1
|
Jones-Muhammad M, Pryor T, Shao Q, Freeman KB, Warrington JP. Increased hippocampal cannabinoid 1 receptor expression is associated with protection from severe seizures in pregnant mice with reduced uterine perfusion pressure. J Neurosci Res 2023; 101:1884-1899. [PMID: 37772463 DOI: 10.1002/jnr.25244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/11/2023] [Accepted: 09/04/2023] [Indexed: 09/30/2023]
Abstract
Eclampsia, new-onset seizures in pregnancy, can complicate preeclampsia, a hypertensive pregnancy disorder. The mechanisms contributing to increased risk of seizures in preeclampsia are not fully known. One mechanism could be abnormal endocannabinoid system (ECS) activity and impaired neuromodulation. Indeed, increased placental cannabinoid receptor 1 (CB1R) expression and reduced serum anandamide, a CB1R ligand, have been reported in preeclampsia patients. We hypothesized that reduced uterine perfusion pressure (RUPP), used to mimic preeclampsia, leads to changes in hippocampal CB1R expression, and that manipulating CB1R activity will change seizure severity in RUPP mice. Pregnant mice underwent sham or RUPP surgery on gestational day (GD)13.5. On GD18.5, mice received: no drug treatment, pentylenetetrazol (PTZ, 40 mg/kg), Rimonabant (10 mg/kg) + PTZ, or 2-AG (1 mg/kg) + PTZ. Behaviors were video recorded (15 min for Rimonabant and 2-AG, followed by 30 min for PTZ), and the hippocampus was harvested. The expression of CB1R and ECS proteins was measured in hippocampal homogenates, synaptosomes, and cytosol. Hippocampal CB1R increased in homogenates and cytosolic fraction, and was unchanged in synaptosomes of RUPP mice. Increased CB1R colocalization on glutamate-releasing neurons within hippocampal CA1 was observed in RUPP mice. Rimonabant modestly increased seizure scores over time in RUPP mice. PTZ after rimonabant pretreatment increased seizure scores and duration, while reducing latency in sham mice, with little to no change in RUPP mice. Furthermore, RUPP mice had lower seizure scores over time than sham following CB1R blockade and activation. These data suggest that RUPP modifies CB1R activity prior to seizure induction, which protects mice from worse seizure outcomes.
Collapse
Affiliation(s)
- Maria Jones-Muhammad
- Program in Neuroscience, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Tyranny Pryor
- Department of Neurology, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Qingmei Shao
- Department of Neurology, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Kevin B Freeman
- Department of Psychiatry and Human Behavior, University of Mississippi Medical School, Jackson, Mississippi, USA
| | - Junie P Warrington
- Department of Neurology, University of Mississippi Medical School, Jackson, Mississippi, USA
| |
Collapse
|
2
|
Fonseca-Barriendos D, Castañeda-Cabral JL, Martínez-Cuevas F, Besio W, Valdés-Cruz A, Rocha L. Transcranial Focal Electric Stimulation Avoids P-Glycoprotein Over-Expression during Electrical Amygdala Kindling and Delays Epileptogenesis in Rats. Life (Basel) 2023; 13:1294. [PMID: 37374077 DOI: 10.3390/life13061294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
Recent evidence suggests that P-glycoprotein (P-gp) overexpression mediates hyperexcitability and is associated with epileptogenesis. Transcranial focal electrical stimulation (TFS) delays epileptogenesis and inhibits P-gp overexpression after a generalized seizure. Here, first we measured P-gp expression during epileptogenesis and second, we assessed if TFS antiepileptogenic effect was related with P-gp overexpression avoidance. Male Wistar rats were implanted in right basolateral amygdala and stimulated daily for electrical amygdala kindling (EAK), P-gp expression was assessed during epileptogenesis in relevant brain areas. Stage I group showed 85% increase in P-gp in ipsilateral hippocampus (p < 0.001). Stage III group presented 58% and 57% increase in P-gp in both hippocampi (p < 0.05). Kindled group had 92% and 90% increase in P-gp in both hippocampi (p < 0.01), and 93% and 143% increase in both neocortices (p < 0.01). For the second experiment, TFS was administrated daily after each EAK stimulation for 20 days and P-gp concentration was assessed. No changes were found in the TFS group (p > 0.05). Kindled group showed 132% and 138% increase in P-gp in both hippocampi (p < 0.001) and 51% and 92% increase in both cortices (p < 0.001). Kindled + TFS group presented no changes (p > 0.05). Our experiments revealed that progression of EAK is associated with increased P-gp expression. These changes are structure-specific and dependent on seizure severity. EAK-induced P-gp overexpression would be associated with neuronal hyperexcitability and thus, epileptogenesis. P-gp could be a novel therapeutical target to avoid epileptogenesis. In accordance with this, TFS inhibited P-gp overexpression and interfered with EAK. An important limitation of the present study is that P-gp neuronal expression was not evaluated under the different experimental conditions. Future studies should be carried out to determine P-gp neuronal overexpression in hyperexcitable networks during epileptogenesis. The TFS-induced lessening of P-gp overexpression could be a novel therapeutical strategy to avoid epileptogenesis in high-risk patients.
Collapse
Affiliation(s)
- Daniel Fonseca-Barriendos
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - José Luis Castañeda-Cabral
- Departamento de Biología Celular y Molecular, Centro Universitrio de Ciencias Biológicas y Agropecuaias, Universidad de Guadalajara, Zapopan C.P. 44600, Mexico
| | - Frida Martínez-Cuevas
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| | - Walter Besio
- Department of Electrical, Computer, and Biomedical Engineering, University of Rhode Island, Kingston, RI 028881, USA
| | - Alejandro Valdés-Cruz
- Laboratorio de Neurofisiología del Control y la Regulación, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Ciudad de México C.P. 14370, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Ciudad de México C.P. 14330, Mexico
| |
Collapse
|
3
|
Chow CH, Huang M, Sugita S. The Role of Tomosyn in the Regulation of Neurotransmitter Release. ADVANCES IN NEUROBIOLOGY 2023; 33:233-254. [PMID: 37615869 DOI: 10.1007/978-3-031-34229-5_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Soluble NSF attachment protein receptor (SNARE) proteins play a central role in synaptic vesicle (SV) exocytosis. These proteins include the vesicle-associated SNARE protein (v-SNARE) synaptobrevin and the target membrane-associated SNARE proteins (t-SNAREs) syntaxin and SNAP-25. Together, these proteins drive membrane fusion between synaptic vesicles (SV) and the presynaptic plasma membrane to generate SV exocytosis. In the presynaptic active zone, various proteins may either enhance or inhibit SV exocytosis by acting on the SNAREs. Among the inhibitory proteins, tomosyn, a syntaxin-binding protein, is of particular importance because it plays a critical and evolutionarily conserved role in controlling synaptic transmission. In this chapter, we describe how tomosyn was discovered, how it interacts with SNAREs and other presynaptic regulatory proteins to regulate SV exocytosis and synaptic plasticity, and how its various domains contribute to its synaptic functions.
Collapse
Affiliation(s)
- Chun Hin Chow
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mengjia Huang
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Shuzo Sugita
- Division of Experimental & Translational Neuroscience, Krembil Brain Institute, University Health Network, Toronto, ON, Canada.
- Faculty of Medicine, Department of Physiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Jones-Muhammad M, Shao Q, Warrington JP. Increased seizure sensitivity in pregnant mice with genetic knockdown of acid sensing ion channel 2a is associated with impaired hippocampal inflammatory response. Front Physiol 2022; 13:983506. [PMID: 36187797 PMCID: PMC9515891 DOI: 10.3389/fphys.2022.983506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Acid sensing ion channels (ASICs) are mechano- and chemo-receptor channels that are activated by drops in extracellular pH as occurs after neurotransmission. In our previous study, we demonstrated that mice subjected to reduced utero-placental perfusion pressure during pregnancy, to mimic the pregnancy complication of preeclampsia, have reduced hippocampal expression of ASIC2a protein. We also showed that pregnant mice with heterozygous expression of ASIC2a (+/-) had increased sensitivity and severity to pentylenetetrazol-induced seizures; however, the mechanisms by which this occurs remain unclear. The purpose of this study was to investigate key molecular targets involving neurotransmission and inflammation that are differentially changed following seizure exposure in pregnant ASIC2a +/- mice. On gestational day 18.5, ASIC2a wild-type (+/+, n = 7) and +/- (n = 14) mice were injected with 40 mg/kg pentylenetetrazol and monitored for 30 min. Western blot and ELISA analysis revealed no difference in hippocampal synaptosome glutamate-related proteins but an increase in GABA concentration in pregnant +/- mice. Using ELISA and multiplex assays, we found a significant decrease in serum TNFα, and a decreased concentration of pro-inflammatory cytokines and chemokines in hippocampal cytosolic fraction. Significant reductions in IL-1β, IL-3, IL-12 (p70), eotaxin, interferon gamma, and macrophage inflammatory protein (MIP-1β), in the hippocampal cytosolic fractions of +/- mice were observed compared to +/+ mice. Additionally, there was no difference in hippocampal microglia density or activation in pregnant ASIC2a+/+ vs. +/- mice. These results support the hypothesis that pregnant mice with reduced ASIC2a may not be able to mount an inflammatory response following acute seizure exposure.
Collapse
Affiliation(s)
- Maria Jones-Muhammad
- Program in Neuroscience, University of Mississippi Medical Center, Jackson, MS, United States
| | - Qingmei Shao
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| | - Junie P. Warrington
- Department of Neurology, University of Mississippi Medical Center, Jackson, MS, United States
| |
Collapse
|
5
|
Rubio C, Taddei E, Acosta J, Custodio V, Paz C. Neuronal Excitability in Epileptogenic Zones Regulated by the Wnt/ Β-Catenin Pathway. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 19:2-11. [PMID: 31987027 DOI: 10.2174/1871527319666200120143133] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 01/10/2020] [Accepted: 01/13/2020] [Indexed: 02/08/2023]
Abstract
Epilepsy is a neurological disorder that involves abnormal and recurrent neuronal discharges, producing epileptic seizures. Recently, it has been proposed that the Wnt signaling pathway is essential for the central nervous system development and function because it modulates important processes such as hippocampal neurogenesis, synaptic clefting, and mitochondrial regulation. Wnt/β- catenin signaling regulates changes induced by epileptic seizures, including neuronal death. Several genetic studies associate Wnt/β-catenin signaling with neuronal excitability and epileptic activity. Mutations and chromosomal defects underlying syndromic or inherited epileptic seizures have been identified. However, genetic factors underlying the susceptibility of an individual to develop epileptic seizures have not been fully studied yet. In this review, we describe the genes involved in neuronal excitability in epileptogenic zones dependent on the Wnt/β-catenin pathway.
Collapse
Affiliation(s)
- Carmen Rubio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Elisa Taddei
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Jorge Acosta
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Verónica Custodio
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| | - Carlos Paz
- Departamento de Neurofisiología, Instituto Nacional de Neurología y Neurocirugía, 14269 Ciudad de México, CDMX, Mexico
| |
Collapse
|
6
|
Shen W, Kilander MBC, Bridi MS, Frei JA, Niescier RF, Huang S, Lin YC. Tomosyn regulates the small RhoA GTPase to control the dendritic stability of neurons and the surface expression of AMPA receptors. J Neurosci Res 2020; 98:1213-1231. [PMID: 32133675 PMCID: PMC7216846 DOI: 10.1002/jnr.24608] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/22/2020] [Accepted: 02/20/2020] [Indexed: 12/20/2022]
Abstract
Tomosyn, a protein encoded by syntaxin‐1‐binding protein 5 (STXBP5) gene, has a well‐established presynaptic role in the inhibition of neurotransmitter release and the reduction of synaptic transmission by its canonical interaction with the soluble N‐ethylmaleimide‐sensitive factor attachment protein receptor machinery. However, the postsynaptic role of tomosyn in dendritic arborization, spine stability, and trafficking of ionotropic glutamate receptors remains to be elucidated. We used short hairpin RNA to knock down tomosyn in mouse primary neurons to evaluate the postsynaptic cellular function and molecular signaling regulated by tomosyn. Knockdown of tomosyn led to an increase of RhoA GTPase activity accompanied by compromised dendritic arborization, loss of dendritic spines, decreased surface expression of AMPA receptors, and reduced miniature excitatory postsynaptic current frequency. Inhibiting RhoA signaling was sufficient to rescue the abnormal dendritic morphology and the surface expression of AMPA receptors. The function of tomosyn regulating RhoA is mediated through the N‐terminal WD40 motif, where two variants each carrying a single nucleotide mutation in this region were found in individuals with autism spectrum disorder (ASD). We demonstrated that these variants displayed loss‐of‐function phenotypes. Unlike the wild‐type tomosyn, these two variants failed to restore the reduced dendritic complexity, spine density, as well as decreased surface expression of AMPA receptors in tomosyn knockdown neurons. This study uncovers a novel role of tomosyn in maintaining neuronal function by inhibiting RhoA activity. Further analysis of tomosyn variants also provides a potential mechanism for explaining cellular pathology in ASD.
Collapse
Affiliation(s)
- Wenjuan Shen
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | | | - Morgan S Bridi
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Jeannine A Frei
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Robert F Niescier
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Shiyong Huang
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| | - Yu-Chih Lin
- Program in Neuroscience, Hussman Institute for Autism, Baltimore, MD, USA
| |
Collapse
|
7
|
Butler CR, Boychuk JA, Pomerleau F, Alcala R, Huettl P, Ai Y, Jakobsson J, Whiteheart SW, Gerhardt GA, Smith BN, Slevin JT. Modulation of epileptogenesis: A paradigm for the integration of enzyme-based microelectrode arrays and optogenetics. Epilepsy Res 2019; 159:106244. [PMID: 31816591 DOI: 10.1016/j.eplepsyres.2019.106244] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Revised: 10/22/2019] [Accepted: 11/22/2019] [Indexed: 02/03/2023]
Abstract
BACKGROUND Genesis of acquired epilepsy includes transformations spanning genetic-to- network-level modifications, disrupting the regional excitatory/inhibitory balance. Methodology concurrently tracking changes at multiple levels is lacking. Here, viral vectors are used to differentially express two opsin proteins in neuronal populations within dentate gyrus (DG) of hippocampus. When activated, these opsins induced excitatory or inhibitory neural output that differentially affected neural networks and epileptogenesis. In vivo measures included behavioral observation coupled to real-time measures of regional glutamate flux using ceramic-based amperometric microelectrode arrays (MEAs). RESULTS Using MEA technology, phasic increases of extracellular glutamate were recorded immediately upon application of blue light/488 nm to DG of rats previously transfected with an AAV 2/5 vector containing an (excitatory) channelrhodopsin-2 transcript. Rats receiving twice-daily 30-sec light stimulation to DG ipsilateral to viral transfection progressed through Racine seizure stages. AAV 2/5 (inhibitory) halorhodopsin-transfected rats receiving concomitant amygdalar kindling and DG light stimuli were kindled significantly more slowly than non-stimulated controls. In in vitro slice preparations, both excitatory and inhibitory responses were independently evoked in dentate granule cells during appropriate light stimulation. Latency to response and sensitivity of responses suggest a degree of neuron subtype-selective functional expression of the transcripts. CONCLUSIONS This study demonstrates the potential for coupling MEA technology and optogenetics for real-time neurotransmitter release measures and modification of seizure susceptibility in animal models of epileptogenesis. This microelectrode/optogenetic technology could prove useful for characterization of network and system level dysfunction in diseases involving imbalanced excitatory/inhibitory control of neuron populations and guide development of future treatment strategies.
Collapse
Affiliation(s)
- Corwin R Butler
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Jeffery A Boychuk
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States
| | - Francois Pomerleau
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Ramona Alcala
- Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Peter Huettl
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Yi Ai
- Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - Johan Jakobsson
- Wallenburg Neuroscience Center, Lund Stem Cell Center, Lund University, Lund, Sweden
| | - Sidney W Whiteheart
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, 40536, United States; Veterans Affairs Medical Center, Lexington, KY, 40536, United States
| | - Greg A Gerhardt
- Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536, United States; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States
| | - Bret N Smith
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Spinal Cord and Brain Injury Research Center (SCoBIRC), University of Kentucky, Lexington, KY, 40536, United States; Department of Neuroscience, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States
| | - John T Slevin
- Epilepsy Center, University of Kentucky, Lexington, KY, 40536, United States; Department of Neurology, College of Medicine, University of Kentucky, Lexington, KY, 40536, United States; Veterans Affairs Medical Center, Lexington, KY, 40536, United States; Brain Restoration Center, University of Kentucky, Lexington, KY, 40356, United States.
| |
Collapse
|
8
|
Batten SR, Matveeva EA, Whiteheart SW, Vanaman TC, Gerhardt GA, Slevin JT. Linking kindling to increased glutamate release in the dentate gyrus of the hippocampus through the STXBP5/tomosyn-1 gene. Brain Behav 2017; 7:e00795. [PMID: 28948088 PMCID: PMC5607557 DOI: 10.1002/brb3.795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 06/29/2017] [Accepted: 07/02/2017] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION In kindling, repeated electrical stimulation of certain brain areas causes progressive and permanent intensification of epileptiform activity resulting in generalized seizures. We focused on the role(s) of glutamate and a negative regulator of glutamate release, STXBP5/tomosyn-1, in kindling. METHODS Stimulating electrodes were implanted in the amygdala and progression to two successive Racine stage 5 seizures was measured in wild-type and STXBP5/tomosyn-1-/- (Tom-/-) animals. Glutamate release measurements were performed in distinct brain regions using a glutamate-selective microelectrode array (MEA). RESULTS Naïve Tom-/- mice had significant increases in KCl-evoked glutamate release compared to naïve wild type as measured by MEA of presynaptic release in the hippocampal dentate gyrus (DG). Kindling progression was considerably accelerated in Tom-/- mice, requiring fewer stimuli to reach a fully kindled state. Following full kindling, MEA measurements of both kindled Tom+/+ and Tom-/- mice showed significant increases in KCl-evoked and spontaneous glutamate release in the DG, indicating a correlation with the fully kindled state independent of genotype. Resting glutamate levels in all hippocampal subregions were significantly lower in the kindled Tom-/- mice, suggesting possible changes in basal control of glutamate circuitry in the kindled Tom-/- mice. CONCLUSIONS Our studies demonstrate that increased glutamate release in the hippocampal DG correlates with acceleration of the kindling process. Although STXBP5/tomosyn-1 loss increased evoked glutamate release in naïve animals contributing to their prokindling phenotype, the kindling process can override any attenuating effect of STXBP5/tomosyn-1. Loss of this "braking" effect of STXBP5/tomosyn-1 on kindling progression may set in motion an alternative but ultimately equally ineffective compensatory response, detected here as reduced basal glutamate release.
Collapse
Affiliation(s)
- Seth R. Batten
- Department of PsychologyUniversity of KentuckyCollege of Arts and SciencesLexingtonKYUSA
| | - Elena A. Matveeva
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Sidney W. Whiteheart
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Thomas C. Vanaman
- Department of Molecular & Cellular BiochemistryUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - Greg A. Gerhardt
- Department of NeuroscienceUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
| | - John T. Slevin
- Neurology ServiceVeterans Affairs Medical CenterLexingtonKYUSA
- Department of NeurologyUniversity of Kentucky Medical CenterLexingtonKYUSA
- Department of Pharmacology and Nutritional SciencesUniversity of Kentucky Medical CenterLexingtonKYUSA
| |
Collapse
|