1
|
Shah BA, Malhotra H, Papade SE, Dhamale T, Ingale OP, Kasarlawar ST, Phale PS. Microbial degradation of contaminants of emerging concern: metabolic, genetic and omics insights for enhanced bioremediation. Front Bioeng Biotechnol 2024; 12:1470522. [PMID: 39364263 PMCID: PMC11446756 DOI: 10.3389/fbioe.2024.1470522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 09/05/2024] [Indexed: 10/05/2024] Open
Abstract
The perpetual release of natural/synthetic pollutants into the environment poses major risks to ecological balance and human health. Amongst these, contaminants of emerging concern (CECs) are characterized by their recent introduction/detection in various niches, thereby causing significant hazards and necessitating their removal. Pharmaceuticals, plasticizers, cyanotoxins and emerging pesticides are major groups of CECs that are highly toxic and found to occur in various compartments of the biosphere. The sources of these compounds can be multipartite including industrial discharge, improper disposal, excretion of unmetabolized residues, eutrophication etc., while their fate and persistence are determined by factors such as physico-chemical properties, environmental conditions, biodegradability and hydrological factors. The resultant exposure of these compounds to microbiota has imposed a selection pressure and resulted in evolution of metabolic pathways for their biotransformation and/or utilization as sole source of carbon and energy. Such microbial degradation phenotype can be exploited to clean-up CECs from the environment, offering a cost-effective and eco-friendly alternative to abiotic methods of removal, thereby mitigating their toxicity. However, efficient bioprocess development for bioremediation strategies requires extensive understanding of individual components such as pathway gene clusters, proteins/enzymes, metabolites and associated regulatory mechanisms. "Omics" and "Meta-omics" techniques aid in providing crucial insights into the complex interactions and functions of these components as well as microbial community, enabling more effective and targeted bioremediation. Aside from natural isolates, metabolic engineering approaches employ the application of genetic engineering to enhance metabolic diversity and degradation rates. The integration of omics data will further aid in developing systemic-level bioremediation and metabolic engineering strategies, thereby optimising the clean-up process. This review describes bacterial catabolic pathways, genetics, and application of omics and metabolic engineering for bioremediation of four major groups of CECs: pharmaceuticals, plasticizers, cyanotoxins, and emerging pesticides.
Collapse
Affiliation(s)
- Bhavik A Shah
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Harshit Malhotra
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sandesh E Papade
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Tushar Dhamale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Omkar P Ingale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Sravanti T Kasarlawar
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| | - Prashant S Phale
- Department of Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai, India
| |
Collapse
|
2
|
Hou Z, Pan H, Gu M, Chen X, Ying T, Qiao P, Cao J, Wang H, Hu T, Zheng L, Zhong W. Simultaneously degradation of various phthalate esters by Rhodococcus sp. AH-ZY2: Strain, omics and enzymatic study. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134776. [PMID: 38852255 DOI: 10.1016/j.jhazmat.2024.134776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/14/2024] [Accepted: 05/29/2024] [Indexed: 06/11/2024]
Abstract
Phthalate esters (PAEs) are widely used as plasticizers and cause serious complex pollution problem in environment. Thus, strains with efficient ability to simultaneously degrade various PAEs are required. In this study, a newly isolated strain Rhodococcus sp. AH-ZY2 can degrade 500 mg/L Di-n-octyl phthalate completely within 16 h and other 500 mg/L PAEs almost completely within 48 h at 37 °C, 180 rpm, and 2 % (v/v) inoculum size of cultures with a OD600 of 0.8. OD600 = 0.8, 2 % (v/v). Twenty genes in its genome were annotated as potential esterase and four of them (3963, 4547, 5294 and 5359) were heterogeneously expressed and characterized. Esterase 3963 and 4547 is a type I PAEs esterase that hydrolyzes PAEs to phthalate monoesters. Esterase 5294 is a type II PAEs esterase that hydrolyzes phthalate monoesters to phthalate acid (PA). Esterase 5359 is a type III PAEs esterase that simultaneously degrades various PAEs to PA. Molecular docking results of 5359 suggested that the size and indiscriminate binding feature of spacious substrate binding pocket may contribute to its substrate versatility. AH-ZY2 is a potential strain for efficient remediation of PAEs complex pollution in environment. It is first to report an esterase that can efficiently degrade mixed various PAEs.
Collapse
Affiliation(s)
- Zhengyu Hou
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hejuan Pan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengjie Gu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaowang Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tongtong Ying
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Junwei Cao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Lianbao Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
3
|
Lin Q, Zheng N, An Q, Xiu Z, Li X, Zhu H, Chen C, Li Y, Wang S. Phthalate monoesters accumulation in residential indoor dust and influence factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174900. [PMID: 39047842 DOI: 10.1016/j.scitotenv.2024.174900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
Phthalate monoesters (mPAEs) possess biological activity that matches or even exceeds that of their parent compounds, phthalate esters (PAEs), negatively impacting humans. Indoor dust is the main carrier of indoor pollutants. In this study, indoor dust samples were collected from 46 households in Changchun City, Jilin Province, in May 2019, and particulate and flocculent fibrous dust was used as the research target to analyze the concentration and compositional characteristics of mPAEs, primary metabolites of five significant PAEs. The influence of factors such as architectural features and living habits in residential areas on exposure to mPAEs was explored. Ten suspected enzyme genes along with two metabolic pathways with the ability to degrade PAEs were screened using PICRUSt2. The results showed that the total concentrations of the five mPAEs in the indoor dust samples were particulate dust (11.49-78.69 μg/g) and flocculent fibrous dust (21.61-72.63 μg/g), respectively. The molar concentration ratio (RC) of mPAEs to corresponding PAEs significantly differed among chemicals, with MMP/DMP and MEP/DEP sporting the highest RC values. Different bacterial types have shown distinct influences against mPAEs and PAEs. Enzyme function and metabolic pathway abundance had a significant effect on the concentration of some mPAEs, mPAEs are most likely derived from microbial degradation of PAEs.
Collapse
Affiliation(s)
- Qiuyan Lin
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Na Zheng
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130012, China; College of New Energy and Environment, Jilin University, Changchun 130012, China.
| | - Qirui An
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Zhifei Xiu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Xiaoqian Li
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Huicheng Zhu
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Changcheng Chen
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| | - Yunyang Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Sujing Wang
- College of New Energy and Environment, Jilin University, Changchun 130012, China
| |
Collapse
|
4
|
Lequan Q, Yanan F, Xianda Z, Mengyuan B, Chenyu L, Shijin W. Mechanisms and high-value applications of phthalate isomers degradation pathways in bacteria. World J Microbiol Biotechnol 2024; 40:247. [PMID: 38904858 DOI: 10.1007/s11274-024-04060-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
Phthalate isomers are key intermediates in the biodegradation of pollutants including waste polyethylene terephthalate (PET) plastics and plasticizers. So far, an increasing number of phthalate isomer-degrading strains have been isolated, and their degradation pathways show significant diversity. In this paper, we comprehensively review the current status of research on the degrading bacteria, degradation characteristics, aerobic and anaerobic degradation pathways, and degradation genes (clusters) of phthalate isomers, and discuss the current shortcomings and challenges. Moreover, the degradation process of phthalate isomers produces many important aromatic precursor molecules, which can be used to produce higher-value derivative chemicals, and the modification of their degradation pathways holds good prospects. Therefore, this review also highlights the current progress made in modifying the phthalate isomer degradation pathway and explores its potential for high-value applications.
Collapse
Affiliation(s)
- Qiu Lequan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| | - Fu Yanan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhou Xianda
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Bao Mengyuan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Li Chenyu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
| | - Wu Shijin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
5
|
Du H, Cheng JL, Li ZY, Zhong HN, Wei S, Gu YJ, Yao CC, Zhang M, Cai QY, Zhao HM, Mo CH. Molecular insights into the catabolism of dibutyl phthalate in Pseudomonas aeruginosa PS1 based on biochemical and multi-omics approaches. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171852. [PMID: 38518818 DOI: 10.1016/j.scitotenv.2024.171852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 03/19/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
A comprehensive understanding of the molecular mechanisms underlying microbial catabolism of dibutyl phthalate (DBP) is still lacking. Here, we newly isolated a bacterial strain identified as Pseudomonas aeruginosa PS1 with high efficiency of DBP degradation. The degradation ratios of DBP at 100-1000 mg/L by this strain reached 80-99 % within 72 h without a lag phase. A rare DBP-degradation pathway containing two monobutyl phthalate-catabolism steps was proposed based on intermediates identified by HPLC-TOF-MS/MS. In combination with genomic and transcriptomic analyses, we identified 66 key genes involved in DBP biodegradation and revealed the genetic basis for a new complete catabolic pathway from DBP to Succinyl-CoA or Acetyl-CoA in the genus Pseudomonas for the first time. Notably, we found that a series of homologous genes in Pht and Pca clusters were simultaneously activated under DBP exposure and some key intermediate degradation related gene clusters including Pht, Pca, Xyl, Ben, and Cat exhibited a favorable coexisting pattern, which contributed the high-efficient DBP degradation ability and strong adaptability to this strain. Overall, these results broaden the knowledge of the catabolic diversity of DBP in microorganisms and enhance our understanding of the molecular mechanism underlying DBP biodegradation.
Collapse
Affiliation(s)
- Huan Du
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China; Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Center for Statistical Science, Tsinghua University, Beijing 100084, China
| | - Ji-Liang Cheng
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Zhi-Yong Li
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Huai-Ning Zhong
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Shuang Wei
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Yu-Juan Gu
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Can-Can Yao
- Guangzhou Customs Technology Center, No. 66 Huacheng Avenue, Tianhe District, Guangzhou 510623, China
| | - Miaoyue Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Quan-Ying Cai
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hai-Ming Zhao
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China.
| | - Ce-Hui Mo
- Guangdong Provincial Research Center for Environment Pollution Control and Remediation Materials, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
6
|
Qu Y, Chen J, Russel M, Huang W, Bingke Y, Lei W, Zhang D, Blaszczak-Boxe C. Optimizing concentration and interaction mechanism of Demodesmus sp. and Achromobacter pulmonis sp. consortium to evaluate their potential for dibutyl phthalate removal from synthetic wastewater. BIORESOURCE TECHNOLOGY 2024; 395:130372. [PMID: 38278454 DOI: 10.1016/j.biortech.2024.130372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/12/2024] [Accepted: 01/21/2024] [Indexed: 01/28/2024]
Abstract
A green approach of Desmodesmus sp. to Achromobacter pulmonis (1:1) coculture ratios was optimized to improve the removal efficiency of dibutyl phthalate (DBP) from simulated wastewater. High DBP resistance bacterial strains and microalgae was optimized from plastic contaminated water and acclimation process respectively. The influence of various factors on DBP removal performance was comprehensively investigated. Highest DBP removal 93 % was recorded, when the ratios algae-bacteria 1:1, with sodium acetate, pH-6, shaking speed-120 rpm and lighting periods L:D-12:12. Enough nutrient (TN/TP/TOC) availability and higher protein-108 mg/L and sugar-40 mg/L were observed in presences of 50 mg/L DBP. The degradation and sorption were calculated 81,12; 27,39 & 43,12 % in algae-bacteria, only algae and only bacteria system respectively. The degradation kinetics t1/2 3.74,22.15,12.86 days were evaluated, confirming that algae-bacteria effectively degrade the DBP. This outcome leading to promote a green sustainable approach to remove the emerging contamination from wastewater.
Collapse
Affiliation(s)
- Yihe Qu
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Junyi Chen
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental, Beijing 100012, P.R.China
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China.
| | - Wei Huang
- State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | - Yang Bingke
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Wu Lei
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Dayong Zhang
- School of Ocean Science and Technology, Dalian University of Technology, Liaoning, Panjin 124221, China
| | - Christopher Blaszczak-Boxe
- Earth, Environment, & Equity Department, NOAA Center for Atmospheric Science & Meteorology, Howard University, Washington, DC 20059, USA
| |
Collapse
|
7
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Maiti TK. Dibutyl phthalate degradation by Paenarthrobacter ureafaciens PB10 through downstream product myristic acid and its bioremediation potential in contaminated soil. CHEMOSPHERE 2024; 352:141359. [PMID: 38309604 DOI: 10.1016/j.chemosphere.2024.141359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/05/2024]
Abstract
Dibutyl phthalate (DBP) is a widely used plasticizer to make plastic flexible and long-lasting. It is easily accessible in a broad spectrum of environments as a result of the rising level of plastic pollution. This compound is considered a top-priority toxicant and persistent organic pollutant by international environmental agencies for its endocrine disruptive and carcinogenic propensities. To mitigate the DBP in the soil, one DBP-degrading bacterial strain was isolated from a plastic-polluted landfill and identified as Paenarthrobacter ureafaciens PB10 by 16S rRNA gene sequence-based homology. The strain was found to develop a distinct transparent halo zone around grown colonies on an agar plate supplemented with DBP. The addition of yeast extract (100 mg/L) as a nutrient source accelerated cell biomass production and DBP degradation rate; however, the presence of glucose suppressed DBP degradation by the PB10 strain without affecting its ability to proliferate. The strain PB10 was efficient in eliminating DBP under various pH conditions (5.0-8.0). Maximum cell growth and degradation of 99.49% at 300 mg/L DBP were achieved in 72 h at the optimized mineral salt medium (MS) conditions of pH 7.0 and 32 °C. Despite that, when the concentration of DBP rose to 3000 mg/L, the DBP depletion rate was measured at 79.34% in 72 h. Some novel intermediate metabolites, like myristic acid, hexadecanoic acid, stearic acid, and the methyl derivative of 4-hydroxyphenyl acetate, along with monobutyl phthalate and phthalic acid, were detected in the downstream degradation process of DBP through GC-MS profiling. Furthermore, in synchronization with native soil microbes, this PB10 strain successfully removed a notable amount of DBP (up to 54.11%) from contaminated soil under microcosm study after 10 d. Thus, PB10 has effective DBP removal ability and is considered a potential candidate for bioremediation in DBP-contaminated sites.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, PIN-713104, West Bengal, India.
| |
Collapse
|
8
|
Bansal M, Santhiya D, Sharma JG. Mechanistic understanding on the uptake of micro-nano plastics by plants and its phytoremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:8354-8368. [PMID: 38170356 DOI: 10.1007/s11356-023-31680-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 12/19/2023] [Indexed: 01/05/2024]
Abstract
Contaminated soil is one of today's most difficult environmental issues, posing serious hazards to human health and the environment. Contaminants, particularly micro-nano plastics, have become more prevalent around the world, eventually ending up in the soil. Numerous studies have been conducted to investigate the interactions of micro-nano plastics in plants and agroecosystems. However, viable remediation of micro-nano plastics in soil remains limited. In this review, a powerful in situ soil remediation technology known as phytoremediation is emphasized for addressing micro-nano-plastic contamination in soil and plants. It is based on the synergistic effects of plants and the microorganisms that live in their rhizosphere. As a result, the purpose of this review is to investigate the mechanism of micro-nano plastic (MNP) uptake by plants as well as the limitations of existing MNP removal methods. Different phytoremediation options for removing micro-nano plastics from soil are also described. Phytoremediation improvements (endophytic-bacteria, hyperaccumulator species, omics investigations, and CRISPR-Cas9) have been proposed to enhance MNP degradation in agroecosystems. Finally, the limitations and future prospects of phytoremediation strategies have been highlighted in order to provide a better understanding for effective MNP decontamination from soil.
Collapse
Affiliation(s)
- Megha Bansal
- Department of Biotechnology, Delhi Technological University, Delhi, India
| | - Deenan Santhiya
- Department of Applied Chemistry, Delhi Technological University, Main Bawana Road, Delhi, 110042, India.
| | - Jai Gopal Sharma
- Department of Biotechnology, Delhi Technological University, Delhi, India
| |
Collapse
|
9
|
Liu T, Ning L, Mei C, Li S, Zheng L, Qiao P, Wang H, Hu T, Zhong W. Synthetic bacterial consortia enhanced the degradation of mixed priority phthalate ester pollutants. ENVIRONMENTAL RESEARCH 2023; 235:116666. [PMID: 37453507 DOI: 10.1016/j.envres.2023.116666] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis(2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DOP) are hazardous chemicals listed as priority pollutants that disrupt endocrine systems. According to available reports, these six priority phthalate esters (PAEs) are considered the most polluting; however, no studies have been conducted on the efficient remediation of these PAEs. We therefore designed and constructed a synthetic bacterial consortium capable of the simultaneous and efficient degradation of six priority PAEs in minimal inorganic salt medium (MSM) and soil. The consortium comprised Glutamicibacter sp. ZJUTW, which demonstrates priority for degrading short-chain PAEs; Cupriavidus sp. LH1, which degrades phthalic acid (PA) and protocatechuic acid (PCA), intermediates of the PAE biodegradation process; and Gordonia sp. GZ-YC7, which efficiently degrades long-chain priority PAEs, including DEHP and DOP. In MSM containing the six mixed PAEs (250 mg/L each), the ZJUTW + YC + LH1 consortium completely degraded the four short-chain PAEs within 48 h, and DEHP (100%) and DOP (62.5%) within 72 h. In soil containing the six mixed PAEs (DMP, DEP, BBP, and DOP, 400 mg/kg each; DBP and DEHP, 500 mg/kg, each), the ZJUTW + YC + LH1 consortium completely degraded DMP, DEP, BBP, and DBP within 6 days, and 70.84% of DEHP and 66.24% of DOP within 2 weeks. The consortium efficiently degraded the six mixed PAEs in both MSM and soil. We thus believe that this synthetic microbial consortium is a strong candidate for the bioremediation of environments contaminated with mixed PAE pollutants.
Collapse
Affiliation(s)
- Tengfei Liu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lixiao Ning
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Chengyu Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Shuang Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Lianbao Zheng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Pei Qiao
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Haixia Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Tong Hu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, Zhejiang, China.
| |
Collapse
|
10
|
Fan S, Guo J, Han S, Du H, Wang Z, Fu Y, Han H, Hou X, Wang W. A Novel and Efficient Phthalate Hydrolase from Acinetobacter sp. LUNF3: Molecular Cloning, Characterization and Catalytic Mechanism. Molecules 2023; 28:6738. [PMID: 37764514 PMCID: PMC10537300 DOI: 10.3390/molecules28186738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 09/29/2023] Open
Abstract
Phthalic acid esters (PAEs), which are widespread environmental contaminants, can be efficiently biodegraded, mediated by enzymes such as hydrolases. Despite great advances in the characterization of PAE hydrolases, which are the most important enzymes in the process of PAE degradation, their molecular catalytic mechanism has rarely been systematically investigated. Acinetobacter sp. LUNF3, which was isolated from contaminated soil in this study, demonstrated excellent PAE degradation at 30 °C and pH 5.0-11.0. After sequencing and annotating the complete genome, the gene dphAN1, encoding a novel putative PAE hydrolase, was identified with the conserved motifs catalytic triad (Ser201-Asp295-His325) and oxyanion hole (H127GGG130). DphAN1 can hydrolyze DEP (diethyl phthalate), DBP (dibutyl phthalate) and BBP (benzyl butyl phthalate). The high activity of DphAN1 was observed under a wide range of temperature (10-40 °C) and pH (6.0-9.0). Moreover, the metal ions (Fe2+, Mn2+, Cr2+ and Fe3+) and surfactant TritonX-100 significantly activated DphAN1, indicating a high adaptability and tolerance of DphAN1 to these chemicals. Molecular docking revealed the catalytic triad, oxyanion hole and other residues involved in binding DBP. The mutation of these residues reduced the activity of DphAN1, confirming their interaction with DBP. These results shed light on the catalytic mechanism of DphAN1 and may contribute to protein structural modification to improve catalytic efficiency in environment remediation.
Collapse
Affiliation(s)
- Shuanghu Fan
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Jingjing Guo
- School of Chemistry and Materials Science, Langfang Normal University, Langfang 065000, China;
| | - Shaoyan Han
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
| | - Haina Du
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
| | - Zimeng Wang
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
| | - Yajuan Fu
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Hui Han
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Xiaoqiang Hou
- College of Life Science, Langfang Normal University, Langfang 065000, China; (S.F.); (S.H.); (H.D.); (Z.W.); (Y.F.); (H.H.)
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang 065000, China
| | - Weixuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China
| |
Collapse
|
11
|
Liu K, Li N, Ding J, Chen N, Wang S, Wang Q, Yao X, Li X, Wang J, Yin H. One-step synthesis of Bi 2O 2CO 3/Bi 2S 3 S-scheme heterostructure with enhanced photoactivity towards dibutyl phthalate degradation under visible light. CHEMOSPHERE 2023; 324:138357. [PMID: 36898443 DOI: 10.1016/j.chemosphere.2023.138357] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/06/2023] [Accepted: 03/08/2023] [Indexed: 06/18/2023]
Abstract
Bi2O2CO3/Bi2S3 heterojunction was prepared by one-step hydrothermal method, where Bi(NO3)3 was employed as Bi source, Na2S was used as a sulfur source, and CO(NH2)2 was adopted as C source. The load of Bi2S3 was adjusted by changing the content of Na2S. The prepared Bi2O2CO3/Bi2S3 illustrated strong photocatalytic activity towards dibutyl phthalate (DBP) degradation. The degradation rate was 73.6% under the irradiation of visible light for 3 h, which were 3.5 and 1.87 times for Bi2O2CO3 and Bi2S3, respectively. In addition, the mechanism for the enhanced photoactivity was investigated. After combined with Bi2S3, the formed heterojunction structure inhibited the recombination of photogenerated electron-hole pair, improved the visible light adsorption, and accelerated the migration rate of the photogenerated electron. As a result, analysis of the radical formation and the energy band structure revealed that Bi2O2CO3/Bi2S3 was consistent with the S-scheme heterojunction model. The S-scheme heterojunction allowed the Bi2O2CO3/Bi2S3 to possess high photocatalytic activity. The prepared photocatalyst presented acceptable cycle application stability. This work not only develops a facile one-step synthesis technique for Bi2O2CO3/Bi2S3, and also provides a good platform for the degradation of DBP.
Collapse
Affiliation(s)
- Kexue Liu
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Na Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jia Ding
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Na Chen
- Ningyang Environmental Monitoring Centre, 271400, Ningyang, Tai'an, Shandong, PR China
| | - Suo Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Qian Wang
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China
| | - Xiangfeng Yao
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Xianxu Li
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jun Wang
- College of Resources and Environment, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Huanshun Yin
- College of Chemistry and Material Science, Shandong Agricultural University, 271018, Tai'an, Shandong, PR China.
| |
Collapse
|
12
|
Chen JM, Feng WM, Yan H, Liu P, Zhou GS, Guo S, Yu G, Duan JA. Explore the interaction between root metabolism and rhizosphere microbiota during the growth of Angelica sinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:1005711. [PMID: 36420035 PMCID: PMC9676459 DOI: 10.3389/fpls.2022.1005711] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Angelica sinensis is a medicinal plant widely used to treat multiple diseases in Asia and Europe, which contains numerous active components with therapeutic value. The interaction between root and rhizosphere microorganisms is crucial for the growth and quality formation of medicinal plants. But the micro-plant-metabolite regulation patterns for A. sinensis remain largely undetermined. Here, we collected roots and rhizosphere soils from A. sinensis in seedling stage (M) and picking stage (G), respectively cultivated for one year and two years, generated metabolite for roots, microbiota data for rhizospheres, and conducted a comprehensive analysis. Changes in metabolic and microbial communities of A.sinensis over growth were distinct. The composition of rhizosphere microbes in G was dominated by proteobacteria, which had a strong correlation with the synthesis of organic acids, while in M was dominated by Actinobacteria, which had a strong correlation with the synthesis of phthalide and other organoheterocyclic compounds, flavonoids, amines, and fatty acid. Additionally, co-occurrence network analysis identified that Arthrobacter was found to be strongly correlated with the accumulation of senkyunolide A and n-butylidenephthalide. JGI 0001001.H03 was found to be strongly correlated with the accumulation of chlorogenic acid. Based on rhizosphere microorganisms, this study investigated the correlation between root metabolism and rhizosphere microbiota of A. sinensis at different growth stages in traditional geoherb region, which could provide references for exploring the quality formation mechanism of A. sinensis in the future.
Collapse
Affiliation(s)
| | | | - Hui Yan
- *Correspondence: Hui Yan, ; Pei Liu, ; Jin-Ao Duan,
| | - Pei Liu
- *Correspondence: Hui Yan, ; Pei Liu, ; Jin-Ao Duan,
| | | | | | | | - Jin-Ao Duan
- *Correspondence: Hui Yan, ; Pei Liu, ; Jin-Ao Duan,
| |
Collapse
|
13
|
Mondal T, Mondal S, Ghosh SK, Pal P, Soren T, Pandey S, Maiti TK. Phthalates - A family of plasticizers, their health risks, phytotoxic effects, and microbial bioaugmentation approaches. ENVIRONMENTAL RESEARCH 2022; 214:114059. [PMID: 35961545 DOI: 10.1016/j.envres.2022.114059] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/18/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
Phthalates are a family of reprotoxicant compounds, predominantly used as a plasticizer to improve the flexibility and longevity of consumable plastic goods. After their use these plastic products find their way to the waste disposal sites where they leach out the hazardous phthalates present within them, into the surrounding environment, contaminating soil, groundwater resources, and the nearby water bodies. Subsequently, phthalates move into the living system through the food chain and exhibit the well-known phenomenon of biological magnification. Phthalates as a primary pollutant have been classified as 1B reprotoxicants and teratogens by different government authorities and they have thus imposed restrictions on their use. Nevertheless, the release of these compounds in the environment is unabated. Bioremediation has been suggested as one of the ways of mitigating this menace, but studies regarding the field applications of phthalate utilizing microbes for this purpose are limited. Through this review, we endeavor to make a deeper understanding of the cause and concern of the problem and to find out a possible solution to it. The review critically emphasizes the various aspects of phthalates toxicity, including their chemical nature, human health risks, phytoaccumulation and entry into the food chain, microbial role in phthalate degradation processes, and future challenges.
Collapse
Affiliation(s)
- Tanushree Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sayanta Mondal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sudip Kumar Ghosh
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Priyanka Pal
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Tithi Soren
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| | - Sanjeev Pandey
- Department of Botany, Banwarilal Bhalotia College, Asansol, 713303, West Bengal, India.
| | - Tushar Kanti Maiti
- Microbiology Laboratory, Department of Botany, The University of Burdwan, Golapbag, Purba Bardhaman, P. O. -Rajbati, 713104, West Bengal, India.
| |
Collapse
|
14
|
Whole genome sequencing exploitation analysis of dibutyl phthalate by strain Stenotrophomonas acidaminiphila BDBP 071. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.102185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
Phthalate Esters Metabolic Strain Gordonia sp. GZ-YC7, a Potential Soil Degrader for High Concentration Di-(2-ethylhexyl) Phthalate. Microorganisms 2022; 10:microorganisms10030641. [PMID: 35336217 PMCID: PMC8955600 DOI: 10.3390/microorganisms10030641] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 03/12/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As commonly used chemical plasticizers in plastic products, phthalate esters have become a serious ubiquitous environmental pollutant, such as in soil of plastic film mulch culture. Microbial degradation or transformation was regarded as a suitable strategy to solve the phthalate esters pollution. Thus, a new phthalate esters degrading strain Gordonia sp. GZ-YC7 was isolated in this study, which exhibited the highest di-(2-ethylhexyl) phthalate degradation efficiency under 1000 mg/L and the strongest tolerance to 4000 mg/L. The comparative genomic analysis results showed that there exist diverse esterases for various phthalate esters such as di-(2-ethylhexyl) phthalate and dibutyl phthalate in Gordonia sp. GZ-YC7. This genome characteristic possibly contributes to its broad substrate spectrum, high degrading efficiency, and high tolerance to phthalate esters. Gordonia sp. GZ-YC7 has potential for the bioremediation of phthalate esters in polluted soil environments.
Collapse
|
16
|
Wu M, Tang J, Zhou X, Lei D, Zeng C, Ye H, Cai T, Zhang Q. Isolation of Dibutyl Phthalate-Degrading Bacteria and Its Coculture with Citrobacter freundii CD-9 to Degrade Fenvalerate. J Microbiol Biotechnol 2022; 32:176-186. [PMID: 35058397 PMCID: PMC9628840 DOI: 10.4014/jmb.2110.10048] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 01/10/2022] [Accepted: 01/12/2022] [Indexed: 12/15/2022]
Abstract
Continued fenvalerate use has caused serious environmental pollution and requires large-scale remediation. Dibutyl phthalate (DBP) was discovered in fenvalerate metabolites degraded by Citrobacter freundii CD-9. Coculturing is an effective method for bioremediation, but few studies have analyzed the degradation pathways and potential mechanisms of cocultures. Here, a DBP-degrading strain (BDBP 071) was isolated from soil contaminated with pyrethroid pesticides (PPs) and identified as Stenotrophomonas acidaminiphila. The optimum conditions for DBP degradation were determined by response surface methodology (RSM) analysis to be 30.9 mg/l DBP concentration, pH 7.5, at a culture temperature of 37.2°C. Under the optimized conditions, approximately 88% of DBP was degraded within 48 h and five metabolites were detected. Coculturing C. freundii CD-9 and S. acidaminiphila BDBP 071 promoted fenvalerate degradation. When CD-9 was cultured for 16 h before adding BDBP 071, the strain inoculation ratio was 5:5 (v/v), fenvalerate concentration was 75.0 mg/l, fenvalerate was degraded to 84.37 ± 1.25%, and DBP level was reduced by 5.21 mg/l. In addition, 12 fenvalerate metabolites were identified and a pathway for fenvalerate degradation by the cocultured strains was proposed. These results provide theoretical data for further exploration of the mechanisms used by this coculture system to degrade fenvalerate and DBP, and also offer a promising method for effective bioremediation of PPs and their related metabolites in polluted environments.
Collapse
Affiliation(s)
- Min Wu
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Jie Tang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,Corresponding authors J. Tang Phone: +86-28-87720552 Fax: +86-28-87720552 E-mail:
| | - Xuerui Zhou
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Dan Lei
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Chaoyi Zeng
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Hong Ye
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Ting Cai
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China
| | - Qing Zhang
- Key Laboratory of Food Biotechnology, College of Food and Bioengineering, Xihua University, Chengdu 610039, Sichuan, P.R. China,
Q. Zhang E-mail:
| |
Collapse
|
17
|
Kong X, Bai Z, Jin T, Jin D, Pan J, Yu X, Cernava T. Arthrobacter is a universal responder to di-n-butyl phthalate (DBP) contamination in soils from various geographical locations. JOURNAL OF HAZARDOUS MATERIALS 2022; 422:126914. [PMID: 34419851 DOI: 10.1016/j.jhazmat.2021.126914] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Plasticizer phthalic acid esters (PAEs) are commonly found as contaminants in various soils. Previous studies indicated that their natural degradation can substantially differ among soil types; however, potential implications of the soil microbiome remained largely unexplored. Here, we have collected ten soil types from nine different geographical regions of China to investigate the degradation of DBP therein and role of bacteria in this process. Results showed that the degradation rate of DBP was lowest in nutrient-poor red soils from Jiangxi Province, while it was highest in fluvo-aquatic soil from Hebei Province. Bacterial community responses to DBP substantially differed in each of the analyzed soils. Arthrobacter is known for its broad-spectrum activity in terms of DBP degradation in soil and was therefore implemented as bioremediating inoculant in many polluted environments. In the present study, network analyses indicated that synergism between soil bacteria increased following exposure to DBP. Arthrobacter and Sphingomonas were found to expand their positive interactions with other members of the microbiome in DBP-contaminated soils. The overall findings of our study provide a basis for biomarker development for detection of DBP contaminations and an extended basis for future bioremediation approaches based on beneficial bacteria.
Collapse
Affiliation(s)
- Xiao Kong
- School of Public Health, Qingdao University, Qingdao 266021, China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhanbing Bai
- Hunan Vegetable Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Tuo Jin
- Rural Energy and Environment Agency, Ministry of Agriculture and Rural Affairs, Beijing 100125, China
| | - Decai Jin
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Jiangang Pan
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, Baotou 014010, China
| | - Xiangyang Yu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Petersgasse 12, Graz 8010, Austria
| |
Collapse
|
18
|
Li J, Yi F, Chen G, Pan F, Yang Y, Shu M, Chen Z, Zhang Z, Mei X, Zhong W. Function Enhancement of a Metabolic Module via Endogenous Promoter Replacement for Pseudomonas sp. JY-Q to Degrade Nicotine in Tobacco Waste Treatment. Appl Biochem Biotechnol 2021; 193:2793-2805. [PMID: 34061306 DOI: 10.1007/s12010-021-03566-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 04/08/2021] [Indexed: 12/17/2022]
Abstract
Nicotine-degrading Pseudomonas sp. JY-Q is a preferred strain utilized in reconstituted tobacco process for tobacco waste treatment. However, its efficiency of nicotine metabolism still requires to be improved via genomic technology such as promoter engineering based on genomic information. Concerning upstream module of nicotine metabolic pathway, we found that two homologous genes of nicotine dehydrogenase (nicA2 and nox) coexisted in strain JY-Q. However, the transcriptional amount of nox was 20-fold higher than that of nicA2. Thus, the nicA2 expression required improvement. Combinatorial displacement was accomplished for two predicted endogenous promoters, named as PnicA2 and Pnox for nicA2 and nox, respectively. The mutant with Pnox as the promoters for both nicA2 and nox exhibited the best nicotine metabolic capacity which increased by 66% compared to the wild type. These results suggested that endogenous promoter replacement is also feasible for function improvement of metabolic modules and strain enhancement of biodegradation capacity to meet real environment demand.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fengmei Yi
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeling Zhang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xiaotong Mei
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
19
|
Pereyra-Camacho MA, Balderas-Hernández VE, De Leon-Rodriguez A. Biodegradation of diisononyl phthalate by a consortium of saline soil bacteria: optimisation and kinetic characterisation. Appl Microbiol Biotechnol 2021; 105:3369-3380. [PMID: 33797572 DOI: 10.1007/s00253-021-11255-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 03/17/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022]
Abstract
Diisononyl phthalate (DINP) is one of plasticisers most employed in the production of plastic materials and belongs to the most important environmental contaminants. In this work, a consortium of saline soil bacterial (SSB) capable of degrading DINP is presented. The genera of SSB-consortium were Serratia sp., Methylobacillus sp., Achromobacter sp., Pseudomonas sp., Stenotrophomonas sp., Methyloversatilis sp., Delftia sp. and Brevundimonas sp. Response surface methodology (RSM) study was employed to optimise and evaluate the culture conditions to improve the biodegradation of DINP. The optimal conditions were a pH 7.0, 31 °C and an initial DINP concentration of 500 mg L-1, resulting in almost complete biodegradation (99%) in 168 h. DINP degradation followed a first-order kinetic model, and the half-life was 12.76 h. During the biodegradation of DINP, 4-derived compounds were identified: monoisononyl phthalate, methyl nonyl phthalate, iso-nonanol and dimethyl phthalate. The metabolite profiling indicated that DINP was degraded through simultaneous pathways of de-esterification and β-oxidation. Results suggest that the SSB-consortium could be useful for efficient biodegradation of the DINP-contaminated environments. KEY POINTS: • DINP degradation is mediated by de-esterification and β-oxidation processes. • Temperature and the concentration of the substrate are key factors for DINP biodegradation • The SSB-consortium has the ability to biodegrade 99% of DINP (500 mg L-1).
Collapse
Affiliation(s)
- Marco A Pereyra-Camacho
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, México
| | - Victor E Balderas-Hernández
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, México
| | - Antonio De Leon-Rodriguez
- IPICyT, Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José No. 2055, Lomas 4a sección, San Luis Potosí, San Luis Potosí, 78216, México.
| |
Collapse
|
20
|
Additional Role of Nicotinic Acid Hydroxylase for the Transformation of 3-Succinoyl-Pyridine by Pseudomonas sp. Strain JY-Q. Appl Environ Microbiol 2021; 87:AEM.02740-20. [PMID: 33397698 DOI: 10.1128/aem.02740-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 12/13/2020] [Indexed: 01/22/2023] Open
Abstract
Nicotine and nicotinic acid (NA) are both considered to be representatives of N-heterocyclic aromatic compounds, and their degradation pathways have been revealed in Pseudomonas species. However, the cooccurrence of these two pathways has only been observed in Pseudomonas sp. strain JY-Q. The nicotine pyrrolidine catabolism pathway of strain JY-Q consists of the functional modules Nic1, Spm, and Nic2. The module enzyme, 3-succinoylpyridine monooxygenase (Spm), catalyzes transformation of 3-succinoyl-pyridine (SP) to 6-hydroxy-3-succinoyl-pyridine (HSP). There exist two homologous but not identical Spm enzymes (namely, Spm1 and Spm2) in JY-Q. However, when spm1 and spm2 were both in-frame deleted, the mutant still grew well in basic salt medium (BSM) supplemented with nicotine as the sole carbon/nitrogen nutrition, suggesting that there exists an alternative pathway responsible for SP catabolism in JY-Q. NicAB, an enzyme accounting for NA hydroxylation, contains reorganized domains similar to those of Spm. When the JY-Q_nicAB gene (nicAB in strain JY-Q) was introduced into another Pseudomonas strain, one that is unable to degrade NA, the resultant recombinant strain exhibited the ability to transform SP to HSP, but without the ability to metabolize NA. Here, we conclude that NicAB in strain JY-Q exhibits an additional role in SP transformation. The other genes in the NA cluster, NicXDFE (Nic2 homolog), then also exhibit a role in subsequent HSP metabolism for energy yield. This finding also suggests that the cooccurrence of nicotine and NA degradation genes in strain JY-Q represents an advantage for JY-Q, making it more effective and flexible for the degradation of nicotine.IMPORTANCE 3-Succinoyl-pyridine (SP) and 6-hydroxy-3-succinoyl-pyridine (HSP) are both valuable chemical precursors to produce insecticides and hypotensive agents. SP and HSP could be renewable through the nicotine microbial degradation pathway, in which 3-succinoylpyridine monooxygenases (Spm) account for transforming SP into HSP in Pseudomonas sp. strain JY-Q. However, when two homologous Spm genes (spm1 and spm2) were knocked out, the mutant retained the ability to degrade nicotine. Thus, in addition to Spm, JY-Q should have an alternative pathway for SP conversion. In this research, we showed that JY-Q_NicAB was responsible for this alternative SP conversion. Both of the primary functions for nicotinic acid dehydrogenation and the additional function for SP metabolism were detected in a recombinant strain harboring JY-Q_NicAB. As a result, both nicotinic acid and nicotine degradation pathways in JY-Q contribute to its remarkable nicotine tolerance and nicotine degradation availability. These findings also provide one more metabolic engineering strategy for accumulation for value-added intermediates.
Collapse
|
21
|
Li J, Shen M, Chen Z, Pan F, Yang Y, Shu M, Chen G, Jiao Y, Zhang F, Linhardt RJ, Zhong W. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein Expr Purif 2020; 178:105767. [PMID: 32987121 DOI: 10.1016/j.pep.2020.105767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/16/2020] [Accepted: 09/19/2020] [Indexed: 01/01/2023]
Abstract
Nicotine contamination in tobacco waste effluent (TWE) from tobacco industry is a serious threat to public health and environment. Microbial degradation is an impending approach to remove nicotine and transform it into some other high value chemicals. Pseudomonas sp. JY-Q exhibits high efficiency of degradation, which can degrade 5 g/L of nicotine within 24 h. In strain JY-Q, we found the co-occurrence of two homologous key enzymes NicA2 and Nox, which catalyze nicotine to N-methylmyosmine, and then to pseudooxylnicotine via simultaneous hydrolysis. In this study, recombinant NicA2 and Nox were expressed in E. coli BL21(DE3) and purified. In vitro, the activity of recombinant NicA2 and Nox was accelerated by adding co-factor NAD+, suggesting that they worked as dehydrogenases. The optimal reaction conditions, substrate affinity, catabolism efficiency, pH-stability and thermal-stability were determined. Nox showed lower efficiency, but at a higher stability level than NicA2. Nox exhibited wider pH range and higher temperature as optimal conditions for the enzymatic reaction. In addition, The Nox showed higher thermo-stability and acid-stability than that of NicA2. The study on enzymatic reaction kinetics showed that Nox had a lower Km and higher substrate affinity than NicA2. These results suggest that Nox plays more significant role than NicA2 in nicotine degradation in TWE, which usually is processed at low pH (4-5) and high temperature (above 40 °C). Genetic engineering is required to enhance the affinity and suitability of NicA2 for an increased additive effect on homologous NicA2 and Nox in strain JY-Q.
Collapse
Affiliation(s)
- Jun Li
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Mingjie Shen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zeyu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Fanda Pan
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Yang Yang
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China.
| | - Ming Shu
- Technology Center, China Tobacco Zhejiang Industrial Co., Ltd., Hangzhou, 310009, China
| | - Guoqing Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yang Jiao
- Technology Center, Hangzhou Liqun Environmental Protection Paper Co., Ltd., Hangzhou, 310018, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Weihong Zhong
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|