1
|
Fieldhouse JLP, van Paassen DN, van Engelen MPE, De Boer SCM, Hartog WL, Braak S, Schoonmade LJ, Schouws SNTM, Krudop WA, Oudega ML, Mutsaerts HJMM, Teunissen CE, Vijverberg EGB, Pijnenburg YAL. The pursuit for markers of disease progression in behavioral variant frontotemporal dementia: a scoping review to optimize outcome measures for clinical trials. Front Aging Neurosci 2024; 16:1382593. [PMID: 38784446 PMCID: PMC11112081 DOI: 10.3389/fnagi.2024.1382593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Behavioral variant frontotemporal dementia (bvFTD) is a neurodegenerative disorder characterized by diverse and prominent changes in behavior and personality. One of the greatest challenges in bvFTD is to capture, measure and predict its disease progression, due to clinical, pathological and genetic heterogeneity. Availability of reliable outcome measures is pivotal for future clinical trials and disease monitoring. Detection of change should be objective, clinically meaningful and easily assessed, preferably associated with a biological process. The purpose of this scoping review is to examine the status of longitudinal studies in bvFTD, evaluate current assessment tools and propose potential progression markers. A systematic literature search (in PubMed and Embase.com) was performed. Literature on disease trajectories and longitudinal validity of frequently-used measures was organized in five domains: global functioning, behavior, (social) cognition, neuroimaging and fluid biomarkers. Evaluating current longitudinal data, we propose an adaptive battery, combining a set of sensitive clinical, neuroimaging and fluid markers, adjusted for genetic and sporadic variants, for adequate detection of disease progression in bvFTD.
Collapse
Affiliation(s)
- Jay L. P. Fieldhouse
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Dirk N. van Paassen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Marie-Paule E. van Engelen
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Sterre C. M. De Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Willem L. Hartog
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Simon Braak
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
| | | | - Sigfried N. T. M. Schouws
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Welmoed A. Krudop
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Mardien L. Oudega
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Department of Psychiatry, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Mood, Anxiety, Psychosis, Sleep & Stress Program, Amsterdam, Netherlands
- GGZ inGeest Mental Health Care, Amsterdam, Netherlands
| | - Henk J. M. M. Mutsaerts
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Charlotte E. Teunissen
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
| | - Everard G. B. Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| | - Yolande A. L. Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, Netherlands
| |
Collapse
|
2
|
Huang L, Cui L, Chen K, Han Z, Guo Q. Functional and structural network changes related with cognition in semantic dementia longitudinally. Hum Brain Mapp 2023; 44:4287-4298. [PMID: 37209400 PMCID: PMC10318263 DOI: 10.1002/hbm.26345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/06/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023] Open
Abstract
Longitudinal changes in the white matter/functional brain networks of semantic dementia (SD), as well as their relations with cognition remain unclear. Using a graph-theoretic method, we examined the neuroimaging (T1, diffusion tensor imaging, functional MRI) network properties and cognitive performance in processing semantic knowledge of general and six modalities (i.e., object form, color, motion, sound, manipulation and function) from 31 patients (at two time points with an interval of 2 years) and 20 controls (only at baseline). Partial correlation analyses were carried out to explore the relationships between the network changes and the declines of semantic performance. SD exhibited aberrant general and modality-specific semantic impairment, and gradually worsened over time. Overall, the brain networks showed a decreased global and local efficiency in the functional network organization but a preserved structural network organization with a 2-year follow-up. With disease progression, both structural and functional alterations were found to be extended to the temporal and frontal lobes. The regional topological alteration in the left inferior temporal gyrus (ITG.L) was significantly correlated with general semantic processing. Meanwhile, the right superior temporal gyrus and right supplementary motor area were identified to be associated with color and motor-related semantic attributes. SD manifested disrupted structural and functional network pattern longitudinally. We proposed a hub region (i.e., ITG.L) of semantic network and distributed modality-specific semantic-related regions. These findings support the hub-and-spoke semantic theory and provide targets for future therapy.
Collapse
Affiliation(s)
- Lin Huang
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Liang Cui
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Keliang Chen
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Zaizhu Han
- State Key Laboratory of Cognitive Neuroscience and Learning and IDG/McGovern Institute for Brain ResearchBeijing Normal UniversityBeijingChina
| | - Qihao Guo
- Department of GerontologyShanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
3
|
Benussi A, Borroni B. Advances in the treatment and management of frontotemporal dementia. Expert Rev Neurother 2023; 23:621-639. [PMID: 37357688 DOI: 10.1080/14737175.2023.2228491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/19/2023] [Indexed: 06/27/2023]
Abstract
INTRODUCTION Frontotemporal dementia (FTD) is a complex neurodegenerative disorder, characterized by a wide range of pathological conditions associated with the buildup of proteins such as tau and TDP-43. With a strong hereditary component, FTD often results from genetic variants in three genes - MAPT, GRN, and C9orf72. AREAS COVERED In this review, the authors explore abnormal protein accumulation in FTD and forthcoming treatments, providing a detailed analysis of new diagnostic advancements, including innovative markers. They analyze how these discoveries have influenced therapeutic strategies, particularly disease-modifying treatments, which could potentially transform FTD management. This comprehensive exploration of FTD from its molecular underpinnings to its therapeutic prospects offers a compelling overview of the current state of FTD research. EXPERT OPINION Notable challenges in FTD management involve identifying reliable biomarkers for early diagnosis and response monitoring. Genetic forms of FTD, particularly those linked to C9orf72 and GRN, show promise, with targeted therapies resulting in substantial progress in disease-modifying strategies. The potential of neuromodulation techniques, like tDCS and rTMS, is being explored, requiring further study. Ongoing trials and multi-disciplinary care highlight the continued push toward effective FTD treatments. With increasing understanding of FTD's molecular and clinical intricacies, the hope for developing effective interventions grows.
Collapse
Affiliation(s)
- Alberto Benussi
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| | - Barbara Borroni
- Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
- Neurology Unit, Department of Neurological and Vision Sciences, ASST Spedali Civili di Brescia, Brescia, Italy
| |
Collapse
|
4
|
Geraudie A, Battista P, García AM, Allen IE, Miller ZA, Gorno-Tempini ML, Montembeault M. Speech and language impairments in behavioral variant frontotemporal dementia: A systematic review. Neurosci Biobehav Rev 2021; 131:1076-1095. [PMID: 34673112 DOI: 10.1016/j.neubiorev.2021.10.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 10/12/2021] [Accepted: 10/14/2021] [Indexed: 01/11/2023]
Abstract
Although behavioral variant frontotemporal dementia (bvFTD) is classically defined by behavioral and socio-emotional changes, impairments often extend to other cognitive functions. These include early speech and language deficits related to the disease's core neural disruptions. Yet, their scope and clinical relevance remains poorly understood. This systematic review characterizes such disturbances in bvFTD, considering clinically, neuroanatomically, genetically, and neuropathologically defined subgroups. We included 181 experimental studies, with at least 5 bvFTD patients diagnosed using accepted criteria, comparing speech and language outcomes between bvFTD patients and healthy controls or between bvFTD subgroups. Results reveal extensive and heterogeneous deficits across cohorts, with (a) consistent lexico-semantic, reading & writing, and prosodic impairments; (b) inconsistent deficits in motor speech and grammar; and (c) relative preservation of phonological skills. Also, preliminary findings suggest that the severity of speech and language deficits might be associated with global cognitive impairment, predominantly temporal or fronto-temporal atrophy and MAPT mutations (vs C9orf72). Although under-recognized, these impairments contribute to patient characterization and phenotyping, while potentially informing diagnosis and management.
Collapse
Affiliation(s)
- Amandine Geraudie
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Neurology Department, Toulouse University Hospital, Toulouse, France
| | - Petronilla Battista
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA; Istituti Clinici Scientifici Maugeri IRCCS, Institute of Bari, Via Generale Nicola Bellomo, Bari, Italy
| | - Adolfo M García
- Global Brain Health Institute, University of California, San Francisco, USA; Universidad De San Andrés, Buenos Aires, Argentina; National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Lingüística y Literatura, Facultad de Humanidades, Universidad de Santiago de Chile, Santiago, Chile
| | - Isabel E Allen
- Global Brain Health Institute, University of California, San Francisco, USA; Department of Epidemiology & Biostatistics, University of California San Francisco, CA, USA
| | - Zachary A Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA; Global Brain Health Institute, University of California, San Francisco, USA
| | - Maxime Montembeault
- Memory and Aging Center, Department of Neurology, University of California San Francisco, CA, USA.
| |
Collapse
|
5
|
Ranasinghe KG, Toller G, Cobigo Y, Chiang K, Callahan P, Eliazer C, Kramer JH, Rosen HJ, Miller BL, Rankin KP. Computationally derived anatomic subtypes of behavioral variant frontotemporal dementia show temporal stability and divergent patterns of longitudinal atrophy. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12183. [PMID: 34268446 PMCID: PMC8274310 DOI: 10.1002/dad2.12183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/21/2022]
Abstract
INTRODUCTION Behavioral variant frontotemporal dementia (bvFTD) can be computationally divided into four distinct anatomic subtypes based on patterns of frontotemporal and subcortical atrophy. To more precisely predict disease trajectories of individual patients, the temporal stability of each subtype must be characterized. METHODS We investigated the longitudinal stability of the four previously identified anatomic subtypes in 72 bvFTD patients. We also applied a voxel-wise mixed effects model to examine subtype differences in atrophy patterns across multiple timepoints. RESULTS Our results demonstrate the stability of the anatomic subtypes at baseline and over time. While they had common salience network atrophy, each subtype showed distinctive baseline and longitudinal atrophy patterns. DISCUSSION Recognizing these anatomically heterogeneous subtypes and their different patterns of atrophy progression in early bvFTD will improve disease course prediction in individual patients. Longitudinal volumetric predictions based on these anatomic subtypes may be used as a more accurate endpoint in treatment trials.
Collapse
Affiliation(s)
- Kamalini G. Ranasinghe
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Gianina Toller
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Yann Cobigo
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Kevin Chiang
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Patrick Callahan
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Caleb Eliazer
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| | - Katherine P. Rankin
- Department of NeurologyMemory and Aging CenterUniversity of California San FranciscoSan FranciscoCaliforniaUSA
| |
Collapse
|
6
|
Dev SI, Dickerson BC, Touroutoglou A. Neuroimaging in Frontotemporal Lobar Degeneration: Research and Clinical Utility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:93-112. [PMID: 33433871 PMCID: PMC8787866 DOI: 10.1007/978-3-030-51140-1_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Frontotemporal lobar dementia (FTLD) is a clinically and pathologically complex disease. Advances in neuroimaging techniques have provided a specialized set of tools to investigate underlying pathophysiology and identify clinical biomarkers that aid in diagnosis, prognostication, monitoring, and identification of appropriate endpoints in clinical trials. In this chapter, we review data discussing the utility of neuroimaging biomarkers in sporadic FTLD, with an emphasis on current and future clinical applications. Among those modalities readily utilized in clinical settings, T1-weighted structural magnetic resonance imaging (MRI) and 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) are best supported in differential diagnosis and as targets for clinical trial endpoints. However, a number of nonclinical neuroimaging modalities, including diffusion tensor imaging and resting-state functional connectivity MRI, show promise as biomarkers to predict progression and as clinical trial endpoints. Other neuroimaging modalities, including amyloid PET, Tau PET, and arterial spin labeling MRI, are also discussed, though more work is required to establish their utility in FTLD in clinical settings.
Collapse
Affiliation(s)
- Sheena I Dev
- Department of Psychiatry, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| | - Bradford C Dickerson
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA.
| | - Alexandra Touroutoglou
- Department of Neurology, Massachusetts General Hospital/Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
7
|
Abstract
Frontotemporal dementia (FTD) encompasses a group of clinical syndromes, including behavioral variant FTD, nonfluent variant primary progressive aphasia, semantic variant primary progressive aphasia, FTD motor neuron disease, progressive supranuclear palsy syndrome, and corticobasal syndrome. Early on in its course, FTD is commonly seen in psychiatric clinics. In this article the authors review the neuroimaging, pathology, genetics, and therapeutic interventions for FTD spectrum disorders.
Collapse
Affiliation(s)
- Kyan Younes
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA.
| | - Bruce L Miller
- UCSF Memory and Aging Center, Box 1207, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94143, USA. https://twitter.com/brucemillerucsf
| |
Collapse
|
8
|
Olney NT, Ong E, Goh SYM, Bajorek L, Dever R, Staffaroni AM, Cobigo Y, Bock M, Chiang K, Ljubenkov P, Kornak J, Heuer HW, Wang P, Rascovsky K, Wolf A, Appleby B, Bove J, Bordelon Y, Brannelly P, Brushaber D, Caso C, Coppola G, Dickerson BC, Dickinson S, Domoto-Reilly K, Faber K, Ferrall J, Fields J, Fishman A, Fong J, Foroud T, Forsberg LK, Gearhart DJ, Ghazanfari B, Ghoshal N, Goldman J, Graff-Radford J, Graff-Radford NR, Grant I, Grossman M, Haley D, Hsiung G, Huey ED, Irwin DJ, Jones DT, Kantarci K, Karydas AM, Kaufer D, Kerwin D, Knopman DS, Kramer JH, Kraft R, Kremers W, Kukull W, Lapid MI, Litvan I, Mackenzie IR, Maldonado M, Manoochehri M, McGinnis SM, McKinley EC, Mendez MF, Miller BL, Onyike C, Pantelyat A, Pearlman R, Petrucelli L, Potter M, Rademakers R, Ramos EM, Rankin KP, Roberson ED, Rogalski E, Sengdy P, Shaw LM, Syrjanen J, Tartaglia MC, Tatton N, Taylor J, Toga A, Trojanowski JQ, Weintraub S, Wong B, Wszolek Z, Boxer AL, Boeve BF, Rosen HJ. Clinical and volumetric changes with increasing functional impairment in familial frontotemporal lobar degeneration. Alzheimers Dement 2020; 16:49-59. [PMID: 31784375 PMCID: PMC6988137 DOI: 10.1016/j.jalz.2019.08.196] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Introduction: The Advancing Research and Treatment in Frontotemporal Lobar Degeneration and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects longitudinal studies were designed to describe the natural history of familial-frontotemporal lobar degeneration due to autosomal dominant mutations. Methods: We examined cognitive performance, behavioral ratings, and brain volumes from the first time point in 320 MAPT, GRN, and C9orf72 family members, including 102 non–mutation carriers, 103 asymptomatic carriers, 43 mildly/questionably symptomatic carriers, and 72 carriers with dementia. Results: Asymptomatic carriers showed similar scores on all clinical measures compared with noncarriers but reduced frontal and temporal volumes. Those with mild/questionable impairment showed decreased verbal recall, fluency, and Trail Making Test performance and impaired mood and self-monitoring. Dementia was associated with impairment in all measures. All MAPT carriers with dementia showed temporal atrophy, but otherwise, there was no single cognitive test or brain region that was abnormal in all subjects. Discussion: Imaging changes appear to precede clinical changes in familial-frontotemporal lobar degeneration, but specific early clinical and imaging changes vary across individuals.
Collapse
Affiliation(s)
- Nicholas T. Olney
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Elise Ong
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Sheng-Yang M. Goh
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Lynn Bajorek
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Reilly Dever
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Meredith Bock
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Kevin Chiang
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Peter Ljubenkov
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - John Kornak
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Hilary W. Heuer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ping Wang
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Katya Rascovsky
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amelia Wolf
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brian Appleby
- Department of Neurology, Case Western Reserve University, Cleveland, OH, USA
| | - Jessica Bove
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yvette Bordelon
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Patrick Brannelly
- Tau Consortium, Rainwater Charitable Foundation, Fort Worth, TX, USA
| | | | - Christine Caso
- Department of Neurology, University of Washington, Seattle, WA, USA
| | - Giovanni Coppola
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bradford C. Dickerson
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA
| | - Susan Dickinson
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | | | - Kelly Faber
- National Centralized Repository for Alzheimer’s Disease and Related Disorders (NCRAD), Indiana University, Indianapolis, IN, USA
| | - Jessica Ferrall
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Julie Fields
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Ann Fishman
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie Fong
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Tatiana Foroud
- National Centralized Repository for Alzheimer’s Disease and Related Disorders (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | | | - Behnaz Ghazanfari
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Nupur Ghoshal
- Department of Psychiatry, Washington University, St. Louis, MO, USA
- Department of Neurology, Washington University, St. Louis, MO, USA
| | - Jill Goldman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | | | | | - Ian Grant
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Murray Grossman
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dana Haley
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Gingyuek Hsiung
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Edward D. Huey
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David T. Jones
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Kejal Kantarci
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Anna M. Karydas
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Daniel Kaufer
- Department of Neurology, University of North Carolina, Chapel Hill, NC, USA
| | - Diana Kerwin
- Department of Neurology and Neurotherapeutics, Center for Alzheimer’s and Neurodegenerative Diseases, The University of Texas, Southwestern Medical Center at Dallas, Dallas, TX, USA
- Department of Internal Medicine, The University of Texas, Southwestern Medical Center at Dallas, Dallas, TX, USA
| | | | - Joel H. Kramer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Ruth Kraft
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Walter Kremers
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - Walter Kukull
- National Alzheimer Coordinating Center (NACC), University of Washington, Seattle, WA, USA
| | - Maria I. Lapid
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Irene Litvan
- Department of Neurosciences, Parkinson and Other Movement Disorders Center, University of California, San Diego, San Diego, CA, USA
| | - Ian R. Mackenzie
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Miranda Maldonado
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Masood Manoochehri
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University, New York, NY, USA
- Department of Neurology, Columbia University, New York, NY, USA
| | - Scott M. McGinnis
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA
| | - Emily C. McKinley
- Department of Neurology, Alzheimer’s Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Mario F. Mendez
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bruce L. Miller
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Chiadi Onyike
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Alex Pantelyat
- Department of Neurology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | | | - Len Petrucelli
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Madeleine Potter
- National Centralized Repository for Alzheimer’s Disease and Related Disorders (NCRAD), Indiana University, Indianapolis, IN, USA
| | | | - Eliana M. Ramos
- Department of Neurology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Katherine P. Rankin
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Erik D. Roberson
- Department of Neurology, Alzheimer’s Disease Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Emily Rogalski
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Pheth Sengdy
- Division of Neurology, Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Leslie M. Shaw
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeremy Syrjanen
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN, USA
| | - M. Carmela Tartaglia
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA, USA
| | - Joanne Taylor
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Arthur Toga
- Laboratory of Neuroimaging (LONI), University of Southern California, Los Angeles, CA, USA
| | - John Q. Trojanowski
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Sandra Weintraub
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Bonnie Wong
- Department of Neurology, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston MA, USA
| | | | - Adam L. Boxer
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Brad F. Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
- Corresponding author. Tel.: 1 415 476 5567; Fax: 1 415 476 1816.,
| |
Collapse
|
9
|
Boxer AL, Gold M, Feldman H, Boeve BF, Dickinson SLJ, Fillit H, Ho C, Paul R, Pearlman R, Sutherland M, Verma A, Arneric SP, Alexander BM, Dickerson BC, Dorsey ER, Grossman M, Huey ED, Irizarry MC, Marks WJ, Masellis M, McFarland F, Niehoff D, Onyike CU, Paganoni S, Panzara MA, Rockwood K, Rohrer JD, Rosen H, Schuck RN, Soares HD, Tatton N. New directions in clinical trials for frontotemporal lobar degeneration: Methods and outcome measures. Alzheimers Dement 2020; 16:131-143. [PMID: 31668596 PMCID: PMC6949386 DOI: 10.1016/j.jalz.2019.06.4956] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Frontotemporal lobar degeneration (FTLD) is the most common form of dementia for those under 60 years of age. Increasing numbers of therapeutics targeting FTLD syndromes are being developed. METHODS In March 2018, the Association for Frontotemporal Degeneration convened the Frontotemporal Degeneration Study Group meeting in Washington, DC, to discuss advances in the clinical science of FTLD. RESULTS Challenges exist for conducting clinical trials in FTLD. Two of the greatest challenges are (1) the heterogeneity of FTLD syndromes leading to difficulties in efficiently measuring treatment effects and (2) the rarity of FTLD disorders leading to recruitment challenges. DISCUSSION New personalized endpoints that are clinically meaningful to individuals and their families should be developed. Personalized approaches to analyzing MRI data, development of new fluid biomarkers and wearable technologies will help to improve the power to detect treatment effects in FTLD clinical trials and enable new, clinical trial designs, possibly leveraged from the experience of oncology trials. A computational visualization and analysis platform that can support novel analyses of combined clinical, genetic, imaging, biomarker data with other novel modalities will be critical to the success of these endeavors.
Collapse
Affiliation(s)
- Adam L. Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | | | - Howard Feldman
- Department of Neurosciences, University of California San Diego, San Diego, CA
| | | | | | | | - Carole Ho
- Denali Therapeutics, San Francisco, CA
| | | | | | | | | | | | | | | | - Earl Ray Dorsey
- Center for Health and Technology, University of Rochester, Rochester, NY
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, PA
| | - Edward D. Huey
- Departments of Psychiatry and Neurology, Columbia University, NY
| | | | - William J. Marks
- Clinical Neurology, Verily Life Sciences, South San Francisco, CA
| | - Mario Masellis
- Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto, ON, Canada; Department of Medicine (Neurology), Sunnybrook Health Sciences Centre, University of Toronto, ON, Canada
| | | | - Debra Niehoff
- Association for Frontotemporal Degeneration, Radnor, PA
| | - Chiadi U. Onyike
- Department Geriatric Psychiatry and Neuropsychiatry, Johns Hopkins University, Baltimore, MD
| | - Sabrina Paganoni
- Healey Center for ALS, Massachusetts General Hospital, Boston, MA
| | | | - Kenneth Rockwood
- Division of Geriatric Medicine, Dalhousie University, Halifax, NS
| | - Jonathan D. Rohrer
- Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Howard Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, San Francisco, CA
| | - Robert N. Schuck
- Office of Clinical Pharmacology, Center for Drug Evaluation and Research, FDA, Silver Spring, MD
| | | | - Nadine Tatton
- Association for Frontotemporal Degeneration, Radnor, PA
| |
Collapse
|
10
|
Rosen HJ, Boeve BF, Boxer AL. Tracking disease progression in familial and sporadic frontotemporal lobar degeneration: Recent findings from ARTFL and LEFFTDS. Alzheimers Dement 2020; 16:71-78. [PMID: 31914219 PMCID: PMC6953606 DOI: 10.1002/alz.12004] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/17/2019] [Accepted: 10/31/2019] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Familial frontotemporal lobar degeneration (f-FTLD) due to autosomal dominant mutations is an important entity for developing treatments for FTLD. The Advancing Research and Treatment for Frontotemporal Lobar Degeneration (ARTFL) and Longitudinal Evaluation of Familial Frontotemporal Dementia Subjects (LEFFTDS) longitudinal studies were designed to describe the natural history of f-FTLD. METHODS We summarized recent publications from the ARTFL and LEFFTDS studies, along with other recent publications describing the natural history of f-FTLD. RESULTS Published and emerging studies are producing data on all phases of f-FTLD, including the asymptomatic and symptomatic phases of disease, as well as the transitional phase when symptoms are just beginning to develop. These data indicate that rates of change increase along with disease severity, which is consistent with commonly cited models of neurodegeneration, and that measurement of biomarkers may predict onset of symptoms. DISCUSSION Data from large multisite studies are producing important data on the natural history of f-FTLD that will be critical for planning intervention trials.
Collapse
Affiliation(s)
- Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCalifornia
| | | | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCalifornia
| |
Collapse
|
11
|
Manera AL, Dadar M, Collins DL, Ducharme S. Deformation based morphometry study of longitudinal MRI changes in behavioral variant frontotemporal dementia. Neuroimage Clin 2019; 24:102079. [PMID: 31795051 PMCID: PMC6879994 DOI: 10.1016/j.nicl.2019.102079] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/20/2019] [Accepted: 11/04/2019] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To objectively quantify how cerebral volume loss could assist with clinical diagnosis and clinical trial design in the behavioural variant of frontotemporal dementia (bvFTD). METHODS We applied deformation-based morphometric analyses with robust registration to precisely quantify the magnitude and pattern of atrophy in patients with bvFTD as compared to cognitively normal controls (CNCs), to assess the progression of atrophy over one year follow up and to generate clinical trial sample size estimates to detect differences for the structures most sensitive to change. This study included 203 subjects - 70 bvFTD and 133 CNCs - with a total of 482 timepoints from the Frontotemporal Lobar Degeneration Neuroimaging Initiative. RESULTS Deformation based morphometry (DBM) revealed significant atrophy in the frontal lobes, insula, medial and anterior temporal regions bilaterally in bvFTD subjects compared to controls with outstanding subcortical involvement. We provide detailed information on regional changes per year. In both cross-sectional analysis and over a one-year follow-up period, ventricle expansion was the most prominent differentiator of bvFTD from controls and a sensitive marker of disease progression. CONCLUSIONS Automated measurement of ventricular expansion is a sensitive and reliable marker of disease progression in bvFTD to be used in clinical trials for potential disease modifying drugs, as well as possibly to implement in clinical practice. Ventricular expansion measured with DBM provides the lowest published estimated sample size for clinical trial design to detect significant differences over one and two years.
Collapse
Affiliation(s)
- Ana L Manera
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada
| | - Mahsa Dadar
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada.
| | - Simon Ducharme
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801, University, Montreal, Quebec H3A 2B4, Canada; Department of Psychiatry, McGill University Health Centre, Montreal Canada
| |
Collapse
|
12
|
Staffaroni AM, Ljubenkov PA, Kornak J, Cobigo Y, Datta S, Marx G, Walters SM, Chiang K, Olney N, Elahi FM, Knopman DS, Dickerson BC, Boeve BF, Gorno-Tempini ML, Spina S, Grinberg LT, Seeley WW, Miller BL, Kramer JH, Boxer AL, Rosen HJ. Longitudinal multimodal imaging and clinical endpoints for frontotemporal dementia clinical trials. Brain 2019; 142:443-459. [PMID: 30698757 DOI: 10.1093/brain/awy319] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/02/2018] [Indexed: 12/22/2022] Open
Abstract
Frontotemporal dementia refers to a group of progressive neurodegenerative syndromes usually caused by the accumulation of pathological tau or TDP-43 proteins. The effects of these proteins in the brain are complex, and each can present with several different clinical syndromes. Clinical efficacy trials of drugs targeting these proteins must use endpoints that are meaningful to all participants despite the variability in symptoms across patients. There are many candidate clinical measures, including neuropsychological scores and functional measures. Brain imaging is another potentially attractive outcome that can be precisely quantified and provides evidence of disease modification. Most imaging studies in frontotemporal dementia have been cross-sectional, and few have compared longitudinal changes in cortical volume with changes in other measures such as perfusion and white matter integrity. The current study characterized longitudinal changes in 161 patients with three frontotemporal dementia syndromes: behavioural variant frontotemporal dementia (n = 77) and the semantic (n = 45) and non-fluent (n = 39) variants of primary progressive aphasia. Visits included comprehensive neuropsychological and functional assessment, structural MRI (3 T), diffusion tensor imaging, and arterial spin labelled perfusion imaging. The goal was to identify measures that are appropriate as clinical trial outcomes for each group, as well as those that might be appropriate for trials that would include more than one of these groups. Linear mixed effects models were used to estimate changes in each measure, and to examine the correlation between imaging and clinical changes. Sample sizes were estimated based on the observed effects for theoretical clinical trials using bootstrapping techniques to provide 95% confidence intervals for these estimates. Declines in functional and neuropsychological measures, as well as frontal and temporal cortical volumes and white matter microstructure were detected in all groups. Imaging changes were statistically significantly correlated with, and explained a substantial portion of variance in, the change in most clinical measures. Perfusion and diffusion tensor imaging accounted for variation in clinical decline beyond volume alone. Sample size estimates for atrophy and diffusion imaging were comparable to clinical measures. Corpus callosal fractional anisotropy led to the lowest sample size estimates for all three syndromes. These findings provide further guidance on selection of trial endpoints for studies in frontotemporal dementia and support the use of neuroimaging, particularly structural and diffusion weighted imaging, as biomarkers. Diffusion and perfusion imaging appear to offer additional utility for explaining clinical change beyond the variance explained by volume alone, arguing for considering multimodal imaging in treatment trials.
Collapse
Affiliation(s)
- Adam M Staffaroni
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Peter A Ljubenkov
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Yann Cobigo
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Samir Datta
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Gabe Marx
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Samantha M Walters
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Kevin Chiang
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Nick Olney
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Fanny M Elahi
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - David S Knopman
- Department of Neurology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota USA
| | - Bradford C Dickerson
- Frontotemporal Disorders Unit, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charleston, MA, USA
| | - Bradley F Boeve
- Department of Neurology, College of Medicine, Mayo Clinic, 200 First Street SW, Rochester, Minnesota USA
| | - Maria Luisa Gorno-Tempini
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Salvatore Spina
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Lea T Grinberg
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA.,Department of Pathology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA.,Department of Pathology - LIM 22, University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA.,Department of Pathology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Bruce L Miller
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Joel H Kramer
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California at San Francisco (UCSF), San Francisco, CA, USA
| |
Collapse
|
13
|
Leyton CE, Landin-Romero R, Liang CT, Burrell JR, Kumfor F, Hodges JR, Piguet O. Correlates of anomia in non-semantic variants of primary progressive aphasia converge over time. Cortex 2019; 120:201-211. [PMID: 31325799 DOI: 10.1016/j.cortex.2019.06.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 06/18/2019] [Indexed: 12/12/2022]
Abstract
To track neural correlates of naming performance with disease progression, we estimated key areas affected in nonfluent/agrammatic (nfvPPA) and logopenic (lvPPA) primary progressive aphasia variants over time and changes in naming correlates over time. Twenty-nine non-semantic PPA participants (17 nfvPPA and 12 lvPPA) were selected based upon current diagnostic criteria and PiB-PET status and conducted a confrontation-naming task and a structural MRI. Linear mixed-effect models implemented in FreeSurfer were used for tracking cortical thickness and epicenters of atrophy over time. Using averaged cortical thickness of epicenters and naming performance as variables of interest, two sets of multivariate analyses were conducted to compare atrophy progression and naming correlates across groups. While all PPA participants demonstrated naming deterioration and progressive cortical thinning in the left temporal lobe and the left inferior frontal gyrus, the lvPPA cohort showed greater naming deterioration and thinning in the left posterior inferior parietal cortex over time than it did the nfvPPA cohort. The multivariate analyses confirmed a widespread cortical thinning in lvPPA over time, but a more rapid thinning in the right superior frontal gyrus of nfvPPA participants. Impaired naming correlated with common cortical regions in both groups. These regions included the left anterior superior temporal gyrus and the posterior middle temporal gyrus, which was primarily affected in lvPPA. Non-semantic PPA variants initially present with separate epicenters of atrophy and different spatial-temporal patterns of neurodegeneration over time, but the common involvement in key cortical regions of the left temporal lobe accounts for naming deterioration in both groups.
Collapse
Affiliation(s)
- Cristian E Leyton
- The University of Sydney, Brain and Mind Centre, Faculty of Health Sciences, Sydney, NSW, Australia; Frontotemporal Disorders Unit, Department of Neurology Massachusetts, General Hospital and Harvard Medical School, Boston, MA, USA.
| | - Ramon Landin-Romero
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - Cheng Tao Liang
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - James R Burrell
- Concord Repatriation General Hospital, Sydney, NSW, Australia.
| | - Fiona Kumfor
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, School of Psychology, Sydney, NSW, Australia.
| |
Collapse
|
14
|
Illán-Gala I, Montal V, Borrego-Écija S, Vilaplana E, Pegueroles J, Alcolea D, Sánchez-Saudinós B, Clarimón J, Turón-Sans J, Bargalló N, González-Ortiz S, Rosen HJ, Gorno-Tempini ML, Miller BL, Lladó A, Rojas-García R, Blesa R, Sánchez-Valle R, Lleó A, Fortea J. Cortical microstructure in the behavioural variant of frontotemporal dementia: looking beyond atrophy. Brain 2019; 142:1121-1133. [PMID: 30906945 PMCID: PMC6439330 DOI: 10.1093/brain/awz031] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/04/2018] [Accepted: 12/21/2018] [Indexed: 12/11/2022] Open
Abstract
Cortical mean diffusivity has been proposed as a novel biomarker for the study of the cortical microstructure in Alzheimer's disease. In this multicentre study, we aimed to assess the cortical microstructural changes in the behavioural variant of frontotemporal dementia (bvFTD); and to correlate cortical mean diffusivity with clinical measures of disease severity and CSF biomarkers (neurofilament light and the soluble fraction beta of the amyloid precursor protein). We included 148 participants with a 3 T MRI and appropriate structural and diffusion weighted imaging sequences: 70 patients with bvFTD and 78 age-matched cognitively healthy controls. The modified frontotemporal lobar degeneration clinical dementia rating was obtained as a measure of disease severity. A subset of patients also underwent a lumbar puncture for CSF biomarker analysis. Two independent raters blind to the clinical data determined the presence of significant frontotemporal atrophy to dichotomize the participants into possible or probable bvFTD. Cortical thickness and cortical mean diffusivity were computed using a surface-based approach. We compared cortical thickness and cortical mean diffusivity between bvFTD (both using the whole sample and probable and possible bvFTD subgroups) and controls. Then we computed the Cohen's d effect size for both cortical thickness and cortical mean diffusivity. We also performed correlation analyses with the modified frontotemporal lobar degeneration clinical dementia rating score and CSF neuronal biomarkers. The cortical mean diffusivity maps, in the whole cohort and in the probable bvFTD subgroup, showed widespread areas with increased cortical mean diffusivity that partially overlapped with cortical thickness, but further expanded to other bvFTD-related regions. In the possible bvFTD subgroup, we found increased cortical mean diffusivity in frontotemporal regions, but only minimal loss of cortical thickness. The effect sizes of cortical mean diffusivity were notably higher than the effect sizes of cortical thickness in the areas that are typically involved in bvFTD. In the whole bvFTD group, both cortical mean diffusivity and cortical thickness correlated with measures of disease severity and CSF biomarkers. However, the areas of correlation with cortical mean diffusivity were more extensive. In the possible bvFTD subgroup, only cortical mean diffusivity correlated with the modified frontotemporal lobar degeneration clinical dementia rating. Our data suggest that cortical mean diffusivity could be a sensitive biomarker for the study of the neurodegeneration-related microstructural changes in bvFTD. Further longitudinal studies should determine the diagnostic and prognostic utility of this novel neuroimaging biomarker.
Collapse
Affiliation(s)
- Ignacio Illán-Gala
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Victor Montal
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Sergi Borrego-Écija
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Eduard Vilaplana
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Jordi Pegueroles
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Belén Sánchez-Saudinós
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Jordi Clarimón
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Janina Turón-Sans
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nuria Bargalló
- Radiology Department, Hospital Clínic de Barcelona and Magnetic Resonance Image Core Facility, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | | | - Howard J Rosen
- Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Maria Luisa Gorno-Tempini
- Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Bruce L Miller
- Memory and Aging Centre, Department of Neurology, University of California San Francisco, San Francisco, USA
| | - Albert Lladó
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Ricard Rojas-García
- Neuromuscular Diseases Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Rafael Blesa
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Raquel Sánchez-Valle
- Alzheimer’s Disease and Other Cognitive Disorders Unit, Department of Neurology, Hospital Clínic, Institut d’Investigació Biomèdica August Pi i Sunyer, University of Barcelona, Barcelona, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
| | - Juan Fortea
- Memory Unit, Department of Neurology, Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas. CIBERNED, Spain
- Barcelona Down Medical Centre, Fundació Catalana de Síndrome de Down, Barcelona, Spain
| | | |
Collapse
|
15
|
Rogalski EJ, Sridhar J, Martersteck A, Rader B, Cobia D, Arora AK, Fought AJ, Bigio EH, Weintraub S, Mesulam MM, Rademaker A. Clinical and cortical decline in the aphasic variant of Alzheimer's disease. Alzheimers Dement 2019; 15:543-552. [PMID: 30765195 DOI: 10.1016/j.jalz.2018.12.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/18/2018] [Accepted: 12/02/2018] [Indexed: 11/16/2022]
Abstract
INTRODUCTION Primary progressive aphasia (PPA) displays variable progression trajectories that require further elucidation. METHODS Longitudinal quantitation of atrophy and language over 12 months was completed for PPA patients with and without positive amyloid PET (PPAAβ+ and PPAAβ-), an imaging biomarker of underlying Alzheimer's disease. RESULTS Over 12 months, both PPA groups showed significantly greater cortical atrophy rates in the left versus right hemisphere, with a more widespread pattern in PPAAβ+. The PPAAβ+ group also showed greater decline in performance on most language tasks. There was no obligatory relationship between the logopenic PPA variant and amyloid status. Effect sizes from quantitative MRI data were more robust than neuropsychological metrics. DISCUSSION Preferential language network neurodegeneration is present in PPA irrespective of amyloid status. Clinical and anatomical progression appears to differ for PPA due to Alzheimer's disease versus non-Alzheimer's disease neuropathology, a distinction that may help to inform prognosis and the design of intervention trials.
Collapse
Affiliation(s)
- Emily Joy Rogalski
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University (NU) Feinberg School of Medicine, Chicago, IL, USA; NU Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA.
| | - Jaiashre Sridhar
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University (NU) Feinberg School of Medicine, Chicago, IL, USA
| | - Adam Martersteck
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University (NU) Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin Rader
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University (NU) Feinberg School of Medicine, Chicago, IL, USA
| | - Derin Cobia
- Department of Psychology, Brigham Young University, Provo, UT, USA
| | - Anupa K Arora
- Avid Radiopharmaceuticals Inc, Philadelphia, PA, USA
| | - Angela J Fought
- NU Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| | - Eileen H Bigio
- NU Feinberg School of Medicine, Department of Pathology, Chicago, IL, USA
| | - Sandra Weintraub
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University (NU) Feinberg School of Medicine, Chicago, IL, USA; NU Feinberg School of Medicine, Department of Psychiatry and Behavioral Sciences, Chicago, IL, USA
| | - Marek-Marsel Mesulam
- Cognitive Neurology and Alzheimer's Disease Center, Northwestern University (NU) Feinberg School of Medicine, Chicago, IL, USA; NU Feinberg School of Medicine, Department of Neurology, Chicago, IL, USA
| | - Alfred Rademaker
- NU Feinberg School of Medicine, Department of Preventive Medicine, Chicago, IL, USA
| |
Collapse
|
16
|
Staffaroni AM, Elahi FM, McDermott D, Marton K, Karageorgiou E, Sacco S, Paoletti M, Caverzasi E, Hess CP, Rosen HJ, Geschwind MD. Neuroimaging in Dementia. Semin Neurol 2017; 37:510-537. [PMID: 29207412 PMCID: PMC5823524 DOI: 10.1055/s-0037-1608808] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Although the diagnosis of dementia still is primarily based on clinical criteria, neuroimaging is playing an increasingly important role. This is in large part due to advances in techniques that can assist with discriminating between different syndromes. Magnetic resonance imaging remains at the core of differential diagnosis, with specific patterns of cortical and subcortical changes having diagnostic significance. Recent developments in molecular PET imaging techniques have opened the door for not only antemortem but early, even preclinical, diagnosis of underlying pathology. This is vital, as treatment trials are underway for pharmacological agents with specific molecular targets, and numerous failed trials suggest that earlier treatment is needed. This article provides an overview of classic neuroimaging findings as well as new and cutting-edge research techniques that assist with clinical diagnosis of a range of dementia syndromes, with an emphasis on studies using pathologically proven cases.
Collapse
Affiliation(s)
- Adam M. Staffaroni
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Fanny M. Elahi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Dana McDermott
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Kacey Marton
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Elissaios Karageorgiou
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Neurological Institute of Athens, Athens, Greece
| | - Simone Sacco
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Matteo Paoletti
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Institute of Radiology, Department of Clinical Surgical Diagnostic and Pediatric Sciences, University of Pavia, Pavia, Italy
| | - Eduardo Caverzasi
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Christopher P. Hess
- Division of Neuroradiology, Department of Radiology, University of California, San Francisco (UCSF), California
| | - Howard J. Rosen
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| | - Michael D. Geschwind
- Department of Neurology, Memory and Aging Center, University of California, San Francisco (UCSF), San Francisco, California
| |
Collapse
|
17
|
Elahi FM, Marx G, Cobigo Y, Staffaroni AM, Kornak J, Tosun D, Boxer AL, Kramer JH, Miller BL, Rosen HJ. Longitudinal white matter change in frontotemporal dementia subtypes and sporadic late onset Alzheimer's disease. NEUROIMAGE-CLINICAL 2017; 16:595-603. [PMID: 28975068 PMCID: PMC5614750 DOI: 10.1016/j.nicl.2017.09.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/17/2017] [Accepted: 09/06/2017] [Indexed: 12/14/2022]
Abstract
Background Degradation of white matter microstructure has been demonstrated in frontotemporal lobar degeneration (FTLD) and Alzheimer's disease (AD). In preparation for clinical trials, ongoing studies are investigating the utility of longitudinal brain imaging for quantification of disease progression. To date only one study has examined sample size calculations based on longitudinal changes in white matter integrity in FTLD. Objective To quantify longitudinal changes in white matter microstructural integrity in the three canonical subtypes of frontotemporal dementia (FTD) and AD using diffusion tensor imaging (DTI). Methods 60 patients with clinical diagnoses of FTD, including 27 with behavioral variant frontotemporal dementia (bvFTD), 14 with non-fluent variant primary progressive aphasia (nfvPPA), and 19 with semantic variant PPA (svPPA), as well as 19 patients with AD and 69 healthy controls were studied. We used a voxel-wise approach to calculate annual rate of change in fractional anisotropy (FA) and mean diffusivity (MD) in each group using two time points approximately one year apart. Mean rates of change in FA and MD in 48 atlas-based regions-of-interest, as well as global measures of cognitive function were used to calculate sample sizes for clinical trials (80% power, alpha of 5%). Results All FTD groups showed statistically significant baseline and longitudinal white matter degeneration, with predominant involvement of frontal tracts in the bvFTD group, frontal and temporal tracts in the PPA groups and posterior tracts in the AD group. Longitudinal change in MD yielded a larger number of regions with sample sizes below 100 participants per therapeutic arm in comparison with FA. SvPPA had the smallest sample size based on change in MD in the fornix (n = 41 participants per study arm to detect a 40% effect of drug), and nfvPPA and AD had their smallest sample sizes based on rate of change in MD within the left superior longitudinal fasciculus (n = 49 for nfvPPA, and n = 23 for AD). BvFTD generally showed the largest sample size estimates (minimum n = 140 based on MD in the corpus callosum). The corpus callosum appeared to be the best region for a potential study that would include all FTD subtypes. Change in global measure of functional status (CDR box score) yielded the smallest sample size for bvFTD (n = 71), but clinical measures were inferior to white matter change for the other groups. Conclusions All three of the canonical subtypes of FTD are associated with significant change in white matter integrity over one year. These changes are consistent enough that drug effects in future clinical trials could be detected with relatively small numbers of participants. While there are some differences in regions of change across groups, the genu of the corpus callosum is a region that could be used to track progression in studies that include all subtypes. We show longitudinal change in white matter in frontotemporal lobar degeneration (FTLD) and Alzheimer’s disease (AD). We use diffusion tensor imaging (DTI) to quantify rate of white matter degeneration in FTLD and AD. In preparation for clinical trials, utility of longitudinal DTI as surrogate marker of therapeutic efficacy is investigated. We produce sample sizes based on rate of change in DTI metrics in the three canonical subtypes of FTLD and AD.
Collapse
Affiliation(s)
- Fanny M Elahi
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - Gabe Marx
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - Yann Cobigo
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - Adam M Staffaroni
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California, San Francisco, United States
| | - Duygu Tosun
- Department of Veteran Affairs Medical Center, San Francisco, CA, United States.,Department of Radiology and Biomedical Imaging, University of California, San Francisco, United States
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| | - Howard J Rosen
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, United States
| |
Collapse
|
18
|
Binney RJ, Pankov A, Marx G, He X, McKenna F, Staffaroni AM, Kornak J, Attygalle S, Boxer AL, Schuff N, Gorno‐Tempini M, Weiner MW, Kramer JH, Miller BL, Rosen HJ. Data-driven regions of interest for longitudinal change in three variants of frontotemporal lobar degeneration. Brain Behav 2017; 7:e00675. [PMID: 28413716 PMCID: PMC5390848 DOI: 10.1002/brb3.675] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 02/04/2017] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Longitudinal imaging of neurodegenerative disorders is a potentially powerful biomarker for use in clinical trials. In Alzheimer's disease, studies have demonstrated that empirically derived regions of interest (ROIs) can provide more reliable measurement of disease progression compared with anatomically defined ROIs. METHODS We set out to derive ROIs with optimal effect size for quantifying longitudinal change in a hypothetical clinical trial by comparing atrophy rates in 44 patients with behavioral variant of frontotemporal dementia (bvFTD), 30 with the semantic variant primary progressive aphasia (svPPA), and 26 with the nonfluent variant PPA (nfvPPA) to atrophy in 97 cognitively healthy controls. RESULTS The regions identified for each variant were generally what would be expected from prior studies of frontotemporal lobar degeneration (FTLD). Sample size estimates for detecting a 40% reduction in annual rate of ROI atrophy varied substantially across groups, being 103 per arm in bvFTD, 31 in nfvPPA, and 10 in svPPA, but in all groups were less than those estimated for a priori ROIs and clinical measures. The variability in location of peak regions of atrophy across individuals was highest in bvFTD and lowest in svPPA, likely relating to the differences in effect size. CONCLUSIONS These findings suggest that, while cross-validated maps of change can improve sensitivity to change in FTLD compared with a priori regions, the reliability of these maps differs considerably across syndromes. Future studies can utilize these maps to design clinical trials, and should try to identify factors accounting for the variability in patterns of atrophy across individuals, particularly those with bvFTD.
Collapse
Affiliation(s)
- Richard J. Binney
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Aleksandr Pankov
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCAUSA
- Department of Neurological SurgeryUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Gabriel Marx
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Xuanzie He
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Faye McKenna
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Adam M. Staffaroni
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - John Kornak
- Department of Epidemiology and BiostatisticsUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Suneth Attygalle
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Adam L. Boxer
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Norbert Schuff
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Maria‐Luisa Gorno‐Tempini
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Michael W. Weiner
- Department of RadiologyUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Joel H. Kramer
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Bruce L. Miller
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| | - Howard J. Rosen
- Department of NeurologyMemory and Aging CenterUniversity of California, San FranciscoSan FranciscoCAUSA
| |
Collapse
|