1
|
Mantovani E, Martini A, Dinoto A, Zucchella C, Ferrari S, Mariotto S, Tinazzi M, Tamburin S. Biomarkers for cognitive impairment in alpha-synucleinopathies: an overview of systematic reviews and meta-analyses. NPJ Parkinsons Dis 2024; 10:211. [PMID: 39488513 PMCID: PMC11531557 DOI: 10.1038/s41531-024-00823-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 10/19/2024] [Indexed: 11/04/2024] Open
Abstract
Cognitive impairment (CI) is common in α-synucleinopathies, i.e., Parkinson's disease, Lewy bodies dementia, and multiple system atrophy. We summarize data from systematic reviews/meta-analyses on neuroimaging, neurophysiology, biofluid and genetic diagnostic/prognostic biomarkers of CI in α-synucleinopathies. Diagnostic biomarkers include atrophy/functional neuroimaging brain changes, abnormal cortical amyloid and tau deposition, and cerebrospinal fluid (CSF) Alzheimer's disease (AD) biomarkers, cortical rhythm slowing, reduced cortical cholinergic and glutamatergic and increased cortical GABAergic activity, delayed P300 latency, increased plasma homocysteine and cystatin C and decreased vitamin B12 and folate, increased CSF/serum albumin quotient, and serum neurofilament light chain. Prognostic biomarkers include brain regional atrophy, cortical rhythm slowing, CSF amyloid biomarkers, Val66Met polymorphism, and apolipoprotein-E ε2 and ε4 alleles. Some AD/amyloid/tau biomarkers may diagnose/predict CI in α-synucleinopathies, but single, validated diagnostic/prognostic biomarkers lack. Future studies should include large consortia, biobanks, multi-omics approach, artificial intelligence, and machine learning to better reflect the complexity of CI in α-synucleinopathies.
Collapse
Affiliation(s)
- Elisa Mantovani
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| | - Alice Martini
- School of Psychology, Keele University, Newcastle, UK
- Addiction Department, Azienda Sanitaria Friuli Occidentale, Pordenone, Italy
| | - Alessandro Dinoto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Chiara Zucchella
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sergio Ferrari
- Section of Neurology, Department of Neurosciences, Verona University Hospital, Verona, Italy
| | - Sara Mariotto
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Michele Tinazzi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Stefano Tamburin
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Verona, Italy.
| |
Collapse
|
2
|
Kim S, Park SG, Kim J, Hong S, Cho SM, Lim SY, Kim EK, Ju S, Lee SB, Kim SP, Jeong TY, Oh Y, Han S, Kim HR, Lee TC, Kim HC, Yoon WK, An TH, Oh KJ, Nam KH, Lee S, Kim K, Seong JK, Lee H. Comprehensive phenotypic assessment of nonsense mutations in mitochondrial ND5 in mice. Exp Mol Med 2024:10.1038/s12276-024-01333-9. [PMID: 39482535 DOI: 10.1038/s12276-024-01333-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 07/07/2024] [Accepted: 07/30/2024] [Indexed: 11/03/2024] Open
Abstract
Mitochondrial dysfunction induced by mitochondrial DNA (mtDNA) mutations has been implicated in various human diseases. A comprehensive analysis of mitochondrial genetic disorders requires suitable animal models for human disease studies. While gene knockout via premature stop codons is a powerful method for investigating the unique functions of target genes, achieving knockout of mtDNA has been rare. Here, we report the genotypes and phenotypes of heteroplasmic MT-ND5 gene-knockout mice. These mutant mice presented damaged mitochondrial cristae in the cerebral cortex, hippocampal atrophy, and asymmetry, leading to learning and memory abnormalities. Moreover, mutant mice are susceptible to obesity and thermogenetic disorders. We propose that these mtDNA gene-knockdown mice could serve as valuable animal models for studying the MT-ND5 gene and developing therapies for human mitochondrial disorders in the future.
Collapse
Affiliation(s)
- Sanghun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seul Gi Park
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Jieun Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seongho Hong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang-Mi Cho
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Soo-Yeon Lim
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Eun-Kyoung Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Sungjin Ju
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Su Bin Lee
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sol Pin Kim
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea
| | - Tae Young Jeong
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Yeji Oh
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea
| | - Seunghun Han
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hae-Rim Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Taek Chang Lee
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Hyoung-Chin Kim
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Won Kee Yoon
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea
| | - Tae Hyeon An
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Kyoung-Jin Oh
- Metabolic Regulation Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon, 34141, Republic of Korea
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology (UST), Daejeon, 34141, Republic of Korea
| | - Ki-Hoan Nam
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
| | - Seonghyun Lee
- Department of MetaBioHealth, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea.
| | - Kyoungmi Kim
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Department of Physiology, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, and BK21 PLUS Program for Creative Veterinary Science Research, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea.
- Korea Model animal Priority Center, Seoul National University, Seoul, 08826, Republic of Korea.
| | - Hyunji Lee
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, 02841, Republic of Korea.
- Laboratory Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, 28116, Republic of Korea.
- Department of Convergence Medicine, Korea University College of Medicine, Seoul, 02708, Republic of Korea.
| |
Collapse
|
3
|
Joo JY, Yoo D, Kim JM, Shin C, Ahn TB. Effect of Positional Changes on Cerebral Perfusion in Parkinson's Disease Patients With Orthostatic Hypotension. J Mov Disord 2024; 17:408-415. [PMID: 39245082 PMCID: PMC11540534 DOI: 10.14802/jmd.24104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/04/2024] [Accepted: 09/07/2024] [Indexed: 09/10/2024] Open
Abstract
OBJECTIVE Orthostatic hypotension (OH) is one of the most common autonomic dysfunctions in Parkinson's disease (PD) patients. However, many patients with OH are asymptomatic. Conversely, orthostatic dizziness (OD) is not always associated with OH. We investigated the effects of positional changes on cerebral perfusion in patients with PD and OH. METHODS We enrolled 42 patients, comprising 31 PD patients and 11 healthy controls. All the subjects underwent the following clinical assessments: the OH questionnaire, head-up tilt test (HUTT) with transcranial Doppler (TCD), near-infrared spectroscopy, measurement of the change in oxygenated hemoglobin (ΔHboxy) during the squat-to-stand test (SST), measurement of the time derivative of total hemoglobin (DHbtot), and time taken to reach the peak (peak time [PT]) of DHbtot after restanding. RESULTS The mean flow velocity change (ΔMFV) in the TCD during the HUTT failed to differentiate between the PD-OH(+) and PD-OH(-) groups. The change in oxygenated hemoglobin ΔHboxy was greater in the PD-OH(+) group, which persisted for 9 min until the end of the HUTT only in the left hemisphere. During SST, PT was significantly delayed in the left hemisphere in PD-OH(+) patients. CONCLUSION Although TCD demonstrated no significant difference in ΔMFV, the parameters measured by near-infrared spectroscopy, such as ΔHboxy during HUTT and PT during the SST, significantly increased ΔHboxy or delayed PT in the left hemisphere of PD-OH(+). Positional changes have a detrimental effect on cerebral hemodynamics in patients with PD and OH, especially in the left hemisphere.
Collapse
Affiliation(s)
- Jae Young Joo
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
- Department of Neurology, Uijeongbu Eulji Medical Center, Eulji University, Uijeongbu, Korea
| | - Dallah Yoo
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| | - Jae-Myoung Kim
- R&D Center, Optics Brain Electronics Laboratory, OBELAB Inc., Seoul, Korea
| | - Chaewon Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, Korea
- Department of Neurology, College of Medicine, Chungnam National University, Daejeon, Korea
| | - Tae-Beom Ahn
- Department of Neurology, Kyung Hee University Hospital, Seoul, Korea
| |
Collapse
|
4
|
Khadhraoui E, Nickl-Jockschat T, Henkes H, Behme D, Müller SJ. Automated brain segmentation and volumetry in dementia diagnostics: a narrative review with emphasis on FreeSurfer. Front Aging Neurosci 2024; 16:1459652. [PMID: 39291276 PMCID: PMC11405240 DOI: 10.3389/fnagi.2024.1459652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 08/19/2024] [Indexed: 09/19/2024] Open
Abstract
BackgroundDementia can be caused by numerous different diseases that present variable clinical courses and reveal multiple patterns of brain atrophy, making its accurate early diagnosis by conventional examinative means challenging. Although highly accurate and powerful, magnetic resonance imaging (MRI) currently plays only a supportive role in dementia diagnosis, largely due to the enormous volume and diversity of data it generates. AI-based software solutions/algorithms that can perform automated segmentation and volumetry analyses of MRI data are being increasingly used to address this issue. Numerous commercial and non-commercial software solutions for automated brain segmentation and volumetry exist, with FreeSurfer being the most frequently used.ObjectivesThis Review is an account of the current situation regarding the application of automated brain segmentation and volumetry to dementia diagnosis.MethodsWe performed a PubMed search for “FreeSurfer AND Dementia” and obtained 493 results. Based on these search results, we conducted an in-depth source analysis to identify additional publications, software tools, and methods. Studies were analyzed for design, patient collective, and for statistical evaluation (mathematical methods, correlations).ResultsIn the studies identified, the main diseases and cohorts represented were Alzheimer’s disease (n = 276), mild cognitive impairment (n = 157), frontotemporal dementia (n = 34), Parkinson’s disease (n = 29), dementia with Lewy bodies (n = 20), and healthy controls (n = 356). The findings and methods of a selection of the studies identified were summarized and discussed.ConclusionOur evaluation showed that, while a large number of studies and software solutions are available, many diseases are underrepresented in terms of their incidence. There is therefore plenty of scope for targeted research.
Collapse
Affiliation(s)
- Eya Khadhraoui
- Clinic for Neuroradiology, University Hospital, Magdeburg, Germany
| | - Thomas Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, University Hospital, Magdeburg, Germany
- German Center for Mental Health (DZPG), Partner Site Halle-Jena-Magdeburg, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Magdeburg, Germany
| | - Hans Henkes
- Neuroradiologische Klinik, Katharinen-Hospital, Klinikum-Stuttgart, Stuttgart, Germany
| | - Daniel Behme
- Clinic for Neuroradiology, University Hospital, Magdeburg, Germany
- Stimulate Research Campus Magdeburg, Magdeburg, Germany
| | | |
Collapse
|
5
|
Lohman T, Sible I, Engstrom AC, Kapoor A, Shenasa F, Head E, Sordo L, Alitin JPM, Gaubert A, Nguyen A, Rodgers KE, Bradford D, Nation DA. Beat-to-beat blood pressure variability, hippocampal atrophy, and memory impairment in older adults. GeroScience 2024:10.1007/s11357-024-01303-z. [PMID: 39098984 DOI: 10.1007/s11357-024-01303-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024] Open
Abstract
Visit-to-visit blood pressure variability (BPV) predicts age-related hippocampal atrophy, neurodegeneration, and memory decline in older adults. Beat-to-beat BPV may represent a more reliable and efficient tool for prospective risk assessment, but it is unknown whether beat-to-beat BPV is similarly associated with hippocampal neurodegeneration, or with plasma markers of neuroaxonal/neuroglial injury. Independently living older adults without a history of dementia, stroke, or other major neurological disorders were recruited from the community (N = 104; age = 69.5 ± 6.7 (range 55-89); 63% female). Participants underwent continuous blood pressure monitoring, brain MRI, venipuncture, and cognitive testing over two visits. Hippocampal volumes, plasma neurofilament light, and glial fibrillary acidic protein levels were assessed. Beat-to-beat BPV was quantified as systolic blood pressure average real variability during 7-min of supine continuous blood pressure monitoring. The cross-sectional relationship between beat-to-beat BPV and hippocampal volumes, cognitive domain measures, and plasma biomarkers was assessed using multiple linear regression with adjustment for demographic covariates, vascular risk factors, and average systolic blood pressure. Elevated beat-to-beat BPV was associated with decreased left hippocampal volume (P = .008), increased plasma concentration of glial fibrillary acidic protein (P = .006), and decreased memory composite score (P = .02), independent of age, sex, average systolic blood pressure, total intracranial volume, and vascular risk factor burden. In summary, beat-to-beat BPV is independently associated with decreased left hippocampal volume, increased neuroglial injury, and worse memory ability. Findings are consistent with prior studies examining visit-to-visit BPV and suggest beat-to-beat BPV may be a useful marker of hemodynamic brain injury in older adults.
Collapse
Affiliation(s)
- Trevor Lohman
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Isabel Sible
- Department of Psychology, University of Southern California, Los Angeles, CA, USA
| | - Allison C Engstrom
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Arunima Kapoor
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Fatemah Shenasa
- Department of Psychological Science, University of California, Irvine, Irvine, CA, USA
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - Lorena Sordo
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, USA
| | - John Paul M Alitin
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Aimee Gaubert
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Amy Nguyen
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA
| | - Kathleen E Rodgers
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - David Bradford
- Center for Innovations in Brain Science, Department of Pharmacology, University of Arizona, Tucson, AZ, USA
| | - Daniel A Nation
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, USA.
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Liu Y, Yuan J, Tan C, Wang M, Zhou F, Song C, Tang Y, Li X, Liu Q, Shen Q, Congli H, Liu J, Cai S, Liao H. Exploring brain asymmetry in early-stage Parkinson's disease through functional and structural MRI. CNS Neurosci Ther 2024; 30:e14874. [PMID: 39056398 PMCID: PMC11273215 DOI: 10.1111/cns.14874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
OBJECTIVE This study explores the correlation between asymmetrical brain functional activity, gray matter asymmetry, and the severity of early-stage Parkinson's disease (PD). METHODS Ninety-three early-stage PD patients (ePD, H-Y stages 1-2.5) were recruited, divided into 47 mild (ePD-mild, H-Y stages 1-1.5) and 46 moderate (ePD-moderate, H-Y stages 2-2.5) cases, alongside 43 matched healthy controls (HCs). The study employed the Hoehn and Yahr (H-Y) staging system for disease severity assessment and utilized voxel-mirrored homotopic connectivity (VMHC) for analyzing brain functional activity asymmetry. Asymmetry voxel-based morphometry analysis (VBM) was applied to evaluate gray matter asymmetry. RESULTS The study found that, relative to HCs, both PD subgroups demonstrated reduced VMHC values in regions including the amygdala, putamen, inferior and middle temporal gyrus, and cerebellum Crus I. The ePD-moderate group also showed decreased VMHC in additional regions such as the postcentral gyrus, lingual gyrus, and superior frontal gyrus, with notably lower VMHC in the superior frontal gyrus compared to the ePD-mild group. A negative correlation was observed between the mean VMHC values in the superior frontal gyrus and H-Y stages, UPDRS, and UPDRS-III scores. No significant asymmetry in gray matter was detected. CONCLUSIONS Asymmetrical brain functional activity is a significant characteristic of PD, which exacerbates as the disease severity increases, resembling the dissemination of Lewy bodies across the PD neurological framework. VMHC emerges as a potent tool for characterizing disease severity in early-stage PD.
Collapse
Affiliation(s)
- Yujing Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jiaying Yuan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Changlian Tan
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Min Wang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Fan Zhou
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Chendie Song
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Yuqing Tang
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Xv Li
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qinru Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Qin Shen
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Huang Congli
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Jun Liu
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| | - Sainan Cai
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya HospitalCentral South UniversityChangshaChina
- Clinical Research Center for Medical Imaging in Hunan ProvinceChangshaChina
| |
Collapse
|
7
|
Bocci T, Ferrara R, Albizzati T, Averna A, Guidetti M, Marceglia S, Priori A. Asymmetries of the subthalamic activity in Parkinson's disease: phase-amplitude coupling among local field potentials. Brain Commun 2024; 6:fcae201. [PMID: 38894949 PMCID: PMC11184348 DOI: 10.1093/braincomms/fcae201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 01/22/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
The role of brain asymmetries of dopaminergic neurons in motor symptoms of Parkinson's disease is still undefined. Local field recordings from the subthalamic nucleus revealed some neurophysiological biomarkers of the disease: increased beta activity, increased low-frequency activity and high-frequency oscillations. Phase-amplitude coupling coordinates the timing of neuronal activity and allows determining the mechanism for communication within distinct regions of the brain. In this study, we discuss the use of phase-amplitude coupling to assess the differences between the two hemispheres in a cohort of 24 patients with Parkinson's disease before and after levodopa administration. Subthalamic low- (12-20 Hz) and high-beta (20-30 Hz) oscillations were compared with low- (30-45 Hz), medium- (70-100 Hz) and high-frequency (260-360 Hz) bands. We found a significant beta-phase-amplitude coupling asymmetry between left and right and an opposite-side-dependent effect of the pharmacological treatment, which is associated with the reduction of motor symptoms. In particular, high coupling between high frequencies and high-beta oscillations was found during the OFF condition (P < 0.01) and a low coupling during the ON state (P < 0.0001) when the right subthalamus was assessed; exactly the opposite happened when the left subthalamus was considered in the analysis, showing a lower coupling between high frequencies and high-beta oscillations during the OFF condition (P < 0.01), followed by a higher one during the ON state (P < 0.01). Interestingly, these asymmetries are independent of the motor onset side, either left or right. These findings have important implications for neural signals that may be used to trigger adaptive deep brain stimulation in Parkinson's and could provide more exhaustive insights into subthalamic dynamics.
Collapse
Affiliation(s)
- Tommaso Bocci
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| | - Rosanna Ferrara
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Tommaso Albizzati
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
| | - Alberto Averna
- Department of Neurology, Bern University Hospital and University of Bern, 3010 Bern, Switzerland
| | - Matteo Guidetti
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
| | - Sara Marceglia
- Department of Engineering and Architecture, University of Trieste, Trieste, 34127 Friuli-Venezia Giulia, Italy
- Newronika S.r.l., 20093 Cologno Monzese, Italy
| | - Alberto Priori
- ‘Aldo Ravelli’ Research Center for Neurotechnology and Experimental Neurotherapeutics, Department of Health Sciences, University of Milan, 20142 Milan, Italy
- III Neurology Clinic, ASST-Santi Paolo e Carlo University Hospital, 20142 Milan, Italy
| |
Collapse
|
8
|
Del Bene VA, Martin RC, Brinkerhoff SA, Olson JW, Nelson MJ, Marotta D, Gonzalez CL, Mills KA, Kamath V, Cutter G, Hurt CP, Wade M, Robinson FG, Bentley JN, Guthrie BL, Knight RT, Walker HC. Differential Cognitive Effects of Unilateral Subthalamic Nucleus Deep Brain Stimulation for Parkinson's Disease. Ann Neurol 2024; 95:1205-1219. [PMID: 38501317 PMCID: PMC11102318 DOI: 10.1002/ana.26903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the cognitive effects of unilateral directional versus ring subthalamic nucleus deep brain stimulation (STN DBS) in patients with advanced Parkinson's disease. METHODS We examined 31 participants who underwent unilateral STN DBS (left n = 17; right n = 14) as part of an National Institutes of Health (NIH)-sponsored randomized, double-blind, crossover study contrasting directional versus ring stimulation. All participants received unilateral DBS implants in the hemisphere more severely affected by motor parkinsonism. Measures of cognition included verbal fluency, auditory-verbal memory, and response inhibition. We used mixed linear models to contrast the effects of directional versus ring stimulation and implant hemisphere on longitudinal cognitive function. RESULTS Crossover analyses showed no evidence for group-level changes in cognitive performance related to directional versus ring stimulation. Implant hemisphere, however, impacted cognition in several ways. Left STN participants had lower baseline verbal fluency than patients with right implants (t [20.66 = -2.50, p = 0.02]). Verbal fluency declined after left (p = 0.013) but increased after right STN DBS (p < 0.001), and response inhibition was faster following right STN DBS (p = 0.031). Regardless of hemisphere, delayed recall declined modestly over time versus baseline (p = 0.001), and immediate recall was unchanged. INTERPRETATION Directional versus ring STN DBS did not differentially affect cognition. Similar to prior bilateral DBS studies, unilateral left stimulation worsened verbal fluency performance. In contrast, unilateral right STN surgery increased performance on verbal fluency and response inhibition tasks. Our findings raise the hypothesis that unilateral right STN DBS in selected patients with predominant right brain motor parkinsonism could mitigate declines in verbal fluency associated with the bilateral intervention. ANN NEUROL 2024;95:1205-1219.
Collapse
Affiliation(s)
- Victor A Del Bene
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Roy C. Martin
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
- The Evelyn F. McKnight Brain Institute, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Sarah A. Brinkerhoff
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Joseph W. Olson
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Matthew J. Nelson
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Dario Marotta
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Christopher L. Gonzalez
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Kelly A. Mills
- Department of Neurology, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Vidyulata Kamath
- Department of Psychiatry and Behavioral Sciences, The Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary Cutter
- School of Public Health, University of Alabama at Birmingham, Birmingham, AL
| | - Chris P. Hurt
- Department of Physical Therapy, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL
| | - Melissa Wade
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Frank G. Robinson
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - J. Nicole Bentley
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Barton L. Guthrie
- Department of Neurosurgery, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Robert T. Knight
- Department of Psychology, University of California, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| | - Harrison C. Walker
- Department of Neurology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| |
Collapse
|
9
|
Basaia S, Agosta F, Sarasso E, Balestrino R, Stojković T, Stanković I, Tomić A, Marković V, Vignaroli F, Stefanova E, Kostić VS, Filippi M. Brain Connectivity Networks Constructed Using MRI for Predicting Patterns of Atrophy Progression in Parkinson Disease. Radiology 2024; 311:e232454. [PMID: 38916507 DOI: 10.1148/radiol.232454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background Whether connectome mapping of structural and functional connectivity across the brain could be used to predict patterns of atrophy progression in patients with mild Parkinson disease (PD) has not been well studied. Purpose To assess the structural and functional connectivity of brain regions in healthy controls and its relationship with the spread of gray matter (GM) atrophy in patients with mild PD. Materials and Methods This prospective study included participants with mild PD and controls recruited from a single center between January 2012 and December 2023. Participants with PD underwent three-dimensional T1-weighted brain MRI, and the extent of regional GM atrophy was determined at baseline and every year for 3 years. The structural and functional brain connectome was constructed using diffusion tensor imaging and resting-state functional MRI in healthy controls. Disease exposure (DE) indexes-indexes of the pathology of each brain region-were defined as a function of the structural or functional connectivity of all the connected regions in the healthy connectome and the severity of atrophy of the connected regions in participants with PD. Partial correlations were tested between structural and functional DE indexes of each GM region at 1- or 2-year follow-up and atrophy progression at 2- or 3-year follow-up. Prediction models of atrophy at 2- or 3-year follow-up were constructed using exhaustive feature selection. Results A total of 86 participants with mild PD (mean age at MRI, 60 years ± 8 [SD]; 48 male) and 60 healthy controls (mean age at MRI, 62 years ± 9; 31 female) were included. DE indexes at 1 and 2 years were correlated with atrophy at 2 and 3 years (r range, 0.22-0.33; P value range, .002-.04). Models including DE indexes predicted GM atrophy accumulation over 3 years in the right caudate nucleus and some frontal, parietal, and temporal brain regions (R2 range, 0.40-0.61; all P < .001). Conclusion The structural and functional organization of the brain connectome plays a role in atrophy progression in the early stages of PD. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Yamada in this issue.
Collapse
Affiliation(s)
- Silvia Basaia
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Federica Agosta
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Elisabetta Sarasso
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Roberta Balestrino
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Tanja Stojković
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Iva Stanković
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Aleksandra Tomić
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Vladana Marković
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Francesca Vignaroli
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Elka Stefanova
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Vladimir S Kostić
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| | - Massimo Filippi
- From the Neuroimaging Research Unit, Division of Neuroscience (S.B., F.A., E. Sarasso, R.B., M.F.), Neurology Unit (F.A., M.F.), Department of Rehabilitation and Functional Recovery (E. Sarasso), Neurorehabilitation Unit (M.F.), and Neurophysiology Service (M.F.), IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy (F.A., R.B., M.F.); Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, and Maternal Child Health, University of Genoa, Genoa, Italy (E. Sarasso); Clinic of Neurology, Faculty of Medicine, University of Belgrade, Belgrade, Serbia (T.S., I.S., A.T., V.M., E. Stefanova, V.S.K.); and Neurology Unit, University Hospital Maggiore della Carità, Novara, Italy (F.V.)
| |
Collapse
|
10
|
Lohman T, Shenasa F, Sible I, Kapoor A, Engstrom AC, Dutt S, Head E, Sordo L, M Alitin JP, Gaubert A, Nguyen A, Nation DA. The interactive effect of intra-beat and inter-beat blood pressure variability on neurodegeneration in older adults. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.01.24306724. [PMID: 38746307 PMCID: PMC11092712 DOI: 10.1101/2024.05.01.24306724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Blood pressure variability (BPV) and arterial stiffness are age-related hemodynamic risk factors for neurodegenerative disease, but it remains unclear whether they exert independent or interactive effects on brain health. When combined with high inter-beat BPV, increased intra-beat BPV indicative of arterial stiffness could convey greater pressure wave fluctuations deeper into the cerebrovasculature, exacerbating neurodegeneration. This interactive effect was studied in older adults using multiple markers of neurodegeneration, including medial temporal lobe (MTL) volume, plasma neurofilament light (NfL) and glial fibrillary acidic protein (GFAP). Older adults (N=105) without major neurological or systemic disease were recruited and underwent brain MRI and continuous BP monitoring to quantify inter-beat BPV through systolic average real variability (ARV) and intra-beat variability through arterial stiffness index (ASI). Plasma NfL and GFAP were assessed. The interactive effect of ARV and ASI on MTL atrophy, plasma NfL, and GFAP was studied using hierarchical linear regression. Voxel-based morphometry (VBM) was used to confirm region-of-interest analysis findings. The interaction between higher ARV and higher ASI was significantly associated with left-sided MTL atrophy in both the region-of-interest and false discovery rate-corrected VBM analysis. The interactive effect was also significantly associated with increased plasma NfL, but not GFAP. The interaction between higher ARV and higher ASI is independently associated with increased neurodegenerative markers, including MTL atrophy and plasma NfL, in independently living older adults. Findings could suggest the increased risk for neurodegeneration associated with higher inter-beat BPV may be compounded by increased intra-beat variability due to arterial stiffness.
Collapse
|
11
|
Santos PCRD, Heimler B, Koren O, Flash T, Plotnik M. Dopamine improves defective cortical and muscular connectivity during bilateral control of gait in Parkinson's disease. Commun Biol 2024; 7:495. [PMID: 38658666 PMCID: PMC11043351 DOI: 10.1038/s42003-024-06195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/15/2024] [Indexed: 04/26/2024] Open
Abstract
Parkinson's Disease (PD)-typical declines in gait coordination are possibly explained by weakness in bilateral cortical and muscular connectivity. Here, we seek to determine whether this weakness and consequent decline in gait coordination is affected by dopamine levels. To this end, we compare cortico-cortical, cortico-muscular, and intermuscular connectivity and gait outcomes between body sides in people with PD under ON and OFF medication states, and in older adults. In our study, participants walked back and forth along a 12 m corridor. Gait events (heel strikes and toe-offs) and electrical cortical and muscular activities were measured and used to compute cortico-cortical, cortico-muscular, and intermuscular connectivity (i.e., coherences in the alpha, beta, and gamma bands), as well as features characterizing gait performance (e.g., the step-timing coordination, length, and speed). We observe that people with PD, mainly during the OFF medication, walk with reduced step-timing coordination. Additionally, our results suggest that dopamine intake in PD increases the overall cortico-muscular connectivity during the stance and swing phases of gait. We thus conclude that dopamine corrects defective feedback caused by impaired sensory-information processing and sensory-motor integration, thus increasing cortico-muscular coherences in the alpha bands and improving gait.
Collapse
Affiliation(s)
- Paulo Cezar Rocha Dos Santos
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel.
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
- IDOR/Pioneer Science Initiative, Rio de Janeiro, Brazil.
| | - Benedetta Heimler
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Or Koren
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel
| | - Tamar Flash
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Meir Plotnik
- Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
- Department of Physiology and Pharmacology, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
12
|
Candia‐Rivera D, Vidailhet M, Chavez M, De Vico Fallani F. A framework for quantifying the coupling between brain connectivity and heartbeat dynamics: Insights into the disrupted network physiology in Parkinson's disease. Hum Brain Mapp 2024; 45:e26668. [PMID: 38520378 PMCID: PMC10960553 DOI: 10.1002/hbm.26668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 03/25/2024] Open
Abstract
Parkinson's disease (PD) often shows disrupted brain connectivity and autonomic dysfunctions, progressing alongside with motor and cognitive decline. Recently, PD has been linked to a reduced sensitivity to cardiac inputs, that is, cardiac interoception. Altogether, those signs suggest that PD causes an altered brain-heart connection whose mechanisms remain unclear. Our study aimed to explore the large-scale network disruptions and the neurophysiology of disrupted interoceptive mechanisms in PD. We focused on examining the alterations in brain-heart coupling in PD and their potential connection to motor symptoms. We developed a proof-of-concept method to quantify relationships between the co-fluctuations of brain connectivity and cardiac sympathetic and parasympathetic activities. We quantified the brain-heart couplings from electroencephalogram and electrocardiogram recordings from PD patients on and off dopaminergic medication, as well as in healthy individuals at rest. Our results show that the couplings of fluctuating alpha and gamma connectivity with cardiac sympathetic dynamics are reduced in PD patients, as compared to healthy individuals. Furthermore, we show that PD patients under dopamine medication recover part of the brain-heart coupling, in proportion with the reduced motor symptoms. Our proposal offers a promising approach to unveil the physiopathology of PD and promoting the development of new evaluation methods for the early stages of the disease.
Collapse
Affiliation(s)
- Diego Candia‐Rivera
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Marie Vidailhet
- Sorbonne Université, Paris Brain Institute (ICM)—Team “Movement Investigations and Therapeutics” (MOV'IT), CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Mario Chavez
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| | - Fabrizio De Vico Fallani
- Sorbonne Université, Paris Brain Institute (ICM), Inria Paris, CNRS UMR7225, INSERM U1127, AP‐HP Hôpital Pitié‐SalpêtrièreParisFrance
| |
Collapse
|
13
|
Oltra J, Segura B, Strafella AP, van Eimeren T, Ibarretxe-Bilbao N, Diez-Cirarda M, Eggers C, Lucas-Jiménez O, Monté-Rubio GC, Ojeda N, Peña J, Ruppert MC, Sala-Llonch R, Theis H, Uribe C, Junque C. A multi-site study on sex differences in cortical thickness in non-demented Parkinson's disease. NPJ Parkinsons Dis 2024; 10:69. [PMID: 38521776 PMCID: PMC10960793 DOI: 10.1038/s41531-024-00686-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 03/15/2024] [Indexed: 03/25/2024] Open
Abstract
Clinical, cognitive, and atrophy characteristics depending on sex have been previously reported in Parkinson's disease (PD). However, though sex differences in cortical gray matter measures in early drug naïve patients have been described, little is known about differences in cortical thickness (CTh) as the disease advances. Our multi-site sample comprised 211 non-demented PD patients (64.45% males; mean age 65.58 ± 8.44 years old; mean disease duration 6.42 ± 5.11 years) and 86 healthy controls (50% males; mean age 65.49 ± 9.33 years old) with available T1-weighted 3 T MRI data from four international research centers. Sex differences in regional mean CTh estimations were analyzed using generalized linear models. The relation of CTh in regions showing sex differences with age, disease duration, and age of onset was examined through multiple linear regression. PD males showed thinner cortex than PD females in six frontal (bilateral caudal middle frontal, bilateral superior frontal, left precentral and right pars orbitalis), three parietal (bilateral inferior parietal and left supramarginal), and one limbic region (right posterior cingulate). In PD males, lower CTh values in nine out of ten regions were associated with longer disease duration and older age, whereas in PD females, lower CTh was associated with older age but with longer disease duration only in one region. Overall, male patients show a more widespread pattern of reduced CTh compared with female patients. Disease duration seems more relevant to explain reduced CTh in male patients, suggesting worse prognostic over time. Further studies should explore sex-specific cortical atrophy trajectories using large longitudinal multi-site data.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain.
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain.
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Hospital Clínic Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Catalonia, Spain.
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., M5T 1R8, Toronto, ON, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, 399 Bathurst Street, M5T 2S8, Toronto, ON, Canada
| | - Thilo van Eimeren
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
- Department of Neurology, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
| | - Naroa Ibarretxe-Bilbao
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Maria Diez-Cirarda
- Department of Neurology, Hospital Clínico San Carlos, Health Research Institute 'San Carlos' (IdISCC), Complutense University of Madrid, Calle del Profesor Martín Lagos, s/n, 28040, Madrid, Spain
| | - Carsten Eggers
- Department of Neurology, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
- Department of Neurology, University Hospital of Giessen and Marburg, Center for Mind, Brain and Behavior, University of Marburg and Giessen Universiy, Hans-Meerwein-Straße, 6, 35043, Marburg, Germany
| | - Olaia Lucas-Jiménez
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Gemma C Monté-Rubio
- Centre for Comparative Medicine and Bioimaging (CMCiB), Gemans Trias i Pujol Research Institute (IGTP), Camí de les Escoles, s/n, 08916, Badalona, Catalonia, Spain
| | - Natalia Ojeda
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Javier Peña
- Department of Psychology, Faculty of Health Sciences, University of Deusto, Avenida de las Universidades, 24, 48007, Bilbao, Basque Country, Spain
| | - Marina C Ruppert
- Department of Neurology, University Hospital of Giessen and Marburg, Center for Mind, Brain and Behavior, University of Marburg and Giessen Universiy, Hans-Meerwein-Straße, 6, 35043, Marburg, Germany
| | - Roser Sala-Llonch
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain
- Department of Biomedicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain
- Biomedical Imaging Group, Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN: CB06/01/1039-ISCIII), Carrer de Casanova, 143, 08036, Barcelona, Catalonia, Spain
| | - Hendrik Theis
- Multimodal Neuroimaging Group, Department of Nuclear Medicine, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
- Department of Neurology, University Medical Center Cologne, Kerpener Straße, 62, 50937, Cologne, Germany
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, 250 College St., M5T 1R8, Toronto, ON, Canada
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Faculty of Medicine, Clínic Campus, Carrer de Casanova, 143, Ala Nord, 5th floor, 08036, Barcelona, Catalonia, Spain
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Carrer del Rosselló, 149, 08036, Barcelona, Catalonia, Spain
- Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Hospital Clínic Barcelona, Carrer de Villarroel, 170, 08036, Barcelona, Catalonia, Spain
| |
Collapse
|
14
|
Pourzinal D, Yang J, McMahon KL, Copland DA, Mitchell L, O'Sullivan JD, Byrne GJ, Dissanayaka NN. Hippocampal resting-state connectivity is associated with posterior-cortical cognitive impairment in Parkinson's disease. Brain Behav 2024; 14:e3454. [PMID: 38468574 DOI: 10.1002/brb3.3454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/13/2024] Open
Abstract
AIM Frontal and posterior-cortical cognitive subtypes in Parkinson's disease (PD) present with executive/attention and memory/visuospatial deficits, respectively. As the posterior-cortical subtype is predicted to progress rapidly toward dementia, the present study aimed to explore biological markers of this group using resting-state functional magnetic resonance imaging (rs-fMRI). METHODS K-means cluster analysis delineated subtypes (cognitively intact, frontal, posterior-cortical, and globally impaired) among 85 people with PD. A subset of PD participants (N = 42) and 20 healthy controls (HCs) underwent rs-fMRI. Connectivity of bilateral hippocampi with regions of interest was compared between posterior-cortical, cognitively intact, and HC participants using seed-based analysis, controlling for age. Exploratory correlations were performed between areas of interest from the group analysis and a series of cognitive tests. RESULTS The posterior-cortical subtype (N = 19) showed weaker connectivity between the left hippocampus and right anterior temporal fusiform cortex compared to the cognitively intact (N = 11) group, p-false discovery rate (FDR) = .01, and weaker connectivity between bilateral hippocampi and most fusiform regions compared to HCs (N = 20). No differences were found between HCs and cognitively intact PD. Exploratory analyses revealed strongest associations between connectivity of the right anterior temporal fusiform cortex and left hippocampus with category fluency (p-FDR = .01). CONCLUSION Results suggest that weakened connectivity between the hippocampus and fusiform region is a unique characteristic of posterior-cortical cognitive deficits in PD. Further exploration of hippocampal and fusiform functional integrity as a marker of cognitive decline in PD is warranted.
Collapse
Affiliation(s)
- Dana Pourzinal
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
| | - Jihyun Yang
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
| | - Katie L McMahon
- School of Clinical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Australia
| | - David A Copland
- Queensland Aphasia Research Centre, School of Health and Rehabilitation Sciences, The University of Queensland, Brisbane, Australia
- Surgical Treatment and Rehabilitation Service (STARS) Education and Research Alliance, The University of Queensland and Metro North Health, Queensland, Australia
| | - Leander Mitchell
- School of Psychology, The University of Queensland, St Lucia, Australia
| | - John D O'Sullivan
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Gerard J Byrne
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
- Mental Health Service, Royal Brisbane & Women's Hospital, Herston, Australia
| | - Nadeeka N Dissanayaka
- Faculty of Medicine, The University of Queensland Centre for Clinical Research, Herston, Australia
- School of Psychology, The University of Queensland, St Lucia, Australia
- Department of Neurology, Royal Brisbane & Women's Hospital, Herston, Australia
| |
Collapse
|
15
|
Martin SL, Uribe C, Strafella AP. PET imaging of synaptic density in Parkinsonian disorders. J Neurosci Res 2024; 102:e25253. [PMID: 37814917 DOI: 10.1002/jnr.25253] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023]
Abstract
Synaptic dysfunction and altered synaptic pruning are present in people with Parkinsonian disorders. Dopamine loss and alpha-synuclein accumulation, two hallmarks of Parkinson's disease (PD) pathology, contribute to synaptic dysfunction and reduced synaptic density in PD. Atypical Parkinsonian disorders are likely to have unique spatiotemporal patterns of synaptic density, differentiating them from PD. Therefore, quantification of synaptic density has the potential to support diagnoses, monitor disease progression, and treatment efficacy. Novel radiotracers for positron emission tomography which target the presynaptic vesicle protein SV2A have been developed to quantify presynaptic density. The radiotracers have successfully investigated synaptic density in preclinical models of PD and people with Parkinsonian disorders. Therefore, this review will summarize the preclinical and clinical utilization of SV2A radiotracers in people with Parkinsonian disorders. We will evaluate how SV2A abundance is associated with other imaging modalities and the considerations for interpreting SV2A in Parkinsonian pathology.
Collapse
Affiliation(s)
- Sarah L Martin
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Unitat de Psicologia Medica, Departament de Medicina, Institute of Neuroscience, Universitat de Barcelona, Barcelona, Spain
| | - Antonio P Strafella
- Brain Health Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario, Canada
- Edmond J. Safra Parkinson Disease Program, Neurology Division, Toronto Western Hospital & Krembil Brain Institute, University Health Network, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Salin P, Melon C, Chassain C, Gubellini P, Pages G, Pereira B, Le Fur Y, Durif F, Kerkerian-Le Goff L. Interhemispheric reactivity of the subthalamic nucleus sustains progressive dopamine neuron loss in asymmetrical parkinsonism. Neurobiol Dis 2024; 191:106398. [PMID: 38182075 DOI: 10.1016/j.nbd.2023.106398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/21/2023] [Accepted: 12/30/2023] [Indexed: 01/07/2024] Open
Abstract
Parkinson's disease (PD) is characterized by the progressive and asymmetrical degeneration of the nigrostriatal dopamine neurons and the unilateral presentation of the motor symptoms at onset, contralateral to the most impaired hemisphere. We previously developed a rat PD model that mimics these typical features, based on unilateral injection of a substrate inhibitor of excitatory amino acid transporters, L-trans-pyrrolidine-2,4-dicarboxylate (PDC), in the substantia nigra (SN). Here, we used this progressive model in a multilevel study (behavioral testing, in vivo 1H-magnetic resonance spectroscopy, slice electrophysiology, immunocytochemistry and in situ hybridization) to characterize the functional changes occurring in the cortico-basal ganglia-cortical network in an evolving asymmetrical neurodegeneration context and their possible contribution to the cell death progression. We focused on the corticostriatal input and the subthalamic nucleus (STN), two glutamate components with major implications in PD pathophysiology. In the striatum, glutamate and glutamine levels increased from presymptomatic stages in the PDC-injected hemisphere only, which also showed enhanced glutamatergic transmission and loss of plasticity at corticostriatal synapses assessed at symptomatic stage. Surprisingly, the contralateral STN showed earlier and stronger reactivity than the ipsilateral side (increased intraneuronal cytochrome oxidase subunit I mRNA levels; enhanced glutamate and glutamine concentrations). Moreover, its lesion at early presymptomatic stage halted the ongoing neurodegeneration in the PDC-injected SN and prevented the expression of motor asymmetry. These findings reveal the existence of endogenous interhemispheric processes linking the primary injured SN and the contralateral STN that could sustain progressive dopamine neuron loss, opening new perspectives for disease-modifying treatment of PD.
Collapse
Affiliation(s)
- Pascal Salin
- Aix-Marseille Univ, CNRS, IBDM, Marseille, France
| | | | - Carine Chassain
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France; INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France
| | | | - Guilhem Pages
- INRAE, AgroResonance Facility, F-63122 Saint-Genès-Champanelle, France; INRAE, UR QuaPA, F-63122 Saint-Genès-Champanelle, France
| | - Bruno Pereira
- University Hospital Clermont-Ferrand, Biostatisticis Unit (DRCI), Clermont-Ferrand, France
| | - Yann Le Fur
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France
| | - Franck Durif
- University of Clermont Auvergne, CHU, CNRS, Clermont Auvergne INP, Institut Pascal, F-63000 Clermont-Ferrand, France.
| | | |
Collapse
|
17
|
Huang CY, Chen YA, Wu RM, Hwang IS. Neural Oscillations and Functional Significances for Prioritizing Dual-Task Walking in Parkinson's Disease. JOURNAL OF PARKINSON'S DISEASE 2024; 14:283-296. [PMID: 38457151 PMCID: PMC10977445 DOI: 10.3233/jpd-230245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/07/2024] [Indexed: 03/09/2024]
Abstract
Background Task prioritization involves allocating brain resources in a dual-task scenario, but the mechanistic details of how prioritization strategies affect dual-task walking performance for Parkinson's disease (PD) are little understood. Objective We investigated the performance benefits and corresponding neural signatures for people with PD during dual-task walking, using gait-prioritization (GP) and manual-prioritization (MP) strategies. Methods Participants (N = 34) were asked to hold two inter-locking rings while walking and to prioritize either taking big steps (GP strategy) or separating the two rings (MP strategy). Gait parameters and ring-touch time were measured, and scalp electroencephalograph was performed. Results Compared with the MP strategy, the GP strategy yielded faster walking speed and longer step length, whereas ring-touch time did not significantly differ between the two strategies. The MP strategy led to higher alpha (8-12 Hz) power in the posterior cortex and beta (13-35 Hz) power in the left frontal-temporal area, but the GP strategy was associated with stronger network connectivity in the beta band. Changes in walking speed and step length because of prioritization negatively correlated with changes in alpha power. Prioritization-related changes in ring-touch time correlated negatively with changes in beta power but positively with changes in beta network connectivity. Conclusions A GP strategy in dual-task walking for PD can enhance walking speed and step length without compromising performance in a secondary manual task. This strategy augments attentional focus and facilitates compensatory reinforcement of inter-regional information exchange.
Collapse
Affiliation(s)
- Cheng-Ya Huang
- School and Graduate Institute of Physical Therapy, College of Medicine, National Taiwan University, Taipei, Taiwan
- Physical Therapy Center, National Taiwan University Hospital, Taipei, Taiwan
| | - Yu-An Chen
- Department of Rehabilitation, Division of Physical Therapy, Shin Kong Wu Ho-Su Memorial Hospital, Taipei, Taiwan
| | - Ruey-Meei Wu
- Department of Neurology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ing-Shiou Hwang
- Department of Physical Therapy, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Institute of Allied Health Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
18
|
Jahanshahi A, Ghareaghaji N, Hassanpour S, Vafadar A, Mousavi S, Khezerloo D. Cortical gray matter and cerebral white matter atrophy and asymmetry in Parkinson's disease patients with normal cognitive precede. Int J Neurosci 2023:1-6. [PMID: 38085250 DOI: 10.1080/00207454.2023.2294260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
BACKGROUND Parkinson's disease is the second most common neurodegenerative disorder with complex and distributed motor and non-motor symptoms. In this study, cortical gray matter (GM) and cerebral white matter (WM) overall atrophy, and asymmetry of atrophy are investigated in PD with normal cognitive function. METHOD Forty-eight male Parkinson's disease(PD) patients with normal cognitive precede (PD-NC), and thirty matched healthy control (HC) subjects were selected from the Parkinson's Progression Markers Initiative (PPMI) database. Brain structures volumes were extracted using Freesurfer software based on subject 3 tesla MRI images. The normalized volume of cortical GM and cerebral WM were compared in two study groups, and then the asymmetry index (AI) of GM and WM atrophy was also assessed in two groups. Statistical analysis was constructed using a t-test with p < 0.05 of significance. RESULTS No significant difference was observed in the volume of cortical GM and cerebral WM in the two study groups. The cortical GM asymmetry index in the PD-NC group was significantly (p = 0.01) higher than the HC group, however, no difference was observed for the cerebral WM asymmetry index. CONCLUSION Atrophy in cortical GM and WM was not observed between the PD-NC and the HC group, however, the asymmetry index in GM was significant between the two group. It seems that the brain's bilateral balance has ruptured in PD. Cortical GM asymmetry in PD-NC can be considered a potent biomarker and should be investigated more in the future. In future studies, construction of a longitudinal study on this issue could be useful.
Collapse
Affiliation(s)
- Amirreza Jahanshahi
- Department of Radiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Nahideh Ghareaghaji
- Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| | - Samaneh Hassanpour
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ali Vafadar
- Department of Medical Physics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeid Mousavi
- Department of Statistics and Epidemiology, Faculty of Health Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Davood Khezerloo
- Department of Radiology, Faculty of Allied Medical Sciences, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
19
|
Totsune T, Baba T, Sugimura Y, Oizumi H, Tanaka H, Takahashi T, Yoshioka M, Nagamatsu KI, Takeda A. Nuclear Imaging Data-Driven Classification of Parkinson's Disease. Mov Disord 2023; 38:2053-2063. [PMID: 37638533 DOI: 10.1002/mds.29582] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/23/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
BACKGROUND Parkinson's disease (PD) is a heterogeneous neurodegenerative disorder characterized by motor and nonmotor symptoms. Several features have prognostic importance and have been used as key indicators for identifying clinical subtypes. However, the symptom-based classification approach has limitations with respect to the stability of the obtained subtypes. OBJECTIVES The purpose of this study was to identify subtypes of PD using nuclear imaging biomarkers targeting the cardiac sympathetic nervous and nigro-striatal systems and to compare patterns of cortical morphological change among obtained subtypes. METHODS We performed unbiased hierarchical cluster analysis using 123 I-metaiodobenzylguanidine cardiac scintigraphy and 123 I-N-(3-fluoropropyl)-2β-carbomethoxy-3β-(4-iodophenyl) nortropane single photon emission computed tomography data for 56 patients with PD. We compared clinical characteristics and the patterns of cortical atrophy in the obtained clusters. RESULTS Three clusters were identified and showed distinct characteristics in onset ages and dopamine-replacement therapy and deep brain stimulation requirements. According to the characteristics, clusters were classified into two subtypes, namely, "cardio-cortical impairment (CC)" and "dopaminergic-dominant dysfunction (DD)" subtype. The three clusters were named according to subtype and time since onset in which 14 patients were classified as "early DD," 25 as "advanced DD," and 17 as "early CC." Compared with the early DD subtype, the early CC subtype showed parietal-dominant diffuse cortical atrophy and the advanced DD subtype showed left-side predominant mild cortical atrophy. CONCLUSIONS Nuclear imaging biomarker-based classification can be used to identify clinically and pathologically relevant PD subtypes with distinct disease trajectories. © 2023 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tomoko Totsune
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Sendai, Japan
| | - Toru Baba
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Yoko Sugimura
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Cognitive & Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Hideki Oizumi
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Hiroyasu Tanaka
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Toshiaki Takahashi
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Masaru Yoshioka
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Ken-Ichi Nagamatsu
- Department of Neurosurgery, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
| | - Atsushi Takeda
- Department of Neurology, National Hospital Organization Sendai-Nishitaga Hospital, Sendai, Japan
- Department of Cognitive & Motor Aging, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
20
|
Grimaldi S, Guye M, Bianciardi M, Eusebio A. Brain MRI Biomarkers in Isolated Rapid Eye Movement Sleep Behavior Disorder: Where Are We? A Systematic Review. Brain Sci 2023; 13:1398. [PMID: 37891767 PMCID: PMC10604962 DOI: 10.3390/brainsci13101398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 09/22/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023] Open
Abstract
The increasing number of MRI studies focused on prodromal Parkinson's Disease (PD) demonstrates a strong interest in identifying early biomarkers capable of monitoring neurodegeneration. In this systematic review, we present the latest information regarding the most promising MRI markers of neurodegeneration in relation to the most specific prodromal symptoms of PD, namely isolated rapid eye movement (REM) sleep behavior disorder (iRBD). We reviewed structural, diffusion, functional, iron-sensitive, neuro-melanin-sensitive MRI, and proton magnetic resonance spectroscopy studies conducted between 2000 and 2023, which yielded a total of 77 relevant papers. Among these markers, iron and neuromelanin emerged as the most robust and promising indicators for early neurodegenerative processes in iRBD. Atrophy was observed in several regions, including the frontal and temporal cortices, limbic cortices, and basal ganglia, suggesting that neurodegenerative processes had been underway for some time. Diffusion and functional MRI produced heterogeneous yet intriguing results. Additionally, reduced glymphatic clearance function was reported. Technological advancements, such as the development of ultra-high field MRI, have enabled the exploration of minute anatomical structures and the detection of previously undetectable anomalies. The race to achieve early detection of neurodegeneration is well underway.
Collapse
Affiliation(s)
- Stephan Grimaldi
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
| | - Maxime Guye
- Centre d’Exploration Métabolique par Résonnance Magnétique, Assistance Publique des Hôpitaux de Marseille, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Center for Magnetic Resonance in Biology and Medicine, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| | - Marta Bianciardi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, 149 13th St., Charlestown, MA 02129, USA
- Division of Sleep Medicine, Harvard University, Boston, MA 02114, USA
| | - Alexandre Eusebio
- Department of Neurology and Movement Disorders, APHM, Hôpital Universitaire Timone, 265 rue Saint-Pierre, 13005 Marseille, France
- Institut de Neurosciences de la Timone, Aix Marseille University, Centre National de la Recherche Scientifique, 27 Bd Jean Moulin, 13385 Marseille, France
| |
Collapse
|
21
|
Cai J, Kim JL, Wang Y, Baumeister TR, Zhu M, Liu A, Lee S, McKeown MJ. Sex, myelin, and clinical characteristics of Parkinson's disease. Front Neurosci 2023; 17:1235524. [PMID: 37781247 PMCID: PMC10535348 DOI: 10.3389/fnins.2023.1235524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Objective To determine if there are sex differences in myelin in Parkinson's disease, and whether these explain some of the previously-described sex differences in clinical presentation. Methods Thirty-three subjects (23 males, 10 females) with Parkinson's disease underwent myelin water fraction (MWF) imaging, an MRI scanning technique of in vivo myelin content. MWF of 20 white matter regions of interest (ROIs) were assessed. Motor symptoms were assessed using the Unified Parkinson's Disease Rating Scale (UPDRS). Principal component analysis, logistic and multiple linear regressions, and t-tests were used to determine which white matter ROIs differed between sexes, the clinical features associated with these myelin changes, and if overall MWF and MWF laterality differed between males and females. Results Consistent with prior reports, tremor and bradykinesia were more likely seen in females, whereas rigidity and axial symptoms were more likely seen in males in our cohort. MWF of the thalamic radiation, cingulum, cingulum hippocampus, inferior fronto-occipital fasciculi, inferior longitudinal fasciculi, and uncinate were significant in predicting sex. Overall MWF and asymmetry of MWF was greater in males. MWF differences between sexes were associated with tremor symptomatology and asymmetry of motor performance. Conclusion Sex differences in myelin are associated with tremor and asymmetry of motor presentation. While preliminary, our results suggest that further investigation of the role of biological sex in myelin pathology and clinical presentation in Parkinson's disease is warranted.
Collapse
Affiliation(s)
- Jiayue Cai
- School of Biomedical Engineering, Shenzhen University Medical School, Shenzhen University, Shenzhen, Guangdong, China
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Jowon L. Kim
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Yuheng Wang
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Tobias R. Baumeister
- School of Biomedical Engineering, The University of British Columbia, Vancouver, BC, Canada
| | - Maria Zhu
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Aiping Liu
- Department of Electronic Science and Technology, University of Science and Technology of China, Hefei, Anhui, China
| | - Soojin Lee
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| | - Martin J. McKeown
- Department of Medicine, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
22
|
Bentivoglio AR, Lo Monaco MR, Liperoti R, Fusco D, Di Stasio E, Tondinelli A, Marzullo D, Maino A, Cipriani MC, Silveri MC. Gender may be related to the side of the motor syndrome and cognition in idiopathic Parkinson's disease. Neurologia 2023; 38:467-474. [PMID: 37659837 DOI: 10.1016/j.nrleng.2021.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/10/2021] [Indexed: 09/04/2023] Open
Abstract
BACKGROUND and Sex and cognitive profile may be related to the laterality of motor symptoms in idiopathic Parkinson's disease. INTRODUCTION Parkinson's disease (PD) is well recognised as an inherently asymmetric disease with unilateral onset of motor symptoms. The laterality of motor symptoms may be linked to sex, clinical and demographic variables, and neuropsychological disorders. However, the available data are inconsistent. This study aimed to explore the potential association between the laterality of motor symptoms and clinical and demographic variables and deficits in specific cognitive domains. MATERIAL AND METHODS We retrospectively recruited 97 participants with idiopathic PD without dementia; 60 presented motor symptoms on the left side and 37 on the right side. Both groups were comparable in terms of age, age at disease onset, disease duration, and severity of the neurological deficits according to the Unified Parkinson's Disease Rating Scale and the Hoehn and Yahr scale. RESULTS Participants with left-side motor symptoms scored lower on the Schwab and England Activities of Daily Living scale. Our sample included more men than women (67% vs. 33%). Both sexes were not equally represented in the 2 groups: there were significantly more men than women in the group of patients with left-side motor symptoms (77% vs. 23%), whereas the percentages of men and women in the group of patients with right-side motor symptoms were similar (51% vs. 49%). Both groups performed similarly in all neuropsychological tasks, but women, independently of laterality, performed better than men in the naming task. CONCLUSION We found a clear prevalence of men in the group of patients with left-side motor symptoms; this group also scored lower on the Schwab and England Scale. Female sex was predictive of better performance in the naming task. Sex should always be considered in disorders that cause asymmetric involvement of the brain, such as PD.
Collapse
Affiliation(s)
- A R Bentivoglio
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Neurology, 00168 Rome, Italy
| | - M R Lo Monaco
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy.
| | - R Liperoti
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy
| | - D Fusco
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy
| | - E Di Stasio
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A Tondinelli
- Università Cattolica del Sacro Cuore, Department of Psychology, 20123 Milan, Italy
| | - D Marzullo
- Università Cattolica del Sacro Cuore, Institute of Neurology, 00168 Rome, Italy
| | - A Maino
- Università Cattolica del Sacro Cuore, Institute of Neurology, 00168 Rome, Italy
| | - M C Cipriani
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy
| | - M C Silveri
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Department of Psychology, 20123 Milan, Italy
| |
Collapse
|
23
|
Hajianfar G, Kalayinia S, Hosseinzadeh M, Samanian S, Maleki M, Sossi V, Rahmim A, Salmanpour MR. Prediction of Parkinson's disease pathogenic variants using hybrid Machine learning systems and radiomic features. Phys Med 2023; 113:102647. [PMID: 37579523 DOI: 10.1016/j.ejmp.2023.102647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 05/08/2023] [Accepted: 07/29/2023] [Indexed: 08/16/2023] Open
Abstract
PURPOSE In Parkinson's disease (PD), 5-10% of cases are of genetic origin with mutations identified in several genes such as leucine-rich repeat kinase 2 (LRRK2) and glucocerebrosidase (GBA). We aim to predict these two gene mutations using hybrid machine learning systems (HMLS), via imaging and non-imaging data, with the long-term goal to predict conversion to active disease. METHODS We studied 264 and 129 patients with known LRRK2 and GBA mutations status from PPMI database. Each dataset includes 513 features such as clinical features (CFs), conventional imaging features (CIFs) and radiomic features (RFs) extracted from DAT-SPECT images. Features, normalized by Z-score, were univariately analyzed for statistical significance by the t-test and chi-square test, adjusted by Benjamini-Hochberg correction. Multiple HMLSs, including 11 features extraction (FEA) or 10 features selection algorithms (FSA) linked with 21 classifiers were utilized. We also employed Ensemble Voting (EV) to classify the genes. RESULTS For prediction of LRRK2 mutation status, a number of HMLSs resulted in accuracies of 0.98 ± 0.02 and 1.00 in 5-fold cross-validation (80% out of total data points) and external testing (remaining 20%), respectively. For predicting GBA mutation status, multiple HMLSs resulted in high accuracies of 0.90 ± 0.08 and 0.96 in 5-fold cross-validation and external testing, respectively. We additionally showed that SPECT-based RFs added value to the specific prediction of of GBA mutation status. CONCLUSION We demonstrated that combining medical information with SPECT-based imaging features, and optimal utilization of HMLS can produce excellent prediction of the mutations status in PD patients.
Collapse
Affiliation(s)
- Ghasem Hajianfar
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran; Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada
| | - Samira Kalayinia
- Cardiogenetic Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mahdi Hosseinzadeh
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada; Department of Electrical and Computer Engineering, Tarbiat Modares University, Tehran, Iran
| | - Sara Samanian
- Firoozgar Hospital Medical Genetics Laboratory, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Maleki
- Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Vesna Sossi
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Physics and Astronomy, University of British Columbia, Vancouver, BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada
| | - Mohammad R Salmanpour
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver BC, Canada; Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, Canada.
| |
Collapse
|
24
|
Voruz P, Haegelen C, Assal F, Drapier S, Drapier D, Sauleau P, Vérin M, Péron JA. Motor Symptom Asymmetry Predicts Cognitive and Neuropsychiatric Profile Following Deep Brain Stimulation of the Subthalamic Nucleus in Parkinson's Disease: a 5-Year Longitudinal Study. Arch Clin Neuropsychol 2023; 38:904-912. [PMID: 36796803 PMCID: PMC10456213 DOI: 10.1093/arclin/acad013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2023] [Indexed: 02/18/2023] Open
Abstract
INTRODUCTION Risk factors (e.g., motor symptom asymmetry) for short- and long-term cognitive and neuropsychiatric symptoms following deep brain stimulation (DBS) of the subthalamic nucleus (STN) in patients with Parkinson's disease have yet to be fully identified. The objectives of the present study were to determine whether motor symptom asymmetry in Parkinson's disease is one such risk factor and to identify predictors of subnormal cognitive decline. METHODS A total of 26 patients receiving STN-DBS (13 with left-sided motor symptoms and 13 with right-sided ones) underwent follow-up neuropsychological, depression and apathy assessments over a 5-year period. Nonparametric intergroup comparisons were performed on raw scores, as well as Cox regression analyses on standardized Mattis Dementia Rating Scale scores. RESULTS Compared with patients who had predominantly left-sided symptoms, right-sided patients scored higher on both apathy (at 3 months and 36 months) and depressive symptoms (at 6 months and 12 months) and scored lower on global cognitive efficiency (at 36 months and 60 months). Survival analyses revealed that only right-sided patients had subnormal standardized dementia scores, which were negatively associated with the number of perseverations in the Wisconsin Card Scoring Test. CONCLUSION Right-sided motor symptoms are a risk factor for more severe short- and long-term cognitive and neuropsychiatric symptoms following STN-DBS, confirming literature findings on left hemispheric vulnerability.
Collapse
Affiliation(s)
- Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Claire Haegelen
- Neurosurgery Department, Pontchaillou University Hospital, Rennes, France
- MediCIS, INSERM-University of Rennes 1, Rennes, France
| | - Frédéric Assal
- Neurology Department, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| | - Sophie Drapier
- ‘Behavior and Basal Ganglia’ Research Unit, University of Rennes 1, Rennes, France
- Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Dominique Drapier
- ‘Behavior and Basal Ganglia’ Research Unit, University of Rennes 1, Rennes, France
- Adult Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Paul Sauleau
- ‘Behavior and Basal Ganglia’ Research Unit, University of Rennes 1, Rennes, France
- Physiology Department, Pontchaillou University Hospital, Rennes, France
| | - Marc Vérin
- ‘Behavior and Basal Ganglia’ Research Unit, University of Rennes 1, Rennes, France
- Neurology Department, Pontchaillou University Hospital, Rennes, France
| | - Julie A Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals and Faculty of Medicine, Geneva, Switzerland
| |
Collapse
|
25
|
Constantin IM, Voruz P, Péron JA. Moderating effects of uric acid and sex on cognition and psychiatric symptoms in asymmetric Parkinson's disease. Biol Sex Differ 2023; 14:26. [PMID: 37143121 PMCID: PMC10157998 DOI: 10.1186/s13293-023-00510-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/17/2023] [Indexed: 05/06/2023] Open
Abstract
BACKGROUND Non-motor symptoms are an important early feature of Parkinson's disease (PD), encompassing a variety of cognitive and psychiatric symptoms that seem to manifest differently depending on motor symptom asymmetry. Different factors, such as uric acid (UA) and sex, seem to influence cognitive and psychiatric expression in PD, however their interplay remains to be better understood. METHODS Participants taking part in the Parkinson's Progression Marker Initiative were studied based on the side of motor symptom asymmetry and sex. Three-way interaction modeling was used to examine the moderating effects of sex and UA on cognitive functions and psychiatric symptoms. RESULTS Significant three-way interactions were highlighted at 1-year follow-up between motor symptom asymmetry, UA and sex for immediate and long-term memory in female patients exhibiting predominantly left-sided motor symptoms, and for processing speed and sleepiness in female patients exhibiting predominantly right-sided motor symptoms. No significant interactions were observed for male patients. Moreover, female patients exhibiting predominantly right-sided motor symptoms demonstrated lower serum UA concentrations and had overall better outcomes, while male patients with predominantly right-sided motor symptoms demonstrated particularly poor outcomes. CONCLUSIONS These findings suggest that in the earliest stages of the disease, UA and sex moderate cognitive functions and psychiatric symptoms differently depending on motor asymmetry, holding important clinical implications for symptom management in patients.
Collapse
Affiliation(s)
- Ioana Medeleine Constantin
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland
| | - Julie Anne Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, University of Geneva, 40 Bd du Pont d'Arve, 1205, Geneva, Switzerland.
- Neurology Department, Geneva University Hospitals, 4 Rue Gabrielle-Perret-Gentil, 1205, Geneva, Switzerland.
| |
Collapse
|
26
|
Xu C, Neuroth T, Fujiwara T, Liang R, Ma KL. A Predictive Visual Analytics System for Studying Neurodegenerative Disease Based on DTI Fiber Tracts. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2023; 29:2020-2035. [PMID: 34965212 DOI: 10.1109/tvcg.2021.3137174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Diffusion tensor imaging (DTI) has been used to study the effects of neurodegenerative diseases on neural pathways, which may lead to more reliable and early diagnosis of these diseases as well as a better understanding of how they affect the brain. We introduce a predictive visual analytics system for studying patient groups based on their labeled DTI fiber tract data and corresponding statistics. The system's machine-learning-augmented interface guides the user through an organized and holistic analysis space, including the statistical feature space, the physical space, and the space of patients over different groups. We use a custom machine learning pipeline to help narrow down this large analysis space and then explore it pragmatically through a range of linked visualizations. We conduct several case studies using DTI and T1-weighted images from the research database of Parkinson's Progression Markers Initiative.
Collapse
|
27
|
Tao P, Shao X, Dong Y, Adams R, Preston E, Liu Y, Han J. Functional near-infrared spectroscopy measures of frontal hemodynamic responses in Parkinson's patients and controls performing the Timed-Up-and-Go test. Behav Brain Res 2023; 438:114219. [PMID: 36403671 DOI: 10.1016/j.bbr.2022.114219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Using functional near-infrared spectroscopy (fNIRS), hemodynamic responses (i.e., changes in oxygenated and deoxygenated hemoglobin) were measured while participants with Parkinson's disease (PD) and healthy controls performed the Timed-Up-and-Go test (TUGT), and differences in cortical activity at baseline and three different intervals were examined between the two groups. Seventeen PD patients and twenty-two controls participated in the study, but two PD patients were excluded from statistical analysis due to the presence of freezing of gait and using walking aids during the TUGT. During the TUGT, activity in the front, left, right and total frontal cortices initially decreased significantly, then significantly increased in PD participants and low-risk faller PD participants, compared to when in a sitting position. ΔHbO (HbO change from baseline) over the front, left and total frontal cortices in the PD group was significantly lower than the control group in interval 1 (P = 0.019, P = 0.014 and P = 0.031, respectively), while significantly higher than the control group in interval 2 over the left frontal cortex (P = 0.010). No significant differences were observed between the high-risk faller and low-risk faller subgroups of PD participants in ΔHbO and ΔHbR in the three intervals (P > 0.05). In the high-risk faller subgroup, ΔHbO over the left frontal cortex was significantly higher than the right frontal cortex in interval 2 and interval 3 (P = 0.015, P = 0.030, respectively). There was a strong positive correlation between education and HbR concentration over the right frontal cortex in PD participants (rho = 0.557, P = 0.031), while there were strong negative correlations between PD duration and HbR concentration over the right and total frontal cortices in the high-risk faller subgroup of PD participants (rho = -0.854, P = 0.014 for the right; rho = -0.784, P = 0.037 for the total). The falls prediction cutoff TUGT time for PD participants was 14.2 s. These results suggest that frontal cognition training, along with exercise training, could be used as an effective training method to improve motor performance in PD patients, especially for those at high-risk for falls.
Collapse
Affiliation(s)
- Ping Tao
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang 321013, China.
| | - Xuerong Shao
- Department of Rehabilitation Medicine, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, China.
| | - Yuchen Dong
- School of Medicine, Jinhua Polytechnic, Jinhua, Zhejiang 321013, China.
| | - Roger Adams
- Research Institute for Sports and Exercise, University of Canberra, ACT 2600, Australia.
| | | | - Ying Liu
- School of Psychology, Shanghai University of Sport, Shanghai 200438, China; Key Lab of Cognitive Evaluation and Regulation in Sport, General Administration of Sport of China, Shanghai 200438, China.
| | - Jia Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, China; Research Institute for Sports and Exercise, University of Canberra, ACT 2600, Australia; College of Rehabilitation Sciences, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China; Faculty of Health, Arts and Design, Swinburne University of Technology, VIC 3122, Australia.
| |
Collapse
|
28
|
Gibson JS, Flanigan JL, Patrie JT, Dalrymple WA, Harrison MB. Predictors of anxiety in Parkinson's disease: results from a 3-year longitudinal cohort study. Neurol Sci 2023; 44:547-556. [PMID: 36216970 PMCID: PMC9842547 DOI: 10.1007/s10072-022-06427-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/22/2022] [Indexed: 01/17/2023]
Abstract
INTRODUCTION Anxiety symptoms are the most common neuropsychiatric manifestation of Parkinson's disease (PD), contributing to decreased quality of life. Few longitudinal studies in PD samples have examined correlates of anxiety symptoms over time. Understanding predictor variables may help to identify novel targets for reducing anxiety in PD. The aim of this study was to identify predictors of anxiety symptoms over 3 years in a clinic-based PD cohort. METHODS Our cohort included patients with PD at an academic medical center in the Southeastern United States (n = 105). Visits included assessment of motor, psychiatric, and cognitive features, including neuropsychological testing. For our multivariate model, we selected 11 predictor variables with the most existing evidence or theoretical support for an association with anxiety symptoms in PD. Multivariate linear mixed model regression was performed to determine which variables were significantly associated with anxiety symptoms over time. RESULTS Over half of participants (57%) met the screening threshold for an anxiety disorder at some point during the study. Independent predictors of anxiety symptoms over time included symptoms of REM sleep behavior disorder (RBD) and dysautonomia. DISCUSSION In this PD sample, RBD and dysautonomia symptoms were significantly associated with anxiety symptoms over time. Each of these relationships has been reported in one of two prior longitudinal studies. Unlike prior studies, cognitive impairment was not a significant predictor of anxiety symptoms in our sample. Future research should confirm the direction and mechanisms underlying these relationships, including the potential for anxiety symptom reduction through treatment for RBD and dysautonomia.
Collapse
Affiliation(s)
- Jessie S Gibson
- School of Nursing, University of Virginia, Charlottesville, VA, USA.
- Department of Neurology, University of Virginia, Charlottesville, VA, USA.
| | - Joseph L Flanigan
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | - James T Patrie
- Department of Public Health Sciences, University of Virginia, Charlottesville, VA, USA
| | - W Alex Dalrymple
- Department of Neurology, University of Virginia, Charlottesville, VA, USA
| | | |
Collapse
|
29
|
Faria MH, Simieli L, Rietdyk S, Penedo T, Santinelli FB, Barbieri FA. (A)symmetry during gait initiation in people with Parkinson's disease: A motor and cortical activity exploratory study. Front Aging Neurosci 2023; 15:1142540. [PMID: 37139089 PMCID: PMC10150081 DOI: 10.3389/fnagi.2023.1142540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 03/28/2023] [Indexed: 05/05/2023] Open
Abstract
Background Gait asymmetry and deficits in gait initiation (GI) are among the most disabling symptoms in people with Parkinson's disease (PwPD). Understanding if PwPD with reduced asymmetry during GI have higher asymmetry in cortical activity may provide support for an adaptive mechanism to improve GI, particularly in the presence of an obstacle. Objective This study quantified the asymmetry of anticipatory postural adjustments (APAs), stepping parameters and cortical activity during GI, and tested if the presence of an obstacle regulates asymmetry in PwPD. Methods Sixteen PwPD and 16 control group (CG) performed 20-trials in two conditions: unobstructed and obstructed GI with right and left limbs. We measured, through symmetry index, (i) motor parameters: APAs and stepping, and (ii) cortical activity: the PSD of the frontal, sensorimotor and occipital areas during APA, STEP-I (moment of heel-off of the leading foot in the GI until the heel contact of the same foot); and STEP-II (moment of the heel-off of the trailing foot in the GI until the heel contact of the same foot) phases. Results Parkinson's disease showed higher asymmetry in cortical activity during APA, STEP-I and STEP-II phases and step velocity (STEP-II phase) during unobstructed GI than CG. However, unexpectedly, PwPD reduced the level of asymmetry of anterior-posterior displacement (p < 0.01) and medial-lateral velocity (p < 0.05) of the APAs. Also, when an obstacle was in place, PwPD showed higher APAs asymmetry (medial-lateral velocity: p < 0.002), with reduced and increased asymmetry of the cortical activity during APA and STEP-I phases, respectively. Conclusion Parkinson's disease were not motor asymmetric during GI, indicating that higher cortical activity asymmetry can be interpreted as an adaptive behavior to reduce motor asymmetry. In addition, the presence of obstacle did not regulate motor asymmetry during GI in PwPD.
Collapse
Affiliation(s)
- Murilo Henrique Faria
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Lucas Simieli
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Shirley Rietdyk
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States
| | - Tiago Penedo
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
| | - Felipe Balistieri Santinelli
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
- REVAL Rehabilitation Research Center, Faculty of Rehabilitation Sciences, Hasselt University, Hasselt, Belgium
| | - Fabio Augusto Barbieri
- Human Movement Research Laboratory (MOVI-LAB), School of Sciences, Department of Physical Education, São Paulo State University (Unesp), Bauru, São Paulo, Brazil
- *Correspondence: Fabio Augusto Barbieri,
| |
Collapse
|
30
|
Bergamino M, Keeling EG, Ray NJ, Macerollo A, Silverdale M, Stokes AM. Structural connectivity and brain network analyses in Parkinson's disease: A cross-sectional and longitudinal study. Front Neurol 2023; 14:1137780. [PMID: 37034088 PMCID: PMC10076650 DOI: 10.3389/fneur.2023.1137780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Abstract
Introduction Parkinson's disease (PD) is an idiopathic disease of the central nervous system characterized by both motor and non-motor symptoms. It is the second most common neurodegenerative disease. Magnetic resonance imaging (MRI) can reveal underlying brain changes associated with PD. Objective In this study, structural connectivity and white matter networks were analyzed by diffusion MRI and graph theory in a cohort of patients with PD and a cohort of healthy controls (HC) obtained from the Parkinson's Progression Markers Initiative (PPMI) database in a cross-sectional analysis. Furthermore, we investigated longitudinal changes in the PD cohort over 36 months. Result Compared with the control group, participants with PD showed lower structural connectivity in several brain areas, including the corpus callosum, fornix, and uncinate fasciculus, which were also confirmed by a large effect-size. Additionally, altered connectivity between baseline and after 36 months was found in different network paths inside the white matter with a medium effect-size. Network analysis showed trends toward lower network density in PD compared with HC at baseline and after 36 months, though not significant after correction. Significant differences were observed in nodal degree and strength in several nodes. Conclusion In conclusion, altered structural and network metrics in several brain regions, such as corpus callosum, fornix, and cingulum were found in PD, compared to HC. We also report altered connectivity in the PD group after 36 months, reflecting the impact of both PD pathology and aging processes. These results indicate that structural and network metrics might yield insight into network reorganization that occurs in PD.
Collapse
Affiliation(s)
- Maurizio Bergamino
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- *Correspondence: Maurizio Bergamino
| | - Elizabeth G. Keeling
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Nicola J. Ray
- Health, Psychology and Communities Research Centre, Department of Psychology, Manchester Metropolitan University, Manchester, United Kingdom
| | - Antonella Macerollo
- Neurology Department, The Walton Centre NHS Foundation Trust, Liverpool, United Kingdom
- Institute of Systems, Molecular and Integrative Biology, School of Life Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Monty Silverdale
- Manchester Centre for Clinical Neurosciences, University of Manchester, Manchester, United Kingdom
| | - Ashley M. Stokes
- Barrow Neuroimaging Innovation Center, Barrow Neurological Institute, Phoenix, AZ, United States
| |
Collapse
|
31
|
Diffusion along perivascular spaces as marker for impairment of glymphatic system in Parkinson's disease. NPJ Parkinsons Dis 2022; 8:174. [PMID: 36543809 PMCID: PMC9772196 DOI: 10.1038/s41531-022-00437-1] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022] Open
Abstract
The brain glymphatic system is involved in the clearance of misfolding α-synuclein, the impaired glymphatic system may contribute to the progression of Parkinson's disease (PD). We aimed to analyze the diffusion tensor image along the perivascular space (DTI-ALPS) and perivascular space (PVS) burden to reveal the relationship between the glymphatic system and PD. A cross-sectional study using a 7 T MRI of 76 PD patients and 48 controls was performed to evaluate the brain's glymphatic system. The DTI-ALPS and PVS burden in basal ganglia were calculated. Correlation analyses were conducted between DTI-ALPS, PVS burden and clinical features. We detected lower DTI-ALPS in the PD subgroup relative to controls, and the differences were more pronounced in patients with Hoehn & Yahr stage greater than two. The decreased DTI-ALPS was only evident in the left hemisphere in patients in the early stage but involved both hemispheres in more advanced PD patients. Decreased DTI-ALPS were also correlated with longer disease duration, higher Unified Parkinson's Disease Rating Scale motor score (UPDRS III) and UPDRS total scores, as well as higher levodopa equivalent daily dose. Moreover, the decreased DTI-ALPS correlated with increased PVS burden, and both indexes correlated with PD disease severity. This study demonstrated decreased DTI-ALPS in PD, which might initiate from the left hemisphere and progressively involve right hemisphere with the disease progression. Decreased DTI-ALPS index correlated with increased PVS burden, indicating that both metrics could provide supporting evidence of an impaired glymphatic system. MRI evaluation of the PVS burden and diffusion along PVS are potential imaging biomarkers for PD for disease progression.
Collapse
|
32
|
Biomarkers and non-motor symptoms as a function of motor symptom asymmetry in early Parkinson's disease. Neuropsychologia 2022; 177:108419. [PMID: 36375651 DOI: 10.1016/j.neuropsychologia.2022.108419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 10/19/2022] [Accepted: 11/06/2022] [Indexed: 11/13/2022]
Abstract
INTRODUCTION The longitudinal trajectories of cognitive-neuropsychiatric symptoms from the early stages of Parkinson's disease, as a function of motor symptom asymmetry at the onset of the disease, remain to be fully explored. Moreover, the relationship to biomarkers warrants further investigation. METHODOLOGY Non-motor and biospecimen data from 413 patients with Parkinson's disease, dissociating predominantly left-sided motor symptoms patients (n = 179), predominantly right-sided motor symptoms patients (n = 234), and matched healthy controls (n = 196), were extracted from the Parkinson's Progression Marker Initiative database during a 3-Year follow-up. Non-parametric and conservative corrections for multivariate comparisons were carried out on neuropsychiatric and biomarker data. RESULTS A decline for global cognitive efficiency scores in predominantly right-sided motor symptoms patients was observed, whereas depressive and anxiety symptoms were greater overtime for predominantly left-sided motor symptoms patients. Biomarker analysis revealed that predominantly right-sided patients expressed decreased levels of total-tau and phospho-tau over time, while left-sided patients didn't differ from healthy controls. CONCLUSION From the early course of the disease, the existence of different clinical phenotypes is proposed, associated to emerging evidences of distinct pathological pathways and a left-hemispheric vulnerability for cognitive decline.
Collapse
|
33
|
Crossed functional specialization between the basal ganglia and cerebellum during vocal emotion decoding: Insights from stroke and Parkinson’s disease. COGNITIVE, AFFECTIVE, & BEHAVIORAL NEUROSCIENCE 2022; 22:1030-1043. [PMID: 35474566 PMCID: PMC9458588 DOI: 10.3758/s13415-022-01000-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 03/21/2022] [Indexed: 11/08/2022]
Abstract
There is growing evidence that both the basal ganglia and the cerebellum play functional roles in emotion processing, either directly or indirectly, through their connections with cortical and subcortical structures. However, the lateralization of this complex processing in emotion recognition remains unclear. To address this issue, we investigated emotional prosody recognition in individuals with Parkinson’s disease (model of basal ganglia dysfunction) or cerebellar stroke patients, as well as in matched healthy controls (n = 24 in each group). We analysed performances according to the lateralization of the predominant brain degeneration/lesion. Results showed that a right (basal ganglia and cerebellar) hemispheric dysfunction was likely to induce greater deficits than a left one. Moreover, deficits following left hemispheric dysfunction were only observed in cerebellar stroke patients, and these deficits resembled those observed after degeneration of the right basal ganglia. Additional analyses taking disease duration / time since stroke into consideration revealed a worsening of performances in patients with predominantly right-sided lesions over time. These results point to the differential, but complementary, involvement of the cerebellum and basal ganglia in emotional prosody decoding, with a probable hemispheric specialization according to the level of cognitive integration.
Collapse
|
34
|
Bocci T, Baloscio D, Ferrucci R, Briscese L, Priori A, Sartucci F. Interhemispheric Connectivity in Idiopathic Cervical Dystonia and Spinocerebellar Ataxias: A Transcranial Magnetic Stimulation Study. Clin EEG Neurosci 2022; 53:460-466. [PMID: 32938220 DOI: 10.1177/1550059420957487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND RATIONALE Hyperkinetic movement disorders represent a heterogeneous group of diseases, different from a genetic and clinical perspective. In the past, neurophysiological approaches provided different, sometimes contradictory findings, pointing to an impaired cortical inhibition as a common electrophysiological marker. Our aim was to evaluate changes in interhemispheric communication in patients with idiopathic cervical dystonia (ICD) and spinocerebellar ataxias (SCAs). MATERIALS AND METHODS Eleven patients with ICD, 7 with genetically confirmed SCA2 or SCA3, and 10 healthy volunteers were enrolled. The onset latency and duration of the ipsilateral silent period (iSPOL and iSPD, respectively), as well as the so-called transcallosal conduction time (TCT), were then recorded from the abductor pollicis brevis of the right side using an 8-shaped focal coil with wing diameters of 70 mm; all these parameters were evaluated and compared among groups. In SCAs, changes in neurophysiological measures were also correlated to the mutational load. RESULTS iSPD was significantly shorter in patients with SCA2 and SCA3, when compared both to control and ICD (P < .0001); iSPOL and TCT were prolonged in SCAs patients (P < .001). Changes in iSPD, iSPOL, and TCT in SCAs are significantly correlated with the mutational load (P = .01, P = .02, and P = .002, respectively). DISCUSSION This is the first study to assess changes in interhemispheric communication in patients with SCAs and ICD, using a transcranial magnetic stimulation protocol. Together with previous data in Huntington's disease, we suggest that these changes may underlie, at least in part, a common disease mechanism of polyglutamine disorders.
Collapse
Affiliation(s)
- Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Davide Baloscio
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Roberta Ferrucci
- "Aldo Ravelli" Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Lucia Briscese
- Severe Acquired Brain Injuries Unit, Cisanello University Hospital, Pisa, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experiental Brain Therapeutics, Department of Health Sciences, University of Milan & ASST Santi Paolo e Carlo, Milan, Italy
| | - Ferdinando Sartucci
- Section of Neurophysiopathology, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
35
|
Banwinkler M, Dzialas V, Hoenig MC, van Eimeren T. Gray Matter Volume Loss in Proposed Brain-First and Body-First Parkinson's Disease Subtypes. Mov Disord 2022; 37:2066-2074. [PMID: 35943058 DOI: 10.1002/mds.29172] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/24/2022] [Accepted: 07/10/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND α-Synuclein pathology is associated with neuronal degeneration in Parkinson's disease (PD) and considered to sequentially spread across the brain (Braak stages). According to a new hypothesis of distinct α-synuclein spreading directions based on the initial site of pathology, the "brain-first" spreading subtype would be associated with a more asymmetric cerebral and nigrostriatal pathology than the "body-first" subtype. OBJECTIVE Here, we tested if proposed markers of brain-first PD (ie, higher dopamine transporter [DaT] asymmetry; absence of rapid eye movement sleep behavior disorder [RBD]) are associated with a greater or more asymmetric reduction in gray matter volume (GMV) in comparison to body-first PD. METHODS Data of 255 de novo PD patients and 110 healthy controls (HCs) were retrieved from the Parkinson's Progression Markers Initiative. Structural magnetic resonance images were preprocessed, and GMVs and their hemispherical asymmetry were obtained for each of the neuropathologically defined Braak stages. Group and correlation comparisons were performed to assess differences in GMV and GMV asymmetry between PD subtypes. RESULTS PD patients demonstrated significantly smaller bilateral GMVs compared to HCs, in a pattern denoting stage-dependent disease-related brain atrophy. However, the degree of putaminal DaT asymmetry was not associated with reduced GMV or higher GMV asymmetry. Furthermore, RBD-negative and RBD-positive patients did not demonstrate a significant difference in GMV or GMV asymmetry. CONCLUSIONS Our findings suggest that putative brain-first and body-first patients do not present diverging brain atrophy patterns. Although certainly not disproving the brain-first/body-first spreading hypothesis, this study fails to provide evidence in support of it. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Magdalena Banwinkler
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany
| | - Verena Dzialas
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany.,Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | | | - Merle C Hoenig
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany.,Institute for Neuroscience and Medicine II, Molecular Organization of the Brain, Research Center Juelich, Juelich, Germany
| | - Thilo van Eimeren
- Faculty of Medicine and University Hospital Cologne, Department of Nuclear Medicine, University of Cologne, Cologne, Germany.,Faculty of Medicine and University Hospital Cologne, Department of Neurology, University of Cologne, Cologne, Germany
| |
Collapse
|
36
|
Chen A, Deng Y, Zuo X, Zhong S. Alteration in Asymmetry of White Matter Network of Parkinson's Disease. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:8493729. [PMID: 35873665 PMCID: PMC9273463 DOI: 10.1155/2022/8493729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022]
Abstract
Parkinson's disease (PD) is manifest clinically by an asymmetrical presentation of motor dysfunction. A large number of previous neuroimaging research studies have stated the alteration in the hemispheric asymmetry of morphological features in PD disease. Diffusion Magnetic Resonance Imaging (MRI), which is noninvasive, has been widely used to quantify the white matter network in the human brain of both healthy subjects and patients. Besides, graph theory analysis is widely used to quantify the topological architecture of the human brain network. Lately, researchers have discovered that the topological architecture of the white matter network significantly differs in PD compared with healthy controls (HC). Nevertheless, the asymmetry of the topological architecture of the white matter network for PD patients remains unclear. To clarify this, the diffusion-weighted images and tractography technique were used to reconstruct the hemispherical white matter networks for 22 bilateral PD patients and 18 HC subjects. Network-based statistical analysis and graph theory analysis approaches were employed to estimate the asymmetry at both the connectivity level and the hemispheric topological level for PD patients. We found that the PD group showed atypically right-higher-than-left asymmetry in hemispheric brain global and local efficiencies. The detected right-higher-than-left asymmetry was driven by the atypically topological changes in the left hemispheric brain in the PD group. Findings from these studies might provide new insights into the asymmetric features of hemispheric disconnectivity and emphasize that the topological asymmetry of the hemispheric brain could be used as a biomarker to identify PD individuals.
Collapse
Affiliation(s)
- Aihong Chen
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Yue Deng
- Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430051, China
| | - Xiaobing Zuo
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| | - Suting Zhong
- Department of Emergency Medicine, Hanyang Hospital Affiliated to Wuhan University of Science, Wuhan, Hubei 430051, China
| |
Collapse
|
37
|
Oltra J, Uribe C, Segura B, Campabadal A, Inguanzo A, Monté-Rubio GC, Pardo J, Marti MJ, Compta Y, Valldeoriola F, Junque C, Iranzo A. Brain atrophy pattern in de novo Parkinson's disease with probable RBD associated with cognitive impairment. NPJ Parkinsons Dis 2022; 8:60. [PMID: 35610256 PMCID: PMC9130201 DOI: 10.1038/s41531-022-00326-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 04/27/2022] [Indexed: 11/17/2022] Open
Abstract
Rapid eye movement sleep behavior disorder (RBD) is associated with high likelihood of prodromal Parkinson’s disease (PD) and is common in de novo PD. It is associated with greater cognitive impairment and brain atrophy. However, the relation between structural brain characteristics and cognition remains poorly understood. We aimed to investigate subcortical and cortical atrophy in de novo PD with probable RBD (PD-pRBD) and to relate it with cognitive impairment. We analyzed volumetry, cortical thickness, and cognitive measures from 79 PD-pRBD patients, 126 PD without probable RBD patients (PD-non pRBD), and 69 controls from the Parkinson’s Progression Markers Initiative (PPMI). Regression models of cognition were tested using magnetic resonance imaging measures as predictors. We found lower left thalamus volume in PD-pRBD compared with PD-non pRBD. Compared with controls, PD-pRBD group showed atrophy in the bilateral putamen, left hippocampus, left amygdala, and thinning in the right superior temporal gyrus. Specific deep gray matter nuclei volumes were associated with impairment in global cognition, phonemic fluency, processing speed, and visuospatial function in PD-pRBD. In conclusion, cognitive impairment and gray matter atrophy are already present in de novo PD-pRBD. Thalamus, hippocampus, and putamen volumes were mainly associated with these cognitive deficits.
Collapse
Affiliation(s)
- Javier Oltra
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Carme Uribe
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Research Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health (CAMH), University of Toronto, Toronto, Ontario, Canada
| | - Barbara Segura
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain. .,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain. .,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.
| | - Anna Campabadal
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Anna Inguanzo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Gemma C Monté-Rubio
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Jèssica Pardo
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain
| | - Maria J Marti
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Yaroslau Compta
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Francesc Valldeoriola
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Parkinson's Disease & Movement Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain
| | - Carme Junque
- Medical Psychology Unit, Department of Medicine, Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia, Spain.,Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain
| | - Alex Iranzo
- Institute of Biomedical Research August Pi i Sunyer (IDIBAPS), Barcelona, Catalonia, Spain.,Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED: CB06/05/0018-ISCIII), Barcelona, Catalonia, Spain.,Multidisciplinary Sleep Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
38
|
Ya Y, Ji L, Jia Y, Zou N, Jiang Z, Yin H, Mao C, Luo W, Wang E, Fan G. Machine Learning Models for Diagnosis of Parkinson's Disease Using Multiple Structural Magnetic Resonance Imaging Features. Front Aging Neurosci 2022; 14:808520. [PMID: 35493923 PMCID: PMC9043762 DOI: 10.3389/fnagi.2022.808520] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 03/08/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose This study aimed to develop machine learning models for the diagnosis of Parkinson's disease (PD) using multiple structural magnetic resonance imaging (MRI) features and validate their performance. Methods Brain structural MRI scans of 60 patients with PD and 56 normal controls (NCs) were enrolled as development dataset and 69 patients with PD and 71 NCs from Parkinson's Progression Markers Initiative (PPMI) dataset as independent test dataset. First, multiple structural MRI features were extracted from cerebellar, subcortical, and cortical regions of the brain. Then, the Pearson's correlation test and least absolute shrinkage and selection operator (LASSO) regression were used to select the most discriminating features. Finally, using logistic regression (LR) classifier with the 5-fold cross-validation scheme in the development dataset, the cerebellar, subcortical, cortical, and a combined model based on all features were constructed separately. The diagnostic performance and clinical net benefit of each model were evaluated with the receiver operating characteristic (ROC) analysis and the decision curve analysis (DCA) in both datasets. Results After feature selection, 5 cerebellar (absolute value of left lobule crus II cortical thickness (CT) and right lobule IV volume, relative value of right lobule VIIIA CT and lobule VI/VIIIA gray matter volume), 3 subcortical (asymmetry index of caudate volume, relative value of left caudate volume, and absolute value of right lateral ventricle), and 4 cortical features (local gyrification index of right anterior circular insular sulcus and anterior agranular insula complex, local fractal dimension of right middle insular area, and CT of left supplementary and cingulate eye field) were selected as the most distinguishing features. The area under the curve (AUC) values of the cerebellar, subcortical, cortical, and combined models were 0.679, 0.555, 0.767, and 0.781, respectively, for the development dataset and 0.646, 0.632, 0.690, and 0.756, respectively, for the independent test dataset, respectively. The combined model showed higher performance than the other models (Delong's test, all p-values < 0.05). All models showed good calibration, and the DCA demonstrated that the combined model has a higher net benefit than other models. Conclusion The combined model showed favorable diagnostic performance and clinical net benefit and had the potential to be used as a non-invasive method for the diagnosis of PD.
Collapse
Affiliation(s)
- Yang Ya
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lirong Ji
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yujing Jia
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Nan Zou
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhen Jiang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Hongkun Yin
- Institute of Advanced Research, Infervision Medical Technology Co., Ltd, Beijing, China
| | - Chengjie Mao
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Weifeng Luo
- Department of Neurology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Erlei Wang
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Guohua Fan
- Department of Radiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
39
|
Voruz P, Pierce J, Ahrweiller K, Haegelen C, Sauleau P, Drapier S, Drapier D, Vérin M, Péron J. Motor symptom asymmetry predicts non-motor outcome and quality of life following STN DBS in Parkinson's disease. Sci Rep 2022; 12:3007. [PMID: 35194127 PMCID: PMC8863787 DOI: 10.1038/s41598-022-07026-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/27/2022] [Indexed: 11/09/2022] Open
Abstract
Risk factors for long-term non-motor symptoms and quality of life following subthalamic nucleus deep brain stimulation (STN DBS) have not yet been fully identified. In the present study, we investigated the impact of motor symptom asymmetry in Parkinson's disease. Data were extracted for 52 patients with Parkinson's disease (half with predominantly left-sided motor symptoms and half with predominantly right-sided ones) who underwent bilateral STN and a matched healthy control group. Performances for cognitive tests, apathy and depression symptoms, as well as quality-of-life questionnaires at 12 months post-DBS were compared with a pre-DBS baseline. Results indicated a deterioration in cognitive performance post-DBS in patients with predominantly left-sided motor symptoms. Performances of patients with predominantly right-sided motor symptoms were maintained, except for a verbal executive task. These differential effects had an impact on patients' quality of life. The results highlight the existence of two distinct cognitive profiles of Parkinson's disease, depending on motor symptom asymmetry. This asymmetry is a potential risk factor for non-motor adverse effects following STN DBS.
Collapse
Affiliation(s)
- Philippe Voruz
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland.,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Jordan Pierce
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland
| | - Kévin Ahrweiller
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Neurology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Claire Haegelen
- Neurosurgery Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France.,MediCIS, INSERM-University of Rennes 1, Rennes, France
| | - Paul Sauleau
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Physiology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Sophie Drapier
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Neurology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Dominique Drapier
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Adult Psychiatry Department, Guillaume Régnier Hospital, Rennes, France
| | - Marc Vérin
- 'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.,Neurology Department, Pontchaillou Hospital, Rennes University Hospital, Rennes, France
| | - Julie Péron
- Clinical and Experimental Neuropsychology Laboratory, Faculty of Psychology and Educational Sciences, 40 bd du Pont d'Arve, 1205, Geneva, Switzerland. .,Neuropsychology Unit, Neurology Department, University Hospitals of Geneva, Geneva, Switzerland. .,'Behavior and Basal Ganglia' Research Unit, University of Rennes 1-Rennes University Hospital, Rennes, France.
| |
Collapse
|
40
|
Miyamoto T, Akaiwa Y, Numahata K, Yoshizawa K, Sairenchi T, Miyamoto M. Striatal dopamine transporter degeneration in right-handed REM sleep behavior disorder patients progresses faster in the left hemisphere. Parkinsonism Relat Disord 2022; 95:107-112. [DOI: 10.1016/j.parkreldis.2022.01.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 10/19/2022]
|
41
|
Ma JP, Robbins CB, Stinnett SS, Johnson KG, Scott BL, Grewal DS, Fekrat S. Repeatability of Peripapillary OCT Angiography in Neurodegenerative Disease. OPHTHALMOLOGY SCIENCE 2021; 1:100075. [PMID: 36246947 PMCID: PMC9559083 DOI: 10.1016/j.xops.2021.100075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/31/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022]
Abstract
Purpose To assess the repeatability of peripapillary OCT angiography (OCTA) in those with Alzheimer disease (AD), mild cognitive impairment (MCI), Parkinson disease (PD), or normal cognition. Design Cross-sectional. Participants Patients with a clinical diagnosis of AD, MCI, PD, or normal cognition were imaged. Those with glaucoma, diabetes mellitus, vitreoretinal pathology, and poor-quality images were excluded. Methods Each eligible eye of each participant underwent 2 OCTA 4.5 × 4.5-mm peripapillary scans in a single session using a Zeiss Cirrus HD-OCT 5000 with AngioPlex (Carl Zeiss Meditec). The Zeiss software (v11.0.0.29946) quantified measures of perfusion in the radial peripapillary capillary (RPC) plexus in 4 sectors (superior, nasal, inferior, temporal). The average of these sectors was calculated and reported. Main Outcome Measures Radial peripapillary capillary plexus perfusion was quantified using 2 parameters: capillary perfusion density (CPD) and capillary flux index (CFI). Intraclass correlation coefficients (ICCs) were used to quantify repeatability. For subjects who had both eyes included, the average values of each scan pair were used to assess interocular symmetry of CPD and CFI. Results Of 374 eyes, 46 were from participants who had AD, 85 were from participants who had MCI, 87 were from participants who had PD, and 156 were from participants who had normal cognition. Capillary perfusion density ICC in AD = 0.88 (95% confidence interval [CI], 0.79-0.93), MCI = 0.95 (0.92-0.96), PD = 0.91 (0.87-0.94), and controls = 0.90 (0.87-0.93). Capillary flux index ICC in AD = 0.82 (0.70-0.90), MCI = 0.87 (0.80-0.91), PD = 0.91 (0.87-0.94) and controls = 0.85 (0.79-0.89). There were no significant differences in interocular variation in average CPD and CFI in AD, MCI, or PD (all P > 0.05). Isolated interocular sectoral CPD differences were noted in AD (nasal, P = 0.049; temporal, P = 0.024), PD (nasal, P = 0.036), and controls (nasal, P = 0.016). Interocular differences in CFI in the superior sector in MCI (P = 0.028) and in average CFI for controls (P = 0.035) were observed. Conclusions Peripapillary OCTA repeatability in AD, MCI, and PD is good-excellent and similar to those with normal cognition. Insignificant interocular asymmetry in peripapillary OCTA suggests neurodegeneration may proceed uniformly; future studies may reveal the appropriateness of single-eye imaging.
Collapse
Key Words
- AD, Alzheimer disease
- Alzheimer disease
- CFI, capillary flux index
- CI, confidence interval
- CPD, capillary perfusion density
- ICC, intraclass correlation coefficient
- MCI, mild cognitive impairment
- MMSE, Mini Mental State Examination
- Mild cognitive impairment
- Neurodegeneration
- OCT angiography
- OCTA, OCT angiography
- PD, Parkinson disease
- Parkinson disease
- Peripapillary
- RPC, radial peripapillary capillary
- Repeatability
- Retina
- SD, standard deviation
Collapse
Affiliation(s)
- Justin P. Ma
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Cason B. Robbins
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sandra S. Stinnett
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Kim G. Johnson
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Burton L. Scott
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Dilraj S. Grewal
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
| | - Sharon Fekrat
- iMIND Research Group, Duke University School of Medicine, Durham, North Carolina
- Department of Ophthalmology, Duke University School of Medicine, Durham, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| |
Collapse
|
42
|
Zhang L, Shen Q, Liao H, Li J, Wang T, Zi Y, Zhou F, Song C, Mao Z, Wang M, Cai S, Tan C. Aberrant Changes in Cortical Complexity in Right-Onset Versus Left-Onset Parkinson's Disease in Early-Stage. Front Aging Neurosci 2021; 13:749606. [PMID: 34819848 PMCID: PMC8606890 DOI: 10.3389/fnagi.2021.749606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/05/2021] [Indexed: 11/17/2022] Open
Abstract
There is increasing evidence to show that motor symptom lateralization in Parkinson’s disease (PD) is linked to non-motor features, progression, and prognosis of the disease. However, few studies have reported the difference in cortical complexity between patients with left-onset of PD (LPD) and right-onset of PD (RPD). This study aimed to investigate the differences in the cortical complexity between early-stage LPD and RPD. High-resolution T1-weighted magnetic resonance images of the brain were acquired in 24 patients with LPD, 34 patients with RPD, and 37 age- and sex-matched healthy controls (HCs). Cortical complexity including gyrification index, fractal dimension (FD), and sulcal depth was analyzed using surface-based morphometry via CAT12/SPM12. Familywise error (FWE) peak-level correction at p < 0.05 was performed for significance testing. In patients with RPD, we found decreased mean FD and mean sulcal depth in the banks of the left superior temporal sulcus (STS) compared with LPD and HCs. The mean FD in the left superior temporal gyrus (STG) was decreased in RPD compared with HCs. However, in patients with LPD, we did not identify significantly abnormal cortical complex change compared with HCs. Moreover, we observed that the mean FD in STG was negatively correlated with the 17-item Hamilton Depression Scale (HAMD) among the three groups. Our findings support the specific influence of asymmetrical motor symptoms in cortical complexity in early-stage PD and reveal that the banks of left STS and left STG might play a crucial role in RPD.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qin Shen
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haiyan Liao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Junli Li
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tianyu Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Radiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuheng Zi
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Fan Zhou
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chendie Song
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhenni Mao
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Min Wang
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Sainan Cai
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
43
|
Wang J, Shang R, He L, Zhou R, Chen Z, Ma Y, Li X. Prediction of Deep Brain Stimulation Outcome in Parkinson's Disease With Connectome Based on Hemispheric Asymmetry. Front Neurosci 2021; 15:620750. [PMID: 34764846 PMCID: PMC8576048 DOI: 10.3389/fnins.2021.620750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 09/28/2021] [Indexed: 11/25/2022] Open
Abstract
Parkinson’s disease (PD) is a neurodegenerative disease that is associated with motor and non-motor symptoms and caused by lack of dopamine in the substantia nigra of the brain. Subthalamic nucleus deep brain stimulation (STN-DBS) is a widely accepted therapy of PD that mainly inserts electrodes into both sides of the brain. The effect of STN-DBS was mainly for motor function, so this study focused on the recovery of motor function for PD after DBS. Hemispherical asymmetry in the brain network is considered to be a potential indicator for diagnosing PD patients. This study investigated the value of hemispheric brain connection asymmetry in predicting the DBS surgery outcome in PD patients. Four types of brain connections, including left intra-hemispheric (LH) connection, right intra-hemispheric (RH) connection, inter-hemispheric homotopic (Ho) connection, and inter-hemispheric heterotopic (He) connection, were constructed based on the resting state functional magnetic resonance imaging (rs-fMRI) performed before the DBS surgery. We used random forest for selecting features and the Ridge model for predicting surgical outcome (i.e., improvement rate of motor function). The functional connectivity analysis showed that the brain has a right laterality: the RH networks has the best correlation (r = 0.37, p = 5.68E-03) between the predicted value and the true value among the above four connections. Moreover, the region-of-interest (ROI) analysis indicated that the medioventral occipital cortex (MVOcC)–superior temporal gyrus (STG) and thalamus (Tha)–precentral gyrus (PrG) contributed most to the outcome prediction model for DBS without medication. This result provides more support for PD patients to evaluate DBS before surgery.
Collapse
Affiliation(s)
- Jingqi Wang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Ruihong Shang
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Le He
- Department of Biomedical Engineering, Center for Biomedical Imaging Research, School of Medicine, Tsinghua University, Beijing, China
| | - Rongsong Zhou
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Zhensen Chen
- Department of Radiology, University of Washington, Seattle, WA, United States
| | - Yu Ma
- Department of Neurosurgery, Tsinghua University Yuquan Hospital, Beijing, China
| | - Xuesong Li
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
44
|
Keo A, Dzyubachyk O, van der Grond J, van Hilten JJ, Reinders MJT, Mahfouz A. Transcriptomic Signatures Associated With Regional Cortical Thickness Changes in Parkinson's Disease. Front Neurosci 2021; 15:733501. [PMID: 34658772 PMCID: PMC8519261 DOI: 10.3389/fnins.2021.733501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Cortical atrophy is a common manifestation in Parkinson's disease (PD), particularly in advanced stages of the disease. To elucidate the molecular underpinnings of cortical thickness changes in PD, we performed an integrated analysis of brain-wide healthy transcriptomic data from the Allen Human Brain Atlas and patterns of cortical thickness based on T1-weighted anatomical MRI data of 149 PD patients and 369 controls. For this purpose, we used partial least squares regression to identify gene expression patterns correlated with cortical thickness changes. In addition, we identified gene expression patterns underlying the relationship between cortical thickness and clinical domains of PD. Our results show that genes whose expression in the healthy brain is associated with cortical thickness changes in PD are enriched in biological pathways related to sumoylation, regulation of mitotic cell cycle, mitochondrial translation, DNA damage responses, and ER-Golgi traffic. The associated pathways were highly related to each other and all belong to cellular maintenance mechanisms. The expression of genes within most pathways was negatively correlated with cortical thickness changes, showing higher expression in regions associated with decreased cortical thickness (atrophy). On the other hand, sumoylation pathways were positively correlated with cortical thickness changes, showing higher expression in regions with increased cortical thickness (hypertrophy). Our findings suggest that alterations in the balanced interplay of these mechanisms play a role in changes of cortical thickness in PD and possibly influence motor and cognitive functions.
Collapse
Affiliation(s)
- Arlin Keo
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | | | | | - Marcel J. T. Reinders
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| | - Ahmed Mahfouz
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, Netherlands
- Department of Human Genetics, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
45
|
Keloth SM, Arjunan SP, Raghav S, Kumar DK. Muscle activation strategies of people with early-stage Parkinson's during walking. J Neuroeng Rehabil 2021; 18:133. [PMID: 34496882 PMCID: PMC8425033 DOI: 10.1186/s12984-021-00932-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 09/01/2021] [Indexed: 11/10/2022] Open
Abstract
Introduction Some people with Parkinson’s disease (PD) frequently have an unsteady gait with shuffling, reduced strength, and increased rigidity. This study has investigated the difference in the neuromuscular strategies of people with early-stage PD, healthy older adults (HOA) and healthy young adult (HYA) during short-distance walking. Method Surface electromyogram (sEMG) was recorded from tibialis anterior (TA) and medial gastrocnemius (MG) muscles along with the acceleration data from the lower leg from 72 subjects—24 people with early-stage PD, 24 HOA and 24 HYA during short-distance walking on a level surface using wearable sensors. Results There was a significant increase in the co-activation, a reduction in the TA modulation and an increase in the TA-MG lateral asymmetry among the people with PD during a level, straight-line walking. For people with PD, the gait impairment scale was low with an average postural instability and gait disturbance (PIGD) score = 5.29 out of a maximum score of 20. Investigating the single and double support phases of the gait revealed that while the muscle activity and co-activation index (CI) of controls modulated over the gait cycle, this was highly diminished for people with PD. The biggest difference between CI of controls and people with PD was during the double support phase of gait. Discussion The study has shown that people with early-stage PD have high asymmetry, reduced modulation, and higher co-activation. They have reduced muscle activity, ability to inhibit antagonist, and modulate their muscle activities. This has the potential for diagnosis and regular assessment of people with PD to detect gait impairments using wearable sensors.
Collapse
Affiliation(s)
- Sana M Keloth
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia
| | - Sridhar P Arjunan
- Department of Electronics and Instrumentation, SRM Institute of Science and Technology, Chennai, India
| | | | - Dinesh Kant Kumar
- Biosignals Lab, School of Engineering, RMIT University, Melbourne, VIC, Australia.
| |
Collapse
|
46
|
Sun J, Gao X, Hua Q, Du R, Liu P, Liu T, Yang J, Qiu B, Ji GJ, Hu P, Wang K. Brain functional specialization and cooperation in Parkinson's disease. Brain Imaging Behav 2021; 16:565-573. [PMID: 34427879 DOI: 10.1007/s11682-021-00526-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2021] [Indexed: 11/24/2022]
Abstract
Cerebral specialization and inter-hemispheric cooperation are two of the most prominent functional architectures of the human brain. Their dysfunctions may be related to pathophysiological changes in patients with Parkinson's disease (PD), who are characterized by unbalanced onset and progression of motor symptoms. This study aimed to characterize the two intrinsic architectures of hemispheric functions in PD using resting-state functional magnetic resonance imaging. Seventy idiopathic PD patients and 70 age-, sex-, and education-matched healthy subjects were recruited. All participants underwent magnetic resonance image scanning and clinical evaluations. The cerebral specialization (Autonomy index, AI) and inter-hemispheric cooperation (Connectivity between Functionally Homotopic voxels, CFH) were calculated and compared between groups. Compared with healthy controls, PD patients showed stronger AI in the left angular gyrus. Specifically, this difference in specialization resulted from increased functional connectivity (FC) of the ipsilateral areas (e.g., the left prefrontal area), and decreased FC in the contralateral area (e.g., the right supramarginal gyrus). Imaging-cognitive correlation analysis indicated that these connectivity were positively related to the score of Montreal Cognitive Assessment in PD patients. CFH between the bilateral sensorimotor regions was significantly decreased in PD patients compared with controls. No significant correlation between CFH and cognitive scores was found in PD patients. This study illustrated a strong leftward specialization but weak inter-hemispheric coordination in PD patients. It provided new insights to further clarify the pathological mechanism of PD.
Collapse
Affiliation(s)
- Jinmei Sun
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Xiaoran Gao
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Qiang Hua
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Rongrong Du
- School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Pingping Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Tingting Liu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China.,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China.,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China
| | - Jinying Yang
- Laboratory Center for Information Science, University of Science and Technology of China, Hefei, China
| | - Bensheng Qiu
- Hefei National Lab for Physical Sciences at the Microscale and the Centers for Biomedical Engineering, University of Science and Technology of China, Hefei, China
| | - Gong-Jun Ji
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China.
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230000, China. .,Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, 230032, China. .,Collaborative Innovation Centre of Neuropsychiatric Disorder and Mental Health, Hefei, 230000, China. .,Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, 230000, China.
| |
Collapse
|
47
|
Li J, Liao H, Wang T, Zi Y, Zhang L, Wang M, Mao Z, Song C, Zhou F, Shen Q, Cai S, Tan C. Alterations of Regional Homogeneity in the Mild and Moderate Stages of Parkinson's Disease. Front Aging Neurosci 2021; 13:676899. [PMID: 34366823 PMCID: PMC8336937 DOI: 10.3389/fnagi.2021.676899] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/23/2021] [Indexed: 01/26/2023] Open
Abstract
Objectives: This study aimed to investigate alterations in regional homogeneity (ReHo) in early Parkinson's disease (PD) at different Hoehn and Yahr (HY) stages and to demonstrate the relationships between altered brain regions and clinical scale scores. Methods: We recruited 75 PD patients, including 43 with mild PD (PD-mild; HY stage: 1.0-1.5) and 32 with moderate PD (PD-moderate; HY stage: 2.0-2.5). We also recruited 37 age- and sex-matched healthy subjects as healthy controls (HC). All subjects underwent neuropsychological assessments and a 3.0 Tesla magnetic resonance scanning. Regional homogeneity of blood oxygen level-dependent (BOLD) signals was used to characterize regional cerebral function. Correlative relationships between mean ReHo values and clinical data were then explored. Results: Compared to the HC group, the PD-mild group exhibited increased ReHo values in the right cerebellum, while the PD-moderate group exhibited increased ReHo values in the bilateral cerebellum, and decreased ReHo values in the right superior temporal gyrus, the right Rolandic operculum, the right postcentral gyrus, and the right precentral gyrus. Reho value of right Pre/Postcentral was negatively correlated with HY stage. Compared to the PD-moderate group, the PD-mild group showed reduced ReHo values in the right superior orbital gyrus and the right rectus, in which the ReHo value was negatively correlated with cognition. Conclusion: The right superior orbital gyrus and right rectus may serve as a differential indicator for mild and moderate PD. Subjects with moderate PD had a greater scope for ReHo alterations in the cortex and compensation in the cerebellum than those with mild PD. PD at HY stages of 2.0-2.5 may already be classified as Braak stages 5 and 6 in terms of pathology. Our study revealed the different patterns of brain function in a resting state in PD at different HY stages and may help to elucidate the neural function and early diagnosis of patients with PD.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Changlian Tan
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
48
|
Fiorenzato E, Antonini A, Bisiacchi P, Weis L, Biundo R. Asymmetric Dopamine Transporter Loss Affects Cognitive and Motor Progression in Parkinson's Disease. Mov Disord 2021; 36:2303-2313. [PMID: 34124799 PMCID: PMC8596815 DOI: 10.1002/mds.28682] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/26/2021] [Accepted: 05/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background Asymmetric hemispheric loss of dopaminergic neurons is one of the characteristic features of Parkinson's disease (PD). However, it is still debated if right or left asymmetry differently affects cognitive and motor progression. Objectives The objective of this study was to investigate, for the first time, the relevance of dopamine transporter (DAT) asymmetry on cognitive and motor manifestations at onset and at 4‐year progression in drug‐naïve PD. Methods From the Parkinson's Progression Markers Initiative multicenter cohort, we identified 249 right‐handed patients with PD with baseline asymmetry greater than 20% in putamen DAT binding at single‐photon emission computed tomography. A predominant putamen asymmetry was found on the left in 143 patients (PD‐left), and on the right side in 106 patients (PD‐right); we compared them with 196 healthy controls. Patients were followed longitudinally (2‐year and 4‐year visits), examining their clinical, cognitive, and imaging data. Results At baseline, the PD‐left group showed worse performance on the Symbol Digit Modality Test, an attention and processing‐speed test, and lower cerebrospinal fluid β‐amyloid levels than the PD‐right group. These differences were maintained at follow‐up, declining over time in both groups. By contrast, the PD‐right group showed greater motor impairment at baseline, which increased over 4 years. Striatal DAT binding decreased over time in both groups, but the PD‐right group showed a steeper decline, particularly during the first 2‐year follow‐up. Putaminal asymmetry assessed at baseline was maintained over time. Conclusions These findings suggest that hemispheric asymmetric dopaminergic denervation influences PD cognitive and motor performance as well as progression. Predominant right hemisphere nigrostriatal dopaminergic loss is associated with greater motor severity, whereas more pronounced left hemisphere denervation affects cognitive manifestations at onset and their progression. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
| | - Angelo Antonini
- Movement Disorders Unit, Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | | | - Luca Weis
- Movement Disorders Unit, Center for Neurodegenerative Diseases (CESNE), Department of Neuroscience, University of Padua, Padua, Italy
| | - Roberta Biundo
- Department of General Psychology, University of Padua, Padua, Italy
| |
Collapse
|
49
|
Karalija N, Papenberg G, Wåhlin A, Johansson J, Andersson M, Axelsson J, Riklund K, Lindenberger U, Nyberg L, Bäckman L. Sex differences in dopamine integrity and brain structure among healthy older adults: Relationships to episodic memory. Neurobiol Aging 2021; 105:272-279. [PMID: 34134056 DOI: 10.1016/j.neurobiolaging.2021.04.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 04/21/2021] [Accepted: 04/23/2021] [Indexed: 12/17/2022]
Abstract
Normal brain aging is a multidimensional process that includes deterioration in various brain structures and functions, with large heterogeneity in patterns and rates of decline. Sex differences have been reported for various cognitive and brain parameters, but little is known in relation to neuromodulatory aspects of brain aging. We examined sex differences in dopamine D2-receptor (D2DR) availability in relation to episodic memory, but also, grey-matter volumes, white-matter lesions, and cerebral perfusion in healthy older adults (n = 181, age: 64-68 years) from the Cognition, Brain, and Aging study. Women had higher D2DR availability in midbrain and left caudate and putamen, as well as superior episodic memory performance. Controlling for left caudate D2DR availability attenuated sex differences in memory performance. In men, lower left caudate D2DR levels were associated with lower cortical perfusion and higher burden of white-matter lesions, as well as with episodic memory performance. However, sex was not a significant moderator of the reported links to D2DR levels. Our findings suggest that sex differences in multiple associations among DA receptor availability, vascular factors, and structural connectivity contribute to sex differences in episodic memory. Future longitudinal studies need to corroborate these patterns by lead-lag associations. This manuscript is part of the Special Issue entitled 'Cognitive Neuroscience of Healthy and Pathological Aging' edited by Drs. M. N. Rajah, S. Belleville, and R. Cabeza. This article is part of the Virtual Special Issue titled COGNITIVE NEUROSCIENCE OF HEALTHY AND PATHOLOGICAL AGING. The full issue can be found on ScienceDirect at https://www.sciencedirect.com/journal/neurobiology-of-aging/special-issue/105379XPWJP.
Collapse
Affiliation(s)
- Nina Karalija
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden.
| | - Goran Papenberg
- Aging Research Center, Karolinska Institute & Stockholm University, Stockholm, Sweden
| | - Anders Wåhlin
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Jarkko Johansson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Micael Andersson
- Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Jan Axelsson
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Katrine Riklund
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden
| | - Ulman Lindenberger
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany; Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany, and London
| | - Lars Nyberg
- Department of Radiation Sciences, Umeå University, Umeå, Sweden; Umeå Center for Functional Brain Imaging (UFBI), Umeå University, Umeå, Sweden; Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Lars Bäckman
- Aging Research Center, Karolinska Institute & Stockholm University, Stockholm, Sweden
| |
Collapse
|
50
|
Bentivoglio AR, Lo Monaco MR, Liperoti R, Fusco D, Di Stasio E, Tondinelli A, Marzullo D, Maino A, Cipriani MC, Silveri MC. Gender may be related to the side of the motor syndrome and cognition in idiopathic Parkinson's disease. Neurologia 2021; 38:S0213-4853(21)00025-6. [PMID: 33726970 DOI: 10.1016/j.nrl.2021.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/03/2021] [Accepted: 01/10/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND and Sex and cognitive profile may be related to the laterality of motor symptoms in idiopathic Parkinson's disease. INTRODUCTION Parkinson's disease (PD) is well recognised as an inherently asymmetric disease with unilateral onset of motor symptoms. The laterality of motor symptoms may be linked to sex, clinical and demographic variables, and neuropsychological disorders. However, the available data are inconsistent. This study aimed to explore the potential association between the laterality of motor symptoms and clinical and demographic variables and deficits in specific cognitive domains. MATERIAL AND METHODS We retrospectively recruited 97 participants with idiopathic PD without dementia; 60 presented motor symptoms on the left side and 37 on the right side. Both groups were comparable in terms of age, age at disease onset, disease duration, and severity of the neurological deficits according to the Unified Parkinson's Disease Rating Scale and the Hoehn and Yahr scale. RESULTS Participants with left-side motor symptoms scored lower on the Schwab and England Activities of Daily Living scale. Our sample included more men than women (67% vs. 33%). Both sexes were not equally represented in the 2 groups: there were significantly more men than women in the group of patients with left-side motor symptoms (77% vs. 23%), whereas the percentages of men and women in the group of patients with right-side motor symptoms were similar (51% vs. 49%). Both groups performed similarly in all neuropsychological tasks, but women, independently of laterality, performed better than men in the naming task. CONCLUSION We found a clear prevalence of men in the group of patients with left-side motor symptoms; this group also scored lower on the Schwab and England Scale. Female sex was predictive of better performance in the naming task. Sex should always be considered in disorders that cause asymmetric involvement of the brain, such as PD.
Collapse
Affiliation(s)
- A R Bentivoglio
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Neurology, 00168 Rome, Italy
| | - M R Lo Monaco
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy.
| | - R Liperoti
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Institute of Internal Medicine and Geriatrics, 00168 Rome, Italy
| | - D Fusco
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy
| | - E Di Stasio
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Dipartimento di Scienze biotecnologiche di base, cliniche intensivologiche e perioperatorie, Università Cattolica del Sacro Cuore, Roma, Italy
| | - A Tondinelli
- Università Cattolica del Sacro Cuore, Department of Psychology, 20123 Milan, Italy
| | - D Marzullo
- Università Cattolica del Sacro Cuore, Institute of Neurology, 00168 Rome, Italy
| | - A Maino
- Università Cattolica del Sacro Cuore, Institute of Neurology, 00168 Rome, Italy
| | - M C Cipriani
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy
| | - M C Silveri
- Fondazione Policlinico Universitario 'Agostino Gemelli' - IRCSS, 00168 Rome, Italy; Università Cattolica del Sacro Cuore, Department of Psychology, 20123 Milan, Italy
| |
Collapse
|