1
|
Firatligil-Yildirir B, Bati-Ayaz G, Nonappa, Pesen-Okvur D, Yalcin-Ozuysal O. Invasion/chemotaxis- and extravasation-chip models for breast cancer bone metastasis. PLoS One 2024; 19:e0309285. [PMID: 39418263 PMCID: PMC11486417 DOI: 10.1371/journal.pone.0309285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/09/2024] [Indexed: 10/19/2024] Open
Abstract
Bone is one of the most frequently targeted organs in metastatic cancers including the breast. Breast cancer bone metastasis often results in devastating outcomes as limited treatment options are currently available. Therefore, innovative methods are needed to provide earlier detection and thus better treatment and prognosis. Here, we present a new approach to model bone-like microenvironments to detect invasion and extravasation of breast cancer cells using invasion/chemotaxis (IC-) and extravasation (EX-) chips, respectively. Our results show that the behaviors of MDA-MB-231 breast cancer cells on IC- and EX-chip models correlate with their in vivo metastatic potential. Our culture model constitutes cell lines representing osteoblasts, bone marrow stromal cells, and monocytes embedded in three-dimensional (3D) collagen I-based extracellular matrices of varying composition and stiffness. We show that collagen I offers a better bone-like environment for bone cells and matrix composition and stiffness regulate the invasion of breast cancer cells. Using in situ contactless rheological measurements under cell culture conditions, we show that the presence of cells increased the stiffness values of the matrices up to 1200 Pa when monitored for five days. This suggests that the cellular composition has a significant effect on regulating matrix mechanical properties, which in turn contribute to the invasiveness. The platforms we present here enable the investigation of the underlying molecular mechanisms in breast cancer bone metastasis and provide the groundwork of developing preclinical tools for the prediction of bone metastasis risk.
Collapse
Affiliation(s)
- Burcu Firatligil-Yildirir
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkiye
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Gizem Bati-Ayaz
- Izmir Institute of Technology, Biotechnology and Bioengineering Graduate Program, Izmir, Turkiye
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University, Tampere, Finland
| | - Devrim Pesen-Okvur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkiye
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Izmir, Turkiye
| |
Collapse
|
2
|
Brooks A, Zhang Y, Chen J, Zhao CX. Cancer Metastasis-on-a-Chip for Modeling Metastatic Cascade and Drug Screening. Adv Healthc Mater 2024; 13:e2302436. [PMID: 38224141 DOI: 10.1002/adhm.202302436] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Microfluidic chips are valuable tools for studying intricate cellular and cell-microenvironment interactions. Traditional in vitro cancer models lack accuracy in mimicking the complexities of in vivo tumor microenvironment. However, cancer-metastasis-on-a-chip (CMoC) models combine the advantages of 3D cultures and microfluidic technology, serving as powerful platforms for exploring cancer mechanisms and facilitating drug screening. These chips are able to compartmentalize the metastatic cascade, deepening the understanding of its underlying mechanisms. This article provides an overview of current CMoC models, focusing on distinctive models that simulate invasion, intravasation, circulation, extravasation, and colonization, and their applications in drug screening. Furthermore, challenges faced by CMoC and microfluidic technologies are discussed, while exploring promising future directions in cancer research. The ongoing development and integration of these models into cancer studies are expected to drive transformative advancements in the field.
Collapse
Affiliation(s)
- Anastasia Brooks
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Yali Zhang
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Jiezhong Chen
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| | - Chun-Xia Zhao
- School of Chemical Engineering, University of Adelaide, Adelaide, 5005, Australia
| |
Collapse
|
3
|
Nuckhir M, Withey D, Cabral S, Harrison H, Clarke RB. State of the Art Modelling of the Breast Cancer Metastatic Microenvironment: Where Are We? J Mammary Gland Biol Neoplasia 2024; 29:14. [PMID: 39012440 PMCID: PMC11252219 DOI: 10.1007/s10911-024-09567-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/09/2024] [Indexed: 07/17/2024] Open
Abstract
Metastatic spread of tumour cells to tissues and organs around the body is the most frequent cause of death from breast cancer. This has been modelled mainly using mouse models such as syngeneic mammary cancer or human in mouse xenograft models. These have limitations for modelling human disease progression and cannot easily be used for investigation of drug resistance and novel therapy screening. To complement these approaches, advances are being made in ex vivo and 3D in vitro models, which are becoming progressively better at reliably replicating the tumour microenvironment and will in the future facilitate drug development and screening. These approaches include microfluidics, organ-on-a-chip and use of advanced biomaterials. The relevant tissues to be modelled include those that are frequent and clinically important sites of metastasis such as bone, lung, brain, liver for invasive ductal carcinomas and a distinct set of common metastatic sites for lobular breast cancer. These sites all have challenges to model due to their unique cellular compositions, structure and complexity. The models, particularly in vivo, provide key information on the intricate interactions between cancer cells and the native tissue, and will guide us in producing specific therapies that are helpful in different context of metastasis.
Collapse
Affiliation(s)
- Mia Nuckhir
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - David Withey
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Sara Cabral
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK
| | - Hannah Harrison
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| | - Robert B Clarke
- Breast Biology Group, Manchester Breast Centre, Division of Cancer Sciences, Oglesby Cancer Research Building, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M20 4GJ, UK.
| |
Collapse
|
4
|
Jackson CE, Green NH, English WR, Claeyssens F. The use of microphysiological systems to model metastatic cancer. Biofabrication 2024; 16:032002. [PMID: 38579739 DOI: 10.1088/1758-5090/ad3b70] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/05/2024] [Indexed: 04/07/2024]
Abstract
Cancer is one of the leading causes of death in the 21st century, with metastasis of cancer attributing to 90% of cancer-related deaths. Therefore, to improve patient outcomes there is a need for better preclinical models to increase the success of translating oncological therapies into the clinic. Current traditional staticin vitromodels lack a perfusable network which is critical to overcome the diffusional mass transfer limit to provide a mechanism for the exchange of essential nutrients and waste removal, and increase their physiological relevance. Furthermore, these models typically lack cellular heterogeneity and key components of the immune system and tumour microenvironment. This review explores rapidly developing strategies utilising perfusable microphysiological systems (MPS) for investigating cancer cell metastasis. In this review we initially outline the mechanisms of cancer metastasis, highlighting key steps and identifying the current gaps in our understanding of the metastatic cascade, exploring MPS focused on investigating the individual steps of the metastatic cascade before detailing the latest MPS which can investigate multiple components of the cascade. This review then focuses on the factors which can affect the performance of an MPS designed for cancer applications with a final discussion summarising the challenges and future directions for the use of MPS for cancer models.
Collapse
Affiliation(s)
- Caitlin E Jackson
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - Nicola H Green
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| | - William R English
- Norwich Medical School, University of East Anglia, Norwich NR3 7TJ, United Kingdom
| | - Frederik Claeyssens
- Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, Sheffield S3 7HQ, United Kingdom
- Insigneo Institute for In Silico Medicine, The Pam Liversidge Building, University of Sheffield, Sheffield S1 3JD, United Kingdom
| |
Collapse
|
5
|
Huniadi M, Nosálová N, Almášiová V, Horňáková Ľ, Valenčáková A, Hudáková N, Cizkova D. Three-Dimensional Cultivation a Valuable Tool for Modelling Canine Mammary Gland Tumour Behaviour In Vitro. Cells 2024; 13:695. [PMID: 38667310 PMCID: PMC11049302 DOI: 10.3390/cells13080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/11/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Cell cultivation has been one of the most popular methods in research for decades. Currently, scientists routinely use two-dimensional (2D) and three-dimensional (3D) cell cultures of commercially available cell lines and primary cultures to study cellular behaviour, responses to stimuli, and interactions with their environment in a controlled laboratory setting. In recent years, 3D cultivation has gained more attention in modern biomedical research, mainly due to its numerous advantages compared to 2D cultures. One of the main goals where 3D culture models are used is the investigation of tumour diseases, in both animals and humans. The ability to simulate the tumour microenvironment and design 3D masses allows us to monitor all the processes that take place in tumour tissue created not only from cell lines but directly from the patient's tumour cells. One of the tumour types for which 3D culture methods are often used in research is the canine mammary gland tumour (CMT). The clinically similar profile of the CMT and breast tumours in humans makes the CMT a suitable model for studying the issue not only in animals but also in women.
Collapse
Affiliation(s)
- Mykhailo Huniadi
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Natália Nosálová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Viera Almášiová
- Department of Anatomy, Histology and Physiology, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia;
| | - Ľubica Horňáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Alexandra Valenčáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Nikola Hudáková
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| | - Dasa Cizkova
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, Komenskeho 73, 041 81 Kosice, Slovakia; (M.H.); (N.N.); (Ľ.H.); (A.V.); (N.H.)
| |
Collapse
|
6
|
Yoon H, Sabaté Del Río J, Cho SW, Park TE. Recent advances in micro-physiological systems for investigating tumor metastasis and organotropism. LAB ON A CHIP 2024; 24:1351-1366. [PMID: 38303676 DOI: 10.1039/d3lc01033c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
Tumor metastasis involves complex processes that traditional 2D cultures and animal models struggle to fully replicate. Metastatic tumors undergo a multitude of transformations, including genetic diversification, adaptation to diverse microenvironments, and modified drug responses, contributing significantly to cancer-related mortality. Micro-physiological systems (MPS) technology emerges as a promising approach to emulate the metastatic process by integrating critical biochemical, biomechanical, and geometrical cues at a microscale. These systems are particularly advantageous simulating metastasis organotropism, the phenomenon where tumors exhibit a preference for metastasizing to particular organs. Organotropism is influenced by various factors, such as tumor cell characteristics, unique organ microenvironments, and organ-specific vascular conditions, all of which can be effectively examined using MPS. This review surveys the recent developments in MPS research from the past five years, with a specific focus on their applications in replicating tumor metastasis and organotropism. Furthermore, we discuss the current limitations in MPS-based studies of organotropism and propose strategies for more accurately replicating and analyzing the intricate aspects of organ-specific metastasis, which is pivotal in the development of targeted therapeutic approaches against metastatic cancers.
Collapse
Affiliation(s)
- Heejeong Yoon
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Jonathan Sabaté Del Río
- Center for Algorithmic and Robotized Synthesis (CARS), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Seung Woo Cho
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| | - Tae-Eun Park
- Department of Biomedical Engineering, College of Information and Biotechnology, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea.
| |
Collapse
|
7
|
Bagci G, Comez D, Topel H, Yilmaz Y, Bagirsakci E, Gunes A, Batı Ayaz G, Tahmaz I, Bilgen M, Solmaz G, Pesen Okvur D, Atabey N. c-Met activation promotes extravasation of hepatocellular carcinoma cells into 3D-cultured hepatocyte cells in lab-on-a-chip device. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119557. [PMID: 37549739 DOI: 10.1016/j.bbamcr.2023.119557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/14/2023] [Accepted: 08/01/2023] [Indexed: 08/09/2023]
Abstract
Activation of c-Met signaling is associated with an aggressive phenotype and poor prognosis in hepatocellular carcinoma (HCC); however, its contribution to organ preference in metastasis remains unclear. In this study, using a Lab on a Chip device, we defined the role of aberrant c-Met activation in regulating the extravasation and homing capacity of HCC cells. Our studies showed that (i) c-Met overexpression and activation direct HCC cells preferentially towards the hepatocytes-enriched microenvironment, and (ii) blockage of c-Met phosphorylation by a small molecule inhibitor attenuated extravasation and homing capacity of HCC cells. These results, thus, demonstrate the role of c-Met signaling in regulating the colonization of HCC cells preferentially in the liver.
Collapse
Affiliation(s)
- Gulsun Bagci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Dehan Comez
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Hande Topel
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Yeliz Yilmaz
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Medical Biology and Genetics, Graduate School of Health Sciences, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Ezgi Bagirsakci
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Department of Molecular Biology and Genetics, Izmir International Biomedicine and Genome Institute, Dokuz Eylul University, Balcova, 35340 Izmir, Turkey
| | - Aysim Gunes
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey
| | - Gizem Batı Ayaz
- Biotechnology and Bioengineering Graduate Program, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Ismail Tahmaz
- Biotechnology and Bioengineering Graduate Program, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Muge Bilgen
- Biotechnology and Bioengineering Graduate Program, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Gulhas Solmaz
- Izmir Tinaztepe University, Galen Research Center, Buca, 35400, Izmir, Turkey
| | - Devrim Pesen Okvur
- Department of Molecular Biology and Genetics, Izmir Institute of Technology, Gulbahce, Urla, 35430 Izmir, Turkey
| | - Nese Atabey
- Izmir Biomedicine and Genome Center (IBG), Balcova, 35340 Izmir, Turkey; Izmir Tinaztepe University, Galen Research Center, Buca, 35400, Izmir, Turkey; Izmir Tinaztepe University, Faculty of Medicine, Department of Medical Biology and Genetics, Buca, 35400 Izmir, Turkey.
| |
Collapse
|
8
|
Liu Y, Liu R, Liu H, Lyu T, Chen K, Jin K, Tian Y. Breast tumor-on-chip: from the tumor microenvironment to medical applications. Analyst 2023; 148:5822-5842. [PMID: 37850340 DOI: 10.1039/d3an01295f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
With the development of microfluidic technology, tumor-on-chip models have gradually become a new tool for the study of breast cancer because they can simulate more key factors of the tumor microenvironment compared with traditional models in vitro. Here, we review up-to-date advancements in breast tumor-on-chip models. We summarize and analyze the breast tumor microenvironment (TME), preclinical breast cancer models for TME simulation, fabrication methods of tumor-on-chip models, tumor-on-chip models for TME reconstruction, and applications of breast tumor-on-chip models and provide a perspective on breast tumor-on-chip models. This review will contribute to the construction and design of microenvironments for breast tumor-on-chip models, even the development of the pharmaceutical field, personalized/precision therapy, and clinical medicine.
Collapse
Affiliation(s)
- Yiying Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| | - Ruonan Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - He Liu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Tong Lyu
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Kun Chen
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Kaiming Jin
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
| | - Ye Tian
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang 110169, China.
- Foshan Graduate School of Innovation, Northeastern University, Foshan, 528300, China
| |
Collapse
|
9
|
Cauli E, Polidoro MA, Marzorati S, Bernardi C, Rasponi M, Lleo A. Cancer-on-chip: a 3D model for the study of the tumor microenvironment. J Biol Eng 2023; 17:53. [PMID: 37592292 PMCID: PMC10436436 DOI: 10.1186/s13036-023-00372-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/03/2023] [Indexed: 08/19/2023] Open
Abstract
The approval of anticancer therapeutic strategies is still slowed down by the lack of models able to faithfully reproduce in vivo cancer physiology. On one hand, the conventional in vitro models fail to recapitulate the organ and tissue structures, the fluid flows, and the mechanical stimuli characterizing the human body compartments. On the other hand, in vivo animal models cannot reproduce the typical human tumor microenvironment, essential to study cancer behavior and progression. This study reviews the cancer-on-chips as one of the most promising tools to model and investigate the tumor microenvironment and metastasis. We also described how cancer-on-chip devices have been developed and implemented to study the most common primary cancers and their metastatic sites. Pros and cons of this technology are then discussed highlighting the future challenges to close the gap between the pre-clinical and clinical studies and accelerate the approval of new anticancer therapies in humans.
Collapse
Affiliation(s)
- Elisa Cauli
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy.
- Accelera Srl, Nerviano, Milan, Italy.
| | - Michela Anna Polidoro
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Simona Marzorati
- Hepatobiliary Immunopathology Laboratory, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | | | - Marco Rasponi
- Department of Electronics, Information and Bioengineering, Politecnico Di Milano, Milan, Italy
| | - Ana Lleo
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Division of Internal Medicine and Hepatology, Department of Gastroenterology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
10
|
Pospelov AD, Kutova OM, Efremov YM, Nekrasova AA, Trushina DB, Gefter SD, Cherkasova EI, Timofeeva LB, Timashev PS, Zvyagin AV, Balalaeva IV. Breast Cancer Cell Type and Biomechanical Properties of Decellularized Mouse Organs Drives Tumor Cell Colonization. Cells 2023; 12:2030. [PMID: 37626840 PMCID: PMC10453279 DOI: 10.3390/cells12162030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Tissue engineering has emerged as an indispensable tool for the reconstruction of organ-specific environments. Organ-derived extracellular matrices (ECM) and, especially, decellularized tissues (DCL) are recognized as the most successful biomaterials in regenerative medicine, as DCL preserves the most essential organ-specific ECM properties such as composition alongside biomechanics characterized by stiffness and porosity. Expansion of the DCL technology to cancer biology research, drug development, and nanomedicine is pending refinement of the existing DCL protocols whose reproducibility remains sub-optimal varying from organ to organ. We introduce a facile decellularization protocol universally applicable to murine organs, including liver, lungs, spleen, kidneys, and ovaries, with demonstrated robustness, reproducibility, high purification from cell debris, and architecture preservation, as confirmed by the histological and SEM analysis. The biomechanical properties of as-produced DCL organs expressed in terms of the local and total stiffness were measured using our facile methodology and were found well preserved in comparison with the intact organs. To demonstrate the utility of the developed DCL model to cancer research, we engineered three-dimensional tissue constructs by recellularization representative decellularized organs and collagenous hydrogel with human breast cancer cells of pronounced mesenchymal (MDA-MB-231) or epithelial (SKBR-3) phenotypes. The biomechanical properties of the DCL organs were found pivotal to determining the cancer cell fate and progression. Our histological and scanning electron microscopy (SEM) study revealed that the larger the ECM mean pore size and the smaller the total stiffness (as in lung and ovary), the more proliferative and invasive the mesenchymal cells became. At the same time, the low local stiffness ECMs (ranged 2.8-3.6 kPa) did support the epithelial-like SKBR-3 cells' viability (as in lung and spleen), while stiff ECMs did not. The total and local stiffness of the collagenous hydrogel was measured too low to sustain the proliferative potential of both cell lines. The observed cell proliferation patterns were easily interpretable in terms of the ECM biomechanical properties, such as binding sites, embedment facilities, and migration space. As such, our three-dimensional tissue engineering model is scalable and adaptable for pharmacological testing and cancer biology research of metastatic and primary tumors, including early metastatic colonization in native organ-specific ECM.
Collapse
Affiliation(s)
- Anton D. Pospelov
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow 117997, Russia;
| | - Olga M. Kutova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Yuri M. Efremov
- Institute for Regenerative Medicine, Sechenov University, Moscow 117418, Russia; (Y.M.E.); (A.A.N.)
| | - Albina A. Nekrasova
- Institute for Regenerative Medicine, Sechenov University, Moscow 117418, Russia; (Y.M.E.); (A.A.N.)
- Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Dolgoprudny 141701, Russia
| | - Daria B. Trushina
- Federal Research Center Crystallography and Photonics, Russian Academy of Sciences, Moscow 119991, Russia;
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
| | - Sofia D. Gefter
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Elena I. Cherkasova
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| | - Lidia B. Timofeeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Privolzhsky Research Medical University, 10/1, Minin and Pozharsky Sq., Nizhny Novgorod 603950, Russia
| | - Peter S. Timashev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Miklukho-Maklaya, 16/10, Moscow 117997, Russia;
- Chemistry Department, Lomonosov Moscow State University, Leninskiye Gory 1–3, Moscow 119991, Russia
- Laboratory of Clinical Smart Nanotechnology, Sechenov University, Moscow 117418, Russia
| | - Andrei V. Zvyagin
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
- Institute of Molecular Theranostics, Sechenov First Moscow State Medical University, Moscow 119435, Russia
- Laboratory of Clinical Smart Nanotechnology, Sechenov University, Moscow 117418, Russia
| | - Irina V. Balalaeva
- Institute of Biology and Biomedicine, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., Nizhny Novgorod 603950, Russia; (A.D.P.); (O.M.K.); (S.D.G.); (E.I.C.); (L.B.T.); (A.V.Z.)
| |
Collapse
|
11
|
Banerjee M, Devi Rajeswari V. A novel cross-communication of HIF-1α and HIF-2α with Wnt signaling in TNBC and influence of hypoxic microenvironment in the formation of an organ-on-chip model of breast cancer. Med Oncol 2023; 40:245. [PMID: 37454033 DOI: 10.1007/s12032-023-02112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/01/2023] [Indexed: 07/18/2023]
Abstract
The microenvironment role is very important in cancer development. The epithelial-mesenchymal transition of the cancer cells depends upon specific signaling and microenvironmental conditions, such as hypoxic conditions. The crosstalk between hypoxia and Wnt signaling through some molecular mechanism in TNBC is related. Cross-communication between hypoxia and Wnt signaling in cancer cells is known, but the detailed mechanism in TNBC is unknown. This review includes the role of the hypoxia microenvironment in TNBC and the novel crosstalk of the Wnt signaling and hypoxia. When targeted, the new pathway and crosstalk link may be a solution for metastatic TNBC and chemoresistance. The microenvironment influences cancer's metastasis, which changes from person to person. Therefore, organ-on-a-chip is a very novel model to test the drugs clinically before going for human trials, focusing on personalized medications can be done. The effect of the hypoxia microenvironment on breast cancer stem cells is still unknown. Apart from all the published papers, this paper mainly focuses only on the hypoxic microenvironment and its association with the growth of TNBC. The medicines or small proteins, drugs, mimics, and inhibitors targeting wnt and hypoxia genes are consolidated in this review paper.
Collapse
Affiliation(s)
- Manosi Banerjee
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - V Devi Rajeswari
- Department of Biomedical Science, School of Bioscience and Technology, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
12
|
Hockney S, Parker J, Turner JE, Todd X, Todryk S, Gieling RG, Hilgen G, Simoes DCM, Pal D. Next generation organoid engineering to replace animals in cancer drug testing. Biochem Pharmacol 2023; 213:115586. [PMID: 37164297 DOI: 10.1016/j.bcp.2023.115586] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/27/2023] [Accepted: 04/28/2023] [Indexed: 05/12/2023]
Abstract
Cancer therapies have several clinical challenges associated with them, namely treatment toxicity, treatment resistance and relapse. Due to factors ranging from patient profiles to the tumour microenvironment (TME), there are several hurdles to overcome in developing effective treatments that have low toxicity that can mitigate emergence of resistance and occurrence of relapse. De novo cancer development has the highest drug attrition rates with only 1 in 10,000 preclinical candidates reaching the market. To alleviate this high attrition rate, more mimetic and sustainable preclinical models that can capture the disease biology as in the patient, are required. Organoids and next generation 3D tissue engineering is an emerging area that aims to address this problem. Advancement of three-dimensional (3D) in vitro cultures into complex organoid models incorporating multiple cell types alongside acellular aspects of tissue microenvironments can provide a system for therapeutic testing. Development of microfluidic technologies have furthermore increased the biomimetic nature of these models. Additionally, 3D bio-printing facilitates generation of tractable ex vivo models in a controlled, scalable and reproducible manner. In this review we highlight some of the traditional preclinical models used in cancer drug testing and debate how next generation organoids are being used to replace not only animal models, but also some of the more elementary in vitro approaches, such as cell lines. Examples of applications of the various models will be appraised alongside the future challenges that still need to be overcome.
Collapse
Affiliation(s)
- Sean Hockney
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jessica Parker
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Jasmin E Turner
- Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Xanthea Todd
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Stephen Todryk
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Roben Ger Gieling
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Gerrit Hilgen
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Biosciences Institute, Newcastle University, International Centre for Life, Newcastle Upon Tyne NE1 4EP, UK
| | - Davina Camargo Madeira Simoes
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | - Deepali Pal
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; Wolfson Childhood Cancer Research Centre, Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK.
| |
Collapse
|
13
|
Firatligil-Yildirir B, Yalcin-Ozuysal O, Nonappa. Recent advances in lab-on-a-chip systems for breast cancer metastasis research. NANOSCALE ADVANCES 2023; 5:2375-2393. [PMID: 37143816 PMCID: PMC10153489 DOI: 10.1039/d2na00823h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 03/26/2023] [Indexed: 05/06/2023]
Abstract
Breast cancer is the leading cause of cancer-related deaths in women. Multiple molecular subtypes, heterogeneity, and their ability to metastasize from the primary site to distant organs make breast cancer challenging to diagnose, treat, and obtain the desired therapeutic outcome. As the clinical importance of metastasis is dramatically increasing, there is a need to develop sustainable in vitro preclinical platforms to investigate complex cellular processes. Traditional in vitro and in vivo models cannot mimic the highly complex and multistep process of metastasis. Rapid progress in micro- and nanofabrication has contributed to soft lithography or three-dimensional printing-based lab-on-a-chip (LOC) systems. LOC platforms, which mimic in vivo conditions, offer a more profound understanding of cellular events and allow novel preclinical models for personalized treatments. Their low cost, scalability, and efficiency have resulted in on-demand design platforms for cell, tissue, and organ-on-a-chip platforms. Such models can overcome the limitations of two- and three-dimensional cell culture models and the ethical challenges involved in animal models. This review provides an overview of breast cancer subtypes, various steps and factors involved in metastases, existing preclinical models, and representative examples of LOC systems used to study and understand breast cancer metastasis and diagnosis and as a platform to evaluate advanced nanomedicine for breast cancer metastasis.
Collapse
Affiliation(s)
| | - Ozden Yalcin-Ozuysal
- Department of Molecular Biology and Genetics, Izmir Institute of Technology Urla 35430 Izmir Turkey
| | - Nonappa
- Faculty of Engineering and Natural Sciences, Tampere University FI-33720 Tampere Finland
| |
Collapse
|
14
|
Li C, Zhao R, Yang H, Ren L. Construction of Bone Hypoxic Microenvironment Based on Bone-on-a-Chip Platforms. Int J Mol Sci 2023; 24:ijms24086999. [PMID: 37108162 PMCID: PMC10139217 DOI: 10.3390/ijms24086999] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
The normal physiological activities and functions of bone cells cannot be separated from the balance of the oxygenation level, and the physiological activities of bone cells are different under different oxygenation levels. At present, in vitro cell cultures are generally performed in a normoxic environment, and the partial pressure of oxygen of a conventional incubator is generally set at 141 mmHg (18.6%, close to the 20.1% oxygen in ambient air). This value is higher than the mean value of the oxygen partial pressure in human bone tissue. Additionally, the further away from the endosteal sinusoids, the lower the oxygen content. It follows that the construction of a hypoxic microenvironment is the key point of in vitro experimental investigation. However, current methods of cellular research cannot realize precise control of oxygenation levels at the microscale, and the development of microfluidic platforms can overcome the inherent limitations of these methods. In addition to discussing the characteristics of the hypoxic microenvironment in bone tissue, this review will discuss various methods of constructing oxygen gradients in vitro and measuring oxygen tension from the microscale based on microfluidic technology. This integration of advantages and disadvantages to perfect the experimental study will help us to study the physiological responses of cells under more physiological-relevant conditions and provide a new strategy for future research on various in vitro cell biomedicines.
Collapse
Affiliation(s)
- Chen Li
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Rong Zhao
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Hui Yang
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| | - Li Ren
- Key Laboratory of Flexible Electronics of Zhejiang Province, Ningbo Institute of Northwestern Polytechnical University, Ningbo 315103, China
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi'an 710072, China
| |
Collapse
|
15
|
Guneri-Sozeri PY, Özden-Yılmaz G, Kisim A, Cakiroglu E, Eray A, Uzuner H, Karakülah G, Pesen-Okvur D, Senturk S, Erkek-Ozhan S. FLI1 and FRA1 transcription factors drive the transcriptional regulatory networks characterizing muscle invasive bladder cancer. Commun Biol 2023; 6:199. [PMID: 36805539 PMCID: PMC9941102 DOI: 10.1038/s42003-023-04561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Bladder cancer is mostly present in the form of urothelium carcinoma, causing over 150,000 deaths each year. Its histopathological classification as muscle invasive (MIBC) and non-muscle invasive (NMIBC) is the most prominent aspect, affecting the prognosis and progression of this disease. In this study, we defined the active regulatory landscape of MIBC and NMIBC cell lines using H3K27ac ChIP-seq and used an integrative approach to combine our findings with existing data. Our analysis revealed FRA1 and FLI1 as two critical transcription factors differentially regulating MIBC regulatory landscape. We show that FRA1 and FLI1 regulate the genes involved in epithelial cell migration and cell junction organization. Knock-down of FRA1 and FLI1 in MIBC revealed the downregulation of several EMT-related genes such as MAP4K4 and FLOT1. Further, ChIP-SICAP performed for FRA1 and FLI1 enabled us to infer chromatin binding partners of these transcription factors and link this information with their target genes. Finally, we show that knock-down of FRA1 and FLI1 result in significant reduction of invasion capacity of MIBC cells towards muscle microenvironment using IC-CHIP assays. Our results collectively highlight the role of these transcription factors in selection and design of targeted options for treatment of MIBC.
Collapse
Affiliation(s)
- Perihan Yagmur Guneri-Sozeri
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gülden Özden-Yılmaz
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey
| | - Asli Kisim
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Ece Cakiroglu
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Aleyna Eray
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Hamdiye Uzuner
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Gökhan Karakülah
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Devrim Pesen-Okvur
- grid.419609.30000 0000 9261 240XIzmir Institute of Technology, Urla, 35430 Izmir, Turkey
| | - Serif Senturk
- grid.21200.310000 0001 2183 9022Izmir Biomedicine and Genome Center, Inciralti, 35340 Izmir, Turkey ,grid.21200.310000 0001 2183 9022Dokuz Eylül University Izmir International Biomedicine and Genome Institute, Inciralti, 35340 Izmir, Turkey
| | - Serap Erkek-Ozhan
- Izmir Biomedicine and Genome Center, Inciralti, 35340, Izmir, Turkey.
| |
Collapse
|