1
|
Lehr FX, Gaizauskaite A, Lipińska KE, Gilles S, Sahoo A, Inckemann R, Niederholtmeyer H. Modular Golden Gate Assembly of Linear DNA Templates for Cell-Free Prototyping. Methods Mol Biol 2025; 2850:197-217. [PMID: 39363073 DOI: 10.1007/978-1-0716-4220-7_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Cell-free transcription and translation (TXTL) systems have emerged as a powerful tool for testing genetic regulatory elements and circuits. Cell-free prototyping can dramatically accelerate the design-build-test-learn cycle of new functions in synthetic biology, in particular when quick-to-assemble linear DNA templates are used. Here, we describe a Golden-Gate-assisted, cloning-free workflow to rapidly produce linear DNA templates for TXTL reactions by assembling transcription units from basic genetic parts of a modular cloning toolbox. Functional DNA templates composed of multiple parts such as promoter, ribosomal binding site (RBS), coding sequence, and terminator are produced in vitro in a one-pot Golden Gate assembly reaction followed by polymerase chain reaction (PCR) amplification. We demonstrate assembly, cell-free testing of promoter and RBS combinations, as well as characterization of a repressor-promoter pair. By eliminating time-consuming transformation and cloning steps in cells and by taking advantage of modular cloning toolboxes, our cell-free prototyping workflow can produce data for large numbers of new assembled constructs within a single day.
Collapse
Affiliation(s)
- François-Xavier Lehr
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Aukse Gaizauskaite
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany
| | - Katarzyna Elżbieta Lipińska
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Sara Gilles
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - Arpita Sahoo
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany
| | - René Inckemann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Henrike Niederholtmeyer
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.
- Center for Synthetic Microbiology (SYNMIKRO), Philipps-Universität Marburg, Marburg, Germany.
- Synthetic Biology, TUM Campus Straubing for Biotechnology and Sustainability, Technical University of Munich, Straubing, Germany.
| |
Collapse
|
2
|
Lévrier A, Capin J, Mayonove P, Karpathakis II, Voyvodic P, DeVisch A, Zuniga A, Cohen-Gonsaud M, Cabantous S, Noireaux V, Bonnet J. Split Reporters Facilitate Monitoring of Gene Expression and Peptide Production in Linear Cell-Free Transcription-Translation Systems. ACS Synth Biol 2024; 13:3119-3127. [PMID: 39292739 DOI: 10.1021/acssynbio.4c00353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2024]
Abstract
Cell-free transcription-translation (TXTL) systems expressing genes from linear dsDNA enable the rapid prototyping of genetic devices while avoiding cloning steps. However, repetitive inclusion of a reporter gene is an incompressible cost and sometimes accounts for most of the synthesized DNA length. Here we present reporter systems based on split-GFP systems that reassemble into functional fluorescent proteins and can be used to monitor gene expression in E. coli TXTL. The 135 bp GFP10-11 fragment produces a fluorescent signal comparable to its full-length GFP counterpart when reassembling with its complementary protein synthesized from the 535 bp fragment expressed in TXTL. We show that split reporters can be used to characterize promoter libraries, with data qualitatively comparable to full-length GFP and matching in vivo expression measurements. We also use split reporters as small fusion tags to measure the TXTL protein and peptide production yield. Finally, we generalize our concept by providing a luminescent split reporter based on split-nanoluciferase. The ∼80% gene sequence length reduction afforded by split reporters lowers synthesis costs and liberates space for testing larger devices while producing a reliable output. In the peptide production context, the small size of split reporters compared with full-length GFP is less likely to bias peptide solubility assays. We anticipate that split reporters will facilitate rapid and cost-efficient genetic device prototyping, protein production, and interaction assays.
Collapse
Affiliation(s)
- Antoine Lévrier
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Université Paris Cité, INSERM U1284, Center for Research and Interdisciplinarity, F-75006 Paris, France
| | - Julien Capin
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Pauline Mayonove
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Ioannis-Ilie Karpathakis
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Peter Voyvodic
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Angelique DeVisch
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Ana Zuniga
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Martin Cohen-Gonsaud
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| | - Stéphanie Cabantous
- Cancer Research Center of Toulouse (CRCT), Inserm, Université de Toulouse, UPS, CNRS, Toulouse 31037, France
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jerome Bonnet
- Centre de Biologie Structurale (CBS), University of Montpellier, INSERM U1054, CNRS UMR5048, Montpellier 34090, France
| |
Collapse
|
3
|
Levrier A, Bowden S, Nash B, Lindner A, Noireaux V. Cell-Free Synthesis and Quantitation of Bacteriophages. Methods Mol Biol 2024; 2760:447-461. [PMID: 38468103 DOI: 10.1007/978-1-0716-3658-9_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Cell-free transcription-translation (TXTL) enables achieving an ever-growing number of applications, ranging from the rapid characterization of DNA parts to the production of biologics. As TXTL systems gain in versatility and efficacy, larger DNAs can be expressed in vitro extending the scope of cell-free biomanufacturing to new territories. The demonstration that complex entities such as infectious bacteriophages can be synthesized from their genomes in TXTL reactions opens new opportunities, especially for biomedical applications. Over the last century, phages have been instrumental in the discovery of many ground-breaking biotechnologies including CRISPR. The primary function of phages is to infect bacteria. In that capacity, phages are considered an alternative approach to tackling current societal problems such as the rise of antibiotic-resistant microbes. TXTL provides alternative means to produce phages and with several advantages over in vivo synthesis methods. In this chapter, we describe the basic procedures to purify phage genomes, cell-free synthesize phages, and quantitate them using an all-E. coli TXTL system.
Collapse
Affiliation(s)
- Antoine Levrier
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France
- Physics and Nanotechnology, University of Minnesota, Minneapolis, MN, USA
| | - Steven Bowden
- Department of Food Science and Nutrition, University of Minnesota, Saint Paul, MN, USA
| | - Bruce Nash
- Cold Spring Harbor Laboratory, DNA Learning Center, Cold Spring Harbor, NY, USA
| | - Ariel Lindner
- Center for Research and Interdisciplinarity (CRI), Université de Paris, INSERM U1284, Paris, France
| | - Vincent Noireaux
- Physics and Nanotechnology, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
4
|
Fochtman TJ, Oza JP. Established and Emerging Methods for Protecting Linear DNA in Cell-Free Expression Systems. Methods Protoc 2023; 6:mps6020036. [PMID: 37104018 PMCID: PMC10146267 DOI: 10.3390/mps6020036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Cell-free protein synthesis (CFPS) is a method utilized for producing proteins without the limits of cell viability. The plug-and-play utility of CFPS is a key advantage over traditional plasmid-based expression systems and is foundational to the potential of this biotechnology. A key limitation of CFPS is the varying stability of DNA types, limiting the effectiveness of cell-free protein synthesis reactions. Researchers generally rely on plasmid DNA for its ability to support robust protein expression in vitro. However, the overhead required to clone, propagate, and purify plasmids reduces the potential of CFPS for rapid prototyping. While linear templates overcome the limits of plasmid DNA preparation, linear expression templates (LETs) were under-utilized due to their rapid degradation in extract based CFPS systems, limiting protein synthesis. To reach the potential of CFPS using LETs, researchers have made notable progress toward protection and stabilization of linear templates throughout the reaction. The current advancements range from modular solutions, such as supplementing nuclease inhibitors and genome engineering to produce strains lacking nuclease activity. Effective application of LET protection techniques improves expression yields of target proteins to match that of plasmid-based expression. The outcome of LET utilization in CFPS is rapid design–build–test–learn cycles to support synthetic biology applications. This review describes the various protection mechanisms for linear expression templates, methodological insights for implementation, and proposals for continued efforts that may further advance the field.
Collapse
|
5
|
McSweeney MA, Zhang Y, Styczynski MP. Short Activators and Repressors of RNA Toehold Switches. ACS Synth Biol 2023; 12:681-688. [PMID: 36802167 PMCID: PMC10028691 DOI: 10.1021/acssynbio.2c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
RNA toehold switches are a widely used class of molecule to detect specific RNA "trigger" sequences, but their design, intended function, and characterization to date leave it unclear whether they can function properly with triggers shorter than 36 nucleotides. Here, we explore the feasibility of using standard toehold switches with 23-nucleotide truncated triggers. We assess the crosstalk of different triggers with significant homology and identify a highly sensitive trigger region where just one mutation from the consensus trigger sequence can reduce switch activation by 98.6%. However, we also find that triggers with as many as seven mutations outside of this region can still lead to 5-fold induction of the switch. We also present a new approach using 18- to 22-nucleotide triggers as translational repressors for toehold switches and assess the off-target regulation for this strategy as well. The development and characterization of these strategies could help enable applications like microRNA sensors, where well-characterized crosstalk between sensors and detection of short target sequences are critical.
Collapse
Affiliation(s)
- Megan A McSweeney
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Yan Zhang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Mark P Styczynski
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
6
|
Deich C, Cash B, Sato W, Sharon J, Aufdembrink L, Gaut NJ, Heili J, Stokes K, Engelhart AE, Adamala KP. T7Max transcription system. J Biol Eng 2023; 17:4. [PMID: 36691081 PMCID: PMC9872363 DOI: 10.1186/s13036-023-00323-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Efficient cell-free protein expression from linear DNA templates has remained a challenge primarily due to template degradation. In addition, the yields of transcription in cell-free systems lag behind transcriptional efficiency of live cells. Most commonly used in vitro translation systems utilize T7 RNA polymerase, which is also the enzyme included in many commercial kits. RESULTS Here we present characterization of a variant of T7 RNA polymerase promoter that acts to significantly increase the yields of gene expression within in vitro systems. We have demonstrated that T7Max increases the yield of translation in many types of commonly used in vitro protein expression systems. We also demonstrated increased protein expression yields from linear templates, allowing the use of T7Max driven expression from linear templates. CONCLUSIONS The modified promoter, termed T7Max, recruits standard T7 RNA polymerase, so no protein engineering is needed to take advantage of this method. This technique could be used with any T7 RNA polymerase- based in vitro protein expression system.
Collapse
Affiliation(s)
- Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Lauren Aufdembrink
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Nathaniel J Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Joseph Heili
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Kaitlin Stokes
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Aaron E Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| | - Katarzyna P Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
7
|
Kim KJ, Lee SJ, Kim DM. The Use of Cell-free Protein Synthesis to Push the Boundaries of Synthetic Biology. BIOTECHNOL BIOPROC E 2023; 28:1-7. [PMID: 36687336 PMCID: PMC9840425 DOI: 10.1007/s12257-022-0279-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/10/2022] [Accepted: 10/23/2022] [Indexed: 01/15/2023]
Abstract
Cell-free protein synthesis is emerging as a powerful tool to accelerate the progress of synthetic biology. Notably, cell-free systems that harness extracted synthetic machinery of cells can address many of the issues associated with the complexity and variability of living systems. In particular, cell-free systems can be programmed with various configurations of genetic information, providing great flexibility and accessibility to the field of synthetic biology. Empowered by recent progress, cell-free systems are now evolving into artificial biological systems that can be tailored for various applications, including on-demand biomanufacturing, diagnostics, and new materials design. Here, we review the key developments related to cell-free protein synthesis systems, and discuss the future directions of these promising technologies.
Collapse
Affiliation(s)
- Kyu Jae Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Korea
| | - So-Jeong Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon, 34134 Korea
| |
Collapse
|
8
|
Choi YN, Cho N, Lee K, Gwon DA, Lee JW, Lee J. Programmable Synthesis of Biobased Materials Using Cell-Free Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203433. [PMID: 36108274 DOI: 10.1002/adma.202203433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 08/26/2022] [Indexed: 06/15/2023]
Abstract
Motivated by the intricate mechanisms underlying biomolecule syntheses in cells that chemistry is currently unable to mimic, researchers have harnessed biological systems for manufacturing novel materials. Cell-free systems (CFSs) utilizing the bioactivity of transcriptional and translational machineries in vitro are excellent tools that allow supplementation of exogenous materials for production of innovative materials beyond the capability of natural biological systems. Herein, recent studies that have advanced the ability to expand the scope of biobased materials using CFS are summarized and approaches enabling the production of high-value materials, prototyping of genetic parts and modules, and biofunctionalization are discussed. By extending the reach of chemical and enzymatic reactions complementary to cellular materials, CFSs provide new opportunities at the interface of materials science and synthetic biology.
Collapse
Affiliation(s)
- Yun-Nam Choi
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Namjin Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Kanghun Lee
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Da-Ae Gwon
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Jeong Wook Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Joongoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
9
|
Sánchez-Costa M, López-Gallego F. Solid-Phase Cell-Free Protein Synthesis and Its Applications in Biotechnology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2023; 185:21-46. [PMID: 37306703 DOI: 10.1007/10_2023_226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cell-free systems for the in vitro production of proteins have revolutionized the synthetic biology field. In the last decade, this technology is gaining momentum in molecular biology, biotechnology, biomedicine and even education. Materials science has burst into the field of in vitro protein synthesis to empower the value of existing tools and expand its applications. In this sense, the combination of solid materials (normally functionalized with different biomacromolecules) together with cell-free components has made this technology more versatile and robust. In this chapter, we discuss the combination of solid materials with DNA and transcription-translation machinery to synthesize proteins within compartments, to immobilize and purify in situ the nascent protein, to transcribe and transduce DNAs immobilized on solid surfaces, and the combination of all or some of these strategies.
Collapse
Affiliation(s)
- Mercedes Sánchez-Costa
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain
| | - Fernando López-Gallego
- Heterogeneous Biocatalysis Laboratory, Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia-San Sebastián, Spain.
| |
Collapse
|
10
|
Sato W, Sharon J, Deich C, Gaut N, Cash B, Engelhart AE, Adamala KP. Akaby-Cell-free protein expression system for linear templates. PLoS One 2022; 17:e0266272. [PMID: 35390057 PMCID: PMC8989226 DOI: 10.1371/journal.pone.0266272] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/17/2022] [Indexed: 12/01/2022] Open
Abstract
Cell-free protein expression is increasingly becoming popular for biotechnology, biomedical and research applications. Among cell-free systems, the most popular one is based on Escherichia coli (E. coli). Endogenous nucleases in E. coli cell-free transcription-translation (TXTL) degrade the free ends of DNA, resulting in inefficient protein expression from linear DNA templates. RecBCD is a nuclease complex that plays a major role in nuclease activity in E. coli, with the RecB subunit possessing the actual nuclease activity. We created a RecB knockout of an E. coli strain optimized for cell-free expression. We named this new strain Akaby. We demonstrated that Akaby TXTL successfully reduced linear DNA degradations, rescuing the protein expression efficiency from the linear DNA templates. The practicality of Akaby for TXTL is an efficient, simple alternative for linear template expression in cell-free reactions. We also use this work as a model protocol for modifying the TXTL source E. coli strain, enabling the creation of TXTL systems with other custom modifications.
Collapse
Affiliation(s)
- Wakana Sato
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Judee Sharon
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Christopher Deich
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Nathaniel Gaut
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Brock Cash
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Aaron E. Engelhart
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| | - Katarzyna P. Adamala
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, United States of America
| |
Collapse
|
11
|
Guzman-Chavez F, Arce A, Adhikari A, Vadhin S, Pedroza-Garcia JA, Gandini C, Ajioka JW, Molloy J, Sanchez-Nieto S, Varner JD, Federici F, Haseloff J. Constructing Cell-Free Expression Systems for Low-Cost Access. ACS Synth Biol 2022; 11:1114-1128. [PMID: 35259873 PMCID: PMC9098194 DOI: 10.1021/acssynbio.1c00342] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Indexed: 11/29/2022]
Abstract
Cell-free systems for gene expression have gained attention as platforms for the facile study of genetic circuits and as highly effective tools for teaching. Despite recent progress, the technology remains inaccessible for many in low- and middle-income countries due to the expensive reagents required for its manufacturing, as well as specialized equipment required for distribution and storage. To address these challenges, we deconstructed processes required for cell-free mixture preparation and developed a set of alternative low-cost strategies for easy production and sharing of extracts. First, we explored the stability of cell-free reactions dried through a low-cost device based on silica beads, as an alternative to commercial automated freeze dryers. Second, we report the positive effect of lactose as an additive for increasing protein synthesis in maltodextrin-based cell-free reactions using either circular or linear DNA templates. The modifications were used to produce active amounts of two high-value reagents: the isothermal polymerase Bst and the restriction enzyme BsaI. Third, we demonstrated the endogenous regeneration of nucleoside triphosphates and synthesis of pyruvate in cell-free systems (CFSs) based on phosphoenol pyruvate (PEP) and maltodextrin (MDX). We exploited this novel finding to demonstrate the use of a cell-free mixture completely free of any exogenous nucleotide triphosphates (NTPs) to generate high yields of sfGFP expression. Together, these modifications can produce desiccated extracts that are 203-424-fold cheaper than commercial versions. These improvements will facilitate wider use of CFS for research and education purposes.
Collapse
Affiliation(s)
| | - Anibal Arce
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Abhinav Adhikari
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Sandra Vadhin
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Jose Antonio Pedroza-Garcia
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Chiara Gandini
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Jim W. Ajioka
- Department
of Pathology, University of Cambridge, Tennis Court Road, CB2 1QP Cambridge, U.K.
| | - Jenny Molloy
- Department
of Chemical Engineering and Biotechnology, University of Cambridge, CB3 0FD Cambridge, U.K.
| | - Sobeida Sanchez-Nieto
- Department
of Biochemistry, Faculty of Chemistry, National
Autonomous University of Mexico (UNAM), 04510 Mexico City, Mexico
| | - Jeffrey D. Varner
- Robert
Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Fernan Federici
- ANID
− Millennium Institute for Integrative Biology (iBio), FONDAP
Center for Genome Regulation, Institute for Biological and Medical
Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago 8330005, Chile
| | - Jim Haseloff
- Department
of Plant Sciences, University of Cambridge, CB2 3EA Cambridge, U.K.
| |
Collapse
|
12
|
Batista AC, Levrier A, Soudier P, Voyvodic PL, Achmedov T, Reif-Trauttmansdorff T, DeVisch A, Cohen-Gonsaud M, Faulon JL, Beisel CL, Bonnet J, Kushwaha M. Differentially Optimized Cell-Free Buffer Enables Robust Expression from Unprotected Linear DNA in Exonuclease-Deficient Extracts. ACS Synth Biol 2022; 11:732-746. [PMID: 35034449 DOI: 10.1021/acssynbio.1c00448] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The use of linear DNA templates in cell-free systems promises to accelerate the prototyping and engineering of synthetic gene circuits. A key challenge is that linear templates are rapidly degraded by exonucleases present in cell extracts. Current approaches tackle the problem by adding exonuclease inhibitors and DNA-binding proteins to protect the linear DNA, requiring additional time- and resource-intensive steps. Here, we delete the recBCD exonuclease gene cluster from the Escherichia coli BL21 genome. We show that the resulting cell-free systems, with buffers optimized specifically for linear DNA, enable near-plasmid levels of expression from σ70 promoters in linear DNA templates without employing additional protection strategies. When using linear or plasmid DNA templates at the buffer calibration step, the optimal potassium glutamate concentrations obtained when using linear DNA were consistently lower than those obtained when using plasmid DNA for the same extract. We demonstrate the robustness of the exonuclease deficient extracts across seven different batches and a wide range of experimental conditions across two different laboratories. Finally, we illustrate the use of the ΔrecBCD extracts for two applications: toehold switch characterization and enzyme screening. Our work provides a simple, efficient, and cost-effective solution for using linear DNA templates in cell-free systems and highlights the importance of specifically tailoring buffer composition for the final experimental setup. Our data also suggest that similar exonuclease deletion strategies can be applied to other species suitable for cell-free synthetic biology.
Collapse
Affiliation(s)
- Angelo Cardoso Batista
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Antoine Levrier
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Paul Soudier
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Peter L. Voyvodic
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Tatjana Achmedov
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | | | - Angelique DeVisch
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Martin Cohen-Gonsaud
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Jean-Loup Faulon
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| | - Jerome Bonnet
- Centre de Biochimie Structurale, INSERM U1054, CNRS UMR 5048, University of Montpellier, 34090 Montpellier, France
| | - Manish Kushwaha
- Université Paris-Saclay, INRAe, AgroParisTech, Micalis Institute, 78352 Jouy-en-Josas, France
| |
Collapse
|
13
|
Romantseva EF, Tack DS, Alperovich N, Ross D, Strychalski EA. Best Practices for DNA Template Preparation Toward Improved Reproducibility in Cell-Free Protein Production. Methods Mol Biol 2022; 2433:3-50. [PMID: 34985735 DOI: 10.1007/978-1-0716-1998-8_1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Performance variability is a common challenge in cell-free protein production and hinders a wider adoption of these systems for both research and biomanufacturing. While the inherent stochasticity and complexity of biology likely contributes to variability, other systematic factors may also play a role, including the source and preparation of the cell extract, the composition of the supplemental reaction buffer, the facility at which experiments are conducted, and the human operator (Cole et al. ACS Synth Biol 8:2080-2091, 2019). Variability in protein production could also arise from differences in the DNA template-specifically the amount of functional DNA added to a cell-free reaction and the quality of the DNA preparation in terms of contaminants and strand breakage. Here, we present protocols and suggest best practices optimized for DNA template preparation and quantitation for cell-free systems toward reducing variability in cell-free protein production.
Collapse
Affiliation(s)
| | - Drew S Tack
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - Nina Alperovich
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | - David Ross
- National Institute of Standards and Technology, Gaithersburg, MD, USA
| | | |
Collapse
|
14
|
Levy M, Vonshak O, Divon Y, Greiss F, Avidan N, Daube SS, Bar-Ziv RH. Cell-Free Gene Expression from DNA Brushes. Methods Mol Biol 2022; 2433:135-149. [PMID: 34985742 DOI: 10.1007/978-1-0716-1998-8_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Linear double-stranded DNA polymers coding for synthetic genes immobilized on a surface form a brush as a center for cell-free gene expression, with DNA density 102-103 fold higher than in bulk solution reactions. A brush localizes the transcription-translation machinery in cell extracts or in cell-free reconstituted reactions from purified components, creating a concentrated source of RNA and proteins. Newly synthesized molecules can form circuits regulating gene expression in the same brush or adjacent ones. They can also assemble into functional complexes and machines such as ribosomal units, then analyzed by capture on prepatterned antibodies or by cascaded reactions. DNA brushes are arranged as a single center or multiple ones on a glass coverslip, in miniaturized compartments carved in silicon wafers, or in elastomeric microfluidic devices. Brushes create genetically programmable artificial cells with steady-state dynamics of protein synthesis. Here, we provide the basic procedure for surface patterning, DNA immobilization, capture of protein products on antibody traps and fluorescent imaging. The method of DNA brush surface patterning enables simple parallelization of cell-free gene expression reactions for high throughput studies with increased imaging sensitivity.
Collapse
Affiliation(s)
- Michael Levy
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ohad Vonshak
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Yiftach Divon
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Ferdinand Greiss
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Avidan
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Shirley S Daube
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | - Roy H Bar-Ziv
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Wimmer F, Englert F, Beisel CL. A TXTL-Based Assay to Rapidly Identify PAMs for CRISPR-Cas Systems with Multi-Protein Effector Complexes. Methods Mol Biol 2022; 2433:391-411. [PMID: 34985758 DOI: 10.1007/978-1-0716-1998-8_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Type I CRISPR-Cas systems represent the most common and diverse type of these prokaryotic defense systems and are being harnessed for a growing set of applications. As these systems rely on multi-protein effector complexes, their characterization remains challenging. Here, we report a rapid and straightforward method to characterize these systems in a cell-free transcription-translation (TXTL) system. A ribonucleoprotein complex is produced and binds to its target next to a recognized PAM, thereby preventing the targeted sequence from being cleaved by a restriction enzyme. Selection for uncleaved targeted plasmids leads to an enrichment of recognized sequences within a PAM library. This assay will aid the exploration of CRISPR-Cas diversity and evolution and help contribute new systems for CRISPR technologies and applications.
Collapse
Affiliation(s)
- Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Frank Englert
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
16
|
|
17
|
Protocell arrays for simultaneous detection of diverse analytes. Nat Commun 2021; 12:5724. [PMID: 34588445 PMCID: PMC8481512 DOI: 10.1038/s41467-021-25989-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 09/03/2021] [Indexed: 01/05/2023] Open
Abstract
Simultaneous detection of multiple analytes from a single sample (multiplexing), particularly when done at the point of need, can guide complex decision-making without increasing the required sample volume or cost per test. Despite recent advances, multiplexed analyte sensing still typically faces the critical limitation of measuring only one type of molecule (e.g., small molecules or nucleic acids) per assay platform. Here, we address this bottleneck with a customizable platform that integrates cell-free expression (CFE) with a polymer-based aqueous two-phase system (ATPS), producing membrane-less protocells containing transcription and translation machinery used for detection. We show that multiple protocells, each performing a distinct sensing reaction, can be arrayed in the same microwell to detect chemically diverse targets from the same sample. Furthermore, these protocell arrays are compatible with human biofluids, maintain function after lyophilization and rehydration, and can produce visually interpretable readouts, illustrating this platform's potential as a minimal-equipment, field-deployable, multi-analyte detection tool.
Collapse
|
18
|
Lee KZ, Mechikoff MA, Kikla A, Liu A, Pandolfi P, Fitzgerald K, Gimble FS, Solomon KV. NgAgo possesses guided DNA nicking activity. Nucleic Acids Res 2021; 49:9926-9937. [PMID: 34478558 PMCID: PMC8464042 DOI: 10.1093/nar/gkab757] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 12/14/2022] Open
Abstract
Prokaryotic Argonautes (pAgos) have been proposed as more flexible tools for gene-editing as they do not require sequence motifs adjacent to their targets for function, unlike popular CRISPR/Cas systems. One promising pAgo candidate, from the halophilic archaeon Natronobacterium gregoryi (NgAgo), has been the subject of debate regarding its potential in eukaryotic systems. Here, we revisit this enzyme and characterize its function in prokaryotes. NgAgo expresses poorly in non-halophilic hosts with most of the protein being insoluble and inactive even after refolding. However, we report that the soluble fraction does indeed act as a nicking DNA endonuclease. NgAgo shares canonical domains with other catalytically active pAgos but also contains a previously unrecognized single-stranded DNA binding domain (repA). Both repA and the canonical PIWI domains participate in DNA cleavage activities of NgAgo. NgAgo can be programmed with guides to nick targeted DNA in Escherichia coli and in vitro 1 nt outside the 3' end of the guide sequence. We also found that these endonuclease activities are essential for enhanced NgAgo-guided homologous recombination, or gene-editing, in E. coli. Collectively, our results demonstrate the potential of NgAgo for gene-editing and provide new insight into seemingly contradictory reports.
Collapse
Affiliation(s)
- Kok Zhi Lee
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Michael A Mechikoff
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Archana Kikla
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Arren Liu
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Paula Pandolfi
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47906, USA
| | - Kevin Fitzgerald
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Frederick S Gimble
- Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47906, USA.,Department of Biochemistry, Purdue University, West Lafayette, IN, 47906, USA
| | - Kevin V Solomon
- Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.,Purdue University Interdisciplinary Life Science Program (PULSe), Purdue University, West Lafayette, IN 47906, USA
| |
Collapse
|
19
|
Arce A, Guzman Chavez F, Gandini C, Puig J, Matute T, Haseloff J, Dalchau N, Molloy J, Pardee K, Federici F. Decentralizing Cell-Free RNA Sensing With the Use of Low-Cost Cell Extracts. Front Bioeng Biotechnol 2021; 9:727584. [PMID: 34497801 PMCID: PMC8419261 DOI: 10.3389/fbioe.2021.727584] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/06/2021] [Indexed: 11/13/2022] Open
Abstract
Cell-free gene expression systems have emerged as a promising platform for field-deployed biosensing and diagnostics. When combined with programmable toehold switch-based RNA sensors, these systems can be used to detect arbitrary RNAs and freeze-dried for room temperature transport to the point-of-need. These sensors, however, have been mainly implemented using reconstituted PURE cell-free protein expression systems that are difficult to source in the Global South due to their high commercial cost and cold-chain shipping requirements. Based on preliminary demonstrations of toehold sensors working on lysates, we describe the fast prototyping of RNA toehold switch-based sensors that can be produced locally and reduce the cost of sensors by two orders of magnitude. We demonstrate that these in-house cell lysates provide sensor performance comparable to commercial PURE cell-free systems. We further optimize these lysates with a CRISPRi strategy to enhance the stability of linear DNAs by knocking-down genes responsible for linear DNA degradation. This enables the direct use of PCR products for fast screening of new designs. As a proof-of-concept, we develop novel toehold sensors for the plant pathogen Potato Virus Y (PVY), which dramatically reduces the yield of this important staple crop. The local implementation of low-cost cell-free toehold sensors could enable biosensing capacity at the regional level and lead to more decentralized models for global surveillance of infectious disease.
Collapse
Affiliation(s)
- Anibal Arce
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | - Chiara Gandini
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Juan Puig
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tamara Matute
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jim Haseloff
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | | | - Jenny Molloy
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Fernán Federici
- ANID – Millennium Science Initiative Program – Millennium Institute for Integrative Biology (iBio), Santiago, Chile
- Schools of Engineering, Institute for Biological and Medical Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Pontificia Universidad Católica de Chile, Santiago, Chile
- FONDAP Center for Genome Regulation, Santiago, Chile
| |
Collapse
|
20
|
Garenne D, Thompson S, Brisson A, Khakimzhan A, Noireaux V. The all-E. coliTXTL toolbox 3.0: new capabilities of a cell-free synthetic biology platform. Synth Biol (Oxf) 2021; 6:ysab017. [PMID: 34712841 PMCID: PMC8546610 DOI: 10.1093/synbio/ysab017] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 06/19/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022] Open
Abstract
The new generation of cell-free gene expression systems enables the prototyping and engineering of biological systems in vitro over a remarkable scope of applications and physical scales. As the utilization of DNA-directed in vitro protein synthesis expands in scope, developing more powerful cell-free transcription-translation (TXTL) platforms remains a major goal to either execute larger DNA programs or improve cell-free biomanufacturing capabilities. In this work, we report the capabilities of the all-E. coli TXTL toolbox 3.0, a multipurpose cell-free expression system specifically developed for synthetic biology. In non-fed batch-mode reactions, the synthesis of the fluorescent reporter protein eGFP (enhanced green fluorescent protein) reaches 4 mg/ml. In synthetic cells, consisting of liposomes loaded with a TXTL reaction, eGFP is produced at concentrations of >8 mg/ml when the chemical building blocks feeding the reaction diffuse through membrane channels to facilitate exchanges with the outer solution. The bacteriophage T7, encoded by a genome of 40 kb and ∼60 genes, is produced at a concentration of 1013 PFU/ml (plaque forming unit/ml). This TXTL system extends the current cell-free expression capabilities by offering unique strength and properties, for testing regulatory elements and circuits, biomanufacturing biologics or building synthetic cells.
Collapse
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Seth Thompson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Amaury Brisson
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
21
|
McSweeney MA, Styczynski MP. Effective Use of Linear DNA in Cell-Free Expression Systems. Front Bioeng Biotechnol 2021; 9:715328. [PMID: 34354989 PMCID: PMC8329657 DOI: 10.3389/fbioe.2021.715328] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/06/2021] [Indexed: 12/27/2022] Open
Abstract
Cell-free expression systems (CFEs) are cutting-edge research tools used in the investigation of biological phenomena and the engineering of novel biotechnologies. While CFEs have many benefits over in vivo protein synthesis, one particularly significant advantage is that CFEs allow for gene expression from both plasmid DNA and linear expression templates (LETs). This is an important and impactful advantage because functional LETs can be efficiently synthesized in vitro in a few hours without transformation and cloning, thus expediting genetic circuit prototyping and allowing expression of toxic genes that would be difficult to clone through standard approaches. However, native nucleases present in the crude bacterial lysate (the basis for the most affordable form of CFEs) quickly degrade LETs and limit expression yield. Motivated by the significant benefits of using LETs in lieu of plasmid templates, numerous methods to enhance their stability in lysate-based CFEs have been developed. This review describes approaches to LET stabilization used in CFEs, summarizes the advancements that have come from using LETs with these methods, and identifies future applications and development goals that are likely to be impactful to the field. Collectively, continued improvement of LET-based expression and other linear DNA tools in CFEs will help drive scientific discovery and enable a wide range of applications, from diagnostics to synthetic biology research tools.
Collapse
Affiliation(s)
- Megan A McSweeney
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| | - Mark P Styczynski
- Georgia Institute of Technology, School of Chemical & Biomolecular Engineering, Atlanta, GA, United States
| |
Collapse
|
22
|
Norouzi M, Panfilov S, Pardee K. High-Efficiency Protection of Linear DNA in Cell-Free Extracts from Escherichia coli and Vibrio natriegens. ACS Synth Biol 2021; 10:1615-1624. [PMID: 34161082 DOI: 10.1021/acssynbio.1c00110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The field of cell-free synthetic biology is an emerging branch of engineered biology that allows for rapid prototyping of biological designs and, in its own right, is becoming a venue for the in vitro operation of gene circuit-based sensors and biomanufacturing. To date, the related DNA encoded tools that operate in cell-free reactions have primarily relied on plasmid DNA inputs, as linear templates are highly susceptible to degradation by exonucleases present in cell-free extracts. This incompatibility has precluded significant throughput, time and cost benefits that could be gained with the use of linear DNA in the cell-free expression workflow. Here to tackle this limitation, we report that terminal incorporation of Ter binding sites for the DNA-binding protein Tus enables highly efficient protection of linear expression templates encoding mCherry and deGFP. In Escherichia coli extracts, our method compares favorably with the previously reported GamS-mediated protection scheme. Importantly, we extend the Tus-Ter system to Vibrio natriegens extracts, and demonstrate that this simple and easily implemented method can enable an unprecedented plasmid-level expression from linear templates in this emerging chassis organism.
Collapse
Affiliation(s)
- Masoud Norouzi
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Sabina Panfilov
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Keith Pardee
- Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, Ontario M5S 3G8, Canada
| |
Collapse
|
23
|
Khakimzhan A, Garenne D, Tickman B, Fontana J, Carothers J, Noireaux V. Complex dependence of CRISPR-Cas9 binding strength on guide RNA spacer lengths. Phys Biol 2021; 18:056003. [PMID: 34102625 DOI: 10.1088/1478-3975/ac091e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/08/2021] [Indexed: 12/26/2022]
Abstract
It is established that for CRISPR-Cas9 applications guide RNAs with 17-20 bp long spacer sequences are optimal for accurate target binding and cleavage. In this work we perform cell-free CRISPRa (CRISPR activation) and CRISPRi (CRISPR inhibition) experiments to demonstrate the existence of a complex dependence of CRISPR-Cas9 binding as a function of the spacer length and complementarity. Our results show that significantly truncated or mismatched spacer sequences can form stronger guide-target bonds than the conventional 17-20 bp long spacers. To explain this phenomenon, we take into consideration previous structural and single-molecule CRISPR-Cas9 experiments and develop a novel thermodynamic model of CRISPR-Cas9 target recognition.
Collapse
Affiliation(s)
- Aset Khakimzhan
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN 55455, United States of America
| | - David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN 55455, United States of America
| | - Benjamin Tickman
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States of America
| | - Jason Fontana
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States of America
| | - James Carothers
- Molecular Engineering & Sciences Institute, University of Washington, Seattle, WA, 98195, United States of America
- Department of Chemical Engineering, University of Washington, Seattle, WA, 98195, United States of America
- Center for Synthetic Biology, University of Washington, Seattle, WA, 98195, United States of America
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN 55455, United States of America
| |
Collapse
|
24
|
Chen X, Lu Y. In silico Design of Linear DNA for Robust Cell-Free Gene Expression. Front Bioeng Biotechnol 2021; 9:670341. [PMID: 34095101 PMCID: PMC8169995 DOI: 10.3389/fbioe.2021.670341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 04/06/2021] [Indexed: 12/25/2022] Open
Abstract
Cell-free gene expression systems with linear DNA expression templates (LDETs) have been widely applied in artificial cells, biochips, and high-throughput screening. However, due to the degradation caused by native nucleases in cell extracts, the transcription with linear DNA templates is weak, thereby resulting in low protein expression level, which greatly limits the development of cell-free systems using linear DNA templates. In this study, the protective sequences for stabilizing linear DNA and the transcribed mRNAs were rationally designed according to nucleases' action mechanism, whose effectiveness was evaluated through computer simulation and cell-free gene expression. The cell-free experiment results indicated that, with the combined protection of designed sequence and GamS protein, the protein expression of LDET-based cell-free systems could reach the same level as plasmid-based cell-free systems. This study would potentially promote the development of the LDET-based cell-free gene expression system for broader applications.
Collapse
Affiliation(s)
- Xinjie Chen
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| | - Yuan Lu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
25
|
Collins SP, Rostain W, Liao C, Beisel CL. Sequence-independent RNA sensing and DNA targeting by a split domain CRISPR-Cas12a gRNA switch. Nucleic Acids Res 2021; 49:2985-2999. [PMID: 33619539 PMCID: PMC7968991 DOI: 10.1093/nar/gkab100] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 01/13/2021] [Accepted: 02/04/2021] [Indexed: 12/11/2022] Open
Abstract
CRISPR technologies increasingly require spatiotemporal and dosage control of nuclease activity. One promising strategy involves linking nuclease activity to a cell's transcriptional state by engineering guide RNAs (gRNAs) to function only after complexing with a ‘trigger’ RNA. However, standard gRNA switch designs do not allow independent selection of trigger and guide sequences, limiting gRNA switch application. Here, we demonstrate the modular design of Cas12a gRNA switches that decouples selection of these sequences. The 5′ end of the Cas12a gRNA is fused to two distinct and non-overlapping domains: one base pairs with the gRNA repeat, blocking formation of a hairpin required for Cas12a recognition; the other hybridizes to the RNA trigger, stimulating refolding of the gRNA repeat and subsequent gRNA-dependent Cas12a activity. Using a cell-free transcription-translation system and Escherichia coli, we show that designed gRNA switches can respond to different triggers and target different DNA sequences. Modulating the length and composition of the sensory domain altered gRNA switch performance. Finally, gRNA switches could be designed to sense endogenous RNAs expressed only under specific growth conditions, rendering Cas12a targeting activity dependent on cellular metabolism and stress. Our design framework thus further enables tethering of CRISPR activities to cellular states.
Collapse
Affiliation(s)
- Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - William Rostain
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, 91057 Évry, France
| | - Chunyu Liao
- Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, USA.,Helmholtz Institute for RNA-based Infection Research (HIRI)/Helmholtz Centre for Infection Research (HZI), Josef-Schneider-Str. 2/D15, 97080 Würzburg, Germany.,Medical Faculty, University of Würzburg, 97080 Würzburg, Germany
| |
Collapse
|
26
|
Swank Z, Maerkl SJ. CFPU: A Cell-Free Processing Unit for High-Throughput, Automated In Vitro Circuit Characterization in Steady-State Conditions. BIODESIGN RESEARCH 2021; 2021:2968181. [PMID: 37849954 PMCID: PMC10521719 DOI: 10.34133/2021/2968181] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 02/24/2021] [Indexed: 10/19/2023] Open
Abstract
Forward engineering synthetic circuits are at the core of synthetic biology. Automated solutions will be required to facilitate circuit design and implementation. Circuit design is increasingly being automated with design software, but innovations in experimental automation are lagging behind. Microfluidic technologies made it possible to perform in vitro transcription-translation (tx-tl) reactions with increasing throughput and sophistication, enabling screening and characterization of individual circuit elements and complete circuit designs. Here, we developed an automated microfluidic cell-free processing unit (CFPU) that extends high-throughput screening capabilities to a steady-state reaction environment, which is essential for the implementation and analysis of more complex and dynamic circuits. The CFPU contains 280 chemostats that can be individually programmed with DNA circuits. Each chemostat is periodically supplied with tx-tl reagents, giving rise to sustained, long-term steady-state conditions. Using microfluidic pulse width modulation (PWM), the device is able to generate tx-tl reagent compositions in real time. The device has higher throughput, lower reagent consumption, and overall higher functionality than current chemostat devices. We applied this technology to map transcription factor-based repression under equilibrium conditions and implemented dynamic gene circuits switchable by small molecules. We expect the CFPU to help bridge the gap between circuit design and experimental automation for in vitro development of synthetic gene circuits.
Collapse
Affiliation(s)
- Zoe Swank
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Sebastian J. Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Switzerland
| |
Collapse
|
27
|
Lavickova B, Laohakunakorn N, Maerkl SJ. A partially self-regenerating synthetic cell. Nat Commun 2020; 11:6340. [PMID: 33311509 PMCID: PMC7733450 DOI: 10.1038/s41467-020-20180-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/16/2020] [Indexed: 01/16/2023] Open
Abstract
Self-regeneration is a fundamental function of all living systems. Here we demonstrate partial molecular self-regeneration in a synthetic cell. By implementing a minimal transcription-translation system within microfluidic reactors, the system is able to regenerate essential protein components from DNA templates and sustain synthesis activity for over a day. By quantitating genotype-phenotype relationships combined with computational modeling we find that minimizing resource competition and optimizing resource allocation are both critically important for achieving robust system function. With this understanding, we achieve simultaneous regeneration of multiple proteins by determining the required DNA ratios necessary for sustained self-regeneration. This work introduces a conceptual and experimental framework for the development of a self-replicating synthetic cell.
Collapse
Affiliation(s)
- Barbora Lavickova
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Nadanai Laohakunakorn
- Institute of Quantitative Biology, Biochemistry, and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
28
|
Dopp JL, Reuel NF. Simple, functional, inexpensive cell extract for in vitro prototyping of proteins with disulfide bonds. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107790] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
Yim SS, Johns NI, Noireaux V, Wang HH. Protecting Linear DNA Templates in Cell-Free Expression Systems from Diverse Bacteria. ACS Synth Biol 2020; 9:2851-2855. [PMID: 32926785 DOI: 10.1021/acssynbio.0c00277] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent advances in cell-free systems have opened up new capabilities in synthetic biology from rapid prototyping of genetic circuits and metabolic pathways to portable diagnostics and biomanufacturing. A current bottleneck in cell-free systems, especially those employing non-E. coli bacterial species, is the required use of plasmid DNA, which can be laborious to construct, clone, and verify. Linear DNA templates offer a faster and more direct route for many cell-free applications, but they are often rapidly degraded in cell-free reactions. In this study, we evaluated GamS from λ-phage, DNA fragments containing Chi-sites, and Ku from Mycobacterium tuberculosis for their ability to protect linear DNA templates in diverse bacterial cell-free systems. We show that these nuclease inhibitors exhibit differential protective activities against endogenous exonucleases in five different cell-free lysates, highlighting their utility for diverse bacterial species. We expect these linear DNA protection strategies will accelerate high-throughput approaches in cell-free synthetic biology.
Collapse
Affiliation(s)
- Sung Sun Yim
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
| | - Nathan I. Johns
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
- Integrated Program in Cellular, Molecular, and Biomedical Studies, Columbia University, New York, New York 10027, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Harris H. Wang
- Department of Systems Biology, Columbia University, New York, New York 10027, United States
- Department of Pathology and Cell Biology, Columbia University, New York, New York 10027, United States
| |
Collapse
|
30
|
Cui Z, Johnston WA, Alexandrov K. Cell-Free Approach for Non-canonical Amino Acids Incorporation Into Polypeptides. Front Bioeng Biotechnol 2020; 8:1031. [PMID: 33117774 PMCID: PMC7550873 DOI: 10.3389/fbioe.2020.01031] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/07/2020] [Indexed: 12/12/2022] Open
Abstract
Synthetic biology holds promise to revolutionize the life sciences and biomedicine via expansion of macromolecular diversity outside the natural chemical space. Use of non-canonical amino acids (ncAAs) via codon reassignment has found diverse applications in protein structure and interaction analysis, introduction of post-translational modifications, production of constrained peptides, antibody-drug conjugates, and novel enzymes. However, simultaneously encoding multiple ncAAs in vivo requires complex engineering and is sometimes restricted by the cell's poor uptake of ncAAs. In contrast the open nature of cell-free protein synthesis systems offers much greater freedom for manipulation and repurposing of the biosynthetic machinery by controlling the level and identity of translational components and reagents, and allows simultaneous incorporation of multiple ncAAs with non-canonical side chains and even backbones (N-methyl, D-, β-amino acids, α-hydroxy acids etc.). This review focuses on the two most used Escherichia coli-based cell-free protein synthesis systems; cell extract- and PURE-based systems. The former is a biological mixture with >500 proteins, while the latter consists of 38 individually purified biomolecules. We delineate compositions of these two systems and discuss their respective advantages and applications. Also, we dissect the translational components required for ncAA incorporation and compile lists of ncAAs that can be incorporated into polypeptides via different acylation approaches. We highlight the recent progress in using unnatural nucleobase pairs to increase the repertoire of orthogonal codons, as well as using tRNA-specific ribozymes for in situ acylation. We summarize advances in engineering of translational machinery such as tRNAs, aminoacyl-tRNA synthetases, elongation factors, and ribosomes to achieve efficient incorporation of structurally challenging ncAAs. We note that, many engineered components of biosynthetic machinery are developed for the use in vivo but are equally applicable to the in vitro systems. These are included in the review to provide a comprehensive overview for ncAA incorporation and offer new insights for the future development in cell-free systems. Finally, we highlight the exciting progress in the genomic engineering, resulting in E. coli strains free of amber and some redundant sense codons. These strains can be used for preparation of cell extracts offering multiple reassignment options.
Collapse
Affiliation(s)
- Zhenling Cui
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Wayne A Johnston
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| | - Kirill Alexandrov
- Synthetic Biology Laboratory, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, Australia
| |
Collapse
|
31
|
Zhu B, Gan R, Cabezas MD, Kojima T, Nicol R, Jewett MC, Nakano H. Increasing cell-free gene expression yields from linear templates in Escherichia coli and Vibrio natriegens extracts by using DNA-binding proteins. Biotechnol Bioeng 2020; 117:3849-3857. [PMID: 32816360 DOI: 10.1002/bit.27538] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/08/2020] [Accepted: 08/17/2020] [Indexed: 12/12/2022]
Abstract
In crude extract-based cell-free protein synthesis (CFPS), DNA templates are transcribed and translated into functional proteins. Although linear expression templates (LETs) are less laborious and expensive to generate, plasmid templates are often desired over polymerase chain reaction-generated LETs due to increased stability and protection against exonucleases present in the extract of the reaction. Here we demonstrate that addition of a double stranded DNA-binding protein to the CFPS reaction, termed single-chain Cro protein (scCro), achieves terminal protection of LETs. This CroP-LET (scCro-based protection of LET) method effectively increases superfolder green fluorescent protein (sfGFP) expression levels from LETs in Escherichia coli CFPS reactions by sixfold. Our yields are comparable to other strategies that provide chemical and enzymatic DNA stabilization in E. coli CFPS. Notably, we also report that the CroP-LET method successfully enhanced yields in CFPS platforms derived from nonmodel organisms. Our results show that CroP-LET increased sfGFP yields by 18-fold in the Vibrio natriegens CFPS platform. With the fast-expanding applications of CFPS platforms, this method provides a practical and generalizable solution to protect linear expression DNA templates.
Collapse
Affiliation(s)
- Bo Zhu
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Rui Gan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Maria D Cabezas
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois
| | - Takaaki Kojima
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Robert Nicol
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois.,Center for Synthetic Biology, Northwestern University, Evanston, Illinois.,Simpson Querrey Institute, Northwestern University, Evanston, Illinois.,Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois.,Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, Illinois
| | - Hideo Nakano
- Laboratory of Molecular Biotechnology, Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| |
Collapse
|
32
|
Hadi T, Nozzi N, Melby JO, Gao W, Fuerst DE, Kvam E. Rolling circle amplification of synthetic DNA accelerates biocatalytic determination of enzyme activity relative to conventional methods. Sci Rep 2020; 10:10279. [PMID: 32581345 PMCID: PMC7314814 DOI: 10.1038/s41598-020-67307-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/02/2020] [Indexed: 11/24/2022] Open
Abstract
The ability to quickly and easily assess the activity of large collections of enzymes for a desired substrate holds great promise in the field of biocatalysis. Cell-free synthesis, although not practically amenable for large-scale enzyme production, provides a way to accelerate the timeline for screening enzyme candidates using small-scale reactions. However, because cell-free enzyme synthesis requires a considerable amount of template DNA, the preparation of high-quality DNA "parts" in large quantities represents a costly and rate-limiting prerequisite for high throughput screening. Based on time-cost analysis and comparative activity data, a cell-free workflow using synthetic DNA minicircles and rolling circle amplification enables comparable biocatalytic activity to cell-based workflows in almost half the time. We demonstrate this capability using a panel of sequences from the carbon-nitrogen hydrolase superfamily that represent possible green catalysts for synthesizing small molecules with less waste compared to traditional industrial chemistry. This method provides a new alternative to more cumbersome plasmid- or PCR-based protein expression workflows and should be amenable to automation for accelerating enzyme screening in industrial applications.
Collapse
Affiliation(s)
- Timin Hadi
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA
| | - Nicole Nozzi
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA
| | - Joel O Melby
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA
| | - Wei Gao
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA
| | - Douglas E Fuerst
- GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania, 19426, USA
| | - Erik Kvam
- GE Global Research, One Research Circle, Niskayuna, NY, 12309, USA.
| |
Collapse
|
33
|
Marshall R, Beisel CL, Noireaux V. Rapid Testing of CRISPR Nucleases and Guide RNAs in an E. coli Cell-Free Transcription-Translation System. STAR Protoc 2020; 1:100003. [PMID: 33111065 PMCID: PMC7580202 DOI: 10.1016/j.xpro.2019.100003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We present a protocol to rapidly test DNA binding and cleavage activity by CRISPR nucleases using cell-free transcription-translation (TXTL). Nuclease activity is assessed by adding DNA encoding a nuclease, a guide RNA, and a targeted reporter to a TXTL reaction and by measuring the fluorescence for several h. The reactions, performed in a few microliters, allow for parallel testing of many nucleases and guide RNAs. The protocol includes representative results for (d)Cas9 from Streptococcus pyogenes targeting a GFP reporter gene. For complete information on the generation and use of this protocol, please refer to the paper by Marshall et al. (2018).
Collapse
Affiliation(s)
- Ryan Marshall
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN 55455, USA
| | - Chase L. Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research, 97080 Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN 55455, USA
| |
Collapse
|
34
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
35
|
Watters KE, Shivram H, Fellmann C, Lew RJ, McMahon B, Doudna JA. Potent CRISPR-Cas9 inhibitors from Staphylococcus genomes. Proc Natl Acad Sci U S A 2020; 117:6531-6539. [PMID: 32156733 PMCID: PMC7104187 DOI: 10.1073/pnas.1917668117] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Anti-CRISPRs (Acrs) are small proteins that inhibit the RNA-guided DNA targeting activity of CRISPR-Cas enzymes. Encoded by bacteriophage and phage-derived bacterial genes, Acrs prevent CRISPR-mediated inhibition of phage infection and can also block CRISPR-Cas-mediated genome editing in eukaryotic cells. To identify Acrs capable of inhibiting Staphylococcus aureus Cas9 (SauCas9), an alternative to the most commonly used genome editing protein Streptococcus pyogenes Cas9 (SpyCas9), we used both self-targeting CRISPR screening and guilt-by-association genomic search strategies. Here we describe three potent inhibitors of SauCas9 that we name AcrIIA13, AcrIIA14, and AcrIIA15. These inhibitors share a conserved N-terminal sequence that is dispensable for DNA cleavage inhibition and have divergent C termini that are required in each case for inhibition of SauCas9-catalyzed DNA cleavage. In human cells, we observe robust inhibition of SauCas9-induced genome editing by AcrIIA13 and moderate inhibition by AcrIIA14 and AcrIIA15. We also find that the conserved N-terminal domain of AcrIIA13-AcrIIA15 binds to an inverted repeat sequence in the promoter of these Acr genes, consistent with its predicted helix-turn-helix DNA binding structure. These data demonstrate an effective strategy for Acr discovery and establish AcrIIA13-AcrIIA15 as unique bifunctional inhibitors of SauCas9.
Collapse
Affiliation(s)
- Kyle E Watters
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Haridha Shivram
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Christof Fellmann
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- Department of Cellular and Molecular Pharmacology, School of Medicine, University of California, San Francisco, CA 94158
| | - Rachel J Lew
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
| | - Blake McMahon
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720;
- Gladstone Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158
- Department of Chemistry, University of California, Berkeley, CA 94720
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720
- Innovative Genomics Institute, University of California, Berkeley, CA 94720
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
36
|
Escherichia coli Extract-Based Cell-Free Expression System as an Alternative for Difficult-to-Obtain Protein Biosynthesis. Int J Mol Sci 2020; 21:ijms21030928. [PMID: 32023820 PMCID: PMC7037961 DOI: 10.3390/ijms21030928] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 01/15/2020] [Accepted: 01/28/2020] [Indexed: 12/15/2022] Open
Abstract
Before utilization in biomedical diagnosis, therapeutic treatment, and biotechnology, the diverse variety of peptides and proteins must be preliminarily purified and thoroughly characterized. The recombinant DNA technology and heterologous protein expression have helped simplify the isolation of targeted polypeptides at high purity and their structure-function examinations. Recombinant protein expression in Escherichia coli, the most-established heterologous host organism, has been widely used to produce proteins of commercial and fundamental research interests. Nonetheless, many peptides/proteins are still difficult to express due to their ability to slow down cell growth or disrupt cellular metabolism. Besides, special modifications are often required for proper folding and activity of targeted proteins. The cell-free (CF) or in vitro recombinant protein synthesis system enables the production of such difficult-to-obtain molecules since it is possible to adjust reaction medium and there is no need to support cellular metabolism and viability. Here, we describe E. coli-based CF systems, the optimization steps done toward the development of highly productive and cost-effective CF methodology, and the modification of an in vitro approach required for difficult-to-obtain protein production.
Collapse
|
37
|
Köhler T, Heida T, Hoefgen S, Weigel N, Valiante V, Thiele J. Cell-free protein synthesis and in situ immobilization of deGFP-MatB in polymer microgels for malonate-to-malonyl CoA conversion. RSC Adv 2020; 10:40588-40596. [PMID: 35520868 PMCID: PMC9057574 DOI: 10.1039/d0ra06702d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
We describe a bottom-up approach towards functional enzymes utilizing microgels as carriers for genetic information that enable cell-free protein synthesis, in situ immobilization, and utilization of functional deGFP-MatB.
Collapse
Affiliation(s)
- Tony Köhler
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Thomas Heida
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Sandra Hoefgen
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Niclas Weigel
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| | - Vito Valiante
- Biobricks of Microbial Natural Product Syntheses
- Department of Molecular and Applied Microbiology
- Leibniz Institute for Natural Product Research and Infection Biology
- 07745 Jena
- Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer Physics
- Leibniz-Institut für Polymerforschung Dresden e.V
- 01069 Dresden
- Germany
| |
Collapse
|
38
|
Heida T, Köhler T, Kaufmann A, Männel MJ, Thiele J. Cell‐Free Protein Synthesis in Bifunctional Hyaluronan Microgels: A Strategy for In Situ Immobilization and Purification of His‐Tagged Proteins. CHEMSYSTEMSCHEM 2019. [DOI: 10.1002/syst.201900058] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Thomas Heida
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Tony Köhler
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Anika Kaufmann
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Max J. Männel
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| | - Julian Thiele
- Institute of Physical Chemistry and Polymer PhysicsLeibniz-Institut für Polymerforschung Dresden e.V. Hohe Str. 6 01069 Dresden Germany
| |
Collapse
|
39
|
Silverman AD, Karim AS, Jewett MC. Cell-free gene expression: an expanded repertoire of applications. Nat Rev Genet 2019; 21:151-170. [DOI: 10.1038/s41576-019-0186-3] [Citation(s) in RCA: 246] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2019] [Indexed: 12/24/2022]
|
40
|
Lee KH, Kim DM. Recent advances in development of cell-free protein synthesis systems for fast and efficient production of recombinant proteins. FEMS Microbiol Lett 2019; 365:5062788. [PMID: 30084930 DOI: 10.1093/femsle/fny174] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 07/30/2018] [Indexed: 12/12/2022] Open
Abstract
Cell-free protein synthesis has emerged in recent years as a powerful tool that can potentially transform the production of recombinant proteins. Cell-free protein synthesis harnesses the synthetic power of living cells while eliminating many of the constraints of traditional cell-based gene expression methods. Due to the lack of physical barriers separating the protein synthesis machinery from the surrounding environment, a cell-free protein synthesis reaction mixture can be directly programmed using diverse genetic material for the instant production of recombinant proteins without complicated cloning procedures. However, a number of issues must be addressed for this technology to be widely accepted as an alternative platform for protein production, including quality-control of translation machinery preparations, and high reagent cost. This review describes recent efforts to make cell-free protein synthesis more affordable and more easily accessible for generic applications.
Collapse
Affiliation(s)
- Kyung-Ho Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea
| |
Collapse
|
41
|
Garamella J, Majumder S, Liu AP, Noireaux V. An Adaptive Synthetic Cell Based on Mechanosensing, Biosensing, and Inducible Gene Circuits. ACS Synth Biol 2019; 8:1913-1920. [PMID: 31310519 DOI: 10.1021/acssynbio.9b00204] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bottom-up assembly of synthetic cell systems capable of recapitulating biological functions has become a means to understand living matter by construction. The integration of biomolecular components into active, cell-sized, genetically programmed compartments remains, however, a major bottleneck for building synthetic cells. A primary feature of real cells is their ability to actively interact with their surroundings, particularly in stressed conditions. Here, we construct a synthetic cell equipped with an inducible genetic circuit that responds to changes in osmotic pressure through the mechanosensitive channel MscL. Liposomes loaded with an E. coli cell-free transcription-translation (TXTL) system are induced with IPTG when exposed to hypo-osmotic solution, resulting in the expression of a bacterial cytoskeletal protein MreB. MreB associates with the membrane to generate a cortex-like structure. Our work provides the first example of molecular integration that couples mechanosensitivity, gene expression, and self-assembly at the inner membrane of synthetic cells.
Collapse
Affiliation(s)
- Jonathan Garamella
- Department of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | | | | | - Vincent Noireaux
- Department of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
42
|
Wandera KG, Collins SP, Wimmer F, Marshall R, Noireaux V, Beisel CL. An enhanced assay to characterize anti-CRISPR proteins using a cell-free transcription-translation system. Methods 2019; 172:42-50. [PMID: 31121300 DOI: 10.1016/j.ymeth.2019.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 05/15/2019] [Accepted: 05/16/2019] [Indexed: 12/26/2022] Open
Abstract
The characterization of CRISPR-Cas immune systems in bacteria was quickly followed by the discovery of anti-CRISPR proteins (Acrs) in bacteriophages. These proteins block different steps of CRISPR-based immunity and, as some inhibit Cas nucleases, can offer tight control over CRISPR technologies. While Acrs have been identified against a few CRISPR-Cas systems, likely many more await discovery and application. Here, we report a rapid and scalable method for characterizing putative Acrs against Cas nucleases using an E. coli-derived cell-free transcription-translation system. Using known Acrs against type II Cas9 nucleases as models, we demonstrate how the method can be used to measure the inhibitory activity of individual Acrs in under two days. We also show how the method can overcome non-specific inhibition of gene expression observed for some Acrs. In total, the method should accelerate the interrogation and application of Acrs as CRISPR-Cas inhibitors.
Collapse
Affiliation(s)
- Katharina G Wandera
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Scott P Collins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States
| | - Franziska Wimmer
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany
| | - Ryan Marshall
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, United States
| | - Chase L Beisel
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC 27695, United States; Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz-Centre for Infection Research (HZI), 97080 Würzburg, Germany; Medical Faculty, University of Würzburg, 97080 Würzburg, Germany.
| |
Collapse
|
43
|
Garenne D, Beisel CL, Noireaux V. Characterization of the all-E. coli transcription-translation system myTXTL by mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2019; 33:1036-1048. [PMID: 30900355 DOI: 10.1002/rcm.8438] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Revised: 03/05/2019] [Accepted: 03/13/2019] [Indexed: 06/09/2023]
Abstract
RATIONALE Cell-free transcription-translation (TXTL) is becoming a popular technology to prototype and engineer biological systems outside living organisms. TXTL relies commonly on a cytoplasmic extract that provides the molecular components necessary to recapitulate gene expression in vitro, where most of the available systems are derived from E. coli. The proteinic and enzymatic composition of lysates, however, is typically unknown. In this work, we analyzed by mass spectrometry the molecular constituents of the all-E. coli TXTL platform myTXTL prepared from the E. coli strain BL21 Rosetta2. METHODS Standard TXTL reactions were assembled and executed for 10-12 hours at 29°C. In addition to a no-DNA control, four DNA programs were executed in separate reactions to synthesize the reporter protein deGFP as well as the phages MS2, phix174 and T7. The reactions were treated according to standard procedures (trypsin treatment, cleaning) before performing liquid chromatography/mass spectrometry (LC/MS). Data analysis was performed using Sequest and protein identification using Scaffold. RESULTS A total of 500-800 proteins were identified by LC/MS in the blank reactions. We organized the most abundant protein sets into several categories pertaining, in particular, to transcription, translation and ATP regeneration. The synthesis of deGFP was easily measured. The major structural proteins that compose the three phages MS2, phix174 and T7 were also identified. CONCLUSIONS Mass spectrometry is a practical tool to characterize biochemical solutions as complex as a cell-free TXTL reaction and to determine the presence of synthesized proteins. The data presented demonstrate that the composition of TXTL based on lysates can be used to validate some underlying molecular mechanisms implicated in cell-free protein synthesis. The composition of the lysate shows significant differences with respect to similar studies on other E. coli strains.
Collapse
Affiliation(s)
- David Garenne
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN, 55455, USA
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection (HZI) Research, 97080, Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Vincent Noireaux
- School of Physics and Astronomy, University of Minnesota, 115 Union Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
44
|
Jeong D, Klocke M, Agarwal S, Kim J, Choi S, Franco E, Kim J. Cell-Free Synthetic Biology Platform for Engineering Synthetic Biological Circuits and Systems. Methods Protoc 2019; 2:E39. [PMID: 31164618 PMCID: PMC6632179 DOI: 10.3390/mps2020039] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 04/12/2019] [Accepted: 05/08/2019] [Indexed: 01/07/2023] Open
Abstract
Synthetic biology brings engineering disciplines to create novel biological systems for biomedical and technological applications. The substantial growth of the synthetic biology field in the past decade is poised to transform biotechnology and medicine. To streamline design processes and facilitate debugging of complex synthetic circuits, cell-free synthetic biology approaches has reached broad research communities both in academia and industry. By recapitulating gene expression systems in vitro, cell-free expression systems offer flexibility to explore beyond the confines of living cells and allow networking of synthetic and natural systems. Here, we review the capabilities of the current cell-free platforms, focusing on nucleic acid-based molecular programs and circuit construction. We survey the recent developments including cell-free transcription-translation platforms, DNA nanostructures and circuits, and novel classes of riboregulators. The links to mathematical models and the prospects of cell-free synthetic biology platforms will also be discussed.
Collapse
Affiliation(s)
- Dohyun Jeong
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| | - Melissa Klocke
- Department of Mechanical Engineering, University of California at Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Siddharth Agarwal
- Department of Mechanical Engineering, University of California at Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Jeongwon Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| | - Seungdo Choi
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| | - Elisa Franco
- Department of Mechanical and Aerospace Engineering, University of California at Los Angeles, 420 Westwood Plaza, Los Angeles, CA 90095, USA.
| | - Jongmin Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology, 77 Cheongam-ro, Pohang, Gyeongbuk 37673, Korea.
| |
Collapse
|
45
|
Lim HJ, Kim DM. Cell-Free Metabolic Engineering: Recent Developments and Future Prospects. Methods Protoc 2019; 2:mps2020033. [PMID: 31164613 PMCID: PMC6632161 DOI: 10.3390/mps2020033] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 04/21/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023] Open
Abstract
Due to the ongoing crises of fossil fuel depletion, climate change, and environmental pollution, microbial processes are increasingly considered as a potential alternative for cleaner and more efficient production of the diverse chemicals required for modern civilization. However, many issues, including low efficiency of raw material conversion and unintended release of genetically modified microorganisms into the environment, have limited the use of bioprocesses that rely on recombinant microorganisms. Cell-free metabolic engineering is emerging as a new approach that overcomes the limitations of existing cell-based systems. Instead of relying on metabolic processes carried out by living cells, cell-free metabolic engineering harnesses the metabolic activities of cell lysates in vitro. Such approaches offer several potential benefits, including operational simplicity, high conversion yield and productivity, and prevention of environmental release of microorganisms. In this article, we review the recent progress in this field and discuss the prospects of this technique as a next-generation bioconversion platform for the chemical industry.
Collapse
Affiliation(s)
- Hye Jin Lim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea.
| | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
46
|
Li J, Liu X, Man Y, Chen Q, Pei D, Wu W. Cell-free expression, purification and characterization of Drosophila melanogaster odorant receptor OR42a and its co-receptor. Protein Expr Purif 2019; 159:27-33. [PMID: 30872132 DOI: 10.1016/j.pep.2019.03.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/06/2019] [Accepted: 03/01/2019] [Indexed: 10/27/2022]
Abstract
Olfactory receptors (OR), a group of classic membrane proteins, plays a vital role in insect reproduction and acclimatization. Deciphering the molecular mechanism of insect olfaction could enhance pest control and environmental protection. Studies on ORs have faced a major bottleneck due to the notoriously strong hydrophobicity of ORs, which results in difficult expression in heterologous cell systems. Here, we demonstrated that insect ORs could be functionally produced using the E. coli cell-free protein synthesis system (CFPS), in which the highest yield of total ORs is 350 μg per 1 ml reaction. We tested the effects of detergent types and concentrations on soluble expression of ORs. The ORs showed a classic α-helical infrared spectrum. Quartz crystal microbalance (QCM) was used to demonstrate that ORs fold correctly and respond to their ligands. This is the first report that insect OR42a could be functionally produced in vitro. This approach may facilitate the development of biomimetic olfactory biosensors and may also be utilized for drug positioning and development, environmental protection and agriculture.
Collapse
Affiliation(s)
- Jianyong Li
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Xingping Liu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Yahui Man
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Qian Chen
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Di Pei
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China
| | - Wenjian Wu
- Department of Biology and Chemistry, National University of Defense Technology, Changsha, 410000, Hunan, China.
| |
Collapse
|
47
|
|
48
|
Dubuc E, Pieters PA, van der Linden AJ, van Hest JC, Huck WT, de Greef TF. Cell-free microcompartmentalised transcription-translation for the prototyping of synthetic communication networks. Curr Opin Biotechnol 2018; 58:72-80. [PMID: 30594098 PMCID: PMC6723619 DOI: 10.1016/j.copbio.2018.10.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 10/14/2018] [Indexed: 12/21/2022]
Abstract
Recent efforts in synthetic biology have shown the possibility of engineering distributed functions in populations of living cells, which requires the development of highly orthogonal, genetically encoded communication pathways. Cell-free transcription-translation (TXTL) reactions encapsulated in microcompartments enable prototyping of molecular communication channels and their integration into engineered genetic circuits by mimicking critical cell features, such as gene expression, cell size, and cell individuality within a community. In this review, we discuss the uses of cell-free transcription-translation reactions for the development of synthetic genetic circuits, with a special focus on the use of microcompartments supporting this reaction. We highlight several studies where molecular communication between non-living microcompartments and living cells have been successfully engineered.
Collapse
Affiliation(s)
- Emilien Dubuc
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Pascal A Pieters
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Ardjan J van der Linden
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Jan Cm van Hest
- Department of Biomedical Engineering & Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Wilhelm Ts Huck
- Department of Physical Organic Chemistry, Institute for Molecules and Materials, Radboud University, Nijmegen 6525 HP, The Netherlands
| | - Tom Fa de Greef
- Laboratory of Chemical Biology, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Computational Biology Group, Department of Biomedical Engineering, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands; Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.
| |
Collapse
|
49
|
Niederholtmeyer H, Chaggan C, Devaraj NK. Communication and quorum sensing in non-living mimics of eukaryotic cells. Nat Commun 2018; 9:5027. [PMID: 30487584 PMCID: PMC6261949 DOI: 10.1038/s41467-018-07473-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 11/01/2018] [Indexed: 01/22/2023] Open
Abstract
Cells in tissues or biofilms communicate with one another through chemical and mechanical signals to coordinate collective behaviors. Non-living cell mimics provide simplified models of natural systems; however, it has remained challenging to implement communication capabilities comparable to living cells. Here we present a porous artificial cell-mimic containing a nucleus-like DNA-hydrogel compartment that is able to express and display proteins, and communicate with neighboring cell-mimics through diffusive protein signals. We show that communication between cell-mimics allows distribution of tasks, quorum sensing, and cellular differentiation according to local environment. Cell-mimics can be manufactured in large quantities, easily stored, chemically modified, and spatially organized into diffusively connected tissue-like arrangements, offering a means for studying communication in large ensembles of artificial cells. Cells communicate through chemical and mechanical signals but emulating these in non-living mimics has been challenging. Here the authors present a porous mimic with a DNA-hydrogel ‘nucleus’ that can communicate through diffusive protein signals.
Collapse
Affiliation(s)
- Henrike Niederholtmeyer
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Cynthia Chaggan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Neal K Devaraj
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
50
|
Watters KE, Fellmann C, Bai HB, Ren SM, Doudna JA. Systematic discovery of natural CRISPR-Cas12a inhibitors. Science 2018; 362:236-239. [PMID: 30190307 DOI: 10.1126/science.aau5138] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 08/23/2018] [Indexed: 12/18/2022]
Abstract
Cas12a (Cpf1) is a CRISPR-associated nuclease with broad utility for synthetic genome engineering, agricultural genomics, and biomedical applications. Although bacteria harboring CRISPR-Cas9 or CRISPR-Cas3 adaptive immune systems sometimes acquire mobile genetic elements encoding anti-CRISPR proteins that inhibit Cas9, Cas3, or the DNA-binding Cascade complex, no such inhibitors have been found for CRISPR-Cas12a. Here we use a comprehensive bioinformatic and experimental screening approach to identify three different inhibitors that block or diminish CRISPR-Cas12a-mediated genome editing in human cells. We also find a widespread connection between CRISPR self-targeting and inhibitor prevalence in prokaryotic genomes, suggesting a straightforward path to the discovery of many more anti-CRISPRs from the microbial world.
Collapse
Affiliation(s)
- Kyle E Watters
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Christof Fellmann
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.,Gladstone Institutes, San Francisco, CA 94158, USA
| | - Hua B Bai
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Shawn M Ren
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jennifer A Doudna
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA. .,Gladstone Institutes, San Francisco, CA 94158, USA.,Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA.,Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.,Li Ka Shing Biomedical and Health Sciences Center, University of California, Berkeley, Berkeley, CA 94720, USA.,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|