1
|
Niitani K, Nishida R, Futami Y, Nishitani N, Deyama S, Kaneda K. Activation of ventral pallidum-projecting neurons in the nucleus accumbens via 5-HT 2C receptor stimulation regulates motivation for wheel running in male mice. Neuropharmacology 2024; 261:110181. [PMID: 39393590 DOI: 10.1016/j.neuropharm.2024.110181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/07/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Rodents have a strong motivation for wheel running; however, the neural mechanisms that regulate their motivation remain unknown. We investigated the possible involvement of serotonin (5-HT) systems in regulating motivation for wheel running in male mice. Systemic administration of a 5-HT1A receptor antagonist (WAY100635) increased the number of wheel rotations, whereas administration of a 5-HT2A or 5-HT2C receptor antagonist (volinanserin or SB242084, respectively) decreased it. In the open field test, neither WAY100635 nor volinanserin affected locomotor activity, whereas SB242084 increased locomotor activity. To identify the brain regions on which these antagonists act, we locally injected these into the motivational circuitry, including the nucleus accumbens (NAc), dorsomedial striatum (DM-Str), and medial prefrontal cortex (mPFC). Injection of SB242084 into the NAc, but not the DM-Str or mPFC, reduced the number of wheel rotations without altering locomotor activity. The local administration of WAY100635 or volinanserin to these brain regions did not affect the number of wheel rotations. Immunohistochemical analyses revealed that wheel running increased the number of c-Fos-positive cells in the NAc medial shell (NAc-MS), which was reduced by systemic SB242084 administration. In vitro slice whole-cell recordings showed that bath application of the 5-HT2C receptor agonist lorcaserin increased the frequency of spontaneous excitatory and inhibitory postsynaptic currents in the ventral tegmental area (VTA)-projecting neurons, whereas it only increased the frequency of spontaneous excitatory postsynaptic currents in ventral pallidum (VP)-projecting neurons in the NAc-MS. These findings suggest that the activation of VP-projecting NAc-MS neurons via 5-HT2C receptor stimulation regulates motivation for wheel running.
Collapse
Affiliation(s)
- Kazuhei Niitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Ryoma Nishida
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Yusaku Futami
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Naoya Nishitani
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Satoshi Deyama
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan
| | - Katsuyuki Kaneda
- Laboratory of Molecular Pharmacology, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Csikós V, Dóra F, Láng T, Darai L, Szendi V, Tóth A, Cservenák M, Dobolyi A. Social Isolation Induces Changes in the Monoaminergic Signalling in the Rat Medial Prefrontal Cortex. Cells 2024; 13:1043. [PMID: 38920671 PMCID: PMC11201939 DOI: 10.3390/cells13121043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/02/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
(1) Background: The effects of short-term social isolation during adulthood have not yet been fully established in rats behaviourally, and not at all transcriptomically in the medial prefrontal cortex (mPFC). (2) Methods: We measured the behavioural effects of housing adult male rats in pairs or alone for 10 days. We also used RNA sequencing to measure the accompanying gene expression alterations in the mPFC of male rats. (3) Results: The isolated animals exhibited reduced sociability and social novelty preference, but increased social interaction. There was no change in their aggression, anxiety, or depression-like activity. Transcriptomic analysis revealed a differential expression of 46 genes between the groups. The KEGG pathway analysis showed that differentially expressed genes are involved in neuroactive ligand-receptor interactions, particularly in the dopaminergic and peptidergic systems, and addiction. Subsequent validation confirmed the decreased level of three altered genes: regulator of G protein signalling 9 (Rgs9), serotonin receptor 2c (Htr2c), and Prodynorphin (Pdyn), which are involved in dopaminergic, serotonergic, and peptidergic function, respectively. Antagonizing Htr2c confirmed its role in social novelty discrimination. (4) Conclusions: Social homeostatic regulations include monoaminergic and peptidergic systems of the mPFC.
Collapse
Affiliation(s)
- Vivien Csikós
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Fanni Dóra
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Tamás Láng
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, 1094 Budapest, Hungary
| | - Luca Darai
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Vivien Szendi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Attila Tóth
- In Vivo Electrophysiology Research Group, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Melinda Cservenák
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| | - Arpád Dobolyi
- Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Eötvös Loránd University, 1117 Budapest, Hungary
| |
Collapse
|
3
|
Fritz M, Soravia SM, Dudeck M, Malli L, Fakhoury M. Neurobiology of Aggression-Review of Recent Findings and Relationship with Alcohol and Trauma. BIOLOGY 2023; 12:biology12030469. [PMID: 36979161 PMCID: PMC10044835 DOI: 10.3390/biology12030469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
Aggression can be conceptualized as any behavior, physical or verbal, that involves attacking another person or animal with the intent of causing harm, pain or injury. Because of its high prevalence worldwide, aggression has remained a central clinical and public safety issue. Aggression can be caused by several risk factors, including biological and psychological, such as genetics and mental health disorders, and socioeconomic such as education, employment, financial status, and neighborhood. Research over the past few decades has also proposed a link between alcohol consumption and aggressive behaviors. Alcohol consumption can escalate aggressive behavior in humans, often leading to domestic violence or serious crimes. Converging lines of evidence have also shown that trauma and posttraumatic stress disorder (PTSD) could have a tremendous impact on behavior associated with both alcohol use problems and violence. However, although the link between trauma, alcohol, and aggression is well documented, the underlying neurobiological mechanisms and their impact on behavior have not been properly discussed. This article provides an overview of recent advances in understanding the translational neurobiological basis of aggression and its intricate links to alcoholism and trauma, focusing on behavior. It does so by shedding light from several perspectives, including in vivo imaging, genes, receptors, and neurotransmitters and their influence on human and animal behavior.
Collapse
Affiliation(s)
- Michael Fritz
- School of Health and Social Sciences, AKAD University of Applied Sciences, 70191 Stuttgart, Germany
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Sarah-Maria Soravia
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Manuela Dudeck
- Department of Forensic Psychiatry and Psychotherapy, Ulm University, BKH Günzburg, Lindenallee 2, 89312 Günzburg, Germany
| | - Layal Malli
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut P.O. Box 13-5053, Lebanon
| |
Collapse
|
4
|
Wang Y, Liu Y, Zhao Z, Wu X, Lin J, Li Y, Yan W, Wu Y, Shi Y, Wu X, Xue Y, He J, Liu S, Zhang X, Xu H, Tang Y, Yin S. The involvement of ADAR1 in chronic unpredictable stress-induced cognitive impairment by targeting DARPP-32 with miR-874-3p in BALB/c mice. Front Cell Dev Biol 2023; 11:919297. [PMID: 37123418 PMCID: PMC10132208 DOI: 10.3389/fcell.2023.919297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 03/07/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction: Chronic stress exposure is the main environmental factor leading to cognitive impairment, but the detailed molecular mechanism is still unclear. Adenosine Deaminase acting on double-stranded RNA1(ADAR1) is involved in the occurrence of chronic stress-induced cognitive impairment. In addition, dopamine and Adenosine 3'5'-monophosphate-regulated phospho-protein (DARPP-32) gene variation affects cognitive function. Therefore, we hypothesized that ADAR1 plays a key role in chronic stress-induced cognitive impairment by acting on DARPP-32. Methods: In this study, postnatal 21-day-old male BALB/c mice were exposed to chronic unpredictable stressors. After that, the mice were treated with ADAR1 inducer/inhibitor. The cognitive ability and cerebral DARPP-32 protein expression of BALB/c mice were evaluated. In order to explore the link between ADAR1 and DARPP-32, the effects of ADAR1 high/low expression on DARPP-32 protein expression in vitro were detected. Results: ADAR1 inducer alleviates cognitive impairment and recovers decreased DARPP-32 protein expression of the hippocampus and prefrontal cortex in BALB/c mice with chronic unpredictable stress exposure. In vivo and in vitro studies confirm the results predicted by bio-informatics; that is, ADAR1 affects DARPP-32 expression via miR-874-3p. Discussion: The results in this study demonstrate that ADAR1 affects the expression of DARPP-32 via miR-874-3p, which is involved in the molecular mechanism of pathogenesis in chronic unpredictable stress-induced cognitive impairment. The new findings of this study provide a new therapeutic strategy for the prevention and treatment of stress cognitive impairment from epigenetics.
Collapse
Affiliation(s)
- Yanfang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yingxin Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ziwei Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xinyu Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiabin Lin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yufei Li
- National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, China
| | - Wei Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yi Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yanfei Shi
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xindi Wu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ying Xue
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaqian He
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Shuqi Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaonan Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yiyuan Tang
- College of Health Solutions, Phoenix, AZ, United States
| | - Shengming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
- *Correspondence: Shengming Yin,
| |
Collapse
|
5
|
Takahashi A. The role of social isolation stress in escalated aggression in rodent models. Neurosci Res 2022:S0168-0102(22)00212-7. [PMID: 35917930 DOI: 10.1016/j.neures.2022.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022]
Abstract
Anti-social behavior and violence are major public health concerns. Globally, violence contributes to more than 1.6 million deaths each year. Previous studies have reported that social rejection or neglect exacerbates aggression. In rodent models, social isolation stress is used to demonstrate the adverse effects of social deprivation on physiological, endocrinological, immunological, and behavioral parameters, including aggressive behavior. This review summarizes recent rodent studies on the effect of social isolation stress during different developmental periods on aggressive behavior and the underlying neural mechanisms. Social isolation during adulthood affects the levels of neurosteroids and neuropeptides and increases aggressive behavior. These changes are ethologically relevant for the adaptation to changes in local environmental conditions in the natural habitats. Chronic deprivation of social interaction after weaning, especially during the juvenile to adolescent periods, leads to the disruption of the development of appropriate social behavior and the maladaptive escalation of aggressive behavior. The understanding of neurobiological mechanisms underlying social isolation-induced escalated aggression will aid in the development of therapeutic interventions for escalated aggression.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neurobiology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
6
|
Ru FX, Kong F, Ren CY, He YS, Xia SY, Li YN, Liang YP, Feng JJ, Wei ZY, Chen JH. Repeated Winning and Losing Experiences in Chronic Social Conflicts Are Linked to RNA Editing Pattern Difference. Front Psychiatry 2022; 13:896794. [PMID: 35664469 PMCID: PMC9161819 DOI: 10.3389/fpsyt.2022.896794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 04/25/2022] [Indexed: 02/05/2023] Open
Abstract
Winner-loser effects influence subsequent agonistic interactions between conspecifics. Previous winning experiences could strengthen future aggression and increase the chance of winning the next agonistic interaction, while previous losing experiences could have the opposite effect. Although the role of A-to-I RNA editing has been recently implicated in chronic social defeat stress and aggressive behavior, it remains to be further elucidated in chronic social conflicts in agonistic interactions, especially in the repeated aggression (winners) and repeated defeat (losers) resulted from these conflicts. In the current study, transcriptome-wide A-to-I RNA editing in the dorsal striatum was investigated in a mouse model of chronic social conflicts, and compared between mice repeatedly winning and losing daily agonistic interactions. Our analysis identified 622 A-to-I RNA editing sites in the mouse dorsal striatum, with 23 to be differentially edited in 22 genes, most of which had been previously associated with neurological, psychiatric, or immune disorders. Among these differential RNA editing (DRE) sites four missense variants were observed in neuroligin 2 (Nlgn2), Cdc42 guanine nucleotide exchange factor 9 (Arhgef9) BLCAP apoptosis inducing factor (Blcap), and cytoplasmic FMR1 interacting protein 2 (Cyfip2), as well as two noncoding RNA sites in small nucleolar RNA host gene 11 (Snhg11) and the maternally expressed 3 (Meg3) gene. Moreover, significant changes were observed in gene functions and pathways enriched by genes with A-to-I RNA editing in losers and especially winners compared to controls. Our results demonstrate that repeated winning and losing experiences in chronic social conflicts are linked to A-to-I RNA editing pattern difference, underlining its role in the molecular mechanism of agonistic interactions between conspecifics.
Collapse
Affiliation(s)
- Fu-Xia Ru
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Fanzhi Kong
- Shantou University Mental Health Center, Shantou University Medical College, Shantou, China
| | - Chun-Yan Ren
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Shan He
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Shou-Yue Xia
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Yu-Ning Li
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Ya-Ping Liang
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jun-Jie Feng
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Zhi-Yuan Wei
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| | - Jian-Huan Chen
- Laboratory of Genomic and Precision Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
- Joint Primate Research Center for Chronic Diseases, Institute of Zoology of Guangdong Academy of Science, Jiangnan University, Wuxi, China
- Jiangnan University Brain Institute, Wuxi, China
| |
Collapse
|
7
|
Duclot F, Kabbaj M. Epigenetics of Aggression. Curr Top Behav Neurosci 2021; 54:283-310. [PMID: 34595741 DOI: 10.1007/7854_2021_252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Aggression is a complex behavioral trait modulated by both genetic and environmental influences on gene expression. By controlling gene expression in a reversible yet potentially lasting manner in response to environmental stimulation, epigenetic mechanisms represent prime candidates in explaining both individual differences in aggression and the development of elevated aggressive behaviors following life adversity. In this manuscript, we review the evidence for an epigenetic basis in the development and expression of aggression in both humans and related preclinical animal models. In particular, we discuss reports linking DNA methylation, histone post-translational modifications, as well as non-coding RNA, to the regulation of a variety of genes implicated in the neurobiology of aggression including neuropeptides, the serotoninergic and dopaminergic systems, and stress response related systems. While clinical reports do reveal interesting patterns of DNA methylation underlying individual differences and experience-induced aggressive behaviors, they do, in general, face the challenge of linking peripheral observations to central nervous system regulations. Preclinical studies, on the other hand, provide detailed mechanistic insights into the epigenetic reprogramming of gene expression following life adversities. Although the functional link to aggression remains unclear in most, these studies together do highlight the involvement of epigenetic events driven by DNA methylation, histone modifications, and non-coding RNA in the neuroadaptations underlying the development and expression of aggression.
Collapse
Affiliation(s)
- Florian Duclot
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| | - Mohamed Kabbaj
- Department of Biomedical Sciences and Program in Neuroscience, Florida State University, Tallahassee, FL, USA.
| |
Collapse
|
8
|
Zhang X, Yan W, Xue Y, Xu H, Li J, Zhao Z, Sun Y, Wang Y, He J, Huang Y, Yu D, Xiao Z, Yin S. Roles of miR-432 and circ_0000418 in mediating the anti-depressant action of ADAR1. Neurobiol Stress 2021; 15:100396. [PMID: 34568523 PMCID: PMC8449188 DOI: 10.1016/j.ynstr.2021.100396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 09/11/2021] [Indexed: 12/27/2022] Open
Abstract
Adenosine deaminase acting on RNA1 (ADAR1) is a newly discovered epigenetic molecule marker that is sensitive to environmental stressors. A recent study has demonstrated that ADAR1 affects BDNF expression via miR-432 and is involved in antidepressant action. However, the detailed molecular mechanism is still unclear. We have uncovered a new molecular mechanism showing the involvement of miR-432 and circ_0000418 in mediating the antidepressant action of ADAR1. We demonstrate that the ADAR1 inducer (IFN-γ) alleviates the depressive-like behaviors of BALB/c mice treated with chronic unpredictable stress (CUS) exposure. Moreover, both in vivo and in vitro studies show that ADAR1 differently impacts miR-432 and circ_0000418 expressions. Furthermore, the in vitro results demonstrate that circ_0000418 oppositely affects BDNF expression. Together, our results indicate that ADAR1 affects CUS-induced depressive-like behavior and BDNF expression by acting on miR-432 and circ_0000418. Elucidation of this new molecular mechanism will not only provide insights into further understanding the important role of ADAR1 in stress-induced depressive-like behavior but also suggest a potential therapeutic strategy for developing novel anti-depressive drugs. MiR-432 and circ_0000418 mediates the antidepressant action of ADAR1. MiR-432 and circ_0000418 interactively affect BDNF expression. LIN28B is involved in the interaction among ADAR1, miR-432, and circ_0000418. HNRNPC is involved in the regulatory role of circ_0000418 on BDNF.
Collapse
Affiliation(s)
- Xiaonan Zhang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Wei Yan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Ying Xue
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Hong Xu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Jinying Li
- The 2nd Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Ziwei Zhao
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Ye Sun
- The 2nd Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Yanfang Wang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Jiaqian He
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Yuyue Huang
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China
| | - Deqin Yu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| | - Zhaoyang Xiao
- The 2nd Affiliated Hospital, Dalian Medical University, Dalian, Liaoning, China
| | - Shengming Yin
- College of Basic Medical Sciences, Dalian Medical University, Dalian, Liaoning, China.,National and Local Joint Engineering Research Center for Drug Research and Development of Neurodegenerative Diseases, Dalian, Liaoning, China
| |
Collapse
|
9
|
Takahashi A. Social Stress and Aggression in Murine Models. Curr Top Behav Neurosci 2021; 54:181-208. [PMID: 34432257 DOI: 10.1007/7854_2021_243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Throughout life, animals engage in a variety of social interactions ranging from the affiliative mother-offspring interaction and juvenile play to aggressive conflict. Deprivation of the appropriate social interaction during early development is stressful and disrupts the development of appropriate social behaviors and emotional responses later in life. Additionally, agonistic encounters can induce stress responses in both dominant and subordinate individuals. This review focuses on the social stress that escalates aggressive behavior of animals and discusses the known neurobiological and physiological mechanisms underlying the link between social stress and aggression. Social instigation, a brief exposure to a rival without physical contact, induces aggressive arousal in dominant animals and escalates aggressive behaviors in the following agonistic encounter. Furthermore, the experience of winning an aggressive encounter is known to be as rewarding as addictive drugs, and the experience of repeatedly winning induces addiction-like behavioral and neurobiological changes and leads to abnormal aggressive behaviors. Social isolation stress in early development from neonatal to juvenile and adolescent periods also affects aggressive behavior, but these effects largely depend on the strain, sex, and species as well as the stage of development in which isolation stress is experienced. In conclusion, understanding neurobiological mechanisms underlying the link between social stress and aggression will provide an important insight for the development of more effective and tolerable treatments for maladaptive aggression in humans.
Collapse
Affiliation(s)
- Aki Takahashi
- Laboratory of Behavioral Neuroendocrinology, Faculty of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
10
|
The involvement of ADAR1 in antidepressant action by regulating BDNF via miR-432. Behav Brain Res 2021; 402:113087. [PMID: 33412228 DOI: 10.1016/j.bbr.2020.113087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 11/16/2020] [Accepted: 12/16/2020] [Indexed: 12/26/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is a biomarker of depression. Recent studies have found adenosine deaminase acting on RNA1 (ADAR1) is a novel target being sensitive to stress at epigenetic level. The epigenetic regulation mechanism of stress-related depression is still unclear so far. To explore the potential regulating mechanism of ADAR1 on BDNF, over and low expression of ADAR1 in PC12 and SH-SY5Y cell lines are prepared. In the meanwhile, chronic unpredictable stress (CUS) mice are treated with ADAR1 inducer (interferon-γ, IFN-γ). ADAR1 regulates BDNF expression, which is proven by that over and low expressions of ADAR1 increase and decrease BDNF mRNA and protein respectively in vitro. Additionally, ADAR1 inducer alleviates the depressive-like behavior of CUS mice by recovering the decreased BDNF protein in brain and serum. Moreover, over and low expressions of ADAR1 reduce and enhance microRNA-432 (miR-432) expression respectively in vitro. Furtherly, over and low miR-432 expressions lead to decreased and increased BDNF and ADAR1 mRNA, protein and immunoreactivity respectively in vitro. The above results demonstrate that ADAR1 is involved in antidepressant action by regulating BDNF via miR-432. Those novel findings can provide a new idea for the study of epigenetic regulation mechanism, early diagnosis, and effective treatment of stress-related depression.
Collapse
|
11
|
Zhai X, Li J, Li L, Sun Y, Zhang X, Xue Y, Lv J, Gao Y, Li S, Yan W, Yin S, Xiao Z. L-lactate preconditioning promotes plasticity-related proteins expression and reduces neurological deficits by potentiating GPR81 signaling in rat traumatic brain injury model. Brain Res 2020; 1746:146945. [PMID: 32531223 DOI: 10.1016/j.brainres.2020.146945] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 01/16/2023]
Abstract
Currently, there is no efficacious pharmacological treatment for traumatic brain injury (TBI). Previous studies revealed that L-lactate preconditioning has shown rich neuroprotective effects against cerebral ischemia, and therefore has the potential to improve neurological outcomes after TBI. L-lactate played a neuroprotective role by activating GPR81 in diseases of the central nervous system (CNS) such as TBI and cerebral ischemia. In this study we investigated the effects of L-lactate preconditioning on TBI and explored the underlying mechanisms. In this study, the mNSS test revealed that L-lactate preconditioning alleviates the neurological deficit caused by TBI in rats. L-lactate preconditioning significantly increased the expression of GPR81, PSD95, GAP43, BDNF, and MCT2 24 h after TBI in the cortex and hippocampus compared with the sham group. Taken together, these data suggested that L-lactate preconditioning is an effective method with which to recover neurological function after TBI. This reveals the mechanism of L-lactate preconditioning on TBI and provides a potential therapeutic method for TBI in humans.
Collapse
Affiliation(s)
- Xiuli Zhai
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Jinying Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Liya Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Ye Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Xiaonan Zhang
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Ying Xue
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Jiaxin Lv
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Ye Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Shouxin Li
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China
| | - Wei Yan
- Department of Physiology, Dalian Medical University, Dalian 116044, China
| | - Shengming Yin
- Department of Physiology, Dalian Medical University, Dalian 116044, China.
| | - Zhaoyang Xiao
- Department of Anesthesiology, The Second Affiliated Hospital of Dalian Medical University, Dalian 116027, China.
| |
Collapse
|
12
|
Matsumoto K, Fujiwara H, Araki R, Yabe T. Post-weaning social isolation of mice: A putative animal model of developmental disorders. J Pharmacol Sci 2019; 141:111-118. [DOI: 10.1016/j.jphs.2019.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/11/2019] [Accepted: 10/17/2019] [Indexed: 01/10/2023] Open
|
13
|
Moore S, Alsop E, Lorenzini I, Starr A, Rabichow BE, Mendez E, Levy JL, Burciu C, Reiman R, Chew J, Belzil VV, W. Dickson D, Robertson J, Staats KA, Ichida JK, Petrucelli L, Van Keuren-Jensen K, Sattler R. ADAR2 mislocalization and widespread RNA editing aberrations in C9orf72-mediated ALS/FTD. Acta Neuropathol 2019; 138:49-65. [PMID: 30945056 DOI: 10.1007/s00401-019-01999-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
The hexanucleotide repeat expansion GGGGCC (G4C2)n in the C9orf72 gene is the most common genetic abnormality associated with amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recent findings suggest that dysfunction of nuclear-cytoplasmic trafficking could affect the transport of RNA binding proteins in C9orf72 ALS/FTD. Here, we provide evidence that the RNA editing enzyme adenosine deaminase acting on RNA 2 (ADAR2) is mislocalized in C9orf72 repeat expansion mediated ALS/FTD. ADAR2 is responsible for adenosine (A) to inosine (I) editing of double-stranded RNA, and its function has been shown to be essential for survival. Here we show the mislocalization of ADAR2 in human induced pluripotent stem cell-derived motor neurons (hiPSC-MNs) from C9orf72 patients, in mice expressing (G4C2)149, and in C9orf72 ALS/FTD patient postmortem tissue. As a consequence of this mislocalization we observe alterations in RNA editing in our model systems and across multiple brain regions. Analysis of editing at 408,580 known RNA editing sites indicates that there are vast RNA A to I editing aberrations in C9orf72-mediated ALS/FTD. These RNA editing aberrations are found in many cellular pathways, such as the ALS pathway and the crucial EIF2 signaling pathway. Our findings suggest that the mislocalization of ADAR2 in C9orf72 mediated ALS/FTD is responsible for the alteration of RNA processing events that may impact vast cellular functions, including the integrated stress response (ISR) and protein translation.
Collapse
|
14
|
Han RT, Kim YB, Park EH, Kim JY, Ryu C, Kim HY, Lee J, Pahk K, Shanyu C, Kim H, Back SK, Kim HJ, Kim YI, Na HS. Long-Term Isolation Elicits Depression and Anxiety-Related Behaviors by Reducing Oxytocin-Induced GABAergic Transmission in Central Amygdala. Front Mol Neurosci 2018; 11:246. [PMID: 30158853 PMCID: PMC6104450 DOI: 10.3389/fnmol.2018.00246] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 06/26/2018] [Indexed: 01/29/2023] Open
Abstract
Isolation stress is a major risk factor for neuropsychiatric disorders such as depressive and anxiety disorders. However, the molecular mechanisms underlying isolation-induced neuropsychiatric disorders remain elusive. In the present study, we investigated the subcellular mechanisms by which long-term isolation elicits depression and anxiety-related behaviors in mice. First, we found that long-term isolation induced depression-related behaviors in the forced swimming test (FST) and the sucrose preference test, as well as anxiety-related behaviors in the elevated zero maze test (EZMT) and the open field test. Next, we showed that intracentral amygdala (CeA) injection of oxytocin (OXT), but not intracerebroventricular injection, attenuated isolation-induced depression and anxiety-related behaviors via oxytocin receptor (OXTR), not vasopressin-1a receptor (V1aR), in the FST and EZMT, respectively. Quantitative real-time polymerase chain reaction analysis revealed that after 5 weeks of isolation, mRNA transcription of OXTR in the CeA, but not that of V1aR, significantly decreased, whereas OXT and vasopressin mRNA transcription in the paraventricular nucleus of hypothalamus did not change significantly. Whole-cell patch clamping of acute brain slices demonstrated that the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in CeA neurons, but not their amplitude, was lower in isolated mice than in group-housed mice. Notably, OXT treatment increased the mIPSC frequency in the CeA neurons, but to a lesser extent in the case of isolated mice than in that of group-housed mice via OXTR. Taken together, our findings suggest that long-term isolation down-regulates OXTR mRNA transcription and diminishes OXT-induced inhibitory synaptic transmission in the CeA and may contribute to the development of depression and anxiety-related behaviors in isolated mice through the enhancement of CeA activity.
Collapse
Affiliation(s)
- Rafael T Han
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Young-Beom Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Eui-Ho Park
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Jin Yong Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Changhyeon Ryu
- Neuroscience Research Institute and Department of Physiology, College of Medicine, Seoul National University, Seoul, South Korea
| | - Hye Y Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - JaeHee Lee
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Kisoo Pahk
- Department of Neuroscience, Korea University College of Medicine, Seoul, South Korea
| | - Cui Shanyu
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Hyun Kim
- Department of Anatomy, Korea University College of Medicine, Seoul, South Korea
| | - Seung K Back
- Department of Pharmaceutics and Biotechnology, College of Medical Engineering, Konyang University, Chungnam, South Korea
| | - Hee J Kim
- Division of Biological Science and Technology, Science and Technology College, Yonsei University, Wonju, South Korea
| | - Yang In Kim
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| | - Heung S Na
- Neuroscience Research Institute and Department of Physiology, Korea University College of Medicine, Seoul, South Korea
| |
Collapse
|