeneration of bone and cartilage tissue. Emphasis is placed on the mechanism of cellular response and the potential clinical usage of these stimulations for bone and cartilage regeneration.
Collapse
|
13
|
Repair of Damaged Articular Cartilage: Current Approaches and Future Directions. Int J Mol Sci 2018; 19:ijms19082366. [PMID: 30103493 PMCID: PMC6122081 DOI: 10.3390/ijms19082366] [Citation(s) in RCA: 165] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/07/2018] [Accepted: 08/07/2018] [Indexed: 12/28/2022] Open
Abstract
Articular hyaline cartilage is extensively hydrated, but it is neither innervated nor vascularized, and its low cell density allows only extremely limited self-renewal. Most clinical and research efforts currently focus on the restoration of cartilage damaged in connection with osteoarthritis or trauma. Here, we discuss current clinical approaches for repairing cartilage, as well as research approaches which are currently developing, and those under translation into clinical practice. We also describe potential future directions in this area, including tissue engineering based on scaffolding and/or stem cells as well as a combination of gene and cell therapy. Particular focus is placed on cell-based approaches and the potential of recently characterized chondro-progenitors; progress with induced pluripotent stem cells is also discussed. In this context, we also consider the ability of different types of stem cell to restore hyaline cartilage and the importance of mimicking the environment in vivo during cell expansion and differentiation into mature chondrocytes.
Collapse
|
14
|
Salinas EY, Hu JC, Athanasiou K. A Guide for Using Mechanical Stimulation to Enhance Tissue-Engineered Articular Cartilage Properties. TISSUE ENGINEERING PART B-REVIEWS 2018; 24:345-358. [PMID: 29562835 DOI: 10.1089/ten.teb.2018.0006] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The use of tissue-engineered articular cartilage (TEAC) constructs has the potential to become a powerful treatment option for cartilage lesions resulting from trauma or early stages of pathology. Although fundamental tissue-engineering strategies based on the use of scaffolds, cells, and signals have been developed, techniques that lead to biomimetic AC constructs that can be translated to in vivo use are yet to be fully confirmed. Mechanical stimulation during tissue culture can be an effective strategy to enhance the mechanical, structural, and cellular properties of tissue-engineered constructs toward mimicking those of native AC. This review focuses on the use of mechanical stimulation to attain and enhance the properties of AC constructs needed to translate these implants to the clinic. In vivo, mechanical loading at maximal and supramaximal physiological levels has been shown to be detrimental to AC through the development of degenerative changes. In contrast, multiple studies have revealed that during culture, mechanical stimulation within narrow ranges of magnitude and duration can produce anisotropic, mechanically robust AC constructs with high cellular viability. Significant progress has been made in evaluating a variety of mechanical stimulation techniques on TEAC, either alone or in combination with other stimuli. These advancements include determining and optimizing efficacious loading parameters (e.g., duration and frequency) to yield improvements in construct design criteria, such as collagen II content, compressive stiffness, cell viability, and fiber organization. With the advancement of mechanical stimulation as a potent strategy in AC tissue engineering, a compendium detailing the results achievable by various stimulus regimens would be of great use for researchers in academia and industry. The objective is to list the qualitative and quantitative effects that can be attained when direct compression, hydrostatic pressure, shear, and tensile loading are used to tissue-engineer AC. Our goal is to provide a practical guide to their use and optimization of loading parameters. For each loading condition, we will also present and discuss benefits and limitations of bioreactor configurations that have been used. The intent is for this review to serve as a reference for including mechanical stimulation strategies as part of AC construct culture regimens.
Collapse
Affiliation(s)
- Evelia Y Salinas
- Biomedical Engineering Department, University of California , Irvine, California
| | - Jerry C Hu
- Biomedical Engineering Department, University of California , Irvine, California
| | - Kyriacos Athanasiou
- Biomedical Engineering Department, University of California , Irvine, California
| |
Collapse
|
15
|
Anderson DE, Johnstone B. Dynamic Mechanical Compression of Chondrocytes for Tissue Engineering: A Critical Review. Front Bioeng Biotechnol 2017; 5:76. [PMID: 29322043 PMCID: PMC5732133 DOI: 10.3389/fbioe.2017.00076] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 11/23/2017] [Indexed: 01/19/2023] Open
Abstract
Articular cartilage functions to transmit and translate loads. In a classical structure-function relationship, the tissue resides in a dynamic mechanical environment that drives the formation of a highly organized tissue architecture suited to its biomechanical role. The dynamic mechanical environment includes multiaxial compressive and shear strains as well as hydrostatic and osmotic pressures. As the mechanical environment is known to modulate cell fate and influence tissue development toward a defined architecture in situ, dynamic mechanical loading has been hypothesized to induce the structure-function relationship during attempts at in vitro regeneration of articular cartilage. Researchers have designed increasingly sophisticated bioreactors with dynamic mechanical regimes, but the response of chondrocytes to dynamic compression and shear loading remains poorly characterized due to wide variation in study design, system variables, and outcome measurements. We assessed the literature pertaining to the use of dynamic compressive bioreactors for in vitro generation of cartilaginous tissue from primary and expanded chondrocytes. We used specific search terms to identify relevant publications from the PubMed database and manually sorted the data. It was very challenging to find consensus between studies because of species, age, cell source, and culture differences, coupled with the many loading regimes and the types of analyses used. Early studies that evaluated the response of primary bovine chondrocytes within hydrogels, and that employed dynamic single-axis compression with physiologic loading parameters, reported consistently favorable responses at the tissue level, with upregulation of biochemical synthesis and biomechanical properties. However, they rarely assessed the cellular response with gene expression or mechanotransduction pathway analyses. Later studies that employed increasingly sophisticated biomaterial-based systems, cells derived from different species, and complex loading regimes, did not necessarily corroborate prior positive results. These studies report positive results with respect to very specific conditions for cellular responses to dynamic load but fail to consistently achieve significant positive changes in relevant tissue engineering parameters, particularly collagen content and stiffness. There is a need for standardized methods and analyses of dynamic mechanical loading systems to guide the field of tissue engineering toward building cartilaginous implants that meet the goal of regenerating articular cartilage.
Collapse
Affiliation(s)
- Devon E Anderson
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| | - Brian Johnstone
- Department of Orthopaedics and Rehabilitation, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
16
|
A novel bioreactor system for biaxial mechanical loading enhances the properties of tissue-engineered human cartilage. Sci Rep 2017; 7:16997. [PMID: 29208903 PMCID: PMC5717235 DOI: 10.1038/s41598-017-16523-x] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/13/2017] [Indexed: 11/15/2022] Open
Abstract
The ex vivo engineering of autologous cartilage tissues has the potential to revolutionize the clinical management of joint disorders. Yet, high manufacturing costs and variable outcomes associated with tissue-engineered implants are still limiting their application. To improve clinical outcomes and facilitate a wider use of engineered tissues, automated bioreactor systems capable of enhancing and monitoring neotissues are required. Here, we developed an innovative system capable of applying precise uni- or biaxial mechanical stimulation to developing cartilage neotissues in a tightly controlled and automated fashion. The bioreactor allows for simple control over the loading parameters with a user-friendly graphical interface and is equipped with a load cell for monitoring tissue maturation. Applying our bioreactor, we demonstrate that human articular chondrocytes encapsulated in hydrogels composed of gelatin methacryloyl (GelMA) and hyaluronic acid methacrylate (HAMA) respond to uni- and biaxial mechanical stimulation by upregulation of hyaline cartilage-specific marker genes. We further demonstrate that intermittent biaxial mechanostimulation enhances accumulation of hyaline cartilage-specific extracellular matrix. Our study underlines the stimulatory effects of mechanical loading on the biosynthetic activity of human chondrocytes in engineered constructs and the need for easy-to-use, automated bioreactor systems in cartilage tissue engineering.
Collapse
|
17
|
Hendrikson WJ, van Blitterswijk CA, Rouwkema J, Moroni L. The Use of Finite Element Analyses to Design and Fabricate Three-Dimensional Scaffolds for Skeletal Tissue Engineering. Front Bioeng Biotechnol 2017; 5:30. [PMID: 28567371 PMCID: PMC5434139 DOI: 10.3389/fbioe.2017.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 04/25/2017] [Indexed: 01/13/2023] Open
Abstract
Computational modeling has been increasingly applied to the field of tissue engineering and regenerative medicine. Where in early days computational models were used to better understand the biomechanical requirements of targeted tissues to be regenerated, recently, more and more models are formulated to combine such biomechanical requirements with cell fate predictions to aid in the design of functional three-dimensional scaffolds. In this review, we highlight how computational modeling has been used to understand the mechanisms behind tissue formation and can be used for more rational and biomimetic scaffold-based tissue regeneration strategies. With a particular focus on musculoskeletal tissues, we discuss recent models attempting to predict cell activity in relation to specific mechanical and physical stimuli that can be applied to them through porous three-dimensional scaffolds. In doing so, we review the most common scaffold fabrication methods, with a critical view on those technologies that offer better properties to be more easily combined with computational modeling. Finally, we discuss how modeling, and in particular finite element analysis, can be used to optimize the design of scaffolds for skeletal tissue regeneration.
Collapse
Affiliation(s)
- Wim. J. Hendrikson
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Clemens. A. van Blitterswijk
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Maastricht, Netherlands
| | - Jeroen Rouwkema
- Department of Biomechanical Engineering, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
| | - Lorenzo Moroni
- Department of Tissue Regeneration, MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, Netherlands
- Complex Tissue Regeneration Department, MERLN Institute for Technology Inspired Regenerative Medicine, University of Maastricht, Maastricht, Netherlands
| |
Collapse
|
18
|
Extracorporeal shockwave therapy promotes chondrogenesis in cartilage tissue engineering: A hypothesis based on previous evidence. Med Hypotheses 2016; 91:9-15. [DOI: 10.1016/j.mehy.2016.03.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 03/17/2016] [Accepted: 03/25/2016] [Indexed: 01/08/2023]
|
19
|
Nondestructive Assessment of Engineered Cartilage Composition by Near Infrared Spectroscopy. Ann Biomed Eng 2016; 44:680-92. [PMID: 26817457 DOI: 10.1007/s10439-015-1536-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Tissue engineering presents a strategy to overcome the limitations of current tissue healing methods. Scaffolds, cells, external growth factors and mechanical input are combined in an effort to obtain constructs with properties that mimic native tissues. However, engineered constructs developed using similar culture environments can have very different matrix composition and biomechanical properties. Accordingly, a nondestructive technique to assess constructs during development such that appropriate compositional endpoints can be defined is desirable. Near infrared spectroscopy (NIRS) analysis is a modality being investigated to address the challenges associated with current evaluation techniques, which includes nondestructive compositional assessment. In the present study, cartilage tissue constructs were grown using chondrocytes seeded onto polyglycolic acid (PGA) scaffolds in similar environments in three separate tissue culture experiments and monitored using NIRS. Multivariate partial least squares (PLS) analysis models of NIR spectra were calculated and used to predict tissue composition, with biochemical assay information used as the reference data. Results showed that for combined data from all tissue culture experiments, PLS models were able to assess composition with significant correlations to reference values, including engineered cartilage water (at 5200 cm(-1), R = 0.68, p = 0.03), proteoglycan (at 4310 cm(-1), R = 0.82, p = 0.007), and collagen (at 4610 cm(-1), R = 0.84, p = 0.005). In addition, degradation of PGA was monitored using specific NIRS frequencies. These results demonstrate that NIR spectroscopy combined with multivariate analysis provides a nondestructive modality to assess engineered cartilage, which could provide information to determine the optimal time for tissue harvest for clinical applications.
Collapse
|
20
|
Tekari A, Luginbuehl R, Hofstetter W, Egli RJ. Bovine Osteochondral Tissues: A Questionable Model to Evaluate Mechanical Loading In Vitro. IEEE Trans Nanobioscience 2015; 14:716-21. [DOI: 10.1109/tnb.2015.2447513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
21
|
Hoffmann W, Feliciano S, Martin I, de Wild M, Wendt D. Novel Perfused Compression Bioreactor System as an in vitro Model to Investigate Fracture Healing. Front Bioeng Biotechnol 2015; 3:10. [PMID: 25699254 PMCID: PMC4313709 DOI: 10.3389/fbioe.2015.00010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/16/2015] [Indexed: 01/08/2023] Open
Abstract
Secondary bone fracture healing is a physiological process that leads to functional tissue regeneration via endochondral bone formation. In vivo studies have demonstrated that early mobilization and the application of mechanical loads enhances the process of fracture healing. However, the influence of specific mechanical stimuli and particular effects during specific phases of fracture healing remain to be elucidated. In this work, we have developed and provided proof-of-concept of an in vitro human organotypic model of physiological loading of a cartilage callus, based on a novel perfused compression bioreactor (PCB) system. We then used the fracture callus model to investigate the regulatory role of dynamic mechanical loading. Our findings provide a proof-of-principle that dynamic mechanical loading applied by the PCB can enhance the maturation process of mesenchymal stromal cells toward late hypertrophic chondrocytes and the mineralization of the deposited extracellular matrix. The PCB provides a promising tool to study fracture healing and for the in vitro assessment of alternative fracture treatments based on engineered tissue grafts or pharmaceutical compounds, allowing for the reduction of animal experiments.
Collapse
Affiliation(s)
- Waldemar Hoffmann
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland ; Department of Surgery, University Hospital Basel , Basel , Switzerland ; School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz , Switzerland
| | - Sandra Feliciano
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland ; Department of Surgery, University Hospital Basel , Basel , Switzerland
| | - Ivan Martin
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland ; Department of Surgery, University Hospital Basel , Basel , Switzerland
| | - Michael de Wild
- School of Life Sciences, Institute for Medical and Analytical Technologies, University of Applied Sciences Northwestern Switzerland , Muttenz , Switzerland
| | - David Wendt
- Department of Biomedicine, University Hospital Basel , Basel , Switzerland ; Department of Surgery, University Hospital Basel , Basel , Switzerland
| |
Collapse
|
22
|
Brady MA, Waldman SD, Ethier CR. The Application of Multiple Biophysical Cues to Engineer Functional Neocartilage for Treatment of Osteoarthritis. Part I: Cellular Response. TISSUE ENGINEERING PART B-REVIEWS 2015; 21:1-19. [DOI: 10.1089/ten.teb.2013.0757] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Mariea A. Brady
- Department of Bioengineering, Imperial College London, South Kensington, London, United Kingdom
| | | | - C. Ross Ethier
- Department of Bioengineering, Imperial College London, South Kensington, London, United Kingdom
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia
| |
Collapse
|
23
|
Abstract
Mechanical forces, including hydrodynamic shear, hydrostatic pressure, compression, tension, and friction, can have stimulatory effects on cartilage synthesis in tissue engineering systems. Bioreactors capable of exerting forces on cells and tissue constructs within a controlled culture environment are needed to provide appropriate mechanical stimuli. In this chapter, we describe the construction, assembly, and operation of a mechanobioreactor providing simultaneous dynamic shear and compressive loading on developing cartilage tissues to mimic the rolling and squeezing action of articular joints. The device is suitable for studying the effects of mechanical treatment on stem cells and chondrocytes seeded into three-dimensional scaffolds.
Collapse
|
24
|
Mechanostimulation changes the catabolic phenotype of human dedifferentiated osteoarthritic chondrocytes. Knee Surg Sports Traumatol Arthrosc 2015; 23:104-11. [PMID: 25377190 DOI: 10.1007/s00167-014-3412-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 10/27/2014] [Indexed: 10/24/2022]
Abstract
PURPOSE The treatment of cartilage defects with matrix-embedded autologous chondrocytes is a promising method to support the repair process and to foster reconstitution of full functionality of the joint. METHODS Human osteoarthritic chondrocytes were harvest from nine different patients (mean ± SD age 68 ± 8 years) who underwent total knee replacement. The chondrocytes were embedded after a precultivation phase into a collagen I hydrogel. Mid-term intermitted mechanostimulation on matrix-embedded dedifferentiated human osteoarthritic chondrocytes was performed by intermittently applying a cyclic sinusoid compression regime for 4 days (cycles of 1 h of sinusoidal stimulation (1 Hz) and 4 h of break; maximum compression 2.5%). Stimulated (Flex) and non-stimulated (No Flex) cell matrix constructs were analysed concerning the expression of genes involved in tissue metabolism, the content of sulphated glycosaminoglycans (sGAG) and the morphology of the chondrocytes. RESULTS Gene expression analysis showed a high significant increase in collagen type II expression (p < 0.001), a significant increase in aggrecan expression (p < 0.04) and a high significant decrease in MMP-13 expression (p < 0.001) under stimulation condition compared with unstimulated controls. No significant changes were found in the gene expression rate of MMP-3. This positive effect of the mechanostimulation was confirmed by the analyses of sGAG. Mechanically stimulated cell-matrix constructs had nearly tripled sGAG content than the non-stimulated control (p < 0.002). In addition, histological examination showed that morphology of chondrocytes was altered from a spindle-shaped to a chondrocyte-characteristic rounded phenotype. CONCLUSION Mid-term intermitted mechanical stimulation in vitro has the potential to improve the cell quality of cell matrix constructs prepared from dedifferentiated osteoarthritic chondrocytes. This observation may extend the inclusion criteria for matrix-assisted autologous chondrocyte implantation (MACI) and confirms the importance of moderate dynamic compression in clinical rehabilitation after MACI.
Collapse
|
25
|
Abstract
Many technologies that underpin tissue engineering as a research field were developed with the aim of producing functional human cartilage in vitro. Much of our practical experience with three-dimensional cultures, tissue bioreactors, scaffold materials, stem cells, and differentiation protocols was gained using cartilage as a model system. Despite these advances, however, generation of engineered cartilage matrix with the composition, structure, and mechanical properties of mature articular cartilage has not yet been achieved. Currently, the major obstacles to synthesis of clinically useful cartilage constructs are our inability to control differentiation to the extent needed, and the failure of engineered and host tissues to integrate after construct implantation. The aim of this chapter is to distil from the large available body of literature the seminal approaches and experimental techniques developed for cartilage tissue engineering and to identify those specific areas requiring further research effort.
Collapse
Affiliation(s)
- Pauline M Doran
- Faculty of Science, Engineering and Technology, Swinburne University of Technology, 218, Hawthorn, Melbourne, VIC, 3122, Australia.
| |
Collapse
|
26
|
Jin G, Yang GH, Kim G. Tissue engineering bioreactor systems for applying physical and electrical stimulations to cells. J Biomed Mater Res B Appl Biomater 2014; 103:935-48. [DOI: 10.1002/jbm.b.33268] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Revised: 07/09/2014] [Accepted: 08/08/2014] [Indexed: 01/08/2023]
Affiliation(s)
- GyuHyun Jin
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering; Sungkyunkwan University; Suwon South Korea
| | - Gi-Hoon Yang
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering; Sungkyunkwan University; Suwon South Korea
| | - GeunHyung Kim
- Department of Biomechatronic Engineering, College of Biotechnology and Bioengineering; Sungkyunkwan University; Suwon South Korea
| |
Collapse
|
27
|
Alexander PG, Gottardi R, Lin H, Lozito TP, Tuan RS. Three-dimensional osteogenic and chondrogenic systems to model osteochondral physiology and degenerative joint diseases. Exp Biol Med (Maywood) 2014; 239:1080-95. [PMID: 24994814 DOI: 10.1177/1535370214539232] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Tissue engineered constructs have the potential to function as in vitro pre-clinical models of normal tissue function and disease pathogenesis for drug screening and toxicity assessment. Effective high throughput assays demand minimal systems with clearly defined performance parameters. These systems must accurately model the structure and function of the human organs and their physiological response to different stimuli. Musculoskeletal tissues present unique challenges in this respect, as they are load-bearing, matrix-rich tissues whose functionality is intimately connected to the extracellular matrix and its organization. Of particular clinical importance is the osteochondral junction, the target tissue affected in degenerative joint diseases, such as osteoarthritis (OA), which consists of hyaline articular cartilage in close interaction with subchondral bone. In this review, we present an overview of currently available in vitro three-dimensional systems for bone and cartilage tissue engineering that mimic native physiology, and the utility and limitations of these systems. Specifically, we address the need to combine bone, cartilage and other tissues to form an interactive microphysiological system (MPS) to fully capture the biological complexity and mechanical functions of the osteochondral junction of the articular joint. The potential applications of three-dimensional MPSs for musculoskeletal biology and medicine are highlighted.
Collapse
Affiliation(s)
- Peter G Alexander
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Riccardo Gottardi
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Ri.MED Foundation, Palermo, I-90133 Italy
| | - Hang Lin
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Thomas P Lozito
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA McGowan Institute for Regenerative Medicine, University of Pittsburgh, PA, 15219 USA Department of Bioengineering, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA Department of Mechanical Engineering and Materials Science, University of Pittsburgh Swanson School of Engineering, Pittsburgh, PA 15261, USA
| |
Collapse
|
28
|
Cigognini D, Lomas A, Kumar P, Satyam A, English A, Azeem A, Pandit A, Zeugolis D. Engineering in vitro microenvironments for cell based therapies and drug discovery. Drug Discov Today 2013; 18:1099-108. [DOI: 10.1016/j.drudis.2013.06.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 06/06/2013] [Accepted: 06/17/2013] [Indexed: 12/15/2022]
|
29
|
Mechanostimulation protocols for cardiac tissue engineering. BIOMED RESEARCH INTERNATIONAL 2013; 2013:918640. [PMID: 23936858 PMCID: PMC3722786 DOI: 10.1155/2013/918640] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/18/2013] [Indexed: 02/06/2023]
Abstract
Owing to the inability of self-replacement by a damaged myocardium, alternative strategies to heart transplantation have been explored within the last decades and cardiac tissue engineering/regenerative medicine is among the present challenges in biomedical research. Hopefully, several studies witness the constant extension of the toolbox available to engineer a fully functional, contractile, and robust cardiac tissue using different combinations of cells, template bioscaffolds, and biophysical stimuli obtained by the use of specific bioreactors. Mechanical forces influence the growth and shape of every tissue in our body generating changes in intracellular biochemistry and gene expression. That is why bioreactors play a central role in the task of regenerating a complex tissue such as the myocardium. In the last fifteen years a large number of dynamic culture devices have been developed and many results have been collected. The aim of this brief review is to resume in a single streamlined paper the state of the art in this field.
Collapse
|
30
|
dos Santos FF, Andrade PZ, da Silva CL, Cabral JMS. Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J 2013; 8:644-54. [PMID: 23625834 DOI: 10.1002/biot.201200373] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2012] [Revised: 03/25/2013] [Accepted: 04/02/2013] [Indexed: 01/24/2023]
Abstract
The many clinical trials currently in progress will likely lead to the widespread use of stem cell-based therapies for an extensive variety of diseases, either in autologous or allogeneic settings. With the current pace of progress, in a few years' time, the field of stem cell-based therapy should be able to respond to the market demand for safe, robust and clinically efficient stem cell-based therapeutics. Due to the limited number of stem cells that can be obtained from a single donor, one of the major challenges on the roadmap for regulatory approval of such medicinal products is the expansion of stem cells using Good Manufacturing Practices (GMP)-compliant culture systems. In fact, manufacturing costs, which include production and quality control procedures, may be the main hurdle for developing cost-effective stem cell therapies. Bioreactors provide a viable alternative to the traditional static culture systems in that bioreactors provide the required scalability, incorporate monitoring and control tools, and possess the operational flexibility to be adapted to the differing requirements imposed by various clinical applications. Bioreactor systems face a number of issues when incorporated into stem cell expansion protocols, both during development at the research level and when bioreactors are used in on-going clinical trials. This review provides an overview of the issues that must be confronted during the development of GMP-compliant bioreactors systems used to support the various clinical applications employing stem cells.
Collapse
Affiliation(s)
- Francisco F dos Santos
- Department of Bioengineering and IBB - Institute for Biotechnology and Bioengineering - Instituto Superior Técnico IST, Technical University of Lisbon, Lisboa, Portugal
| | | | | | | |
Collapse
|
31
|
Pourmohammadali H, Chandrashekar N, Medley JB. Hydromechanical stimulator for chondrocyte-seeded constructs in articular cartilage tissue engineering applications. Proc Inst Mech Eng H 2012; 227:310-6. [DOI: 10.1177/0954411912468638] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Mechanical stimulation is a key technique used for controlling the mechanical properties of tissue engineered articular cartilage constructs proposed for defect repair. The present study introduces a new technical method and device for ‘hydromechanical’ stimulation of tissue engineered articular cartilage constructs. The stimulation consists of simultaneous cyclic compression, frictional shear from a sliding indenter contact and direct pressurized fluid perfusion. Each of these modes of mechanical loading has been shown by other research groups to effectively stimulate tissue engineered constructs. A device for applying these conditions was designed, developed and tested. Two sets (high and low perfusion flow rates) of three experiments were performed, each with two samples subjected to hydromechanical stimulation conditions (compression and friction forces along with perfusion). Two other samples from each set were subjected to just compression and dynamic frictional shear forces, and two more were used as controls (not stimulated). The average amount of glycosaminoglycan retained in the constructs after 3 weeks ranked from low to high as follows: controls, hydromechanical conditions with the low-flow rate, hydromechanical conditions with the high-flow rate and just compression plus dynamic frictional shear. Statistically significant differences were not detected. However, future studies would focus on glycosaminoglycan production in the superficial zone, measuring the glycosaminoglycan released to the nutrient media, and address altering the hydromechanical stimulation parameters using the results of the present study as guidance, in attempts to achieve statistically significant increases in glycosaminoglycan production compared with the controls.
Collapse
Affiliation(s)
- Homeyra Pourmohammadali
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - Naveen Chandrashekar
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| | - John B Medley
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, ON, Canada
| |
Collapse
|