1
|
Embarez DH, Razek ASA, Basalious EB, Mahmoud M, Hamdy NM. Acetaminophen-traces bioremediation with novel phenotypically and genotypically characterized 2 Streptomyces strains using chemo-informatics, in vivo, and in vitro experiments for cytotoxicity and biological activity. J Genet Eng Biotechnol 2023; 21:171. [PMID: 38112983 PMCID: PMC10730784 DOI: 10.1186/s43141-023-00602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 11/14/2023] [Indexed: 12/21/2023]
Abstract
We isolated two novel bacterial strains, active against the environmental pollutant acetaminophen/Paracetamol®. Streptomyces chrestomyceticus (symbol RS2) and Flavofuscus (symbol M33) collected from El-Natrun Valley, Egypt-water, sediment, and sand samples, taxonomically characterized using a transmission electron microscope (TEM). Genotypic identification, based on 16S rRNA gene sequence analysis followed by BLAST alignment, were deposited on the NCBI as 2 novel strains https://www.ncbi.nlm.nih.gov/nuccore/OM665324 and https://www.ncbi.nlm.nih.gov/nuccore/OM665325 . The phylogenetic tree was constructed. Acetaminophen secondary or intermediate product's chemical structure was identified by GC/LC MS. Some selected acetaminophen secondary-product extracts and derived compounds were examined against a panel of test micro-organisms and fortunately showed a good anti-microbial effect. In silico chemo-informatics Swiss ADMET evaluation was used in the selected bio-degradation extracts for absorption (gastric), distribution (to CNS), metabolism (hepatic), excretion (renal), and finally not toxic, being non-mutagenic/teratogenic or genotoxic, virtually. Moreover, in vitro cytotoxic activity of these selected bio-degradation secondary products was examined against HepG2 and MCF7 cancer cell lines, where M33 and RS2 extract effects on acetaminophen/paracetamol bio-degradation products were safe, with higher IC50 on HepG2 and MCF7 than the acetaminophen/paracetamol IC50 of 108.5 μg/ml. Moreover, an in vivo oral acute single-dose toxicity experiment was conducted, to confirm these in vitro and in silico lower toxicity (better safety) than acetaminophen/paracetamol.
Collapse
Affiliation(s)
- Donia H Embarez
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Ahmed S Abdel Razek
- Microbial Chemistry Department, Genetic Engineering and Biotechnology Research Division, National Research Centre, Giza, 12622, Dokki, Egypt
| | - Emad B Basalious
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Cairo, 11562, Al Kasr El-Aini, Egypt
| | - Magdi Mahmoud
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Abassia, Egypt
| | - Nadia M Hamdy
- Department of Biochemistry, Faculty of Pharmacy, Ain Shams University, Cairo, 11566, Abassia, Egypt.
| |
Collapse
|
2
|
Mahdavi R, Talebpour Z. Analytical approaches for determination of COVID-19 candidate drugs in human biological matrices. Trends Analyt Chem 2023; 160:116964. [PMID: 36816451 PMCID: PMC9922681 DOI: 10.1016/j.trac.2023.116964] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/30/2023] [Accepted: 02/04/2023] [Indexed: 02/24/2023]
Abstract
Since the outbreak of the COVID-19 pandemic, the use of antiviral and other available drugs has been considered to combat or reduce the clinical symptoms of patients. In this regard, it would be necessary to choose sensitive and selective analytical techniques for pharmacokinetic and pharmacodynamic studies, monitoring of drug concentration in biological fluids, and determination of the most appropriate dose to achieve the desired effect on the disease. In the present study, the analytical techniques based on spectroscopy and chromatography with different detectors for diagnosis and determination of candidate drugs in the treatment of COVID-19 in human biological fluids are reviewed during the period 2015-2022. Moreover, various sample preparation and extraction techniques, are being used for this purpose, such as protein precipitation (PP), solid-phase extraction (SPE), liquid-liquid extraction (LLE), and QuEChERS (quick, easy, cheap, effective, rugged, and safe) are investigated.
Collapse
Affiliation(s)
- Rabee Mahdavi
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| | - Zahra Talebpour
- Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran,Analytical and Bioanalytical Research Centre, Alzahra University, Vanak, Tehran, Iran,Corresponding author. Department of Analytical Chemistry, Faculty of Chemistry, Alzahra University, Vanak, Tehran, Iran
| |
Collapse
|
3
|
Aboras SI, Korany MA, El-Yazbi AF, Ragab MAA, Abdine HH. In-depth investigation of the Silymarin effect on the pharmacokinetic parameters of sofosbuvir, GS-331007 and ledipasvir in rat plasma using LC-MS. Biomed Chromatogr 2022; 36:e5427. [PMID: 35708053 DOI: 10.1002/bmc.5427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/09/2022] [Accepted: 06/14/2022] [Indexed: 11/08/2022]
Abstract
The use of complementary medicine (CMD) for liver support in Hepatitis C virus (HCV) patients sometimes coincides with the administration of oral antiviral drugs to eradicate the virus. This calls for a deep investigation of CMD effects on the pharmacokinetic parameters of these drugs to ensure their safety and efficacy. Silymarin (SLY), as a CMD, was selected to be given orally to healthy male rats with sofosbuvir (SFB) and ledipasvir (LED), a common regimen in HCV treatment. A new and sensitive LC-MS method was validated for the bioassay of SLY, LED, SFB and its inactive metabolite, GS-331007, in spiked plasma with lower limits of quantitation of 10, 1, 4 and 10 ng/ml, respectively. Moreover, the method was further applied to conduct a full pharmacokinetic profile of SFB, GS-331007 and ledipasvir with and without SLY. It was found that co-administration of SLY may expose the patient to unplanned high serum concentrations of SFB and LED. This could be accompanied by a decrease in SFB efficacy, potentially leading to therapeutic failure and the emergence of viral resistance.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Ahmed F El-Yazbi
- Faculty of Pharmacy, Department of Pharmacology and Toxicology, Alexandria University, Egypt.,Faculty of Pharmacy, Department of Pharmacology and Therapeutics, AlAlamein International University, AlAlamein, Matrouh, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
4
|
Ramzy S, Abdelazim AH. Application of different spectrophotometric methods for quantitative analysis of direct acting antiviral drugs simeprevir and sofosbuvir. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 272:121012. [PMID: 35158141 PMCID: PMC8818623 DOI: 10.1016/j.saa.2022.121012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 01/29/2022] [Accepted: 02/04/2022] [Indexed: 05/09/2023]
Abstract
Simeprevir and sofosbuvir are direct-acting antiviral drugs approved for the treatment of chronic HCV infection. Reports demonstrate the similarities between HCV and SARS-CoV-2 in terms of structure and replication mechanism. Therefore, it is suggested that a combination of simeprevir and sofosbuvir may be considered for COVID-19 patients. To date, no spectrophotometric methods have been published for quantitative analysis of simeprevir and sofosbuvir in combination. In this work, two simple spectrophotometric methods allowed quantitative analysis of the studied drugs in the mixed form. The zero-order direct method allowed quantitative analysis of simeprevir at 333 nm, with sofosbuvir showing zero absorbance values. The dual wavelength method allowed quantitative analysis of sofosbuvir by measuring the difference in absorbance values at 259.40 and 276 nm, where the difference in absorbance values of simeprevir was zero. With the applied methods, the investigated drugs in the mixtures and tablets prepared in the laboratory were successfully analyzed quantitatively with acceptable results.
Collapse
Affiliation(s)
- Sherif Ramzy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt
| | - Ahmed H Abdelazim
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University, 11751 Nasr City, Cairo, Egypt.
| |
Collapse
|
5
|
El-Shorbagy HI, Belal F. Innovative derivative/zero ratio spectrophotometric method for simultaneous determination of sofosbuvir and ledipasvir: Application to average content and uniformity of dosage units. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 267:120623. [PMID: 34810100 DOI: 10.1016/j.saa.2021.120623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/07/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
An innovative simple, rapid and sensitive spectrophotometric method was developed for the simultaneous analysis of sofosbuvir (SOF) and ledipasvir (LED) in their combined dosage forms. Sofosbuvir with ledipasvir (SOF/LED) as a combined dosage form was tried at the pandemic COVID 19 crisis. This technique has the advantages of both zero order and first order spectrophotometry. The zero and first derivative amplitudes were measured at 274.2 nm for SOF (zero crossing point of LED in first derivative spectrum) and 314 nm for LED (zero crossing point of SOF in first derivative spectrum) over the concentration range of 2.0-50.0 μg mL-1 with coefficients of determination (R2) > 0.9999 for both drugs and mean percentage recoveries of 100.25 ± 1.61 and 99.85 ± 0.99 for SOF and LED; respectively. This original method was validated according to ICH requirements and statistically compared to published comparison methods. This method was applied to estimate the average content and the uniformity of dosage units of SOF/LED combined dosage form according to British Pharmacopeia requirements.
Collapse
Affiliation(s)
- Hanan I El-Shorbagy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Suez Canal University, Egypt.
| | - Fathalla Belal
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
6
|
Abdel-Tawab MAH, Abd El-Moghny MG, El Nashar RM. Recent advances in the chromatographic determination of the most commonly used anti-hepatitis C drug sofosbuvir and its co-administered drugs in human plasma. Biomed Chromatogr 2021; 36:e5238. [PMID: 34469609 DOI: 10.1002/bmc.5238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Revised: 08/08/2021] [Accepted: 08/26/2021] [Indexed: 11/10/2022]
Abstract
Sofosbuvir is a direct-acting antiviral drug that inhibits hepatitis C virus (HCV) NS5B polymerase, which in turn affects the virus replication inside biological systems. The clinical importance of sofosbuvir is based not only on its effect on HCV but also on other lethal viruses such as Zika and severe acute respiratory syndrome coronavirus disease 2019 (SARS-COVID-19). Accordingly, there is a continuous shedding of light on the development and validation of accurate and fast analytical methods for the determination of sofosbuvir in different environments. This work critically reviews the recent advances in chromatographic methods for the analysis of sofosbuvir and/or its metabolites in pure samples, pharmaceutical dosage forms, and in the presence of other co-administered drugs to highlight the current status and future perspectives to enhance its determination in different matrixes.
Collapse
|
7
|
Aboras SI, Abdine HH, Ragab MAA, Korany MA. A Review on Analytical Strategies for the Assessment of Recently Approved Direct Acting Antiviral Drugs. Crit Rev Anal Chem 2021; 52:1878-1900. [PMID: 34138669 DOI: 10.1080/10408347.2021.1923456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Human beings are in dire need of developing an efficient treatment against fierce viruses like hepatitis C virus (HCV) and Coronavirus (COVID-19). These viruses have already caused the death of over two million people all over the world. Therefore, over the last years, many direct-acting antiviral drugs (DAADs) were developed targeting nonstructural proteins of these two viruses. Among these DAADs, several drugs were found more effective and safer than the others as sofosbuvir, ledipasvir, grazoprevir, glecaprevir, voxilaprevir, velpatasvir, elbasvir, pibrentasvir and remdesivir. The last one is indicated for COVID-19, while the rest are indicated for HCV treatment. Due to the valuable impact of these DAADs, larger number of analytical methods were required to meet the needs of the clinical studies. Therefore, this review will highlight the current approaches, published in the period between 2017 to present, dealing with the determination of these drugs in two different matrices: pharmaceuticals and biological fluids with the challenges of analyzing these drugs either alone, with other drugs, in presence of interferences (pharmaceutical excipients or endogenous plasma components) or in presence of matrix impurities, degradation products and metabolites. These approaches include spectroscopic, chromatographic, capillary electrophoretic, voltametric and nuclear magnetic resonance methods that have been reported during this period. Moreover, the analytical instrumentation and methods used in determination of these DAADs will be illustrated in tabulated forms.
Collapse
Affiliation(s)
- Sara I Aboras
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Heba H Abdine
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Marwa A A Ragab
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| | - Mohamed A Korany
- Faculty of Pharmacy, Department of Pharmaceutical Analytical Chemistry, University of Alexandria, El-Messalah, Alexandria, Egypt
| |
Collapse
|
8
|
Effective quantification of ravidasvir (an NS5A inhibitor) and sofosbuvir in rat plasma by validated LC-MS/MS method and its application to pharmacokinetic study. ARAB J CHEM 2020. [DOI: 10.1016/j.arabjc.2020.09.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
EL-Shorbagy HI, Elsebaei F, Hammad SF, El-Brashy AM. A green stability-indicating RP-HPLC-UV method using factorial design for determination of ribavirin, sofosbuvir and ledipasvir: Application to average content, acid degradation kinetics and in vitro drug interactions study. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
10
|
Ezzeldin E, Abo-Talib NF, Tammam MH, Asiri YA, Amr AEGE, Almehizia AA. Validated Reversed-Phase Liquid Chromatographic Method with Gradient Elution for Simultaneous Determination of the Antiviral Agents: Sofosbuvir, Ledipasvir, Daclatasvir, and Simeprevir in Their Dosage Forms. Molecules 2020; 25:molecules25204611. [PMID: 33050433 PMCID: PMC7587186 DOI: 10.3390/molecules25204611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/25/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
A simple, rapid, sensitive, and precise reversed-phase liquid chromatographic method was developed and validated for the simultaneous determination of four direct-acting antivirals, sofosbuvir (SF), ledipasvir (LD), declatasvir (DC), and simeprevir (SM), in their respective pharmaceutical formulations. Effective chromatographic separation was achieved on an Agilent Eclipse plus C8 column (250 mm × 4.6 mm, 5 µm) at 40 °C with gradient elution using a mobile phase composed of acetonitrile:phosphate buffer (pH 6.5). The quantification of SF and DC was based on peak area measurements at 260 nm, while the quantification of LD and SM was achieved at 330 nm. The linearity was acceptable from 1.0 to 20.0 μg/mL for the studied drugs, with correlation coefficients >0.999. The analytical performance of the newly proposed HPLC procedure was thoroughly validated according to ICH guidelines in terms of linearity, precision (RSD%, 0.39-1.57), accuracy (98.05-101.90%), specificity, limit of detection (LOD) (0.022-0.039 μg/mL), limit of quantification (LOQ) (0.067-0.118 μg/mL), and robustness. The validated HPLC method was successfully used to analyze the abovementioned drugs in their pure and dosage forms without interference from common excipients present in commercial formulations.
Collapse
Affiliation(s)
- Essam Ezzeldin
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (E.E.); (A.E.-G.E.A.); (A.A.A.)
- Bioavailability Center, National Organization for Drug Control and Research (NODCAR), Giza P.O. Box 29, Egypt
| | - Nisreen F. Abo-Talib
- Bioavailability Center, National Organization for Drug Control and Research (NODCAR), Giza P.O. Box 29, Egypt
- Correspondence: (N.F.A.-T.); (M.H.T.)
| | - Marwa H. Tammam
- Bioavailability Center, National Organization for Drug Control and Research (NODCAR), Giza P.O. Box 29, Egypt
- Correspondence: (N.F.A.-T.); (M.H.T.)
| | - Yousif A. Asiri
- Clinical Pharmacy Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia;
| | - Abd El-Galil E. Amr
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (E.E.); (A.E.-G.E.A.); (A.A.A.)
- Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Abdulrahman A. Almehizia
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; (E.E.); (A.E.-G.E.A.); (A.A.A.)
| |
Collapse
|
11
|
Elkhoudary MM, Selim BM, AbdelSalam RA, Hadad GM, El-Gindy A. Development and validation of a simple HPTLC method for the determination of new hepatitis C subtype 4 antiviral agents in their tablet dosage form. JPC-J PLANAR CHROMAT 2020. [DOI: 10.1007/s00764-019-00006-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Youssef AA, Magdy N, Hussein LA, El-Kosasy AM. Validated RP-HPLC Method for Simultaneous Determination of Ribavirin, Sofosbuvir and Daclatasvir in Human Plasma: A Treatment Protocol Administered to HCV Patients in Egypt. J Chromatogr Sci 2019; 57:636-643. [PMID: 31063182 DOI: 10.1093/chromsci/bmz038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 03/11/2019] [Accepted: 04/05/2019] [Indexed: 02/06/2023]
Abstract
Egypt has the highest prevalence of hepatitis C virus (HCV) in the world thus it launched a national program for eliminating HCV aiming to treat 300,000 HCV patients per year. Three anti-HCV co-administered drugs; ribavirin (RBV), sofosbuvir (SF) daclatasvir (DAC) were simultaneously determined in human plasma by a validated, simple and sensitive RP-HPLC method using propyl paraben as an internal standard. Liquid-liquid extraction using ethyl acetate was used for samples extraction. Chromatographic separation was achieved on Scharlau® C18 column (250 × 4.6 mm2, 5 μm). Gradient elution was employed with a mobile phase mixture of water and acetonitrile at a flow rate 1 mL/min. UV detection using photodiode array detector was carried out at 207, 260 and 312 nm for RBV, SF and DAC, respectively. Method validation was performed according to the FDA guidelines for bioanalytical method validation. The calibration curves were linear over the ranges (0.5-80, 0.1-40 and 0.5-80 μg/mL) with average recoveries (100.64-108.28%, 98.48-105.91% and 97.68-101.38%) for RBV, SF and DAC, respectively. The intra-day and inter-day precision and accuracy results were within the acceptable limits. Stability assays revealed that the three studied analytes were stable during sample storage, preparation and injection. The method can be successfully applied in routine analysis of plasma of HCV patients treated with this combination therapy which aids in therapeutic drug monitoring and patients' follow-up especially in Egypt and other developing countries fighting HCV.
Collapse
Affiliation(s)
- Aya A Youssef
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo, Egypt
| | - N Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo, Egypt
| | - Lobna A Hussein
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo, Egypt
| | - A M El-Kosasy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Ain Shams University, Organization of African Unity Street, Abassia, Cairo, Egypt
| |
Collapse
|
13
|
Optimization and modeling of a green dual detected RP-HPLC method by UV and fluorescence detectors using two level full factorial design for simultaneous determination of sofosbuvir and ledipasvir: Application to average content and uniformity of dosage unit testing. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
14
|
van Seyen M, de Graaff Teulen MJ, van Erp NP, Burger DM. Quantification of second generation direct-acting antivirals daclatasvir, elbasvir, grazoprevir, ledipasvir, simeprevir, sofosbuvir and velpatasvir in human plasma by UPLC-MS/MS. J Chromatogr B Analyt Technol Biomed Life Sci 2019; 1110-1111:15-24. [DOI: 10.1016/j.jchromb.2019.01.024] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 12/31/2022]
|
15
|
El-Shorbagy HI, Elsebaei F, Hammad SF, Elbrashy AM. Earth-friendly spectrophotometric methods for simultaneous determination of ledipasvir and sofosbuvir: Application to average content and uniformity of dosage unit testing. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 205:398-409. [PMID: 30044997 DOI: 10.1016/j.saa.2018.07.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 07/07/2018] [Accepted: 07/07/2018] [Indexed: 06/08/2023]
Abstract
Simple, rapid, sensitive, accurate, precise and earth-friendly spectrophotometric methods were developed for the simultaneous analysis of ledipasvir (LED) and sofosbuvir (SOF) without interference of both sunset yellow dye and copovidone excipients (the most probable interferents) in their combined dosage form. These proposed methods were based on measurement of LED in synthetic mixtures and combined dosage form by first derivative (1D) spectrophotometry at 314 nm over the concentration range of 2-50 μg mL-1 with coefficient of determination (R2) > 0.9999, mean percentage recovery of 99.98 ± 0.62. On the other hand, SOF in synthetic mixtures and combined dosage form was determined by five methods. Method I is based on the use of 1D spectrophotometry at 274.2 nm (zero crossing point of LED). Method II involves the application of conventional dual wavelength method (DW) at the absolute difference between SOF zero order amplitudes at 261 nm (λmax of SOF) and 364.7 nm. At these wavelengths, the absolute difference between LED zero order amplitudes was observed to equal zero. Method III depends on isosbestic point method (ISP) in which the total concentration of both drugs was measured at isosbestic point at 262.7 nm. Concentration of SOF could be obtained by subtraction of LED concentration. While, method IV depends on absorbance correction method (absorption factor method), which is based on determination of SOF concentration at 262.7 nm (λISP) and LED at 333 nm (λmax of LED). Finally, method V depends on absorbance ratio method (Q-analysis) in which 262.7 nm (λISP) and 261 nm (λmax of SOF) were selected to determine SOF concentration. The linearity range for all methods for SOF determination was 2-50 μg mL-1 with coefficient of determination (R2) > 0.9999. Methods I, II & III were also applied for determination of SOF concentration in single dosage form. Their mean percentage recoveries were 100.35 ± 1.85, 99.97 ± 0.54 and 100.03 ± 0.49, for the three methods respectively. The proposed methods were validated according to international conference of harmonization (ICH) requirements and statistically compared to published reference methods. The ANOVA test confirmed that there is no significant differences between the proposed methods, and can be used for routine analysis of LED and SOF in commercial tablets. These developed methods were applied to estimate the average content and uniformity of dosage unit for LED/SOF combined dosage form and SOF single dosage form according to British pharmacopeia (BP) requirements.
Collapse
Affiliation(s)
- Hanan I El-Shorbagy
- Pharmaceutical Service Center, Faculty of Pharmacy, Tanta University, Egypt.
| | - Fawzi Elsebaei
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Sherin F Hammad
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Tanta University, Egypt
| | - Amina M Elbrashy
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| |
Collapse
|
16
|
|
17
|
Development of a Robust UPLC Method for Simultaneous Determination of a Novel Combination of Sofosbuvir and Daclatasvir in Human Plasma: Clinical Application to Therapeutic Drug Monitoring. Int J Anal Chem 2018; 2018:6535816. [PMID: 30420886 PMCID: PMC6215565 DOI: 10.1155/2018/6535816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 10/02/2018] [Indexed: 12/29/2022] Open
Abstract
A rapid and selective UPLC-DAD method was developed and validated for simultaneous analysis of the novel two-drug combination Darvoni® for the treatment of HCV: Sofosbuvir (SF)/Daclatasvir (DC) in human plasma using Ledipasvir as internal standard (IS) where the extraction process was conducted using automated SPE. Although the analysis of the combination after concomitant oral intake of two tablets of SF and DC individually was reported in literature, yet simultaneous analysis of this new combination in human plasma after a single oral dose was not previously reported. The adopted chromatographic separation was achieved on Waters® Acquity UPLC BEH C18 column (2.1 × 50 mm, 1.7 µm) as a stationary phase using isocratic elution using a mobile phase system of ammonium formate (pH 3.5; 5 mM) and acetonitrile (60:40 v/v) pumped at a flow rate of 0.2 mL.min−1. The UV detection was carried out at 261 nm for SF and 318 nm for DC and IS. SF was eluted at 1.123 min while DC was eluted at 3.179 min. The proposed chromatographic method was validated in accordance with guidelines of FDA for bioanalytical method validation. A linear range was achieved in the range of 25-6400 and 50-12800 ng.mL−1 for SF and DC, respectively. The proposed UPLC-DAD method was found to be accurate with % bias ranging between -10.0-7.2 for SF and -6.9-8.0 for DC. Also it was proved to be precise with % CV for intraday precision ranging between 3.8-9.6 for SF and 2.8-9.2 for DC whereas interday precision ranged between 5.1-9.3 for SF and 3.7-9.1 for DC. Moreover, % extraction recovery ranged between 90.0-107.2 for SF and 93.1-108.0 for DC using the suggested method. The adopted chromatographic method was successfully applied to the therapeutic drug monitoring of SF and DC in healthy volunteers after the oral intake of one Darvoni® tablet.
Collapse
|
18
|
Rezk MR, Basalious EB, Badr KA. Novel determination of sofosbuvir and velpatasvir in human plasma by UPLC-MS/MS method: Application to a bioequivalence study. Biomed Chromatogr 2018; 32:e4347. [PMID: 30047564 DOI: 10.1002/bmc.4347] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/09/2018] [Accepted: 07/17/2018] [Indexed: 11/08/2022]
Abstract
A novel and sensitive LC-MS/MS method was developed, optimized and validated for quantification of sofosbuvir (SOF) and velpatasvir (VEL) in human plasma using ledipasvir as an internal standard (IS). Sample preparation was done using acetonitrile for precipitation of plasma proteins. Chromatographic analysis was done on an Acquity UPLC BEH C18 column using 0.1% formic acid and acetonitrile as a mobile phase. The Xevo TQD LC-MS/MS system was run with electrospray ionization mode. The developed method was optimized and then validated according to the US Food and Drug Administration guidelines. Linearity was found to be in the range of 0.25-3500 ng/mL for SOF and 1-1000 ng/mL for VEL. A short run time of 1.5 min allows swift analysis of many plasma samples per day. The developed method was successfully utilized for estimating both SOF and VEL in the plasma of healthy human volunteers participated in a bioequivalence study.
Collapse
Affiliation(s)
- Mamdouh R Rezk
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Emad B Basalious
- Pharmaceutics and Industrial Pharmacy Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Kamal A Badr
- Pharmaceutics Department, Faculty of Pharmacy, Deraya University, Egypt.,Advanced Research Center, Nasr City, Cairo, Egypt
| |
Collapse
|
19
|
Abdallah OM, Abdel-Megied AM, Gouda AS. Pharmacokinetic evaluation of daclatasvir and ledipasvir in healthy volunteers using a validated highly sensitive spectrofluorimetric method. LUMINESCENCE 2018; 33:1094-1100. [DOI: 10.1002/bio.3514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/03/2018] [Accepted: 05/13/2018] [Indexed: 01/26/2023]
Affiliation(s)
- Ola M. Abdallah
- Analytical Chemistry Department, Faculty of Pharmacy; Al-Azhar University (Girls); Cairo Egypt
- Pharmaceutical Chemistry Department, Faculty of Pharmacy; Badr University in Cairo (BUC); Badr City Cairo Egypt
| | - Ahmed M. Abdel-Megied
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy and Pharmaceutical Manufacturing; Kafrelsheikh University; Kafrelsheikh City Egypt
| | | |
Collapse
|
20
|
Simultaneous quantitation of two direct acting hepatitis C antivirals (sofosbuvir and daclatasvir) by an HPLC-UV method designated for their pharmacokinetic study in rabbits. J Pharm Biomed Anal 2018; 158:88-93. [PMID: 29864695 DOI: 10.1016/j.jpba.2018.05.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/14/2018] [Accepted: 05/18/2018] [Indexed: 01/26/2023]
Abstract
Sofosbuvir (SOF) and daclatasvir (DCS) are novel, recently developed direct acting antiviral agents characterized by potent anti-hepatitis C virus action. A fast and efficient HPLC-UV method was developed, validated and applied for simultaneous determination of SOF and DCS in pharmaceutical formulations and biological fluids based on coupling liquid-liquid extraction with ultrasound and dual wavelength detection at λmax; 260 and 313 nm for SOF and DCS, respectively. This approach provided simple, sensitive, specific and cost-effective determination of the SOF-DCS mixture with good recoveries of the analytes from plasma. Analytes were separated within 7 min on C18 analytical column with acetonitrile-10 mM acetate buffer of pH 5.0 at a flow rate of 1.0 mL min-1. The linear ranges were 1-20 μg mL-1 for SOF and 0.6-6 μg mL-1 for DCS with correlation coefficients ≥0.9995. The detection limits in spiked rabbit plasma were 0.20 and 0.19 μg mL-1 for SOF and DCS, respectively. The method was validated according to ICH and US-FDA guidelines. Finally, the method was successfully applied for simultaneous pharmacokinetic studies of SOF and DCS in rabbits using rofecoxib as internal standard.
Collapse
|
21
|
Efficient HPTLC-dual wavelength spectrodensitometric method for simultaneous determination of sofosbuvir and daclatasvir: Biological and pharmaceutical analysis. J Pharm Biomed Anal 2018; 156:358-365. [PMID: 29753282 DOI: 10.1016/j.jpba.2018.04.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
Sofosbuvir (SOF) and daclatasvir (DCS) are newly discovered anti-hepatitis C drugs that have direct antiviral activity. A novel and simple high-performance thin-layer chromatography (HPTLC) method was designed for simultaneous determination of SOF and DCS in miscellaneous matrices. The method adopts coupling HPTLC with dual wavelength spectrodensitometry. Consequently, this enabled sensitive, specific and cost-effective determination of the SOF-DCS mixture. The developed HPTLC procedure is based on a simple liquid-liquid extraction, enrichment of the analytes and subsequent chromatographic separation with UV detection. Separations were performed on HPTLC silica gel 60 F254 aluminum plates with a mobile phase consisting of ethyl acetate-isopropanol (85:15, v/v). Dual wavelength scanning was carried out in the absorbance mode at 265 and 311 nm for SOF and DCS, respectively. The linear ranges were 40-640 and 20-320 ng band-1 for SOF and DCS, respectively with correlation coefficients of ≥0.9997. The detection limits were 11.3 and 6.5 ng band-1 for SOF and DCS, respectively indicating high sensitivity of the proposed method. Consequently, this permits in vitro and in vivo application of the proposed method in human plasma with good percentage recovery (94.1-103.5%). Validation parameters were assessed according to ICH guidelines and US-FDA guidelines. Furthermore, the application was extended to analysis of SOF and DCS in their pharmaceutical formulations.
Collapse
|
22
|
Abdallah OM, Abdel-Megied AM, Gouda AS. Development and validation of LC-MS/MS method for simultaneous determination of sofosbuvir and daclatasvir in human Plasma: Application to pharmacokinetic study. Biomed Chromatogr 2018; 32:e4186. [PMID: 29314090 DOI: 10.1002/bmc.4186] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 12/13/2017] [Accepted: 12/20/2017] [Indexed: 01/17/2023]
Abstract
A simple and highly sensitive liquid chromatography-tandem mass spectrometry (LC-MS/MS) bioanalytical method was developed and fully validated for the first time for the simultaneous determination of newly discovered antiviral drugs, namely sofosbuvir (SOF) and daclatasvir (DAC) in human plasma. Tadalafil (TAD) was used as internal standard (IS). SOF, DAC and TAD (IS) were extracted from plasma using liquid-liquid extraction technique with methyl tert-butyl ether. The chromatographic separation was carried out using ZorbaxSB-C18 column (4.6 × 50 mm,5 μm) and 5 mm ammonium formate buffer (pH 3.5)-acetonitrile (50:50, v/v) as mobile phase in an isocratic elution mode pumped at a flow rate 0.7 mL min-1 . The quantitation was performed on API4500 triple quadrupole tandem mass spectrometer with positive electrospray ionization interface in multiple reaction monitoring mode. Validation was applied according to US Food and Drug Administration guidelines for bio-analytical methodswith respect to linearity, precision, accuracy, selectivity, carry-over, stability and dilution integrity. Linearity was obtained over concentration ranges of 0.3-3000 and 3-3000 ng mL-1 for SOF and DAC, respectively, by applying a weighted least-squares linear regression method (1/x2 ). The proposed method could be applied successfully in bioequivalence and/or clinical studies for therapeutic drug monitoring of patients undergoing dual combination therapy as the latter combination proved more efficacious and powerful tool for the complete treatment of hepatitis C genotype 3 within 16 weeks. The suggested method has been applied successfully to pharmacokinetic studies with excellent assay ruggedness and reproducibility.
Collapse
Affiliation(s)
- Ola M Abdallah
- Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt.,Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Ahmed M Abdel-Megied
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy and Pharmaceutical Manufacturing, Kafrelsheikh University, Kafrelsheikh City, Egypt
| | | |
Collapse
|
23
|
|
24
|
Development and validation of a new HPLC-DAD method for quantification of sofosbuvir in human serum and its comparison with LC-MS/MS technique: Application to a bioequivalence study. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1063:118-122. [PMID: 28858753 DOI: 10.1016/j.jchromb.2017.06.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 06/21/2017] [Accepted: 06/25/2017] [Indexed: 01/27/2023]
Abstract
Although for many analyses tandem mass spectrometry (LC-MS/MS) systems have significant advantage over the high-performance liquid chromatography with diode array detection (HPLC-DAD) however, the HPLC methods are easier, cheaper and more available to perform. As no published method is available for quantitative HPLC analysis of sofosbuvir (SOF), an orally administered anti-hepatitis drug in human serum, this study was aimed to evaluate applicability of the HPLC technique to quantify sofosbuvir and comparison of the two methods for analytical performance. Following extraction of the drug and an internal standard (Hexobarbital), same chromatographic conditions were used for both the systems. After the chromatographic separation on a reverse phase C18 column using a mobile phase consisting of water (containing formic acid 0.5mL/L) and acetonitrile (57:43; v/v) at a flow rate of 0.8mL/min, the eluate was introduced into a DAD detector set at 261nm, then passed through the mass spectrometry system in single ion monitoring mode (SIM). For UV and mass spectrometry detections the calibration curves were linear over a concentration range of 25-3200 and 10-3200ng/mL, respectively and the linearity was over 0.998 for both the systems. Lower limit of quantification (LLOQ) for mass spectrometry and DAD detections were 10 and 25ng/mL, respectively. In conclusion sensitivity of DAD detection is sufficient enough to determine concentrations down to 0.5% of Cmax which achieved in bioequivalence study of sofosbuvir and meet FDA requirements for these types of studies.
Collapse
|
25
|
Nováková L, Pavlík J, Chrenková L, Martinec O, Červený L. Current antiviral drugs and their analysis in biological materials - Part II: Antivirals against hepatitis and HIV viruses. J Pharm Biomed Anal 2017; 147:378-399. [PMID: 29031512 DOI: 10.1016/j.jpba.2017.07.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 07/01/2017] [Indexed: 12/18/2022]
Abstract
This review is a Part II of the series aiming to provide comprehensive overview of currently used antiviral drugs and to show modern approaches to their analysis. While in the Part I antivirals against herpes viruses and antivirals against respiratory viruses were addressed, this part concerns antivirals against hepatitis viruses (B and C) and human immunodeficiency virus (HIV). Many novel antivirals against hepatitis C virus (HCV) and HIV have been introduced into the clinical practice over the last decade. The recent broadening portfolio of these groups of antivirals is reflected in increasing number of developed analytical methods required to meet the needs of clinical terrain. Part II summarizes the mechanisms of action of antivirals against hepatitis B virus (HBV), HCV, and HIV, their use in clinical practice, and analytical methods for individual classes. It also provides expert opinion on state of art in the field of bioanalysis of these drugs. Analytical methods reflect novelty of these chemical structures and use by far the most current approaches, such as simple and high-throughput sample preparation and fast separation, often by means of UHPLC-MS/MS. Proper method validation based on requirements of bioanalytical guidelines is an inherent part of the developed methods.
Collapse
Affiliation(s)
- Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic.
| | - Jakub Pavlík
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lucia Chrenková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Ondřej Martinec
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| | - Lukáš Červený
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Akademika Heyrovského 1203, 500 05 Hradec Králové, Czech Republic
| |
Collapse
|
26
|
Abdallah OM, Abdel-Megied AM, Gouda AS. Development a validated highly sensitive LC-MS/MS method for simultaneous quantification of Ledipasvir, sofosbuvir and its major metabolite GS-331007 in human plasma: Application to a human pharmacokinetic study. J Pharm Biomed Anal 2017. [PMID: 28645021 DOI: 10.1016/j.jpba.2017.06.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A highly sensitive and rapid LC-MS/MS method was developed, fully optimized and validated for the simultaneous determination of Ledipasvir (LED) and Sofosbuvir (SOF) in the presence of its major metabolite GS-331007 in human plasma using Daclatasvir as internal standard (IS). The extraction of analytes and IS from plasma was performed using liquid-liquid extraction with ethyl acetate. The chromatographic separation of these prepared samples was achieved on Xterra MS C8 column (4.6×50mm,5μm) using gradient elution with a mobile phase of ammonium formate buffer (pH 3.5; 10mM), acetonitrile and methanol pumped at a flow rate 0.7mLmin-1.The detection was performed on API4000 triple quadrupole tandem mass spectrometer using multiple reaction monitoring (MRM) positive electrospray ionization interface. The method was validated according to FDA guidelines for bio-analytical methods with respect to linearity, accuracy, precision, selectivity, carry-over, stability and dilution integrity. Linearity was obtained over a concentration range of 0.1-1000, 0.3-3000 and 3.0-3000ngmL-1 for LED, SOF and GS-331007; respectively by applying weighted least-squares linear regression method (1/x2). The wider range of quantification in a shorter period of separation time less than 5.0min allowed monitoring the serum concentration of analytes up to 144h. The proposed method can be successfully applied for pharmacokinetic and bioequivalence studies in healthy human volunteers.
Collapse
Affiliation(s)
- Ola M Abdallah
- Analytical Chemistry Department, Faculty of Pharmacy, Al-Azhar University (Girls), Cairo, Egypt; Pharmaceutical Chemistry Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Ahmed M Abdel-Megied
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy and Pharmaceutical Manufacturing, Kafrelsheikh University, Kafrelsheikh City, Egypt.
| | - Amira S Gouda
- Zi-diligence Research Center, Al-Mokattam, Cairo, Egypt
| |
Collapse
|
27
|
Gandhi BM, Rao AL, Rao JV. UPLC-MS/MS method for determination of sofosbuvir in human plasma. ANNALES PHARMACEUTIQUES FRANÇAISES 2017; 75:257-266. [PMID: 28495020 DOI: 10.1016/j.pharma.2017.04.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 04/05/2017] [Indexed: 11/29/2022]
Abstract
INTRODUCTION A sensitive and rapid method for quantitation of Sofosbuvir in human plasma has been established using ultra performance liquid chromatography-electrospray ionization tandem mass spectrometry (UPLC-ESI-MS/MS). MATERIALS AND METHODS Sofosbuvir d3 was used as an internal standard. Sofosbuvir and internal standard in plasma sample were extracted using ethyl acetate (liquid liquid extraction). A centrifuged upper layer was then evaporated and reconstituted with the mobile phase of 0.5% formic acid: methanol (30:70, v/v). The reconstituted samples were injected into a Gemini C18 (50×4.6mm, 5μm) column. RESULTS Using MS/MS in the multiple reaction monitoring mode, Sofosbuvir and Sofosbuvir d3 were detected without severe interferences from human plasma matrix. Sofosbuvir produced a protonated precursor ion ([M+H]+) at m/z 428.35 and a corresponding product ion at m/z 279.26. The internal standard produced a protonated precursor ion ([M+H]+) at m/z 431.38 and a corresponding product ion at m/z 282.37. The calibration curves for the analyte was linear (R2≥0.9956, n=4) over the concentration range of 4.063-8000.010ng/mL. Stability studies revealed that Sofosbuvir was stable in plasma during bench top (7h at room temperature), in injector (20h), at the end of five successive freeze and thaw cycles and long term at -70°C±15°C for 15 days. CONCLUSION The developed method was validated as per the guidelines of USFDA and the obtained results were found to be within the limits and could be successfully employed for the determination of Sofosbuvir in human plasma for regular and pharmacokinetic studies.
Collapse
Affiliation(s)
- B M Gandhi
- Department of Pharmaceutical Analysis, Sri Vasavi Institute of Pharmaceutical Sciences, Tadepalligudem, AP, India
| | - A L Rao
- Department of Pharmaceutical Analysis, V. V. Institute of Pharmaceutical Sciences, Gudlavalleru, AP, India.
| | - J V Rao
- Department of Pharmaceutical Analysis, St. Paul's College of Pharmacy, Turkayamjal, Hyderabad, TS, India
| |
Collapse
|
28
|
Bahrami MT, Mohammadi B, Miraghaei S, Babaei A, Ghaheri M, Bahrami G. Quantification of sofosbuvir in human serum by liquid chromatography with negative ionization mass spectrometry using the parent peak and its source-induced fragment: Application to a bioequivalence study. J Sep Sci 2016; 39:2702-9. [PMID: 27257162 DOI: 10.1002/jssc.201501375] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 12/29/2022]
Abstract
In the mass spectrometry of sofosbuvir, a new orally administered antihepatitis C drug, a weak peak is detected at the m/z value of the parent ion (m/z 530) as a result of in-source dissociation and current methods to its quantification, is based on monitoring of the parent peak using ultra high-performance liquid chromatography with tandem mass spectrometry. With these methods serum concentration of the drug is quantifiable only up to 4-5 h postdose. However, the fragmentation of the molecule generates a more stable ion at m/z 287 (base peak) with a signal intensity of about tenfold compared to the parent ion. Our study was aimed to improve sensitivity of analysis by acquisition of the m/z value of the daughter ion from which it originated instead of the parent molecule. This novelty allows us to measure serum concentrations of the drug for a longer time postdose and provides more opportunity for pharmacokinetic studies of sofosbuvir. Our method was linear over the concentration range of 2-2560 ng/mL of sofosbuvir in human serum with a limit of quantification of 2 ng/mL compared to 10 ng/mL reported previously. The coefficient variation values of both inter and intraday analysis were less than 13.8%, and the percentage error was less than 6.3.
Collapse
Affiliation(s)
| | - Bahareh Mohammadi
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Shahram Miraghaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Atefeh Babaei
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Matin Ghaheri
- Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Gholamreza Bahrami
- School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.,Medical Biology Research Center, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|