1
|
Chen J, Qin H, You C, Long L. Improved secretory expression and characterization of thermostable xylanase and β-xylosidase from Pseudothermotoga thermarum and their application in synergistic degradation of lignocellulose. Front Bioeng Biotechnol 2023; 11:1270805. [PMID: 37790249 PMCID: PMC10544939 DOI: 10.3389/fbioe.2023.1270805] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/04/2023] [Indexed: 10/05/2023] Open
Abstract
Xylanase and β-xylosidase are the key enzymes for hemicellulose hydrolysis. To further improve hydrolysis efficacy, high temperature hydrolysis with thermostable hemicellulases showed promise. In this study, thermostable xylanase (Xyn) and β-xylosidase (XynB) genes from Pseudothermotoga thermarum were cloned and secretory expressed in Bacillu subtilis. Compared with Escherichia coli expression host, B. subtilis resulted in a 1.5 time increase of enzymatic activity for both recombinant enzymes. The optimal temperature and pH were 95°C and 6.5 for Xyn, and 95°C and 6.0 for XynB. Thermostability of both recombinant enzymes was observed between the temperature range of 75-85°C. Molecular docking analysis through AutoDock showed the involvement of Glu525, Asn526, Trp774 and Arg784 in Xyn-ligand interaction, and Val237, Lys238, Val761 and Asn76 in XynB-ligand interaction, respectively. The recombinant Xyn and XynB exhibited synergistic hydrolysis of beechwood xylan and pretreated lignocellulose, where Xyn and XynB pre-hydrolysis achieved a better improvement of pretreated lignocellulose hydrolysis by commercial cellulase. The observed stability of the enzymes at high temperature and the synergistic effect on lignocellulosic substrates suggested possible application of these enzymes in the field of saccharification process.
Collapse
Affiliation(s)
- Jinkang Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Hao Qin
- Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, Jiangsu, China
- Little Swan Electric Co., Ltd., Midea Group, Wuxi, China
| | - Chaoqun You
- Jiangsu Key Lab for the Chemistry and Utilization of Agro-Forest Biomas, College of Chemical Engineering, Nanjing Forestry University, Nanjing, China
| | - Lingfeng Long
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Serra LA, da Silva Cruz RG, Gutierrez DMR, Cruz AJG, Canizares CAT, Chen X, Mosier N, Thompson D, Aston J, Dooley J, Sharma P, De Marco JL, de Almeida JRM, Erk K, Ximenes E, Ladisch MR. Screening method for Enzyme-based liquefaction of corn stover pellets at high solids. BIORESOURCE TECHNOLOGY 2022; 363:127999. [PMID: 36152978 DOI: 10.1016/j.biortech.2022.127999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Liquefaction of high solid loadings of unpretreated corn stover pellets has been demonstrated with rheology of the resulting slurries enabling mixing and movement within biorefinery bioreactors. However, some forms of pelleted stover do not readily liquefy, so it is important to screen out lots of unsuitable pellets before processing is initiated. This work reports a laboratory assay that rapidly assesses whether pellets have the potential for enzyme-based liquefaction at high solids loadings. Twenty-eight pelleted corn stover (harvested at the same time and location) were analyzed using 20 mL enzyme solutions (3 FPU cellulase/ g biomass) at 30 % w/v solids loading. Imaging together with measurement of reducing sugars were performed over 24-hours. Some samples formed concentrated slurries of 300 mg/mL (dry basis) in the small-scale assay, which was later confirmed in an agitated bioreactor. Also, the laboratory assay showed potential for optimizing enzyme formulations that could be employed for slurry formation.
Collapse
Affiliation(s)
- Luana Assis Serra
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA; University of Brasília, Brasília, DF, Brazil
| | - Rosineide Gomes da Silva Cruz
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA; São Carlos Federal University, São Carlos, SP, Brazil
| | - Diana M R Gutierrez
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA
| | - Antonio José Gonçalves Cruz
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA; São Carlos Federal University, São Carlos, SP, Brazil
| | | | - Xueli Chen
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA
| | - Nathan Mosier
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA
| | | | - John Aston
- Idaho National Laboratory, Idaho Falls, ID, USA
| | | | - Pankaj Sharma
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA
| | | | | | - Kendra Erk
- Purdue University/School of Materials Engineering, West Lafayette, IN, USA
| | - Eduardo Ximenes
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA
| | - Michael R Ladisch
- Purdue University/ Laboratory of Renewable Resources Engineering (LORRE), West Lafayette, IN, USA.
| |
Collapse
|
3
|
MnFe2O4/MoS2 nanocomposite as Oxidase-like for electrochemical simultaneous detection of ascorbic acid, dopamine and uric acid. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
4
|
Zhong N, Chandra R, Yamamoto M, Leskinen T, Granström T, Saddler J. Sulphite addition during steam pretreatment enhanced both enzyme-mediated cellulose hydrolysis and ethanol production. BIORESOUR BIOPROCESS 2022; 9:71. [PMID: 38647560 PMCID: PMC10991184 DOI: 10.1186/s40643-022-00556-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Sulphite addition during steam pretreatment of softwoods under acidic, neutral and alkaline conditions was assessed to try to minimize lignin condensation. Although pretreatment under neutral/alkaline conditions resulted in effective lignin sulphonation, non-uniform size reduction was observed. In contrast, acidic sulphite steam treatment at 210 °C for 10 min resulted in homogenous particle size reduction and water-insoluble component that was 62% carbohydrate and 33% lignin. This carbohydrate-rich substrate was readily hydrolyzed and fermented which indicated the lack of fermentation inhibitors in the steam-pretreated whole slurry. The use of high solid loading (25% w/v) resulted in a hydrolysis yield of 58% at an enzyme loading of 40 mg protein/g glucan and efficient fermentation (46.6 g/L of ethanol). This indicated that the addition of acidic sulphite at the steam pretreatment of softwoods improved both the enzymatic hydrolysis and fermentation of steam-pretreated whole slurries.
Collapse
Affiliation(s)
- Na Zhong
- Department of Wood Science, Faculty of Forestry, Forest Products Biotechnology and Bioenergy Group, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada
- St1 Oy, Firdonkatu 2, Helsinki, Finland
| | - Richard Chandra
- Trinity Western University, 22500 University Dr, Langley, BC, Canada.
| | | | | | - Tom Granström
- VTT Technical Research Centre of Finland Ltd., 02044, Espoo, Finland
| | - Jack Saddler
- Department of Wood Science, Faculty of Forestry, Forest Products Biotechnology and Bioenergy Group, The University of British Columbia, 2424 Main Mall, Vancouver, BC, Canada.
| |
Collapse
|
5
|
Wu J, Ebadian M, Kim KH, Kim CS, Saddler J. The use of steam pretreatment to enhance pellet durability and the enzyme-mediated hydrolysis of pellets to fermentable sugars. BIORESOURCE TECHNOLOGY 2022; 347:126731. [PMID: 35074465 DOI: 10.1016/j.biortech.2022.126731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 01/13/2022] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
Although densified wood pellets are an attractive biomass feedstock for bioenergy and biofuels production, partly due to their ease of transport, their friability and hygroscopic nature (attraction of moisture) have proven problematic in terms of storage and handling. Pre-steaming the biomass was shown to reduce the need for size reduction, significantly increasing pellet durability by relocating the plant cell wall lignin to the fibre surface and consequently enhancing binding between particles. Although steam pretreatment has been shown to facilitate enzyme-mediated hydrolysis of biomass, by increasing cellulose accessibility, drying and pelletization partially impeded enzymatic hydrolysis. However, the incorporation of alkaline deacetylation or neutral sulfonation step prior to pre-steaming was shown to mitigate many of the negative effects of drying. Although drying and pelletization did not significantly impact the redistribution of lignin, a mild mechanical refining step was shown to further enhance the hydrolysis of the cellulose component of the pelletized biomass.
Collapse
Affiliation(s)
- Jie Wu
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - Mahmood Ebadian
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada
| | - Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Chang Soo Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
| | - Jack Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver BC V6T 1Z4, Canada.
| |
Collapse
|
6
|
Dos Santos ACF, Overton JC, Szeto R, Patel MH, Gutierrez DMR, Eby C, Martínez Moreno AM, Erk KA, Aston JE, Thompson DN, Dooley JH, Sharma P, Mosier NS, Ximenes E, Ladisch MR. New strategy for liquefying corn stover pellets. BIORESOURCE TECHNOLOGY 2021; 341:125773. [PMID: 34419879 DOI: 10.1016/j.biortech.2021.125773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 06/13/2023]
Abstract
The movement of solid material into and between unit operations within a biorefinery is a bottleneck in reaching design capacity, with formation of biomass slurries needed to introduce feedstock. Corn stover slurries have been achieved from dilute acid, pretreated materials resulting in slurry concentrations of up to about 150 g/L, above which flowability is compromised. We report a new strategy to liquefy corn stover at higher solids concentration (300 g/L) by initially cooking it with the enzyme mimetic maleic acid at 40 mM and 150 °C. This is followed by 6 h of enzymatic modification at 1 FPU (2.2 mg protein)/g solids, resulting in a yield stress of 171 Pa after 6 h and 58 Pa in 48 h compared to 6806 Pa for untreated stover. Mimetic treatment of corn stover pellets minimizes the inhibitory effect of xylo-oligomers on hydrolytic enzymes. This strategy allows for the delivery of solid lignocellulosic slurry into a pretreatment reactor by pumping, improving operability of a biorefinery.
Collapse
Affiliation(s)
- Antonio C Freitas Dos Santos
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Jonathan C Overton
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Ryan Szeto
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Maulik H Patel
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Diana M R Gutierrez
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Clark Eby
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Ana M Martínez Moreno
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Departmento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Kendra A Erk
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - John E Aston
- Chemical Systems, Idaho National Laboratory, Idaho Falls, Idaho 83415 United States
| | - David N Thompson
- Biomass Characterization, Idaho National Laboratory, Idaho Falls, Idaho 83415 United States
| | - James H Dooley
- Forest Concepts LLC., Auburn, Washington 98001 United States
| | - Pankaj Sharma
- Discovery Park, Purdue University, West Lafayette, IN 47907 United States
| | - Nathan S Mosier
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, IN 47907 United States; Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, IN 47907 United States; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907 United States.
| |
Collapse
|
7
|
Szeto R, Overton JC, Dos Santos ACF, Eby C, Mosier NS, Ximenes E, Ladisch MR, Erk KA. Rheology of enzyme liquefied corn stover slurries: The effect of solids concentration on yielding and flow behavior. Biotechnol Prog 2021; 37:e3216. [PMID: 34590438 DOI: 10.1002/btpr.3216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/09/2021] [Accepted: 09/26/2021] [Indexed: 11/08/2022]
Abstract
The measurement of yield stress and shear thinning flow behavior of slurries formed from unpretreated corn stover at solids loadings of 100-300 g/L provides a key metric for the ability to move, pump, and mix this lignocellulosic slurry, particularly since corn stover slurries represent a major potential feedstock for biorefineries. This study compared static yield stress values and flow hysteresis of corn stover slurries of 100, 150, 200, 250, and 300 g/L, after these slurries were formed by adding pellets to a cellulase enzyme solution (Celluclast 1.5 L) in a fed-batch manner. A rotational rheometer was used to quantitate relative yield stress and its dependence on processing history at insoluble solids concentrations of 4%-21% (wt/vol). Key findings confirmed previous observations that yield stress increases with solids loadings and reaches ~3000 Pa at 25% (wt/vol) solids concentration compared to ~200 Pa after enzyme liquefaction. While optimization of slurry forming (i.e., liquefaction) conditions remains to be done, metrics for quantifying liquefaction extent are needed. The method for obtaining comparative metrics is demonstrated here and shows that the yield stress, shear thinning and shear thickening flow behaviors of enzyme liquefied corn stover slurries can be analyzed using a wide-gap rheometry setup with relative measuring geometries to mimic the conditions that may exist in a mixing vessel of a bioreactor while applying controlled and precise levels of strain.
Collapse
Affiliation(s)
- Ryan Szeto
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Jonathan C Overton
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Antonio C F Dos Santos
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Clark Eby
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Nathan S Mosier
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eduardo Ximenes
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Michael R Ladisch
- Laboratory of Renewable Resources Engineering (LORRE), Purdue University, West Lafayette, Indiana, USA.,Department of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana, USA.,Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Kendra A Erk
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
8
|
van der Zwan T, Sigg A, Hu J, Chandra RP, Saddler JN. Enzyme-Mediated Lignocellulose Liquefaction Is Highly Substrate-Specific and Influenced by the Substrate Concentration or Rheological Regime. Front Bioeng Biotechnol 2020; 8:917. [PMID: 32850753 PMCID: PMC7423843 DOI: 10.3389/fbioe.2020.00917] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/16/2020] [Indexed: 01/30/2023] Open
Abstract
The high viscosities/yield stresses of lignocellulose slurries makes their industrial processing a significant challenge. However, little is known regarding the degree to which liquefaction and its enzymatic requirements are specific to a substrate's physicochemical and rheological properties. In the work reported here, the substrate- and rheological regime-specificities of liquefaction of various substrates were assessed using real-time in-rheometer viscometry and offline oscillatory rheometry when hydrolyzed by combinations of cellobiohydrolase (Trichoderma reesei Cel7A), endoglucanase (Humicola insolens Cel45A), glycoside hydrolase (GH) family 10 xylanase, and GH family 11 xylanase. In contrast to previous work that has suggested that endoglucanase activity dominates enzymatic liquefaction, all of the enzymes were shown to have at least some liquefaction capacity depending on the substrate and reaction conditions. The contribution of individual enzymes was found to be influenced by the rheological regime; in the concentrated regime, the cellobiohydrolase outperformed the endoglucanase, achieving 2.4-fold higher yield stress reduction over the same timeframe, whereas the endoglucanase performed best in the semi-dilute regime. It was apparent that the significant differences in rheology and liquefaction mechanisms made it difficult to predict the liquefaction capacity of an enzyme or enzyme cocktail at different substrate concentrations.
Collapse
Affiliation(s)
- Timo van der Zwan
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Alexander Sigg
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
- Department of Chemistry, Technical University of Munich, Munich, Germany
| | - Jinguang Hu
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Richard P. Chandra
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| | - Jack N. Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
9
|
Tian D, Zhong N, Leung J, Shen F, Hu J, Saddler JN. Potential of Xylanases to Reduce the Viscosity of Micro/Nanofibrillated Bleached Kraft Pulp. ACS APPLIED BIO MATERIALS 2020; 3:2201-2208. [PMID: 35025272 DOI: 10.1021/acsabm.0c00041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The generally high viscosity of micro/nanofibrillated cellulose limits its applications in cream and fluid products. A bleached softwood Kraft (BSK) pulp was refined with increasing energy (500-2500 kWh t-1) to produce micro/nanofibrillated cellulose (MNBSK). Subsequent xylanase treatment was shown to influence the viscosity, gel point, aspect ratio, and fiber surface morphology of the MNBSK. It was apparent that the accessibility to xylanases was increased even at low refining energies (500 kWh t-1). Depending on the initial degree of cellulose fibrillation, xylanase treatment decreased the viscosity of the MNBSK from 4190-2030 to 681-243 Pa·s at a shear rate of 0.01 s-1, corresponding to the reduction in the aspect ratio from 183-296 to 163-194. It was likely that the xylanases were predominantly acting on the xylan present on the fiber surfaces, reducing the cross-linking points on the cellulose fibers and consequently resulting in the reduction in MNBSK viscosity.
Collapse
Affiliation(s)
- Dong Tian
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China.,Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.,State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, P. R. China
| | - Na Zhong
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jerry Leung
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Fei Shen
- Institute of Ecological and Environmental Sciences, Sichuan Agricultural University, Chengdu, Sichuan 611130, P. R. China
| | - Jinguang Hu
- Department of Chemical and Petroleum Engineering, University of Calgary, Calgary T2N 1N4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
10
|
van der Zwan T, Chandra RP, Saddler JN. Laccase-mediated hydrophilization of lignin decreases unproductive enzyme binding but limits subsequent enzymatic hydrolysis at high substrate concentrations. BIORESOURCE TECHNOLOGY 2019; 292:121999. [PMID: 31446388 DOI: 10.1016/j.biortech.2019.121999] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 08/09/2019] [Accepted: 08/10/2019] [Indexed: 06/10/2023]
Abstract
One of the predominant mechanisms by which lignin restricts effective enzymatic deconstruction of lignocellulosic materials is the unproductive adsorption of enzymes. Although this inhibition can be partially mitigated through hydrophilization of lignin during thermochemical pretreatment, these types of treatments could potentially worsen slurry rheology, consequently making it more difficult to process the material at high substrate concentrations. In the work reported here, laccases were used to specifically modify lignin hydrophilicity within steam-pretreated substrate via in situ phenolic compound grafting. While lignin hydrophilization reduced unproductive enzyme adsorption, high-solids hydrolysis efficiency decreased significantly due to mass transfer limitations. It was apparent that low-solids hydrolysis experiments were a poor predictor of substrate digestibility at high-solids conditions and that substrate-water interactions impacted both substrate digestibility and slurry rheology.
Collapse
Affiliation(s)
- Timo van der Zwan
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Richard P Chandra
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Jack N Saddler
- Forest Products Biotechnology and Bioenergy Group, Department of Wood Science, Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| |
Collapse
|
11
|
Digaitis R, Thybring EE, Thygesen LG. Investigating the role of mechanics in lignocellulosic biomass degradation during hydrolysis. Biotechnol Prog 2018; 35:e2754. [PMID: 30468315 DOI: 10.1002/btpr.2754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 10/13/2018] [Accepted: 11/20/2018] [Indexed: 11/12/2022]
Abstract
Enzymes and mechanics play major roles in lignocellulosic biomass deconstruction in biorefineries by catalyzing chemical cleavage or inducing physical breakdown of biomass, respectively. At industrially relevant substrate concentrations mechanical agitation is also a driving force for mass transfer as well as agglomeration of elongated biomass particles. Contrary to the physically induced particle attrition, which typically facilitates feedstock handling, particle agglomeration tends to hinder mass transfer and in the worst case induces processing difficulties like pipe blockage. Understanding the complex interplay between mechanical agitation and enzymatic degradation during hydrolysis is therefore critical and was the aim of this study. Particle size analyses revealed that neither mechanical agitation alone nor enzymatic treatment without mechanical agitation had any noteworthy effect on flax fiber attrition. Similarly, successive treatment, where mechanical agitation was either preceded or proceeded by enzymatic hydrolysis, did not induce any substantial segmentation of flax fibers. Simultaneous enzymatic and mechanical treatment on the other hand was found to promote fast fiber shortening. Higher hydrolysis yields, however, were obtained from nonagitated samples after prolonged enzymatic treatment, indicating that mechanical agitation in the long run reduces activity of the cellulolytic enzymes. © 2018 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2754, 2019.
Collapse
Affiliation(s)
- Ramūnas Digaitis
- Dept. of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, Denmark
| | - Emil Engelund Thybring
- Dept. of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, Denmark
| | - Lisbeth Garbrecht Thygesen
- Dept. of Geosciences and Natural Resource Management, Faculty of Science, University of Copenhagen, Rolighedsvej 23, Frederiksberg C, Denmark
| |
Collapse
|
12
|
Long L, Tian D, Zhai R, Li X, Zhang Y, Hu J, Wang F, Saddler J. Thermostable xylanase-aided two-stage hydrolysis approach enhances sugar release of pretreated lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2018; 257:334-338. [PMID: 29500062 DOI: 10.1016/j.biortech.2018.02.104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 05/16/2023]
Abstract
One of the challenges in biorefinery is the still too much enzyme involved in the saccharification of the cellulosic component. High-temperature hydrolysis with thermostable enzyme showed promise. In this study, a temperature-elevated two-stage hydrolysis, including xylan "coat" removal at high-temperature by thermostable xylanase (Xyn10A) from Thermotoga thermarum DSM 5069 followed with saccharification step by commercial cellulase, was introduced to improve biomass deconstruction. Results showed that high-temperature xylanase treatment considerably increased cellulose accessibility/hydrolyzability towards cellulases, with smoothed fiber surface morphology. Comparing with commercial xylanase (HTec) treatment at 50 °C, thermostable Xyn10A pre-hydrolysis at 85 °C was able to achieve a slightly better improvement of cellulose hydrolysis with much lower xylanase loading (about 5 times lower than HTec). It appeared that the increased temperature during thermostable xylanase treatment facilitated biomass slurry viscosity reduction, which exhibited more benefits during hydrolysis of various steam pretreated substrates at increased solid content (up to 10% w/w).
Collapse
Affiliation(s)
- Lingfeng Long
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China; Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Dong Tian
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Rui Zhai
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| | - Xun Li
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China
| | - Yu Zhang
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China
| | - Jinguang Hu
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada.
| | - Fei Wang
- College of Chemical Engineering, Nanjing Forestry University, Jiangsu Key Lab for the Chemistry and Utilization of Agro-forest Biomass, Nanjing 210037, PR China
| | - Jack Saddler
- Department of Wood Science, University of British Columbia, Vancouver V6T 1Z4, Canada
| |
Collapse
|
13
|
Properties important for solid-liquid separations change during the enzymatic hydrolysis of pretreated wheat straw. Biotechnol Lett 2018; 40:703-709. [PMID: 29392453 DOI: 10.1007/s10529-018-2521-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 01/24/2018] [Indexed: 10/18/2022]
Abstract
OBJECTIVES The biochemical conversion of lignocellulosic biomass into renewable fuels and chemicals provides new challenges for industrial scale processes. One such process, which has received little attention, but is of great importance for efficient product recovery, is solid-liquid separations, which may occur both after pretreatment and after the enzymatic hydrolysis steps. Due to the changing nature of the solid biomass during processing, the solid-liquid separation properties of the biomass can also change. The objective of this study was to show the effect of enzymatic hydrolysis of cellulose upon the water retention properties of pretreated biomass over the course of the hydrolysis reaction. RESULTS Water retention value measurements, coupled with 1H NMR T2 relaxometry data, showed an increase in water retention and constraint of water by the biomass with increasing levels of cellulose hydrolysis. This correlated with an increase in the fines fraction and a decrease in particle size, suggesting that structural decomposition rather than changes in chemical composition was the most dominant characteristic. CONCLUSIONS With increased water retained by the insoluble fraction as cellulose hydrolysis proceeds, it may prove more difficult to efficiently separate hydrolysis residues from the liquid fraction with improved hydrolysis.
Collapse
|
14
|
de Assis T, Huang S, Driemeier CE, Donohoe BS, Kim C, Kim SH, Gonzalez R, Jameel H, Park S. Toward an understanding of the increase in enzymatic hydrolysis by mechanical refining. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:289. [PMID: 30386426 PMCID: PMC6201573 DOI: 10.1186/s13068-018-1289-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/09/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Mechanical refining is a low-capital and well-established technology used in pulp and paper industry to improve fiber bonding for product strength. Refining can also be applied in a biorefinery context to overcome the recalcitrance of pretreated biomass by opening up the biomass structure and modifying substrate properties (e.g., morphology, particle size, porosity, crystallinity), which increases enzyme accessibility to substrate and improves carbohydrate conversion. Although several characterization methods have been used to identify the changes in substrate properties, there is no systematic approach to evaluate the extent of fiber cell wall disruption and what physical properties can explain the improvement in enzymatic digestibility when pretreated lignocellulosic biomass is mechanically refined. This is because the fiber cell wall is complex across multiple scales, including the molecular scale, nano- and meso-scale (microfibril), and microscale (tissue level). A combination of advanced characterization tools is used in this study to better understand the effect of mechanical refining on the meso-scale microfibril assembly and the relationship between those meso-scale modifications and enzymatic hydrolysis. RESULTS Enzymatic conversion of autohydrolysis sugarcane bagasse was improved from 69.6 to 77.2% (11% relative increase) after applying mechanical refining and an increase in enzymatic digestibility is observed with an increase in refining intensity. Based on a combination of advanced characterizations employed in this study, it was found that the refining action caused fiber size reduction, internal delamination, and increase in pores and swellability. CONCLUSIONS A higher level of delamination and higher increase in porosity, analyzed by TEM and DSC, were clearly demonstrated, which explain the faster digestibility rate during the first 72 h of enzymatic hydrolysis for disc-refined samples when compared to the PFI-refined samples. In addition, an increased inter-fibrillar distance between cellulose microfibrils at the nano-meso-scale was also revealed by SFG analysis, while no evidence was found for a change in crystalline structure by XRD and solid-state NMR analysis.
Collapse
Affiliation(s)
- Tiago de Assis
- Department of Forest Biomaterials, College of Natural Reseources, NC State University, Raleigh, NC USA
| | - Shixin Huang
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA USA
| | - Carlos Eduardo Driemeier
- Brazilian Bioethanol Science and Technology Laboratory (CTBE), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, SP Brazil
| | - Bryon S. Donohoe
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO USA
| | - Chaehoon Kim
- Department of Forest Biomaterials, College of Natural Reseources, NC State University, Raleigh, NC USA
| | - Seong H. Kim
- Department of Chemical Engineering, Pennsylvania State University, University Park, PA USA
| | - Ronalds Gonzalez
- Department of Forest Biomaterials, College of Natural Reseources, NC State University, Raleigh, NC USA
| | - Hasan Jameel
- Department of Forest Biomaterials, College of Natural Reseources, NC State University, Raleigh, NC USA
| | - Sunkyu Park
- Department of Forest Biomaterials, College of Natural Reseources, NC State University, Raleigh, NC USA
| |
Collapse
|