1
|
Overstreet AMC, Burge M, Bellar A, McMullen M, Czarnecki D, Huang E, Pathak V, Finney C, Vij R, Dasarathy S, Dasarathy J, Streem D, Welch N, Rotroff D, Schmitt AM, Nagy LE, Messer JS. Evidence that extracellular HSPB1 contributes to inflammation in alcohol-associated hepatitis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.09.06.24313193. [PMID: 39281760 PMCID: PMC11398598 DOI: 10.1101/2024.09.06.24313193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Background and aims Alcohol-associated hepatitis (AH) is the most life-threatening form of alcohol-associated liver disease (ALD). AH is characterized by severe inflammation attributed to increased levels of ethanol, microbes or microbial components, and damage-associated molecular pattern (DAMP) molecules in the liver. HSPB1 (Heat Shock Protein Family B (Small) Member 1; also known as Hsp25/27) is a DAMP that is rapidly increased in and released from cells experiencing stress, including hepatocytes. The goal of this study was to define the role of HSPB1 in AH pathophysiology. Methods Serum HSPB1 was measured in a retrospective study of 184 heathy controls (HC), heavy alcohol consumers (HA), patients with alcohol-associated cirrhosis (AC), and patients with AH recruited from major hospital centers. HSPB1 was also retrospectively evaluated in liver tissue from 10 HC and AH patients and an existing liver RNA-seq dataset. Finally, HSPB1 was investigated in a murine Lieber-DeCarli diet model of early ALD as well as cellular models of ethanol stress in hepatocytes and hepatocyte-macrophage communication during ethanol stress. Results Circulating HSPB1 was significantly increased in AH patients and levels positively correlated with disease-severity scores. Likewise, HSPB1 was increased in the liver of patients with severe AH and in the liver of ethanol-fed mice. In vitro , ethanol-stressed hepatocytes released HSPB1, which then triggered TNFα-mediated inflammation in macrophages. Anti-HSPB1 antibody prevented TNFα release from macrophages exposed to media conditioned by ethanol-stressed hepatocytes. Conclusions Our findings support investigation of HSPB1 as both a biomarker and therapeutic target in ALD. Furthermore, this work demonstrates that anti-HSPB1 antibody is a rational approach to targeting HSPB1 with the potential to block inflammation and protect hepatocytes, without inactivating host defense. GRAPHICAL ABSTRACT HIGHLIGHTS HSPB1 is significantly increased in serum and liver of patients with alcohol-associated hepatitis.Ethanol consumption leads to early increases in HSPB1 in the mouse liver.Hepatocytes subjected to ethanol stress release HSPB1 into the extracellular environment where it activates TNFα-mediated inflammation in macrophages.Anti-HSPB1 antibody blocks hepatocyte-triggered TNFα in a model of hepatocyte-macrophage communication during ethanol stress.
Collapse
|
2
|
Holt LM, Nestler EJ. Astrocytic transcriptional and epigenetic mechanisms of drug addiction. J Neural Transm (Vienna) 2024; 131:409-424. [PMID: 37940687 PMCID: PMC11066772 DOI: 10.1007/s00702-023-02716-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023]
Abstract
Addiction is a leading cause of disease burden worldwide and remains a challenge in current neuroscience research. Drug-induced lasting changes in gene expression are mediated by transcriptional and epigenetic regulation in the brain and are thought to underlie behavioral adaptations. Emerging evidence implicates astrocytes in regulating drug-seeking behaviors and demonstrates robust transcriptional response to several substances of abuse. This review focuses on the astrocytic transcriptional and epigenetic mechanisms of drug action.
Collapse
Affiliation(s)
- Leanne M Holt
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Eric J Nestler
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
3
|
Nuñez-delMoral A, Bianchi PC, Brocos-Mosquera I, Anesio A, Palombo P, Camarini R, Cruz FC, Callado LF, Vialou V, Erdozain AM. The Matricellular Protein Hevin Is Involved in Alcohol Use Disorder. Biomolecules 2023; 13:biom13020234. [PMID: 36830603 PMCID: PMC9953008 DOI: 10.3390/biom13020234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 01/16/2023] [Accepted: 01/21/2023] [Indexed: 01/27/2023] Open
Abstract
Astrocytic-secreted matricellular proteins have been shown to influence various aspects of synaptic function. More recently, they have been found altered in animal models of psychiatric disorders such as drug addiction. Hevin (also known as Sparc-like 1) is a matricellular protein highly expressed in the adult brain that has been implicated in resilience to stress, suggesting a role in motivated behaviors. To address the possible role of hevin in drug addiction, we quantified its expression in human postmortem brains and in animal models of alcohol abuse. Hevin mRNA and protein expression were analyzed in the postmortem human brain of subjects with an antemortem diagnosis of alcohol use disorder (AUD, n = 25) and controls (n = 25). All the studied brain regions (prefrontal cortex, hippocampus, caudate nucleus and cerebellum) in AUD subjects showed an increase in hevin levels either at mRNA or/and protein levels. To test if this alteration was the result of alcohol exposure or indicative of a susceptibility factor to alcohol consumption, mice were exposed to different regimens of intraperitoneal alcohol administration. Hevin protein expression was increased in the nucleus accumbens after withdrawal followed by a ethanol challenge. The role of hevin in AUD was determined using an RNA interference strategy to downregulate hevin expression in nucleus accumbens astrocytes, which led to increased ethanol consumption. Additionally, ethanol challenge after withdrawal increased hevin levels in blood plasma. Altogether, these results support a novel role for hevin in the neurobiology of AUD.
Collapse
Affiliation(s)
- Amaia Nuñez-delMoral
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
| | - Paula C. Bianchi
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Iria Brocos-Mosquera
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
| | - Augusto Anesio
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Paola Palombo
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Rosana Camarini
- Department of Pharmacology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Fabio C. Cruz
- Department of Pharmacology, Universidade Federal de São Paulo-UNIFESP, São Paulo 04023-062, Brazil
| | - Luis F. Callado
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Vincent Vialou
- Institute of Biology Paris Seine, Neuroscience Paris Seine, CNRS UMR8246, INSERM U1130, Sorbonne Université, 75005 Paris, France
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| | - Amaia M. Erdozain
- Department of Pharmacology, University of the Basque Country, UPV/EHU, 48940 Leioa, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Spain
- Correspondence: (V.V.); (A.M.E.); Tel.: +33-1-44-27-60-98 (V.V.); +34-601-28-48 (A.M.E.)
| |
Collapse
|
4
|
Tjahjono E, Revtovich AV, Kirienko NV. Box C/D small nucleolar ribonucleoproteins regulate mitochondrial surveillance and innate immunity. PLoS Genet 2022; 18:e1010103. [PMID: 35275914 PMCID: PMC8942280 DOI: 10.1371/journal.pgen.1010103] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 03/23/2022] [Accepted: 02/14/2022] [Indexed: 12/27/2022] Open
Abstract
Monitoring mitochondrial function is crucial for organismal survival. This task is performed by mitochondrial surveillance or quality control pathways, which are activated by signals originating from mitochondria and relayed to the nucleus (retrograde response) to start transcription of protective genes. In Caenorhabditis elegans, several systems are known to play this role, including the UPRmt, MAPKmt, and the ESRE pathways. These pathways are highly conserved and their loss compromises survival following mitochondrial stress. In this study, we found a novel interaction between the box C/D snoRNA core proteins (snoRNPs) and mitochondrial surveillance and innate immune pathways. We showed that box C/D, but not box H/ACA, snoRNPs are required for the full function of UPRmt and ESRE upon stress. The loss of box C/D snoRNPs reduced mitochondrial mass, mitochondrial membrane potential, and oxygen consumption rate, indicating overall degradation of mitochondrial function. Concomitantly, the loss of C/D snoRNPs increased immune response and reduced host intestinal colonization by infectious bacteria, improving host resistance to pathogenesis. Our data may indicate a model wherein box C/D snoRNP machinery regulates a "switch" of the cell's activity between mitochondrial surveillance and innate immune activation. Understanding this mechanism is likely to be important for understanding multifactorial processes, including responses to infection and aging.
Collapse
Affiliation(s)
- Elissa Tjahjono
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Alexey V. Revtovich
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Natalia V. Kirienko
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| |
Collapse
|
5
|
Siqueira M, Stipursky J. BLOOD BRAIN BARRIER AS AN INTERFACE FOR ALCOHOL INDUCED NEUROTOXICITY DURING DEVELOPMENT. Neurotoxicology 2022; 90:145-157. [DOI: 10.1016/j.neuro.2022.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/30/2022]
|
6
|
Ferguson LB, Roberts AJ, Mayfield RD, Messing RO. Blood and brain gene expression signatures of chronic intermittent ethanol consumption in mice. PLoS Comput Biol 2022; 18:e1009800. [PMID: 35176017 PMCID: PMC8853518 DOI: 10.1371/journal.pcbi.1009800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 01/03/2022] [Indexed: 02/03/2023] Open
Abstract
Alcohol Use Disorder (AUD) is a chronic, relapsing syndrome diagnosed by a heterogeneous set of behavioral signs and symptoms. There are no laboratory tests that provide direct objective evidence for diagnosis. Microarray and RNA-Seq technologies enable genome-wide transcriptome profiling at low costs and provide an opportunity to identify biomarkers to facilitate diagnosis, prognosis, and treatment of patients. However, access to brain tissue in living patients is not possible. Blood contains cellular and extracellular RNAs that provide disease-relevant information for some brain diseases. We hypothesized that blood gene expression profiles can be used to diagnose AUD. We profiled brain (prefrontal cortex, amygdala, and hypothalamus) and blood gene expression levels in C57BL/6J mice using RNA-seq one week after chronic intermittent ethanol (CIE) exposure, a mouse model of alcohol dependence. We found a high degree of preservation (rho range: [0.50, 0.67]) between blood and brain transcript levels. There was small overlap between blood and brain DEGs, and considerable overlap of gene networks perturbed after CIE related to cell-cell signaling (e.g., GABA and glutamate receptor signaling), immune responses (e.g., antigen presentation), and protein processing / mitochondrial functioning (e.g., ubiquitination, oxidative phosphorylation). Blood gene expression data were used to train classifiers (logistic regression, random forest, and partial least squares discriminant analysis), which were highly accurate at predicting alcohol dependence status (maximum AUC: 90.1%). These results suggest that gene expression profiles from peripheral blood samples contain a biological signature of alcohol dependence that can discriminate between CIE and Air subjects.
Collapse
Affiliation(s)
- Laura B. Ferguson
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Amanda J. Roberts
- Animal Models Core Facility, The Scripps Research Institute, San Diego, California, United States of America
| | - R. Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| | - Robert O. Messing
- Waggoner Center for Alcohol and Addiction Research, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neurology, Dell Medical School, University of Texas at Austin, Austin, Texas, United States of America
- Department of Neuroscience, University of Texas at Austin, Austin, Texas, United States of America
| |
Collapse
|
7
|
Miguel-Hidalgo JJ. Astroglia in the Vulnerability and Maintenance of Alcohol Use Disorders. ADVANCES IN NEUROBIOLOGY 2021; 26:255-279. [PMID: 34888838 DOI: 10.1007/978-3-030-77375-5_11] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Changes induced in the morphology and the multiplicity of functional roles played by astrocytes in brain regions critical to the establishment and maintenance of alcohol abuse suggest that they make an important contribution to the vulnerability to alcohol use disorders. The understanding of the relevant mechanisms accounting for that contribution is complicated by the fact that alcohol itself acts directly on astrocytes altering their metabolism, gene expression, and plasticity, so that the ultimate result is a complex interaction of various cellular pathways, including intracellular calcium regulation, neuroimmune responses, and regulation of neurotransmitter and gliotransmitter release and uptake. The recent years have seen a steady increase in the characterization of several of the relevant mechanisms, but much remains to be done for a full understanding of the astrocytes' contribution to the vulnerability to alcohol dependence and abuse and for using that knowledge in designing effective therapies for AUDs.
Collapse
Affiliation(s)
- José Javier Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, USA.
| |
Collapse
|
8
|
Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology 2021; 46:500-508. [PMID: 32464636 PMCID: PMC8027025 DOI: 10.1038/s41386-020-0721-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 04/30/2020] [Accepted: 05/04/2020] [Indexed: 12/18/2022]
Abstract
Astrocytes are fundamental building blocks of the central nervous system. Their dysfunction has been implicated in many psychiatric disorders, including alcohol use disorder, yet our understanding of their functional role in ethanol intoxication and consumption is very limited. Astrocytes regulate behavior through multiple intracellular signaling pathways, including G-protein coupled-receptor (GPCR)-mediated calcium signals. To test the hypothesis that GPCR-induced calcium signaling is also involved in the behavioral effects of ethanol, we expressed astrocyte-specific excitatory DREADDs in the prefrontal cortex (PFC) of mice. Activating Gq-GPCR signaling in PFC astrocytes increased drinking in ethanol-naïve mice, but not in mice with a history of ethanol drinking. In contrast, reducing calcium signaling with an astrocyte-specific calcium extruder reduced ethanol intake. Cortical astrocyte calcium signaling also altered the acute stimulatory and sedative-hypnotic effects of ethanol. Astrocyte-specific Gq-DREADD activation increased both the locomotor-activating effects of low dose ethanol and the sedative-hypnotic effects of a high dose, while reduced astrocyte calcium signaling diminished sensitivity to the hypnotic effects. In addition, we found that adenosine A1 receptors were required for astrocyte calcium activation to increase ethanol sedation. These results support integral roles for PFC astrocytes in the behavioral actions of ethanol that are due, at least in part, to adenosine receptor activation.
Collapse
|
9
|
Duchateau A, de Thonel A, El Fatimy R, Dubreuil V, Mezger V. The "HSF connection": Pleiotropic regulation and activities of Heat Shock Factors shape pathophysiological brain development. Neurosci Lett 2020; 725:134895. [PMID: 32147500 DOI: 10.1016/j.neulet.2020.134895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 02/29/2020] [Accepted: 03/04/2020] [Indexed: 12/21/2022]
Abstract
The Heat Shock Factors (HSFs) have been historically identified as a family of transcription factors that are activated and work in a stress-responsive manner, after exposure to a large variety of stimuli. However, they are also critical in normal conditions, in a life long manner, in a number of physiological processes that encompass gametogenesis, embryonic development and the integrity of adult organs and organisms. The importance of such roles is emphasized by the devastating impact of their deregulation on health, ranging from reproductive failure, neurodevelopmental disorders, cancer, and aging pathologies, including neurodegenerative disorders. Here, we provide an overview of the delicate choreography of the regulation of HSFs during neurodevelopment, at prenatal and postnatal stages. The regulation of HSFs acts at multiple layers and steps, and comprises the control of (i) HSF mRNA and protein levels, (ii) HSF activity in terms of DNA-binding and transcription, (iii) HSF homo- and hetero-oligomerization capacities, and (iv) HSF combinatory set of post-translational modifications. We also describe how these regulatory mechanisms operate in the normal developing brain and how their perturbation impact neurodevelopment under prenatal or perinatal stress conditions. In addition, we put into perspective the possible role of HSFs in the evolution of the vertebrate brains and the importance of the HSF pathway in a large variety of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Agathe Duchateau
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France; ED 562 BioSPC, Université de Paris, F-75205, Paris Cedex 13, France
| | - Aurélie de Thonel
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Rachid El Fatimy
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Véronique Dubreuil
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France
| | - Valérie Mezger
- Université de Paris, Epigenetics and Cell Fate, CNRS, F-75013, Paris, France; Département Hospitalo-Universitaire DHU PROTECT, Paris, France.
| |
Collapse
|
10
|
Pignataro L. Alcohol protects the CNS by activating HSF1 and inducing the heat shock proteins. Neurosci Lett 2019; 713:134507. [PMID: 31541723 DOI: 10.1016/j.neulet.2019.134507] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 12/15/2022]
Abstract
Although alcohol abuse and dependence have profound negative health consequences, emerging evidence suggests that exposure to low/moderate concentrations of ethanol protects multiple organs and systems. In the CNS, moderate drinking decreases the risk of dementia and Alzheimer's disease. This neuroprotection correlates with an increased expression of the heat shock proteins (HSPs). Multiple epidemiological studies revealed an inverse association between ethanol intoxication and traumatic brain injury mortality. In this case, ethanol-induced HSPs limit the inflammatory immune response diminishing cell death and improving the neurobehavioural outcome. Ethanol also protects the brain against ischemic injuries via the HSPs. In our laboratory, we demonstrated that ethanol increased the expression of several HSP genes in neurons and astrocytes by activating the transcription factor, heat shock factor 1 (HSF1). HSF1 induces HSPs that target misfolded proteins for refolding or degradation, increasing the survival chances of the cells. These data indicate that ethanol neuroprotection is mediated by the activation HSF1 and the induction of HSPs.
Collapse
Affiliation(s)
- Leonardo Pignataro
- Columbia University, Department of Anesthesiology, 622 West 168th St., PH 511, New York, NY, 10032, USA; College of Staten Island - City University of New York, 2800 Victory Blvd., Building 1A - 101, Staten Island, NY, 10314, USA.
| |
Collapse
|
11
|
Erickson EK, Blednov YA, Harris RA, Mayfield RD. Glial gene networks associated with alcohol dependence. Sci Rep 2019; 9:10949. [PMID: 31358844 PMCID: PMC6662804 DOI: 10.1038/s41598-019-47454-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/17/2019] [Indexed: 02/07/2023] Open
Abstract
Chronic alcohol abuse alters the molecular structure and function of brain cells. Recent work suggests adaptations made by glial cells, such as astrocytes and microglia, regulate physiological and behavioral changes associated with addiction. Defining how alcohol dependence alters the transcriptome of different cell types is critical for developing the mechanistic hypotheses necessary for a nuanced understanding of cellular signaling in the alcohol-dependent brain. We performed RNA-sequencing on total homogenate and glial cell populations isolated from mouse prefrontal cortex (PFC) following chronic intermittent ethanol vapor exposure (CIE). Compared with total homogenate, we observed unique and robust gene expression changes in astrocytes and microglia in response to CIE. Gene co-expression network analysis revealed biological pathways and hub genes associated with CIE in astrocytes and microglia that may regulate alcohol-dependent phenotypes. Astrocyte identity and synaptic calcium signaling genes were enriched in alcohol-associated astrocyte networks, while TGF-β signaling and inflammatory response genes were disrupted by CIE treatment in microglia gene networks. Genes related to innate immune signaling, specifically interferon pathways, were consistently up-regulated across CIE-exposed astrocytes, microglia, and total homogenate PFC tissue. This study illuminates the cell-specific effects of chronic alcohol exposure and provides novel molecular targets for studying alcohol dependence.
Collapse
Affiliation(s)
- Emma K Erickson
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA.
| | - Yuri A Blednov
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| | - R Adron Harris
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| | - R Dayne Mayfield
- Waggoner Center for Alcohol and Addiction Research, The University of Texas at Austin, Austin, TX, 78712-01095, USA
| |
Collapse
|
12
|
Parkhurst SJ, Adhikari P, Navarrete JS, Legendre A, Manansala M, Wolf FW. Perineurial Barrier Glia Physically Respond to Alcohol in an Akap200-Dependent Manner to Promote Tolerance. Cell Rep 2019; 22:1647-1656. [PMID: 29444420 PMCID: PMC5831198 DOI: 10.1016/j.celrep.2018.01.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 12/04/2017] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Ethanol is the most common drug of abuse. It exerts its behavioral effects by acting on widespread neural circuits; however, its impact on glial cells is less understood. We show that Drosophila perineurial glia are critical for ethanol tolerance, a simple form of behavioral plasticity. The perineurial glia form the continuous outer cellular layer of the blood-brain barrier and are the interface between the brain and the circulation. Ethanol tolerance development requires the A kinase anchoring protein Akap200 specifically in perineurial glia. Akap200 tightly coordinates protein kinase A, actin, and calcium signaling at the membrane to control tolerance. Furthermore, ethanol causes a structural remodeling of the actin cytoskeleton and perineurial membrane topology in an Akap200-dependent manner, without disrupting classical barrier functions. Our findings reveal an active molecular signaling process in the cells at the blood-brain interface that permits a form of behavioral plasticity induced by ethanol.
Collapse
Affiliation(s)
- Sarah J Parkhurst
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Pratik Adhikari
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Jovana S Navarrete
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Arièle Legendre
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Miguel Manansala
- Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Fred W Wolf
- Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA; Molecular Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA.
| |
Collapse
|
13
|
Grifasi IR, McIntosh SE, Thomas RD, Lysle DT, Thiele TE, Marshall SA. Characterization of the Hippocampal Neuroimmune Response to Binge-Like Ethanol Consumption in the Drinking in the Dark Model. Neuroimmunomodulation 2019; 26:19-32. [PMID: 30625475 PMCID: PMC6389401 DOI: 10.1159/000495210] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 11/08/2018] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVES Alcohol dependence leads to dysregulation of the neuroimmune system, but the effects of excessive alcohol consumption on key players of the neuroimmune response after episodic binge drinking in nondependence has not been readily assessed. These studies seek to determine how the neuroimmune system within the hippocampus responds to binge-like consumption prior to dependence or evidence of brain damage. METHODS C57BL/6J mice underwent the drinking in the dark (DID) paradigm to recapitulate binge consumption. Immunohistochemical techniques were employed to determine the effects of ethanol on cytokine and astrocyte responses within the hippocampus. Astrocyte activation was also assessed using qRT-PCR. RESULTS Our results indicated that binge-like ethanol consumption resulted in a 3.6-fold increase in the proinflammatory cytokine interleukin (IL)-1β immunoreactivity in various regions of the hippocampus. The opposite effect was seen in the anti-inflammatory cytokine IL-10. Binge-like consumption resulted in a 67% decrease in IL-10 immunoreactivity but had no effect on IL-4 or IL-6 compared with the water-drinking control group. Moreover, astrocyte activation occurred following ethanol exposure as GFAP immunoreactivity was increased over 120% in mice that experienced 3 cycles of ethanol binges. PCR analyses indicated that the mRNA increased by almost 4-fold after one cycle of DID, but this effect did not persist in abstinence. CONCLUSIONS Altogether, these findings suggest that binge-like ethanol drinking prior to dependence causes dysregulation to the neuroimmune system. This altered neuroimmune state may have an impact on behavior but could also result in a heightened neuroimmune response that is exacerbated from further ethanol exposure or other immune-modulating events.
Collapse
Affiliation(s)
- Isabella R Grifasi
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Scot E McIntosh
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA
| | - Rhiannon D Thomas
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Donald T Lysle
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, North Carolina, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - Todd E Thiele
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, North Carolina, USA
- Bowles Center for Alcohol Studies, The University of North Carolina, Chapel Hill, North Carolina, USA
| | - S Alex Marshall
- Department of Basic Pharmaceutical Sciences, Fred P. Wilson School of Pharmacy, High Point University, High Point, North Carolina, USA,
- Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, North Carolina, USA,
| |
Collapse
|
14
|
Kang D, Kirienko DR, Webster P, Fisher AL, Kirienko NV. Pyoverdine, a siderophore from Pseudomonas aeruginosa, translocates into C. elegans, removes iron, and activates a distinct host response. Virulence 2018. [PMID: 29532717 PMCID: PMC5955448 DOI: 10.1080/21505594.2018.1449508] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Pseudomonas aeruginosa, a re-emerging, opportunistic human pathogen, encodes a variety of virulence determinants. Pyoverdine, a siderophore produced by this bacterium, is essential for pathogenesis in mammalian infections. This observation is generally attributed to its roles in acquiring iron and/or regulating other virulence factors. Here we report that pyoverdine translocates into the host, where it binds and extracts iron. Pyoverdine-mediated iron extraction damages host mitochondria, disrupting their function and triggering mitochondrial turnover via autophagy. The host detects this damage via a conserved mitochondrial surveillance pathway mediated by the ESRE network. Our findings illuminate the pathogenic mechanisms of pyoverdine and highlight the importance of this bacterial product in host-pathogen interactions.
Collapse
Affiliation(s)
- Donghoon Kang
- a Department of BioSciences , Rice University , Houston TX , USA
| | | | - Phillip Webster
- b Center for Healthy Aging , University of Texas Health Sciences Center , San Antonio TX , USA
| | - Alfred L Fisher
- b Center for Healthy Aging , University of Texas Health Sciences Center , San Antonio TX , USA.,c GRECC, South Texas VA Healthcare System , San Antonio TX , USA
| | | |
Collapse
|
15
|
Miguel-Hidalgo JJ. Molecular Neuropathology of Astrocytes and Oligodendrocytes in Alcohol Use Disorders. Front Mol Neurosci 2018; 11:78. [PMID: 29615864 PMCID: PMC5869926 DOI: 10.3389/fnmol.2018.00078] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/28/2018] [Indexed: 12/16/2022] Open
Abstract
Postmortem studies reveal structural and molecular alterations of astrocytes and oligodendrocytes in both the gray and white matter (GM and WM) of the prefrontal cortex (PFC) in human subjects with chronic alcohol abuse or dependence. These glial cellular changes appear to parallel and may largely explain structural and functional alterations detected using neuroimaging techniques in subjects with alcohol use disorders (AUDs). Moreover, due to the crucial roles of astrocytes and oligodendrocytes in neurotransmission and signal conduction, these cells are very likely major players in the molecular mechanisms underpinning alcoholism-related connectivity disturbances between the PFC and relevant interconnecting brain regions. The glia-mediated etiology of alcohol-related brain damage is likely multifactorial since metabolic, hormonal, hepatic and hemodynamic factors as well as direct actions of ethanol or its metabolites have the potential to disrupt distinct aspects of glial neurobiology. Studies in animal models of alcoholism and postmortem human brains have identified astrocyte markers altered in response to significant exposures to ethanol or during alcohol withdrawal, such as gap-junction proteins, glutamate transporters or enzymes related to glutamate and gamma-aminobutyric acid (GABA) metabolism. Changes in these proteins and their regulatory pathways would not only cause GM neuronal dysfunction, but also disturbances in the ability of WM axons to convey impulses. In addition, alcoholism alters the expression of astrocyte and myelin proteins and of oligodendrocyte transcription factors important for the maintenance and plasticity of myelin sheaths in WM and GM. These changes are concomitant with epigenetic DNA and histone modifications as well as alterations in regulatory microRNAs (miRNAs) that likely cause profound disturbances of gene expression and protein translation. Knowledge is also available about interactions between astrocytes and oligodendrocytes not only at the Nodes of Ranvier (NR), but also in gap junction-based astrocyte-oligodendrocyte contacts and other forms of cell-to-cell communication now understood to be critical for the maintenance and formation of myelin. Close interactions between astrocytes and oligodendrocytes also suggest that therapies for alcoholism based on a specific glial cell type pathology will require a better understanding of molecular interactions between different cell types, as well as considering the possibility of using combined molecular approaches for more effective therapies.
Collapse
Affiliation(s)
- José J Miguel-Hidalgo
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
16
|
Astrocyte-specific transcriptome responses to chronic ethanol consumption. THE PHARMACOGENOMICS JOURNAL 2018; 18:578-589. [PMID: 29305589 PMCID: PMC6033697 DOI: 10.1038/s41397-017-0012-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 08/04/2017] [Accepted: 11/06/2017] [Indexed: 01/01/2023]
Abstract
Astrocytes play critical roles in central nervous system (CNS) homeostasis and are implicated in the pathogenesis of neurological and psychiatric conditions, including drug dependence. Little is known about the effects of chronic ethanol consumption on astrocyte gene expression. To address this gap in knowledge, we performed transcriptome-wide RNA sequencing of astrocytes isolated from the prefrontal cortex (PFC) of mice following chronic ethanol consumption. Differential expression analysis revealed ethanol-induced changes unique to astrocytes that were not identified in total homogenate preparations. Astrocyte-specific gene expression revealed calcium-related signaling and regulation of extracellular matrix genes as responses to chronic ethanol use. These findings emphasize the importance of investigating expression changes in specific cellular populations to define molecular consequences of chronic ethanol consumption in mammalian brain.
Collapse
|
17
|
A conserved mitochondrial surveillance pathway is required for defense against Pseudomonas aeruginosa. PLoS Genet 2017; 13:e1006876. [PMID: 28662060 PMCID: PMC5510899 DOI: 10.1371/journal.pgen.1006876] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/14/2017] [Accepted: 06/16/2017] [Indexed: 12/12/2022] Open
Abstract
All living organisms exist in a precarious state of homeostasis that requires constant maintenance. A wide variety of stresses, including hypoxia, heat, and infection by pathogens perpetually threaten to imbalance this state. Organisms use a battery of defenses to mitigate damage and restore normal function. Previously, we described a Caenorhabditis elegans-Pseudomonas aeruginosa assay (Liquid Killing) in which toxicity to the host is dependent upon the secreted bacterial siderophore pyoverdine. Although pyoverdine is also indispensable for virulence in mammals, its cytological effects are unclear. We used genetics, transcriptomics, and a variety of pathogen and chemical exposure assays to study the interactions between P. aeruginosa and C. elegans. Although P. aeruginosa can kill C. elegans through at least 5 different mechanisms, the defense responses activated by Liquid Killing are specific and selective and have little in common with innate defense mechanisms against intestinal colonization. Intriguingly, the defense response utilizes the phylogenetically-conserved ESRE (Ethanol and Stress Response Element) network, which we and others have previously shown to mitigate damage from a variety of abiotic stresses. This is the first report of this networks involvement in innate immunity, and indicates that host innate immune responses overlap with responses to abiotic stresses. The upregulation of the ESRE network in C. elegans is mediated in part by a family of bZIP proteins (including ZIP-2, ZIP-4, CEBP-1, and CEBP-2) that have overlapping and unique functions. Our data convincingly show that, following exposure to P. aeruginosa, the ESRE defense network is activated by mitochondrial damage, and that mitochondrial damage also leads to ESRE activation in mammals. This establishes a role for ESRE in a phylogenetically-conserved mitochondrial surveillance system important for stress response and innate immunity.
Collapse
|
18
|
Warden A, Erickson E, Robinson G, Harris RA, Mayfield RD. The neuroimmune transcriptome and alcohol dependence: potential for targeted therapies. Pharmacogenomics 2016; 17:2081-2096. [PMID: 27918243 DOI: 10.2217/pgs-2016-0062] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Transcriptome profiling enables discovery of gene networks that are altered in alcoholic brains. This technique has revealed involvement of the brain's neuroimmune system in regulating alcohol abuse and dependence, and has provided potential therapeutic targets. In this review, we discuss Toll-like-receptor pathways, hypothesized to be key players in many stages of the alcohol addiction cycle. The growing appreciation of the neuroimmune system's involvement in alcoholism has also led to consideration of crucial roles for glial cells, including astrocytes and microglia, in the brain's response to alcohol abuse. We discuss current knowledge and hypotheses on the roles that specific neuroimmune cell types may play in addiction. Current strategies for repurposing US FDA-approved drugs for the treatment of alcohol use disorders are also discussed.
Collapse
Affiliation(s)
- Anna Warden
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Emma Erickson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - Gizelle Robinson
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Adron Harris
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| | - R Dayne Mayfield
- The University of Texas at Austin, Waggoner Center for Alcohol & Addiction Research, Austin, TX, USA
| |
Collapse
|
19
|
Urquhart KR, Zhao Y, Baker JA, Lu Y, Yan L, Cook MN, Jones BC, Hamre KM, Lu L. A novel heat shock protein alpha 8 (Hspa8) molecular network mediating responses to stress- and ethanol-related behaviors. Neurogenetics 2016; 17:91-105. [PMID: 26780340 DOI: 10.1007/s10048-015-0470-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 12/10/2015] [Indexed: 12/15/2022]
Abstract
Genetic differences mediate individual differences in susceptibility and responses to stress and ethanol, although, the specific molecular pathways that control these responses are not fully understood. Heat shock protein alpha 8 (Hspa8) is a molecular chaperone and member of the heat shock protein family that plays an integral role in the stress response and that has been implicated as an ethanol-responsive gene. Therefore, we assessed its role in mediating responses to stress and ethanol across varying genetic backgrounds. The hippocampus is an important mediator of these responses, and thus, was examined in the BXD family of mice in this study. We conducted bioinformatic analyses to dissect genetic factors modulating Hspa8 expression, identify downstream targets of Hspa8, and examined its role. Hspa8 is trans-regulated by a gene or genes on chromosome 14 and is part of a molecular network that regulates stress- and ethanol-related behaviors. To determine additional components of this network, we identified direct or indirect targets of Hspa8 and show that these genes, as predicted, participate in processes such as protein folding and organic substance metabolic processes. Two phenotypes that map to the Hspa8 locus are anxiety-related and numerous other anxiety- and/or ethanol-related behaviors significantly correlate with Hspa8 expression. To more directly assay this relationship, we examined differences in gene expression following exposure to stress or alcohol and showed treatment-related differential expression of Hspa8 and a subset of the members of its network. Our findings suggest that Hspa8 plays a vital role in genetic differences in responses to stress and ethanol and their interactions.
Collapse
Affiliation(s)
- Kyle R Urquhart
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Yinghong Zhao
- Department of Neurology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, China
| | - Jessica A Baker
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Ye Lu
- The International Hospital of Zhejiang University, Hangzhou, Zhejiang, China
| | - Lei Yan
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Melloni N Cook
- Department of Psychology, University of Memphis, Memphis, TN, 38152, USA
| | - Byron C Jones
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA
| | - Kristin M Hamre
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA.
| | - Lu Lu
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN, 38163, USA. .,Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Medical College of Nantong University, Nantong, China.
| |
Collapse
|
20
|
Risher ML, Sexton HG, Risher WC, Wilson WA, Fleming RL, Madison RD, Moore SD, Eroglu C, Swartzwelder HS. Adolescent Intermittent Alcohol Exposure: Dysregulation of Thrombospondins and Synapse Formation are Associated with Decreased Neuronal Density in the Adult Hippocampus. Alcohol Clin Exp Res 2015; 39:2403-13. [PMID: 26537975 PMCID: PMC4712076 DOI: 10.1111/acer.12913] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/22/2015] [Indexed: 01/18/2023]
Abstract
BACKGROUND Adolescent intermittent alcohol exposure (AIE) has profound effects on neuronal function. We have previously shown that AIE causes aberrant hippocampal structure and function that persists into adulthood. However, the possible contributions of astrocytes and their signaling factors remain largely unexplored. We investigated the acute and enduring effects of AIE on astrocytic reactivity and signaling on synaptic expression in the hippocampus, including the impact of the thrombospondin (TSP) family of astrocyte-secreted synaptogenic factors and their neuronal receptor, alpha2delta-1 (α2δ-1). Our hypothesis is that some of the influences of AIE on neuronal function may be secondary to direct effects on astrocytes. METHODS We conducted Western blot analysis on TSPs 1 to 4 and α2δ-1 from whole hippocampal lysates 24 hours after the 4th and 10th doses of AIE, then 24 days after the last dose (in adulthood). We used immunohistochemistry to assess astrocyte reactivity (i.e., morphology) and synaptogenesis (i.e., colocalization of pre- and postsynaptic puncta). RESULTS Adolescent AIE reduced α2δ-1 expression, and colocalized pre- and postsynaptic puncta after the fourth ethanol (EtOH) dose. By the 10th dose, increased TSP2 levels were accompanied by an increase in colocalized pre- and postsynaptic puncta, while α2δ-1 returned to control levels. Twenty-four days after the last EtOH dose (i.e., adulthood), TSP2, TSP4, and α2δ-1 expression were all elevated. Astrocyte reactivity, indicated by increased astrocytic volume and area, was also observed at that time. CONCLUSIONS Repeated EtOH exposure during adolescence results in long-term changes in specific astrocyte signaling proteins and their neuronal synaptogenic receptor. Continued signaling by these traditionally developmental factors in adulthood may represent a compensatory mechanism whereby astrocytes reopen the synaptogenic window and repair lost connectivity, and consequently contribute to the enduring maladaptive structural and functional abnormalities previously observed in the hippocampus after AIE.
Collapse
Affiliation(s)
- Mary-Louise Risher
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Hannah G Sexton
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - W Christopher Risher
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - Wilkie A Wilson
- Social Sciences Research Institute, Duke University Medical Center, Durham, North Carolina
| | - Rebekah L Fleming
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Roger D Madison
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Neurosurgery, Duke University Medical Center, Durham, North Carolina
| | - Scott D Moore
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
| | - Cagla Eroglu
- Department of Cell Biology, Duke University Medical Center, Durham, North Carolina
| | - H Scott Swartzwelder
- Durham VA Medical Center, Duke University Medical Center, Durham, North Carolina
- Department of Psychiatry and Behavioral Sciences, Duke University Medical Center, Durham, North Carolina
- Department of Psychology and Neuroscience, Duke University Medical Center, Durham, North Carolina
| |
Collapse
|
21
|
Isoflurane impairs the capacity of astrocytes to support neuronal development in a mouse dissociated coculture model. J Neurosurg Anesthesiol 2015; 26:363-8. [PMID: 25191957 DOI: 10.1097/ana.0000000000000119] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND There is growing concern that pediatric exposure to anesthetic agents may cause long-lasting deficits in learning by impairing brain development. Most studies to date on this topic have focused on the direct effects of anesthetics on developing neurons. Relatively little attention has been paid to possible effects of anesthetics on astrocytes, a glial cell type that plays an important supporting role in neuronal development. METHODS Astrocytes were exposed to isoflurane and then cocultured with unexposed neurons to test for astrocyte-specific toxic effects on neuronal growth. Axon length was measured in the cocultured neurons to assess neuronal growth. RESULTS We found that neurons cocultured with astrocytes exposed to isoflurane exhibited a 30% reduction in axon outgrowth. Further experimentation showed that this effect is likely due to reduced levels of brain-derived neurotrophic factor in the coculture media. CONCLUSIONS Isoflurane interferes with the ability of cultured astrocytes to support neuronal growth. This finding represents a potentially novel mechanism through which general anesthetics may interfere with brain development.
Collapse
|
22
|
Wilhelm CJ, Hashimoto JG, Roberts ML, Bloom SH, Beard DK, Wiren KM. Females uniquely vulnerable to alcohol-induced neurotoxicity show altered glucocorticoid signaling. Brain Res 2015; 1601:102-16. [PMID: 25601008 DOI: 10.1016/j.brainres.2015.01.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/28/2014] [Accepted: 01/01/2015] [Indexed: 12/29/2022]
Abstract
Women are more sensitive to the harmful effects of alcohol (EtOH) abuse than men, yet the underlying mechanisms remain poorly understood. Previous gene expression analysis of the medial prefrontal cortex (mPFC) following a chronic intoxication paradigm using continuous 72 h vapor inhalation found that females, but not males, exhibit an inflammatory response at peak withdrawal that is associated with cell damage. Given that glucocorticoids can function as anti-inflammatories, are known to increase with EtOH exposure, and influence neurotoxicity, we hypothesized that males and females may exhibit an altered corticosterone (CORT) response following chronic intoxication. Analysis of serum CORT levels revealed the expected increase during withdrawal with no difference between males and females, while control males but not females exhibited higher CORT concentrations than naive animals. Glucocorticoid signaling characterized using focused qPCR arrays identified a sexually dimorphic response in the mPFC during withdrawal, particularly among astrocyte-enriched genes. These genes include aquaporin-1 (Aqp1), sphingosine kinase 1 (Sphk1) and connective tissue growth factor (Ctgf); genes associated with inflammatory signaling, and tissue damage and repair. Bioinformatic analysis also revealed activation of inflammatory signaling and cell death pathways in females. Confirmation studies showed that female mice exhibited significant neuronal degeneration within the anterior cingulate cortex (ACC). By contrast, EtOH exposure lead to a significant reduction in cell death in males. Thus, distinct glucocorticoid signaling pathways are associated with sexually dimorphic neurotoxicity, suggesting one mechanism by which EtOH-exposed females are particularly vulnerable to the damaging effects of alcohol in the CNS.
Collapse
Affiliation(s)
- Clare J Wilhelm
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Psychiatry, Oregon Health & Science University, Portland, OR 97239, USA.
| | - Joel G Hashimoto
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | | - Kristine M Wiren
- VA Portland Health Care System, Portland, OR 97239, USA; Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
23
|
Muralidharan S, Ambade A, Fulham MA, Deshpande J, Catalano D, Mandrekar P. Moderate alcohol induces stress proteins HSF1 and hsp70 and inhibits proinflammatory cytokines resulting in endotoxin tolerance. THE JOURNAL OF IMMUNOLOGY 2014; 193:1975-87. [PMID: 25024384 DOI: 10.4049/jimmunol.1303468] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Binge or moderate alcohol exposure impairs host defense and increases susceptibility to infection because of compromised innate immune responses. However, there is a lack of consensus on the molecular mechanism by which alcohol mediates this immunosuppression. In this study, we show that cellular stress proteins HSF1 and hsp70 play a mechanistic role in alcohol-mediated inhibition of the TLR4/MyD88 pathway. Alcohol exposure induced transcription factor HSF1 mRNA expression and DNA binding activity in primary human monocytes and murine macrophages. Furthermore, HSF1 target gene hsp70 mRNA and protein are upregulated by alcohol in monocytes. In vitro pre-exposure to moderate alcohol reduced subsequent LPS-induced NF-κB promoter activity and downstream TNF-α, IL-6 and IL-1β production in monocytes and macrophages, exhibiting endotoxin tolerance. Mechanistic analysis demonstrates that alcohol-induced HSF1 binds to the TNF-α promoter in macrophages at early time points, exerting transrepression and decreased TNF-α expression. Furthermore, association of hsp70 with NF-κB subunit p50 in alcohol-treated macrophages correlates with reduced NF-κB activation at later time points. Hsp70 overexpression in macrophages was sufficient to block LPS-induced NF-κB promoter activity, suggesting alcohol-mediated immunosuppression by hsp70. The direct crosstalk of hsp70 and HSF1 was further confirmed by the loss of alcohol-mediated endotoxin tolerance in hsp70- and HSF1-silenced macrophages. Our data suggest that alcohol-mediated activation of HSF1 and induction of hsp70 inhibit TLR4-MyD88 signaling and are required for alcohol-induced endotoxin tolerance. Using stress proteins as direct drug targets would be clinically relevant in alcohol abuse treatment and may serve to provide a better understanding of alcohol-mediated immunosuppression.
Collapse
Affiliation(s)
- Sujatha Muralidharan
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Aditya Ambade
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Melissa A Fulham
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Janhavee Deshpande
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Donna Catalano
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| | - Pranoti Mandrekar
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA 01605
| |
Collapse
|
24
|
Szabo G, Lippai D. Converging actions of alcohol on liver and brain immune signaling. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2014; 118:359-80. [PMID: 25175869 DOI: 10.1016/b978-0-12-801284-0.00011-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chronic excessive alcohol consumption results in inflammation in multiple organs, including the brain. While the contribution of neuroinflammation to alcohol-related cognitive dysfunction and behavioral alterations is established, the mechanisms by which alcohol triggers inflammation in the brain are only partially understood. There are acute and long-term alterations in brain function due to intercellular and intracellular changes of different cell types as a result of alcohol consumption. This review focuses on the alcohol-induced proinflammatory cellular and molecular changes in the central nervous system. Alcohol passes through the blood-brain barrier and alters neurotransmission. Alcohol use activates microglia and astrocyte, contributing to neurodegeneration and impaired regeneration. Alcohol-induced cell injury in the brain results in release of damage-associated molecular patterns, such as high mobility group box 1, that trigger inflammatory changes through activation of pattern recognition receptors. In addition, alcohol consumption increases intestinal permeability and results in increased levels of pathogen-associated molecular pattern such as endotoxin in the systemic circulation that triggers PRRs and inflammation. The Toll-like receptor-4 pathway that activates nuclear factor-κB and secretion of proinflammatory cytokines, tumor necrosis factor-α, interleukin-1-beta, and chemokines, including monocyte chemotactic protein-1, has been suggested to contribute to alcohol-induced neuroinflammation. Alcohol-induced IL-1β secretion also requires Nod-like receptor-mediated inflammasome and caspase-1 activation, and, consistent with this, disruption of IL-1/IL-1-receptor signaling prevents alcohol-induced neuroinflammation. Delicate regulators of inflammatory gene expressions are micro-RNAs (miRs) that have recently been identified in alcohol-related neuroinflammation. Alcohol induces miR155, a regulator of inflammation in the brain, and deficiency in miR-155 in mice was protective from neuroinflammatory changes. These observations suggest that manipulation of miR pathways and cytokine induction may reduce alcohol-induced proinflammatory processes.
Collapse
Affiliation(s)
- Gyongyi Szabo
- Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA.
| | - Dora Lippai
- 2nd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| |
Collapse
|
25
|
Varodayan FP, Harrison NL. HSF1 transcriptional activity mediates alcohol induction of Vamp2 expression and GABA release. Front Integr Neurosci 2013; 7:89. [PMID: 24376402 PMCID: PMC3858671 DOI: 10.3389/fnint.2013.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 11/20/2013] [Indexed: 01/08/2023] Open
Abstract
Many central synapses are highly sensitive to alcohol, and it is now accepted that short-term alterations in synaptic function may lead to longer-term changes in circuit function. The regulation of postsynaptic receptors by alcohol has been well studied, but the mechanisms underlying the effects of alcohol on the presynaptic terminal are relatively unexplored. To identify a pathway by which alcohol regulates neurotransmitter release, we recently investigated the mechanism by which ethanol induces Vamp2, but not Vamp1, in mouse primary cortical cultures. These two genes encode isoforms of synaptobrevin, a vesicular soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein required for synaptic vesicle fusion. We found that alcohol activates the transcription factor heat shock factor 1 (HSF1) to induce Vamp2 expression, while Vamp1 mRNA levels remain unaffected. As the Vamp2 gene encodes a SNARE protein, we then investigated whether ethanol exposure and HSF1 transcriptional activity alter neurotransmitter release using electrophysiology. We found that alcohol increased the frequency of γ-aminobutyric acid (GABA)-mediated miniature IPSCs via HSF1, but had no effect on mEPSCs. Overall, these data indicate that alcohol induces HSF1 transcriptional activity to trigger a specific coordinated adaptation in GABAergic presynaptic terminals. This mechanism could explain some of the changes in synaptic function that occur soon after alcohol exposure, and may underlie some of the more enduring effects of chronic alcohol intake on local circuit function.
Collapse
Affiliation(s)
- Florence P Varodayan
- Department of Neuroscience, Columbia University New York City, NY, USA ; Department of Anesthesiology, Columbia University New York City, NY, USA
| | - Neil L Harrison
- Department of Anesthesiology, Columbia University New York City, NY, USA ; Department of Pharmacology, Columbia University New York City, NY, USA
| |
Collapse
|