1
|
Chang FC, James MM, Zhou Y, Ando Y, Zareie HM, Yang J, Zhang M. Human Neural Stem Cell Expansion in Natural Polymer Scaffolds Under Chemically Defined Condition. Adv Biol (Weinh) 2024; 8:e2400224. [PMID: 38963310 DOI: 10.1002/adbi.202400224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/06/2024] [Indexed: 07/05/2024]
Abstract
The maintenance and expansion of human neural stem cells (hNSCs) in 3D tissue scaffolds is a promising strategy in producing cost-effective hNSCs with quality and quantity applicable for clinical applications. A few biopolymers have been extensively used to fabricate 3D scaffolds, including hyaluronic acid, collagen, alginate, and chitosan, due to their bioactive nature and availability. However, these polymers are usually applied in combination with other biomolecules, leading to their responses difficult to ascribe to. Here, scaffolds made of chitosan, alginate, hyaluronic acid, or collagen, are explored for hNSC expansion under xeno-free and chemically defined conditions and compared for hNSC multipotency maintenance. This study shows that the scaffolds made of pure chitosan support the highest adhesion and growth of hNSCs, yielding the most viable cells with NSC marker protein expression. In contrast, the presence of alginate, hyaluronic acid, or collagen induces differentiation toward immature neurons and astrocytes even in the maintenance medium and absence of differentiation factors. The cells in pure chitosan scaffolds preserve the level of transmembrane protein profile similar to that of standard culture. These findings point to the potential of using pure chitosan scaffolds as a base scaffolding material for hNSC expansion in 3D.
Collapse
Affiliation(s)
- Fei-Chien Chang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Matthew Michael James
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yang Zhou
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Yoshiki Ando
- Materials Department, Medical R&D Center, Corporate R&D Group, KYOCERA Corporation, Yasu, Shiga, 520-2362, Japan
| | - Hadi M Zareie
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Jihui Yang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| | - Miqin Zhang
- Department of Materials Science and Engineering, University of Washington, Seattle, WA, 98195, USA
| |
Collapse
|
2
|
Jiang C, Campbell-Rance D, Wu S, Wang Y, Sun H, Xu Y, Wen X. Expansion and differentiation of human neural stem cells on synthesized integrin binding peptide surfaces. Biomed Mater 2024; 19:045033. [PMID: 38772389 DOI: 10.1088/1748-605x/ad4e85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/21/2024] [Indexed: 05/23/2024]
Abstract
The extracellular matrix plays a crucial role in the growth of human neural stem cells (hNSCs) by forming a stem cell niche, bothin vitroandin vivo. The demand for defined synthetic substrates has been increasing recently in stem cell research, reflecting the requirements for precise functions and safety concerns in potential clinical approaches. In this study, we tested the adhesion and expansion of one of the most representative hNSC lines, the ReNcell VM Human Neural Progenitor Cell Line, in a pure-synthesized short peptide-basedin vitroniche using a previously established integrin-binding peptide array. Spontaneous cell differentiation was then induced using two differentin vitroapproaches to further confirm the multipotent features of cells treated with the peptides. Twelve different integrin-binding peptides were capable of supporting hNSC adhesion and expansion at varied proliferation rates. In the ReNcell medium-based differentiation approach, cells detached in almost all peptide-based groups, except integrinα5β1 binding peptide. In an altered differentiation process induced by retinoic acid containing neural differentiation medium, cell adhesion was retained in all 12 peptide groups. These peptides also appeared to have varied effects on the differentiation potential of hNSCs towards neurons and astrocytes. Our findings provide abundant options for the development ofin vitroneural stem cell niches and will help develop promising tools for disease modeling and future stem cell therapies for neurological diseases.
Collapse
Affiliation(s)
- Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Debbie Campbell-Rance
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
| | - Shujun Wu
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- Department of Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Huifang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Diseases, Zhengzhou, Henan, People's Republic of China
- Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
| | - Xuejun Wen
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan 450052, People's Republic of China
- Department of Chemical and Life Science Engineering, Virginia Commonwealth University, Richmond, VA 23220, United States of America
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, Guangdong 511436, People's Republic of China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 389 Xincun Road, 200065 Shanghai, People's Republic of China
| |
Collapse
|
3
|
Ryoo H, Kimmel H, Rondo E, Underhill GH. Advances in high throughput cell culture technologies for therapeutic screening and biological discovery applications. Bioeng Transl Med 2024; 9:e10627. [PMID: 38818120 PMCID: PMC11135158 DOI: 10.1002/btm2.10627] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 06/01/2024] Open
Abstract
Cellular phenotypes and functional responses are modulated by the signals present in their microenvironment, including extracellular matrix (ECM) proteins, tissue mechanical properties, soluble signals and nutrients, and cell-cell interactions. To better recapitulate and analyze these complex signals within the framework of more physiologically relevant culture models, high throughput culture platforms can be transformative. High throughput methodologies enable scientists to extract increasingly robust and broad datasets from individual experiments, screen large numbers of conditions for potential hits, better qualify and predict responses for preclinical applications, and reduce reliance on animal studies. High throughput cell culture systems require uniformity, assay miniaturization, specific target identification, and process simplification. In this review, we detail the various techniques that researchers have used to face these challenges and explore cellular responses in a high throughput manner. We highlight several common approaches including two-dimensional multiwell microplates, microarrays, and microfluidic cell culture systems as well as unencapsulated and encapsulated three-dimensional high throughput cell culture systems, featuring multiwell microplates, micromolds, microwells, microarrays, granular hydrogels, and cell-encapsulated microgels. We also discuss current applications of these high throughput technologies, namely stem cell sourcing, drug discovery and predictive toxicology, and personalized medicine, along with emerging opportunities and future impact areas.
Collapse
Affiliation(s)
- Hyeon Ryoo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Hannah Kimmel
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Evi Rondo
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| | - Gregory H. Underhill
- Bioengineering DepartmentUniversity of Illinois Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
4
|
Pereira I, Lopez-Martinez MJ, Samitier J. Advances in current in vitro models on neurodegenerative diseases. Front Bioeng Biotechnol 2023; 11:1260397. [PMID: 38026882 PMCID: PMC10658011 DOI: 10.3389/fbioe.2023.1260397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Many neurodegenerative diseases are identified but their causes and cure are far from being well-known. The problem resides in the complexity of the neural tissue and its location which hinders its easy evaluation. Although necessary in the drug discovery process, in vivo animal models need to be reduced and show relevant differences with the human tissues that guide scientists to inquire about other possible options which lead to in vitro models being explored. From organoids to organ-on-a-chips, 3D models are considered the cutting-edge technology in cell culture. Cell choice is a big parameter to take into consideration when planning an in vitro model and cells capable of mimicking both healthy and diseased tissue, such as induced pluripotent stem cells (iPSC), are recognized as good candidates. Hence, we present a critical review of the latest models used to study neurodegenerative disease, how these models have evolved introducing microfluidics platforms, 3D cell cultures, and the use of induced pluripotent cells to better mimic the neural tissue environment in pathological conditions.
Collapse
Affiliation(s)
- Inês Pereira
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Maria J. Lopez-Martinez
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| | - Josep Samitier
- Nanobioengineering Group, Institute for Bioengineering of Catalonia, Barcelona Institute of Science and Technology, Barcelona, Spain
- Centro Investigación Biomédica en Red: Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- Department of Electronics and Biomedical Engineering, University of Barcelona, Barcelona, Spain
| |
Collapse
|
5
|
Fabbri R, Cacopardo L, Ahluwalia A, Magliaro C. Advanced 3D Models of Human Brain Tissue Using Neural Cell Lines: State-of-the-Art and Future Prospects. Cells 2023; 12:1181. [PMID: 37190089 PMCID: PMC10136913 DOI: 10.3390/cells12081181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Human-relevant three-dimensional (3D) models of cerebral tissue can be invaluable tools to boost our understanding of the cellular mechanisms underlying brain pathophysiology. Nowadays, the accessibility, isolation and harvesting of human neural cells represents a bottleneck for obtaining reproducible and accurate models and gaining insights in the fields of oncology, neurodegenerative diseases and toxicology. In this scenario, given their low cost, ease of culture and reproducibility, neural cell lines constitute a key tool for developing usable and reliable models of the human brain. Here, we review the most recent advances in 3D constructs laden with neural cell lines, highlighting their advantages and limitations and their possible future applications.
Collapse
Affiliation(s)
- Rachele Fabbri
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
| | - Ludovica Cacopardo
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Italy
| | - Arti Ahluwalia
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Italy
| | - Chiara Magliaro
- Research Center “E. Piaggio”, University of Pisa, Largo Lucio Lazzarino 1, 56122 Pisa, Italy
- Department of Information Engineering (DII), University of Pisa, Via G. Caruso 16, 56122 Pisa, Italy
- Interuniversity Center for the Promotion of 3R Principles in Teaching and Research (Centro 3R), Italy
| |
Collapse
|
6
|
Ahmed T. Neural stem cell engineering for the treatment of multiple sclerosis. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
7
|
Russo L, Giacomelli C, Fortino M, Marzo T, Ferri G, Calvello M, Viegi A, Magrì A, Pratesi A, Pietropaolo A, Cardarelli F, Martini C, Rizzarelli E, Marchetti L, La Mendola D, Trincavelli ML. Neurotrophic Activity and Its Modulation by Zinc Ion of a Dimeric Peptide Mimicking the Brain-Derived Neurotrophic Factor N-Terminal Region. ACS Chem Neurosci 2022; 13:3453-3463. [PMID: 36346920 PMCID: PMC9732821 DOI: 10.1021/acschemneuro.2c00463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is a neurotrophin (NT) essential for neuronal development and synaptic plasticity. Dysregulation of BDNF signaling is implicated in different neurological disorders. The direct NT administration as therapeutics has revealed to be challenging. This has prompted the design of peptides mimicking different regions of the BDNF structure. Although loops 2 and 4 have been thoroughly investigated, less is known regarding the BDNF N-terminal region, which is involved in the selective recognition of the TrkB receptor. Herein, a dimeric form of the linear peptide encompassing the 1-12 residues of the BDNF N-terminal (d-bdnf) was synthesized. It demonstrated to act as an agonist promoting specific phosphorylation of TrkB and downstream ERK and AKT effectors. The ability to promote TrkB dimerization was investigated by advanced fluorescence microscopy and molecular dynamics (MD) simulations, finding activation modes shared with BDNF. Furthermore, d-bdnf was able to sustain neurite outgrowth and increase the expression of differentiation (NEFM, LAMC1) and polarization markers (MAP2, MAPT) demonstrating its neurotrophic activity. As TrkB activity is affected by zinc ions in the synaptic cleft, we first verified the ability of d-bdnf to coordinate zinc and then the effect of such complexation on its activity. The d-bdnf neurotrophic activity was reduced by zinc complexation, demonstrating the role of the latter in tuning the activity of the new peptido-mimetic. Taken together our data uncover the neurotrophic properties of a novel BDNF mimetic peptide and pave the way for future studies to understand the pharmacological basis of d-bdnf action and develop novel BDNF-based therapeutic strategies.
Collapse
Affiliation(s)
- Lara Russo
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | | | | | - Tiziano Marzo
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | - Gianmarco Ferri
- Laboratorio
NEST, Scuola Normale Superiore, Pisa 56127, Italy
| | | | | | - Antonio Magrì
- Istituto
di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Catania 95126, Italy
| | - Alessandro Pratesi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, Pisa 56124, Italy
| | | | | | - Claudia Martini
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy
| | - Enrico Rizzarelli
- Istituto
di Cristallografia, Consiglio Nazionale delle Ricerche (CNR), Catania 95126, Italy,Università
degli Studi di Catania, Catania 95124, Italy
| | - Laura Marchetti
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy,
| | - Diego La Mendola
- Dipartimento
di Farmacia, Università di Pisa, Pisa 56127, Italy,
| | | |
Collapse
|
8
|
Mungenast L, Züger F, Selvi J, Faia-Torres AB, Rühe J, Suter-Dick L, Gullo MR. Directional Submicrofiber Hydrogel Composite Scaffolds Supporting Neuron Differentiation and Enabling Neurite Alignment. Int J Mol Sci 2022; 23:ijms231911525. [PMID: 36232822 PMCID: PMC9569964 DOI: 10.3390/ijms231911525] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/12/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cell cultures aiming at tissue regeneration benefit from scaffolds with physiologically relevant elastic moduli to optimally trigger cell attachment, proliferation and promote differentiation, guidance and tissue maturation. Complex scaffolds designed with guiding cues can mimic the anisotropic nature of neural tissues, such as spinal cord or brain, and recall the ability of human neural progenitor cells to differentiate and align. This work introduces a cost-efficient gelatin-based submicron patterned hydrogel–fiber composite with tuned stiffness, able to support cell attachment, differentiation and alignment of neurons derived from human progenitor cells. The enzymatically crosslinked gelatin-based hydrogels were generated with stiffnesses from 8 to 80 kPa, onto which poly(ε-caprolactone) (PCL) alignment cues were electrospun such that the fibers had a preferential alignment. The fiber–hydrogel composites with a modulus of about 20 kPa showed the strongest cell attachment and highest cell proliferation, rendering them an ideal differentiation support. Differentiated neurons aligned and bundled their neurites along the aligned PCL filaments, which is unique to this cell type on a fiber–hydrogel composite. This novel scaffold relies on robust and inexpensive technology and is suitable for neural tissue engineering where directional neuron alignment is required, such as in the spinal cord.
Collapse
Affiliation(s)
- Lena Mungenast
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| | - Fabian Züger
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jasmin Selvi
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Ana Bela Faia-Torres
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Jürgen Rühe
- Department of Microsystems Engineering, University of Freiburg–IMTEK, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Laura Suter-Dick
- Institute for Chemistry and Bioanalytics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
| | - Maurizio R. Gullo
- Institute for Medical Engineering and Medical Informatics, University of Applied Sciences FHNW, Hofackerstrasse 30, 4132 Muttenz, Switzerland
- Correspondence: (L.M.); (M.R.G.)
| |
Collapse
|
9
|
Zhang SY, Zhao J, Ni JJ, Li H, Quan ZZ, Qing H. Application and prospects of high-throughput screening for in vitro neurogenesis. World J Stem Cells 2022; 14:393-419. [PMID: 35949394 PMCID: PMC9244953 DOI: 10.4252/wjsc.v14.i6.393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/07/2022] [Accepted: 05/28/2022] [Indexed: 02/06/2023] Open
Abstract
Over the past few decades, high-throughput screening (HTS) has made great contributions to new drug discovery. HTS technology is equipped with higher throughput, minimized platforms, more automated and computerized operating systems, more efficient and sensitive detection devices, and rapid data processing systems. At the same time, in vitro neurogenesis is gradually becoming important in establishing models to investigate the mechanisms of neural disease or developmental processes. However, challenges remain in generating more mature and functional neurons with specific subtypes and in establishing robust and standardized three-dimensional (3D) in vitro models with neural cells cultured in 3D matrices or organoids representing specific brain regions. Here, we review the applications of HTS technologies on in vitro neurogenesis, especially aiming at identifying the essential genes, chemical small molecules and adaptive microenvironments that hold great prospects for generating functional neurons or more reproductive and homogeneous 3D organoids. We also discuss the developmental tendency of HTS technology, e.g., so-called next-generation screening, which utilizes 3D organoid-based screening combined with microfluidic devices to narrow the gap between in vitro models and in vivo situations both physiologically and pathologically.
Collapse
Affiliation(s)
- Shu-Yuan Zhang
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Juan Zhao
- Aerospace Medical Center, Aerospace Center Hospital, Beijing 100049, China
| | - Jun-Jun Ni
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hui Li
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Zhen-Zhen Quan
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Hong Qing
- Key Laboratory of Molecular Medicine and Biotherapy in the Ministry of Industry and Information Technology, Department of Biology, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
10
|
De S, Singh N. Advancements in Three Dimensional In-Vitro Cell Culture Models. CHEM REC 2022; 22:e202200058. [PMID: 35701102 DOI: 10.1002/tcr.202200058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 05/26/2022] [Indexed: 12/27/2022]
Abstract
The scientific field is observing a gradual shift from monolayer cultures to three-dimensional (3D) models, as they give a more relevant data in pre-clinical stages. This review summarizes the major techniques and materials used to develop 3D platforms, especially for cancer. It also discusses the challenges and some unresolved issues of the field and highlights some techniques that have made it to the market.
Collapse
Affiliation(s)
- Shreemoyee De
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India.,Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi, 110029, India
| |
Collapse
|
11
|
3D tumor spheroid microarray for high-throughput, high-content natural killer cell-mediated cytotoxicity. Commun Biol 2021; 4:893. [PMID: 34290356 PMCID: PMC8295284 DOI: 10.1038/s42003-021-02417-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 07/05/2021] [Indexed: 02/06/2023] Open
Abstract
Immunotherapy has emerged as a promising approach to treating several forms of cancer. Use of immune cells, such as natural killer (NK) cells, along with small molecule drugs and antibodies through antibody dependent cell-mediated cytotoxicity (ADCC) has been investigated as a potential combination therapy for some difficult to treat solid tumors. Nevertheless, there remains a need to develop tools that support co-culture of target cancer cells and effector immune cells in a contextually relevant three-dimensional (3D) environment to provide a rapid means to screen for and optimize ADCC-drug combinations. To that end, here we have developed a high throughput 330 micropillar-microwell sandwich platform that enables 3D co-culture of NK92-CD16 cells with pancreatic (MiaPaCa-2) and breast cancer cell lines (MCF-7 and MDA-MB-231). The platform successfully mimicked hypoxic conditions found in a tumor microenvironment and was used to demonstrate NK-cell mediated cell cytotoxicity in combination with two monoclonal antibodies; Trastuzumab and Atezolizumab. The platform was also used to show dose response behavior of target cancer cells with reduced EC50 values for paclitaxel (an anti-cancer chemotherapeutic) when treated with both NK cells and antibody. Such a platform may be used to develop more personalized cancer therapies using patient-derived cancer cells.
Collapse
|
12
|
Ramasubramanian A, Muckom R, Sugnaux C, Fuentes C, Ekerdt BL, Clark DS, Healy KE, Schaffer DV. High-Throughput Discovery of Targeted, Minimally Complex Peptide Surfaces for Human Pluripotent Stem Cell Culture. ACS Biomater Sci Eng 2021; 7:1344-1360. [PMID: 33750112 DOI: 10.1021/acsbiomaterials.0c01462] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Human pluripotent stem cells harbor an unlimited capacity to generate therapeutically relevant cells for applications in regenerative medicine. However, to utilize these cells in the clinic, scalable culture systems that activate defined receptors and signaling pathways to sustain stem cell self-renewal are required; and synthetic materials offer considerable promise to meet these needs. De novo development of materials that target novel pathways has been stymied by a limited understanding of critical receptor interactions maintaining pluripotency. Here, we identify peptide agonists for the human pluripotent stem cell (hPSC) laminin receptor and pluripotency regulator, α6-integrin, through unbiased, library-based panning strategies. Biophysical characterization of adhesion suggests that identified peptides bind hPSCs through α6-integrin with sub-μM dissociation constants similar to laminin. By harnessing a high-throughput microculture platform, we developed predictive guidelines for presenting these integrin-targeting peptides alongside canonical binding motifs at optimal stoichiometries to generate nascent culture surfaces. Finally, when presented as self-assembled monolayers, predicted peptide combinations supported hPSC expansion, highlighting how unbiased screens can accelerate the discovery of targeted biomaterials.
Collapse
Affiliation(s)
- Anusuya Ramasubramanian
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Caroline Sugnaux
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Christina Fuentes
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Barbara L Ekerdt
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Douglas S Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Kevin E Healy
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - David V Schaffer
- Department of Bioengineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, California 94720, United States.,Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, United States
| |
Collapse
|
13
|
Muckom R, Bao X, Tran E, Chen E, Murugappan A, Dordick JS, Clark DS, Schaffer DV. High-throughput 3D screening for differentiation of hPSC-derived cell therapy candidates. SCIENCE ADVANCES 2020; 6:eaaz1457. [PMID: 32821815 PMCID: PMC7413735 DOI: 10.1126/sciadv.aaz1457] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 06/25/2020] [Indexed: 05/12/2023]
Abstract
The emergence of several cell therapy candidates in the clinic is an encouraging sign for human diseases/disorders that currently have no effective treatment; however, scalable production of these cell therapies has become a bottleneck. To overcome this barrier, three-dimensional (3D) cell culture strategies have been considered for enhanced cell production. Here, we demonstrate a high-throughput 3D culture platform used to systematically screen 1200 culture conditions with varying doses, durations, dynamics, and combinations of signaling cues to derive oligodendrocyte progenitor cells and midbrain dopaminergic neurons from human pluripotent stem cells (hPSCs). Statistical models of the robust dataset reveal previously unidentified patterns about cell competence to Wnt, retinoic acid, and sonic hedgehog signals, and their interactions, which may offer insights into the combinatorial roles these signals play in human central nervous system development. These insights can be harnessed to optimize production of hPSC-derived cell replacement therapies for a range of neurological indications.
Collapse
Affiliation(s)
- Riya Muckom
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Xiaoping Bao
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Eric Tran
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Evelyn Chen
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Abirami Murugappan
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Jonathan S. Dordick
- Department of Chemical and Biomolecular Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Douglas S. Clark
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| | - David V. Schaffer
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- The Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
- Corresponding author. (D.S.C.); (D.V.S.)
| |
Collapse
|
14
|
Gopal S, Rodrigues AL, Dordick JS. Exploiting CRISPR Cas9 in Three-Dimensional Stem Cell Cultures to Model Disease. Front Bioeng Biotechnol 2020; 8:692. [PMID: 32671050 PMCID: PMC7326781 DOI: 10.3389/fbioe.2020.00692] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 06/03/2020] [Indexed: 12/14/2022] Open
Abstract
Three-dimensional (3D) cell culture methods have been widely used on a range of cell types, including stem cells to modulate precisely the cellular biophysical and biochemical microenvironment and control various cell signaling cues. As a result, more in vivo-like microenvironments are recapitulated, particularly through the formation of multicellular spheroids and organoids, which may yield more valid mechanisms of disease. Recently, genome-engineering tools such as CRISPR Cas9 have expanded the repertoire of techniques to control gene expression, which complements external signaling cues with intracellular control elements. As a result, the combination of CRISPR Cas9 and 3D cell culture methods enhance our understanding of the molecular mechanisms underpinning several disease phenotypes and may lead to developing new therapeutics that may advance more quickly and effectively into clinical candidates. In addition, using CRISPR Cas9 tools to rescue genes brings us one step closer to its use as a gene therapy tool for various degenerative diseases. Herein, we provide an overview of bridging of CRISPR Cas9 genome editing with 3D spheroid and organoid cell culture to better understand disease progression in both patient and non-patient derived cells, and we address potential remaining gaps that must be overcome to gain widespread use.
Collapse
Affiliation(s)
- Sneha Gopal
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - André Lopes Rodrigues
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Bioengineering and iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, University of Lisbon, Lisbon, Portugal
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering, Center for Biotechnology & Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
15
|
Marchini A, Favoino C, Gelain F. Multi-Functionalized Self-Assembling Peptides as Reproducible 3D Cell Culture Systems Enabling Differentiation and Survival of Various Human Neural Stem Cell Lines. Front Neurosci 2020; 14:413. [PMID: 32431590 PMCID: PMC7214803 DOI: 10.3389/fnins.2020.00413] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
Neural stem cells-based therapies have shown great potential for central nervous system regeneration, with three-dimensional (3D) culture systems representing a key technique for tissue engineering applications, as well as disease modeling and drug screenings. Self-assembling peptides (SAPs), providing biomimetic synthetic micro-environments regulating cellular functionality and tissue repair, constitute a suitable tool for the production of complex tissue-like structures in vitro. However, one of the most important drawbacks in 3D cultures, obtained via animal-derived substrates and serum-rich media, is the reproducibility and tunability of a standardized methodology capable to coax neural differentiation of different human cell lines. In this work we cultured four distinct human neural stem cell (hNSC) lines in 3D synthetic multifunctionalized hydrogel (named HYDROSAP) for up to 6 weeks. Three-dimensional cultures of differentiating hNSCs exhibited a progressive differentiation and maturation over time. All hNSCs-derived neurons in 3D culture system exhibited randomly organized entangled networks with increasing expression of GABAergic and glutamatergic phenotypes and presence of cholinergic ones. Oligodendrocytes formed insulating myelin sheaths positive for myelin basic protein (MBP). In summary, results demonstrated a successfully standardized and reproducible 3D cell culture system for hNSC differentiation and maturation in serum-free conditions useful for future therapies.
Collapse
Affiliation(s)
- Amanda Marchini
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Chiara Favoino
- Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,Department of Biotechnology and Biosciences, University of Milan-Bicocca, Milan, Italy
| | - Fabrizio Gelain
- Tissue Engineering Unit, Institute for Stem Cell Biology, Regenerative Medicine and Innovative Therapies-ISBReMIT, Fondazione IRCSS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy.,Center for Nanomedicine and Tissue Engineering, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| |
Collapse
|
16
|
Kwon S, Lee D, Gopal S, Ku A, Moon H, Dordick JS. Three‐dimensional in vitro cell culture devices using patient‐derived cells for high‐throughput screening of drug combinations. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/mds3.10067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Seok‐Joon Kwon
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Dongwoo Lee
- Departments of Biomedical Engineering Konyang University Daejeon Korea
| | - Sneha Gopal
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Ashlyn Ku
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| | - Hosang Moon
- MBD (Medical & Bio Decision) Co., Ltd. Suwon‐si Korea
| | - Jonathan S. Dordick
- Department of Chemical and Biological Engineering Center for Biotechnology & Interdisciplinary Studies Rensselaer Polytechnic Institute Troy NY USA
| |
Collapse
|
17
|
Liu D, Pavathuparambil Abdul Manaph N, Al-Hawwas M, Bobrovskaya L, Xiong LL, Zhou XF. Coating Materials for Neural Stem/Progenitor Cell Culture and Differentiation. Stem Cells Dev 2020; 29:463-474. [PMID: 32106778 DOI: 10.1089/scd.2019.0288] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Neural stem/progenitor cells (NSPCs) have a potential to treat various neurological diseases, such as Parkinson's Disease, Alzheimer's Disease, and Spinal Cord Injury. However, the limitation of NSPC sources and the difficulty to maintain their stemness or to differentiate them into specific therapeutic cells are the main hurdles for clinical research and application. Thus, for obtaining a therapeutically relevant number of NSPCs in vitro, it is important to understand factors regulating their behaviors and to establish a protocol for stable NSPC proliferation and differentiation. Coating materials for cell culture, such as Matrigel, laminin, collagen, and other coating materials, can significantly affect NSPC characteristics. This article provides a review of coating materials for NSPC culturing in both two dimensions and three dimensions, and their functions in NSPC proliferation and differentiation, and presents a useful guide to select coating materials for researchers.
Collapse
Affiliation(s)
- Donghui Liu
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | | | - Mohammed Al-Hawwas
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Larisa Bobrovskaya
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Liu-Lin Xiong
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| | - Xin-Fu Zhou
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, Australia
| |
Collapse
|
18
|
Marchetti B, Tirolo C, L'Episcopo F, Caniglia S, Testa N, Smith JA, Pluchino S, Serapide MF. Parkinson's disease, aging and adult neurogenesis: Wnt/β-catenin signalling as the key to unlock the mystery of endogenous brain repair. Aging Cell 2020; 19:e13101. [PMID: 32050297 PMCID: PMC7059166 DOI: 10.1111/acel.13101] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 11/27/2019] [Accepted: 12/25/2019] [Indexed: 12/14/2022] Open
Abstract
A common hallmark of age-dependent neurodegenerative diseases is an impairment of adult neurogenesis. Wingless-type mouse mammary tumor virus integration site (Wnt)/β-catenin (WβC) signalling is a vital pathway for dopaminergic (DAergic) neurogenesis and an essential signalling system during embryonic development and aging, the most critical risk factor for Parkinson's disease (PD). To date, there is no known cause or cure for PD. Here we focus on the potential to reawaken the impaired neurogenic niches to rejuvenate and repair the aged PD brain. Specifically, we highlight WβC-signalling in the plasticity of the subventricular zone (SVZ), the largest germinal region in the mature brain innervated by nigrostriatal DAergic terminals, and the mesencephalic aqueduct-periventricular region (Aq-PVR) Wnt-sensitive niche, which is in proximity to the SNpc and harbors neural stem progenitor cells (NSCs) with DAergic potential. The hallmark of the WβC pathway is the cytosolic accumulation of β-catenin, which enters the nucleus and associates with T cell factor/lymphoid enhancer binding factor (TCF/LEF) transcription factors, leading to the transcription of Wnt target genes. Here, we underscore the dynamic interplay between DAergic innervation and astroglial-derived factors regulating WβC-dependent transcription of key genes orchestrating NSC proliferation, survival, migration and differentiation. Aging, inflammation and oxidative stress synergize with neurotoxin exposure in "turning off" the WβC neurogenic switch via down-regulation of the nuclear factor erythroid-2-related factor 2/Wnt-regulated signalosome, a key player in the maintenance of antioxidant self-defense mechanisms and NSC homeostasis. Harnessing WβC-signalling in the aged PD brain can thus restore neurogenesis, rejuvenate the microenvironment, and promote neurorescue and regeneration.
Collapse
Affiliation(s)
- Bianca Marchetti
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Cataldo Tirolo
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | | | | | - Nunzio Testa
- Neuropharmacology SectionOASI Research Institute‐IRCCSTroinaItaly
| | - Jayden A. Smith
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Stefano Pluchino
- Department of Clinical Neurosciences and NIHR Biomedical Research CentreUniversity of CambridgeCambridgeUK
| | - Maria F. Serapide
- Department of Biomedical and Biotechnological Sciences (BIOMETEC)Pharmacology and Physiology SectionsMedical SchoolUniversity of CataniaCataniaItaly
| |
Collapse
|
19
|
András IE, Garcia-Contreras M, Yanick C, Perez P, Sewell B, Durand L, Toborek M. Extracellular vesicle-mediated amyloid transfer to neural progenitor cells: implications for RAGE and HIV infection. Mol Brain 2020; 13:21. [PMID: 32066471 PMCID: PMC7027073 DOI: 10.1186/s13041-020-0562-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/03/2020] [Indexed: 02/07/2023] Open
Abstract
Amyloid beta (Aβ) deposition was demonstrated to be elevated in the brains of HIV-infected patients and associated with neurocognitive decline; however, the mechanisms of these processes are poorly understood. The goal of the current study was to address the hypothesis that Aβ can be transferred via extracellular vesicles (ECVs) from brain endothelial cells to neural progenitor cells (NPCs) and that this process can contribute to abnormal NPC differentiation. Mechanistically, we focused on the role of the receptor for advanced glycation end products (RAGE) and activation of the inflammasome in these events. ECVs loaded with Aβ (Aβ-ECVs) were readily taken up by NPCs and Aβ partly colocalized with the inflammasome markers ASC and NLRP3 in the nuclei of the recipient NPCs. This colocalization was affected by HIV and RAGE inhibition by a high-affinity specific inhibitor FPS-ZM1. Blocking RAGE resulted also in an increase in ECV number produced by brain endothelial cells, decreased Aβ content in ECVs, and diminished Aβ-ECVs transfer to NPC nuclei. Interestingly, both Aβ-ECVs and RAGE inhibition altered NPC differentiation. Overall, these data indicate that RAGE inhibition affects brain endothelial ECV release and Aβ-ECVs transfer to NPCs. These events may modulate ECV-mediated amyloid pathology in the HIV-infected brain and contribute to the development of HIV-associated neurocognitive disorders.
Collapse
Affiliation(s)
- Ibolya E. András
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Marta Garcia-Contreras
- Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Ave, Miami, FL 33136-1011 USA
| | - Christopher Yanick
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Paola Perez
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Brice Sewell
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Leonardo Durand
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| | - Michal Toborek
- Department of Biochemistry and Molecular Biology, University of Miami School of Medicine, 1011 NW 15th Street, Gautier Building, Room 528, Miami, FL 33136-1019 USA
| |
Collapse
|
20
|
Barros D, Amaral IF, Pêgo AP. Laminin-Inspired Cell-Instructive Microenvironments for Neural Stem Cells. Biomacromolecules 2019; 21:276-293. [PMID: 31789020 DOI: 10.1021/acs.biomac.9b01319] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Laminin is a heterotrimeric glycoprotein with a key role in the formation and maintenance of the basement membrane architecture and properties, as well as on the modulation of several biological functions, including cell adhesion, migration, differentiation and matrix-mediated signaling. In the central nervous system (CNS), laminin is differentially expressed during development and homeostasis, with an impact on the modulation of cell function and fate. Within neurogenic niches, laminin is one of the most important and well described extracellular matrix (ECM) proteins. Specifically, efforts have been made to understand laminin assembly, domain architecture, and interaction of its different bioactive domains with cell surface receptors, soluble signaling molecules, and ECM proteins, to gain insight into the role of this ECM protein and its receptors on the modulation of neurogenesis, both in homeostasis and during repair. This is also expected to provide a rational basis for the design of biomaterial-based matrices mirroring the biological properties of the basement membrane of neural stem cell niches, for application in neural tissue repair and cell transplantation. This review provides a general overview of laminin structure and domain architecture, as well as the main biological functions mediated by this heterotrimeric glycoprotein. The expression and distribution of laminin in the CNS and, more specifically, its role within adult neural stem cell niches is summarized. Additionally, a detailed overview on the use of full-length laminin and laminin derived peptide/recombinant laminin fragments for the development of hydrogels for mimicking the neurogenic niche microenvironment is given. Finally, the main challenges associated with the development of laminin-inspired hydrogels and the hurdles to overcome for these to progress from bench to bedside are discussed.
Collapse
Affiliation(s)
- Daniela Barros
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal
| | - Isabel F Amaral
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| | - Ana P Pêgo
- i3S - Instituto de Investigação e Inovação em Saúde , Universidade do Porto (UPorto) , Porto 4200-153 , Portugal.,INEB - Instituto de Engenharia Biomédica , UPorto , Porto 4200-153 , Portugal.,ICBAS - Instituto de Ciências Biomédicas Abel Salazar , UPorto , Porto 4200-153 , Portugal.,FEUP - Faculdade de Engenharia , UPorto , Porto 4200-153 , Portugal
| |
Collapse
|
21
|
Little D, Ketteler R, Gissen P, Devine MJ. Using stem cell-derived neurons in drug screening for neurological diseases. Neurobiol Aging 2019; 78:130-141. [PMID: 30925301 DOI: 10.1016/j.neurobiolaging.2019.02.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/22/2022]
Abstract
Induced pluripotent stem cells and their derivatives have become an important tool for researching disease mechanisms. It is hoped that they could be used to discover new therapies by providing the most reliable and relevant human in vitro disease models for drug discovery. This review will summarize recent efforts to use stem cell-derived neurons for drug screening. We also explain the current hurdles to using these cells for high-throughput pharmaceutical screening and developments that may help overcome these hurdles. Finally, we critically discuss whether induced pluripotent stem cell-derived neurons will come to fruition as a model that is regularly used to screen for drugs to treat neurological diseases.
Collapse
Affiliation(s)
- Daniel Little
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK.
| | - Robin Ketteler
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Paul Gissen
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK
| | - Michael J Devine
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK; Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| |
Collapse
|