1
|
Freise C, Zappe A, Löwa N, Schnorr J, Pagel K, Wiekhorst F, Taupitz M. Uremic Toxin-Induced Exosome-like Extracellular Vesicles Contain Enhanced Levels of Sulfated Glycosaminoglycans which Facilitate the Interaction with Very Small Superparamagnetic Iron Oxide Particles. Int J Mol Sci 2023; 24:14253. [PMID: 37762555 PMCID: PMC10532171 DOI: 10.3390/ijms241814253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Uremic toxins exert pathophysiological effects on cells and tissues, such as the generation of a pro-calcifying subtype of exosome-like extracellular vesicles (EVs) in vascular cells. Little is known about the effects of the toxins on the surface structure of EVs. Thus, we studied the effects of uremic toxins on the abundance of sulfated glycosaminoglycans (GAGs) in EVs, and the implications for binding of ligands such as very small superparamagnetic iron oxide particles (VSOPs) which could be of relevance for radiological EV-imaging. Vascular cells were treated with the uremic toxins NaH2PO4 and a mixture of urea and indoxyl sulfate. Uremia in rats was induced by adenine feeding. EVs were isolated from culture supernatants and plasma of rats. By proton T1-relaxometry, magnetic particle spectroscopy, and analysis of genes, proteins, and GAG-contents, we analyzed the roles of GAGs in the ligand binding of EVs. By influencing GAG-associated genes in host cells, uremic toxins induced higher GAG contents in EVs, particularly of sulfated chondroitin sulfate and heparan sulfate chains. EVs with high GAG content interacted stronger with VSOPs compared to control ones. This was confirmed by experiments with GAG-depleted EVs from genetically modified CHO cells and with uremic rat-derived EVs. Mechanistically, uremic toxin-induced PI3K/AKT-signaling and expression of the sulfate transporter SLC26A2 in host cells contributed to high GAG contents in EVs. In conclusion, uremic conditions induce enhanced GAG contents in EVs, which entails a stronger interaction with VSOPs. VSOPs might be suitable for radiological imaging of EVs rich in GAGs.
Collapse
Affiliation(s)
- Christian Freise
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| | - Andreas Zappe
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany; (A.Z.); (K.P.)
| | - Norbert Löwa
- Metrology for Magnetic Nanoparticles Berlin, Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2, 10587 Berlin, Germany; (N.L.); (F.W.)
| | - Jörg Schnorr
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| | - Kevin Pagel
- Department of Biology, Chemistry and Pharmacy, Freie Universität Berlin, Altensteinstraße 23A, 14195 Berlin, Germany; (A.Z.); (K.P.)
| | - Frank Wiekhorst
- Metrology for Magnetic Nanoparticles Berlin, Physikalisch-Technische Bundesanstalt Berlin, Abbestr. 2, 10587 Berlin, Germany; (N.L.); (F.W.)
| | - Matthias Taupitz
- Department of Radiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (J.S.); (M.T.)
| |
Collapse
|
2
|
Profant V, Johannessen C, Blanch EW, Bouř P, Baumruk V. Effects of sulfation and the environment on the structure of chondroitin sulfate studied via Raman optical activity. Phys Chem Chem Phys 2019; 21:7367-7377. [DOI: 10.1039/c9cp00472f] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Raman optical activity reflects differences in the secondary structure of chondroitin caused by its sulfation.
Collapse
Affiliation(s)
- Václav Profant
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague 2
- Czech Republic
| | | | | | - Petr Bouř
- Institute of Organic Chemistry and Biochemistry
- Academy of Sciences
- 166 10 Prague 6
- Czech Republic
| | - Vladimír Baumruk
- Institute of Physics
- Faculty of Mathematics and Physics
- Charles University
- 121 16 Prague 2
- Czech Republic
| |
Collapse
|
3
|
Toppazzini M, Coslovi A, Rossi M, Flamigni A, Baiutti E, Campa C. Capillary Electrophoresis of Mono- and Oligosaccharides. Methods Mol Biol 2016; 1483:301-338. [PMID: 27645743 DOI: 10.1007/978-1-4939-6403-1_16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
This chapter reports an overview of the recent advances in the analysis of mono- and oligosaccharides by capillary electrophoresis (CE); furthermore, relevant reviews and research articles recently published in the field are tabulated. Additionally, pretreatments and procedures applied to uncharged and acidic carbohydrates (i.e., monosaccharides and lower oligosaccharides carrying carboxylate, sulfate, or phosphate groups) are described.Representative examples of such procedures are reported in detail, upon describing robust methodologies for the study of (1) neutral oligosaccharides derivatized by reductive amination and by formation of glycosylamines; (2) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G; (3) anomeric couples of neutral glycosides separated using borate-based buffers; (4) unsaturated, underivatized oligosaccharides from lyase-treated alginate.
Collapse
Affiliation(s)
- Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Marco Rossi
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Anna Flamigni
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Edi Baiutti
- Bracco Imaging SpA-CRB Trieste, AREA Science Park, Trieste, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy.
| |
Collapse
|
4
|
Fernández-Vega I, García-Suárez O, García B, Crespo A, Astudillo A, Quirós LM. Heparan sulfate proteoglycans undergo differential expression alterations in right sided colorectal cancer, depending on their metastatic character. BMC Cancer 2015; 15:742. [PMID: 26482785 PMCID: PMC4617710 DOI: 10.1186/s12885-015-1724-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 10/08/2015] [Indexed: 12/22/2022] Open
Abstract
Background Heparan sulfate proteoglycans (HSPGs) are complex molecules involved in the growth, invasion and metastatic properties of cancerous cells. This study analyses the alterations in the expression patterns of these molecules in right sided colorectal cancer (CRC), both metastatic and non-metastatic. Methods Twenty right sided CRCs were studied. A transcriptomic approach was used, employing qPCR to analyze both the expression of the enzymes involved in heparan sulfate (HS) chains biosynthesis, as well as the proteoglycan core proteins. Since some of these proteoglycans can also carry chondroitin sulfate (CS) chains, we include the study of the genes involved in the biosynthesis of these glycosaminoglycans. Immunohistochemical techniques were also used to analyze tissue expression of particular genes showing significant expression differences, of potential interest. Results Changes in proteoglycan core proteins differ depending on their location; those located intracellularly or in the extracellular matrix show very similar alteration patterns, while those located on the cell surface vary greatly depending on the nature of the tumor: glypicans 1, 3, 6 and betaglycan are affected in the non-metastatic tumors, whereas in the metastatic, only glypican-1 and syndecan-1 are modified, the latter showing opposing alterations in levels of RNA and of protein, suggesting post-transcriptional regulation in these tumors. Furthermore, in non-metastatic tumors, polymerization of glycosaminoglycan chains is modified, particularly affecting the synthesis of the tetrasaccharide linker and the initiation and elongation of CS chains, HS chains being less affected. Regarding the enzymes responsible for the modificaton of the HS chains, alterations were only found in non-metastatic tumors, affecting N-sulfation and the isoforms HS6ST1, HS3ST3B and HS3ST5. In contrast, synthesis of the CS chains suggests changes in epimerization and sulfation of the C4 and C2 in both types of tumor. Conclusions Right sided CRCs show alterations in the expression of HSPGs, including the expression of the cell surface core proteins, many glycosiltransferases and some enzymes that modify the HS chains depending on the metastatic nature of the tumor, resulting more affected in non-metastatic ones. However, matrix proteoglycans and enzymes involved in CS fine structure synthesis are extensively modified independetly of the presence of lymph node metastasis. Electronic supplementary material The online version of this article (doi:10.1186/s12885-015-1724-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Iván Fernández-Vega
- Servicio de Patología. Hospital Universitario de Araba, Álava, 01009, Spain.
| | - Olivia García-Suárez
- Department of Morphology and Cell Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Beatriz García
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| | - Ainara Crespo
- Department of Biotechnology, Neiker-Tecnalia Arkaute, 01080, Vitoria-Gasteiz, Spain.
| | - Aurora Astudillo
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Pathology, Hospital, Universitario Central de Asturias, 33006, Oviedo, Spain.
| | - Luis M Quirós
- University Institute of Oncology of Asturias, Oviedo, Spain. .,Department of Functional Biology, University of Oviedo, 33006, Oviedo, Spain.
| |
Collapse
|
5
|
van Wijk XM, Lawrence R, Thijssen VL, van den Broek SA, Troost R, van Scherpenzeel M, Naidu N, Oosterhof A, Griffioen AW, Lefeber DJ, van Delft FL, van Kuppevelt TH. A common sugar-nucleotide-mediated mechanism of inhibition of (glycosamino)glycan biosynthesis, as evidenced by 6F-GalNAc (Ac3). FASEB J 2015; 29:2993-3002. [PMID: 25868729 DOI: 10.1096/fj.14-264226] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 03/12/2015] [Indexed: 12/17/2022]
Abstract
Glycosaminoglycan (GAG) polysaccharides have been implicated in a variety of cellular processes, and alterations in their amount and structure have been associated with diseases such as cancer. In this study, we probed 11 sugar analogs for their capacity to interfere with GAG biosynthesis. One analog, with a modification not directly involved in the glycosidic bond formation, 6F-N-acetyl-d-galactosamine (GalNAc) (Ac3), was selected for further study on its metabolic and biologic effect. Treatment of human ovarian carcinoma cells with 50 μM 6F-GalNAc (Ac3) inhibited biosynthesis of GAGs (chondroitin/dermatan sulfate by ∼50-60%, heparan sulfate by ∼35%), N-acetyl-d-glucosamine (GlcNAc)/GalNAc containing glycans recognized by the lectins Datura stramonium and peanut agglutinin (by ∼74 and ∼43%, respectively), and O-GlcNAc protein modification. With respect to function, 6F-GalNAc (Ac3) treatment inhibited growth factor signaling and reduced in vivo angiogenesis by ∼33%. Although the analog was readily transformed in cells into the uridine 5'-diphosphate (UDP)-activated form, it was not incorporated into GAGs. Rather, it strongly reduced cellular UDP-GalNAc and UDP-GlcNAc pools. Together with data from the literature, these findings indicate that nucleotide sugar depletion without incorporation is a common mechanism of sugar analogs for inhibiting GAG/glycan biosynthesis.
Collapse
Affiliation(s)
- Xander M van Wijk
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Roger Lawrence
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Victor L Thijssen
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Sebastiaan A van den Broek
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Ran Troost
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Monique van Scherpenzeel
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Natasha Naidu
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Arie Oosterhof
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Dirk J Lefeber
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Floris L van Delft
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| | - Toin H van Kuppevelt
- *Department of Biochemistry, Radboud Institute for Molecular Life Sciences, Department of Synthetic Organic Chemistry, Institute for Molecules and Materials, and Department of Neurology, Laboratory for Genetic, Endocrine and Metabolic Disease, Radboud University Medical Centre, Nijmegen, The Netherlands; Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, and Glycotechnology Core, University of California San Diego, San Diego, California, USA; and Angiogenesis Laboratory, Department of Medical Oncology, VU University Medical Centre, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Sand SL, Nissen-Meyer J, Sand O, Haug TM. Plantaricin A, a cationic peptide produced by Lactobacillus plantarum, permeabilizes eukaryotic cell membranes by a mechanism dependent on negative surface charge linked to glycosylated membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1828:249-59. [PMID: 23142566 DOI: 10.1016/j.bbamem.2012.11.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 10/01/2012] [Accepted: 11/01/2012] [Indexed: 11/24/2022]
Abstract
Lactobacillus plantarum C11 releases plantaricin A (PlnA), a cationic peptide pheromone that has a membrane-permeabilizing, antimicrobial effect. We have previously shown that PlnA may also permeabilize eukaryotic cells, with a potency that differs between cell types. It is generally assumed that cationic antimicrobial peptides exert their effects through electrostatic attraction to negatively charged phospholipids in the membrane. The aim of the present study was to investigate if removal of the negative charge linked to glycosylated proteins at the cell surface reduces the permeabilizing potency of PlnA. The effects of PlnA were tested on clonal rat anterior pituitary cells (GH(4) cells) using patch clamp and microfluorometric techniques. In physiological extracellular solution, GH(4) cells are highly sensitive to PlnA, but the sensitivity was dramatically reduced in solutions that partly neutralize the negative surface charge of the cells, in agreement with the notion that electrostatic interactions are probably important for the PlnA effects. Trypsination of cells prior to PlnA exposure also rendered the cells less sensitive to the peptide, suggesting that negative charges linked to membrane proteins are involved in the permeabilizing action. Finally, pre-exposure of cells to a mixture of enzymes that split carbohydrate residues from the backbone of glycosylated proteins also impeded the PlnA-induced membrane permeabilization. We conclude that electrostatic attraction between PlnA and glycosylated membrane proteins is probably an essential first step before PlnA can interact with membrane phospholipids. Deviating glycosylation patterns may contribute to the variation in PlnA sensitivity of different cell types, including cancerous cells and their normal counterparts.
Collapse
Affiliation(s)
- Sverre L Sand
- Department of Molecular Biosciences, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
7
|
Piripi S, Williams M, Thompson K. On the Sulfation Pattern of Polysaccharides in the Extracellular Matrix of Sheep with Chondrodysplasia. Cartilage 2011; 2:36-9. [PMID: 26069567 PMCID: PMC4300791 DOI: 10.1177/1947603510377465] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Chondroitin sulfate is the major sulfated polysaccharide attached to the core protein, aggrecan, in the hyaline cartilage matrix. Sulfation of the cartilage matrix polysaccharide is vital for normal matrix integrity and compressive stiffness of the tissue and is therefore crucial to normal cartilage formation and consequently to endochondral ossification. Several forms of chondrodysplasia, a condition resulting in clear macroscopic deficiencies in the mechanical properties of the cartilage and characterized by reduced levels of sulfate, have been identified in both human beings and animals. DESIGN In this study, the authors used capillary electrophoresis to investigate the sulfation state of extracted chondroitin sulfate polymers. RESULTS Significantly, cartilage from affected sheep had a lower ratio of the chondroitin-derived enzymatically liberated disaccharides Δdi-mono4S to Δdi-mono6S, demonstrating reduced levels of chondroitin 4-sulfate, but not chondroitin 6-sulfate, in chondrodysplastic sheep compared to age-matched controls at all ages measured. CONCLUSION This supports the hypothesis that a difference in chondroitin sulfate disaccharides is detectable in affected newborn lambs prior to the development of lesions.
Collapse
Affiliation(s)
- S.A. Piripi
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Palmerston North, New Zealand
| | - M.A.K. Williams
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand,MacDiarmid Institute for Nanotechnology and Advanced Materials, Wellington, New Zealand,Martin Williams, Private Bag 11 222 Palmerston North, 4442 New Zealand
| | - K.G. Thompson
- Institute of Veterinary, Animal & Biomedical Sciences, Massey University, Palmerston North, New Zealand
| |
Collapse
|
8
|
Kalathas D, Triantaphyllidou IE, Mastronikolis NS, Goumas PD, Papadas TA, Tsiropoulos G, Vynios DH. The chondroitin/dermatan sulfate synthesizing and modifying enzymes in laryngeal cancer: expressional and epigenetic studies. HEAD & NECK ONCOLOGY 2010; 2:27. [PMID: 20929582 PMCID: PMC2958872 DOI: 10.1186/1758-3284-2-27] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2010] [Accepted: 10/07/2010] [Indexed: 11/24/2022]
Abstract
Background Significant biochemical changes are observed in glycosaminoglycans in squamous cell laryngeal carcinoma. The most characteristics are in chondroitin/dermatan sulfate fine structure and proportion, which might be due to differential expression of the enzymes involved in their biosynthesis. The aim of the present work was the investigation in expressional and epigenetic level of the enzymes involved in chondroitin/dermatan sulfate biosynthesis in laryngeal cancer. Methods Tissues subjected to total RNA and DNA isolation, and protein extraction. The techniques used in this study were RT-PCR analysis, western blotting and methylation specific PCR. Results We identified that many enzymes were expressed in the cancerous specimens intensively. Dermatan sulfate epimerase was expressed exclusively in the cancerous parts and in minor amounts in healthy tissues; in the macroscopically normal samples it was not detected. Furthermore, chondroitin synthase I and chondroitin polymerizing factor were strongly expressed in the cancerous parts compared to the corresponding normal tissues. Sulfotransferases, like chondroitin 6 sulfotransferase 3, were highly expressed mainly in healthy specimens. Conclusions The study of the various chondroitin/dermatan synthesizing enzymes revealed that they were differentially expressed in cancer, in human laryngeal cartilage, leading to specific chondroitin/dermatan structures which contributed to proteoglycan formation with specific features. The expression of the examined enzymes correlated with the glycosaminoglycan profile observed in previous studies.
Collapse
Affiliation(s)
- Dimitrios Kalathas
- 1Department of Chemistry, Laboratory of Biochemistry, Section of Organic Chemistry and Natural Products, Karatheodori str, University of Patras, Patras, 26500, Greece
| | | | | | | | | | | | | |
Collapse
|
9
|
Berardo PT, Abrao MS, Souza MLS, Machado DE, Silva LCF, Nasciutti LE. Composition of sulfated glycosaminoglycans and immunodistribution of chondroitin sulfate in deeply infiltrating endometriosis affecting the rectosigmoid. Micron 2009; 40:639-45. [PMID: 19278856 DOI: 10.1016/j.micron.2009.02.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2008] [Revised: 02/05/2009] [Accepted: 02/10/2009] [Indexed: 12/25/2022]
Abstract
The composition of sulfated glycosaminoglycans (GAGs) and the tissue distribution of chondroitin sulfate (CS) were analyzed in deeply infiltrating endometriosis (DIE) of rectosigmoid, using metachromatic staining, and biochemical analysis employing electrophoresis before and after specific enzymatic or chemical degradations, and immunostaining with an antibody against CS. The sulfated GAGs were characterized as dermatan sulfate (DS), heparan sulfate (HS) and CS; and DS strongly predominated compared to HS and CS. Immunostaining procedures showed that CS was concentrated in the endometriosis foci, distributed throughout the stroma around the glands. This is the first report describing the composition of sulfated GAGs and the tissue location of CS in DIE by means of histochemical, biochemical and immunohistochemical analyses. These results confirmed that in DIE of rectosigmoid, as in eutopic endometrium [Nasciutti, L.E., Ferrari, R., Berardo, P.T., Souza, M.L.S., Takiya, C.M., Borojevic, R., Abrao, M.S., Silva, L.C.F., 2006. Distribution of chondroitin sulfate in human endometrium. Micron 37, 544-550], CS was the dominant sulfated GAG in stroma of the lesion foci.
Collapse
Affiliation(s)
- Plínio T Berardo
- Departamento de Histologia e Embriologia, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Cidade Universitária-Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | |
Collapse
|
10
|
Nielsen TC, Meikle PJ, Hopwood JJ, Fuller M. Minimum substrate requirements of endoglycosidase activities toward dermatan sulfate by electrospray ionization-tandem mass spectrometry. Glycobiology 2008; 18:1119-28. [DOI: 10.1093/glycob/cwn097] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
11
|
Malavaki C, Mizumoto S, Karamanos N, Sugahara K. Recent advances in the structural study of functional chondroitin sulfate and dermatan sulfate in health and disease. Connect Tissue Res 2008; 49:133-9. [PMID: 18661328 DOI: 10.1080/03008200802148546] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Chondroitin sulfate (CS) dermatan sulfate (DS), and CS/DS hybrid chains are biologically active like heparan sulfate, and structurally the most complex species of the glycosaminoglycan family along with heparan sulfate. They exist at the cell surface and extracellular matrix in the form of proteoglycans. They function as regulators of functional proteins such as growth factors, cytokines, chemokines, adhesion molecules, and lipoproteins through interactions with the ligands of these proteins via specific saccharide domains. Structural alterations have been often implicated in pathological conditions, such as cancer and atherosclerosis. Recent microsequencing of CS/DS oligosaccharides that bind growth factors, such as pleiotrophin, and various monoclonal antibodies against CS/DS, have revealed a considerable number of unique oligosaccharide sequences. This review focuses on recent advances in the study of the structure-function relation of CS, DS and their hybrid chains in physiological and pathological conditions.
Collapse
Affiliation(s)
- Christina Malavaki
- Laboratory of Proteoglycan Signaling and Therapeutics, Hokkaido University Graduate School of Life Science, Sapporo, Japan
| | | | | | | |
Collapse
|
12
|
Abstract
This chapter illustrates the usefulness of capillary electrophoresis (CE) for the analysis of sugar acids, that is, monosaccharides and lower oligosaccharides carrying carboxylate, sulphate or phosphate groups. In order to provide a general description of the main results and challenges in the field, some relevant applications and reviews on CE of such saccharidic compounds are tabulated. Furthermore, some detailed experimental procedures are shown, regarding the CE analysis of sugar acids released upon hydrolysis of acidic polysaccharides and of glycans linked to glycoproteins. In particular, the protocols will deal with the following compounds: (i) unsaturated, underivatized oligosaccharides from lyase-treated alginate; (ii) oligosaccharides derivatized with 4-aminobenzonitrile, arising from chemical hydrolysis of alginate; (iii) sialic acid derivatized with 2-aminoacridone, released from human serum immunoglobulin G.
Collapse
|
13
|
Vynios DH, Theocharis DA, Papageorgakopoulou N, Papadas TA, Mastronikolis NS, Goumas PD, Stylianou M, Skandalis SS. Biochemical changes of extracellular proteoglycans in squamous cell laryngeal carcinoma. Connect Tissue Res 2008; 49:239-43. [PMID: 18661351 DOI: 10.1080/03008200802147662] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Larynx is a complicated organ with peculiar properties, having a noticeable impact in vocal and respiratory physiology. In squamous cell laryngeal carcinoma, the extracellular matrix components underwent significant modifications concerning their fine chemical structure. Degradation of aggrecan is observed, whereas versican and decorin amounts are increased. The expression of aggrecan is almost totally ceased in later cancer stages, whereas decorin is expressed in normal and cancerous samples. But its expression is increased in cancer, being related to cancer stage. However, the expression of versican seems to be characteristic of the tumor, since none or traces expression is observed in normal samples. Chondroitin/dermatan sulfate is the major glycosaminoglycan, but its sulfation shows a shift from C6 position of galactosamine in normal samples to C4 in malignancy. Dermatan sulfate represents minor amounts in normal samples but increases in proportion up to one-fourth of total sulfated glycosaminoglycans in malignancy. In addition, an increase in the amounts of hyaluronan is also observed in malignant samples. Accumulated data demonstrate that tumor progression is closely related to the alteration of the expression and biochemical composition of specific extracellular constituents that describes the mild aggressive phenotype of squamous cell laryngeal carcinoma.
Collapse
Affiliation(s)
- Demitrios H Vynios
- Department of Chemistry, Laboratory of Biochemistry, University of Patras, Patras, Greece.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Skandalis SS, Stylianou M, Vynios DH, Papageorgakopoulou N, Theocharis DA. The structural and compositional changes of glycosaminoglycans are closely associated with tissue type in human laryngeal cancer. Biochimie 2007; 89:1573-80. [PMID: 17716802 DOI: 10.1016/j.biochi.2007.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 07/10/2007] [Indexed: 10/23/2022]
Abstract
Hyaluronan and sulfated glycosaminoglycans, as intrinsic components of proteoglycans, are playing important roles in cancer biology. In the present study, we investigated in detail the glycosaminoglycans on both fine chemical and structural levels in laryngeal cartilaginous and non-cartilaginous tissues at different stages of laryngeal cancer. The results indicated that in cartilaginous tissues the amounts of chondroitin sulfate, keratan sulfate, dermatan sulfate and hyaluronan presented a dramatic decrease in contrast to the non-cartilaginous tissues, which showed a significant increase of these glycosaminoglycans compared to their normal counterparts. On fine chemical structure, the molar ratios of 4-sulfated to 6-sulfated and non-sulfated to sulfated disaccharides from both cartilaginous and non-cartilaginous cancerous tissues showed a significant increase. On molecular-size level, in laryngeal cancer, the chromatographic behaviour of the sulfated glycosaminoglycan chains from both tissue-types revealed their lower M(r) with a more polydisperse and heterogeneous distribution compared to the normal ones. In addition, in both tissues, a significant decrease of high molecular-size hyaluronan was observed. Of particular interest was the great increase of hyaluronan of low molecular mass in the laryngeal non-cartilaginous tissues, which ranged from 330 to 890 kDa. The kind and the extent of these alterations, which presented an intense stage-related behaviour, depended on the tissue origin and could be associated with the malignant phenotype of human laryngeal cancer.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Department of Chemistry, School of Natural Sciences, University of Patras, 265 00 Patras, Greece
| | | | | | | | | |
Collapse
|
15
|
Theocharis AD, Tsolakis I, Tzanakakis GN, Karamanos NK. Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. ADVANCES IN PHARMACOLOGY 2007; 53:281-95. [PMID: 17239771 DOI: 10.1016/s1054-3589(05)53013-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- A D Theocharis
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | | | | | | |
Collapse
|
16
|
Bakry R, Huck CW, Najam-ul-Haq M, Rainer M, Bonn GK. Recent advances in capillary electrophoresis for biomarker discovery. J Sep Sci 2007; 30:192-201. [PMID: 17390613 DOI: 10.1002/jssc.200600323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The use of non-invasive methods for detecting biomarkers opens a new era in patient care, since clinical investigators have long been searching for accurate and reproducible measurements of putative biomarkers. There are many factors which make this research challenging, beginning with lack of standardization of sample collection and continuing through the entire analytical procedure. Among the variety of methods so far used for biomarker screening, capillary electrophoresis represents a robust, reliable, and widely used analytical tool. This review will focus on recent applications of CE to the analysis of body fluids and tissues for identification of biomarkers.
Collapse
Affiliation(s)
- Rania Bakry
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria
| | | | | | | | | |
Collapse
|
17
|
Skandalis SS, Kletsas D, Kyriakopoulou D, Stavropoulos M, Theocharis DA. The greatly increased amounts of accumulated versican and decorin with specific post-translational modifications may be closely associated with the malignant phenotype of pancreatic cancer. Biochim Biophys Acta Gen Subj 2006; 1760:1217-25. [PMID: 16730906 DOI: 10.1016/j.bbagen.2006.03.021] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2006] [Revised: 03/12/2006] [Accepted: 03/31/2006] [Indexed: 12/29/2022]
Abstract
Pancreatic carcinoma (PC) is a cancer type with highly malignant growth and dissemination pattern of which the mechanisms are poorly understood. However, the malignant phenotype is closely linked to extracellular matrix (ECM) of which proteoglycans (PGs) and hyaluronan (HA) play a crucial role in the control of tumor progression and metastasis. In this study, we demonstrated that versican and decorin, two different PGs with contradictory roles and functions in the pathobiology of cancer, were the main matrix PGs in PC presenting a great increase 27- and 7-fold, respectively, in comparison to normal pancreas (NP). PC was characterized by the disproportional increase of versican compared to decorin, about 4 to 1, with a concurrent increase of HA, which may be closely associated with the growth and aggressiveness of this carcinoma. Significant specific post-translational modifications were also observed in both versican and decorin regarding the type, hydrodynamic size, sulfation pattern and extent of uronate epimerization of their glycosaminoglycan chains (GAGs). In particular, chondroitin sulphate (CS) was the predominant GAG type in both PC-associated versican and decorin. The CS of PC-decorin was increased 11-fold, compared to NP in which dermatan sulfate (DS) was the predominant GAG type in both PGs. The sulfation pattern of GAG chains was significantly altered in PC, since 6-sulfated disaccharides predominated in both versican and decorin with a marked presence of non-sulfated disaccharides accompanied by lower hydrodynamic sizes of both CS and DS chains compared to NP. In conclusion, all these findings agree with the highly malignant phenotype of this cancer and, thus, more studies need to be addressed on the roles of the post-translational modifications of versican and decorin in the biology of cancer.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, NCSR Demokritos, 15310 Athens, Greece.
| | | | | | | | | |
Collapse
|
18
|
Huck CW, Bakry R, Bonn GK. Progress in capillary electrophoresis of biomarkers and metabolites between 2002 and 2005. Electrophoresis 2006; 27:111-25. [PMID: 16315181 DOI: 10.1002/elps.200500493] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Biomarker discovery and metabolite research is a fast-growing and extremely important domain not only for the early detection of certain diseases but also for controlling its progress as well as in pharmaceutical investigations. For the analytical separation and identification, CE plays an indisputable role. Capillary systems enhancing different selectivity are applied and connected to different kind of detection systems. As the choice of buffer and its composition is responsible for a successful separation, special emphasis is put on solvent effects in this review. Altogether the most important capillary electrophoretic techniques applied for biomarker and metabolites analysis published between 2002 and 2005 are summarized and discussed.
Collapse
Affiliation(s)
- Christian W Huck
- Institute of Analytical Chemistry and Radiochemistry, Leopold-Franzens University, Innsbruck, Austria.
| | | | | |
Collapse
|
19
|
Stylianou M, Triantaphyllidou IE, Vynios DH. Advances in the analysis of chondroitin/dermatan sulfate. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2006; 53:141-66. [PMID: 17239765 DOI: 10.1016/s1054-3589(05)53007-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Affiliation(s)
- M Stylianou
- Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | | | | |
Collapse
|
20
|
Wegrowski Y, Maquart FX. Chondroitin Sulfate Proteoglycans in Tumor Progression. CHONDROITIN SULFATE: STRUCTURE, ROLE AND PHARMACOLOGICAL ACTIVITY 2006; 53:297-321. [PMID: 17239772 DOI: 10.1016/s1054-3589(05)53014-x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanusz Wegrowski
- CNRS UMR 6198, Faculty of Medicine, IFR-53, 51095 Reims Cedex, France
| | | |
Collapse
|
21
|
Yang Y, Breadmore MC, Thormann W. Analysis of the disaccharides derived from hyaluronic acid and chondroitin sulfate by capillary electrophoresis with sample stacking. J Sep Sci 2005; 28:2381-9. [PMID: 16342806 DOI: 10.1002/jssc.200500181] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
CE conditions for monitoring the unsaturated disaccharides of hyaluronic acid (di-HA) and chondroitin sulfate (di-CS) using an alkaline tetraborate buffer, electrokinetic sample injection, and UV absorption detection at 232 nm are reported. Separations were performed in an uncoated fused-silica capillary having reversed polarity and reversed electroosmosis generated with the addition of CTAB to the buffer. The influence of various separation parameters, including the concentration of CTAB, buffer pH, concentration of tetraborate, and applied voltage, on the resolution of the two disaccharides was investigated. Baseline separation was obtained with 25 mM tetraborate at pH 10.0 and having 0.05 mM CTAB. Chloride and phosphate in the sample are beneficial for the stacking of the disaccharides, with di-HA forming a much sharper peak than di-CS. Using samples prepared in 25 mM Tris-HCl (pH 7.5) and electrokinetic injection at the cathode at -10 kV for 40 s, linear relationships between the corrected peak area and the concentration of the disaccharides have been found in the ranges of 1.0-400.0 and 0.1-1.0 microg/mL (0.2-1.0 microg/mL for di-CS), with correlation coefficients being >0.9933 in all cases. The RSDs of detection times and corrected peak areas were between 1.13-1.24 and 1.57-2.13%, respectively. Applied to human serum samples that were prepared by ethanol precipitation and depolymerization of the two polysaccharides with chondroitinase ABC reveals comigration of endogenous compounds with di-HA and a sample-dependent detection time. The di-HA content in the serum sample can be estimated via subtraction of the blank peak that is obtained without enzymatic hydrolysis.
Collapse
Affiliation(s)
- Yifang Yang
- Department of Clinical Pharmacology, University of Bern, Switzerland
| | | | | |
Collapse
|
22
|
Skandalis SS, Theocharis AD, Theocharis DA, Papadas T, Vynios DH, Papageorgakopoulou N. Matrix proteoglycans are markedly affected in advanced laryngeal squamous cell carcinoma. Biochim Biophys Acta Mol Basis Dis 2004; 1689:152-61. [PMID: 15196596 DOI: 10.1016/j.bbadis.2004.03.006] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2003] [Revised: 02/16/2004] [Accepted: 03/12/2004] [Indexed: 10/26/2022]
Abstract
Proteoglycans (PGs) are implicated in the growth and progression of malignant tumors. In this study, we examined the concentration and localization of PGs in advanced (stage IV) laryngeal squamous cell carcinoma (LSCC) and compared with human normal larynx (HNL). LSCC and HNL sections were examined immunohistochemically with a panel of antibodies, and tissues extracts were analyzed by biochemical methods including immunoblotting and high performance liquid chromatography (HPLC). The results demonstrated significant destruction of cartilage in LSCC, which was followed by marked decrease of aggrecan and link protein. In contrast to the loss of aggrecan in LSCC, accumulation of versican and decorin was observed in the tumor-associated stroma. Biochemical analyses indicated that aggrecan, versican, decorin and biglycan comprise the vast majority of total PGs in both healthy and cancerous tissue. In LSCC the absolute amounts of KS/CS/DS-containing PGs were dramatically decreased about 18-fold in comparison to HNL. This decrease is due to the loss of aggrecan. Disaccharide analysis of CS/DSPGs from LSCC showed a significant reduction of 6-sulfated Delta-disaccharides (Deltadi-6S) with a parallel increase of 4-sulfated Delta-disaccharides (Deltadi-4S) as compared to HNL. The obtained data clearly demonstrate that tumor progression is closely related to specific alteration of matrix PGs in LSCC. The altered composition of PGs in cartilage, as well as in tumor-associated stroma, is crucial for the biological behaviour of cancer cells in the diseased tissue.
Collapse
Affiliation(s)
- Spyros S Skandalis
- Laboratory of Biochemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, 26500 Patras, Greece
| | | | | | | | | | | |
Collapse
|
23
|
Theocharis AD, Vynios DH, Papageorgakopoulou N, Skandalis SS, Theocharis DA. Altered content composition and structure of glycosaminoglycans and proteoglycans in gastric carcinoma. Int J Biochem Cell Biol 2003; 35:376-90. [PMID: 12531251 DOI: 10.1016/s1357-2725(02)00264-9] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycosaminoglycans (GAGs) in proteoglycan (PG) forms or as free GAGs are implicated in the growth and progression of malignant tumors. These macromolecules were investigated in human gastric carcinoma (HGC) and compared with those in human normal gastric mucosa (HNG). We report that HGC contained about 2-fold increased amounts of GAGs in comparison to HNG. Specifically, HGC showed 3- and 2.5-fold net increase in chondroitin sulphate (CS) and hyaluronan (HA) contents, respectively. Dermatan sulphate (DS) was slightly increased, but the amount of heparan sulphate (HS) was decreased. Of particular, interest were the quite different sulphation profiles of CS and DS chains in HGC in which, non-sulphated and 6-sulphated disaccharide units were increased 10 and 4 times, respectively, in comparison to HNG. On PG level, three different populations were identified in both HNG and HGC, being HSPGs, versican (CS/DS chains) and decorin (CS/DS chains). In HGC, the amounts of versican and decorin were significantly increased about 3- and 8-fold, respectively. These PGs were also characterized by marked decrease in hydrodynamic size and GAG content per PG molecule. Analysis of Delta-disaccharide of versican and decorin from HGC showed an increase of 6-sulphated Delta-disaccharides (Delta di-6S) and non-sulphated Delta-disaccharides (Delta di-0S) with a parallel decrease of 4-sulphated Delta-disaccharides (Delta di-4S) as compared to HNG, which closely correlated with the increase of CS content. In addition, the accumulation of core proteins of versican and decorin in HGC was also associated with many post-translational modifications, referring to the number, size, degree and patterns of sulphation and epimerization of CS/DS chains. Studies on the modified metabolism of PGs/GAGs are under progress and will help in deeper understanding of the environment in which tumor cells proliferate and invade.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Laboratory of Biochemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, 26110 Patras, Greece
| | | | | | | | | |
Collapse
|
24
|
Theocharis AD, Tsolakis I, Hjerpe A, Karamanos NK. Versican undergoes speci?c alterations in the ?ne molecular structure and organization in human aneurysmal abdominal aortas. Biomed Chromatogr 2003; 17:411-6. [PMID: 13680853 DOI: 10.1002/bmc.263] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Versican is the major matrix proteoglycan in aortic wall and participates in various biological functions of the tissue. In the present study the molecular characteristics of versican isolated from normal human aorta as well as those of versican expressed in aneurysmal aortic tissue were examined. Versican was isolated by combined anion-exchange and gel permeation chromatography and was further characterized by high-performance liquid chromatography, polyacrylamide gel electrophoresis and immunoblotting. In both tissues versican is exclusively substituted with chondroitin sulfate chains, in contrast to other human tissues where both chondroitin and dermatan sulfate chains are attached onto versican core proteins. Except for the significant decrease in the concentration of versican in the aneurysmal tissue, this PG undergoes specific alterations in the aneurysmal tissue. The molecular size of versican isolated from diseased tissue is decreased with a simultaneous increase in the ratio of glycosaminoglycan to protein in this tissue. The latter reflect the extensive fragmentation of versican in the diseased tissue and most probably the generation of shorter peptides enriched to glycosaminoglycan chains. Although the size of chondroitin sulfate chains is identical in both versican preparations, a significant increase in the percentage of 6-sulfated disaccharides is observed in chondroitin sulfate chains of versican in aneurysmal aortas, which is accompanied by decrease in 4-sulfated and non-sulfated units.
Collapse
Affiliation(s)
- A D Theocharis
- Department of IMPI, Karolinska Institutet, F46, Huddinge University Hospital, S-141 86 Stockholm, Sweden.
| | | | | | | |
Collapse
|
25
|
Vynios DH, Karamanos NK, Tsiganos CP. Advances in analysis of glycosaminoglycans: its application for the assessment of physiological and pathological states of connective tissues. J Chromatogr B Analyt Technol Biomed Life Sci 2002; 781:21-38. [PMID: 12450651 DOI: 10.1016/s1570-0232(02)00498-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Glycosaminoglycans are a class of biological macromolecules found mainly in connective tissues as constituents of proteoglycans, covalently linked to their core protein. Hyaluronan is the only glycosaminoglycan present under its single form and possesses the ability to aggregate with the class of proteoglycans termed hyalectans. Proteoglycans are localised both at the extracellular and cellular (cell-surface and intracellular) levels and, via either their glycosaminoglycan chains or their core proteins participate in and regulate several cellular events and (patho)physiological processes. Advances in analytical separational techniques, including high-performance liquid chromatography, capillary electrophoresis and fluorophore assisted carbohydrate electrophoresis, make possible to examine alterations of glycosaminoglycans with respect to their amounts and fine structural features in various pathological conditions, thus becoming applicable for diagnosis. In this review we present the chromatographic and electromigration procedures developed to analyse and characterise glycosaminoglycans. Moreover, a critical evaluation of the biological relevance of the results obtained by the developed methodology is discussed.
Collapse
Affiliation(s)
- D H Vynios
- Laboratory of Biochemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Department of Chemistry, University of Patras, 265 00 Patras, Greece
| | | | | |
Collapse
|
26
|
Theocharis AD. Human colon adenocarcinoma is associated with specific post-translational modifications of versican and decorin. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1588:165-72. [PMID: 12385781 DOI: 10.1016/s0925-4439(02)00161-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, the amounts and the fine structural characteristics of versican and decorin present in human colon adenocarcinomas (HCC) were investigated and compared with those in human normal colon (HNC). HCC is characterized by significant increase in the amounts of versican and decorin (13- and 8-fold in terms of protein, respectively). These two proteoglycans (PGs) were the predominant in HCC (86% of total uronic acid). In HNC, versican and decorin contained both chondroitin sulfate/dermatan sulfate chains (CS/DS), with DS to be the predominant one (90-93%). The molecular sizes (M(r)s) estimated for DS and CS chains were 25-28 and 21-28 kDa, respectively. In CS/DS chains isolated from both versican and decorin, 4-sulfated disaccharides accounted for 79-86% of total disaccharide units, respectively, whereas lower amounts of 6- and non-sulfated units were also recorded. In contrast, the tumor-associated versican and decorin were of smaller hydrodynamic size with lower glycosaminoglycan (GAG) content per PG molecule as compared with those found in HNC. In HCC, both PGs contained mainly CS chains (up to 86%) and the M(r)s of CS and DS chains were also found to be of smaller size (12 and 16 kDa, respectively). The sulfation patterns of CS/DS chains from both PGs were also significantly different. They were composed mainly of 6-sulfated disaccharides (63-70%), whereas 4-sulfated units accounted for 23-31%. A significant increase in the proportion of non-sulfated disaccharides was also recorded. These findings indicate that the colon adenocarcinoma is characterized by a remarkable increase in the concentration of versican and decorin. Furthermore, these PGs are significantly modified at the post-translational level, i.e. the type, length and the sulfation pattern of their GAG chains. These specific structural alterations of versican and decorin may influence the biology of cancer cells in HCC.
Collapse
Affiliation(s)
- Achilleas D Theocharis
- Department of Chemistry, Section of Organic Chemistry, Biochemistry and Natural Products, Laboratory of Biochemistry, University of Patras, 261 10 Patras, Greece
| |
Collapse
|