1
|
Mirmosayyeb O, Nabizadeh F, Moases Ghaffary E, Yazdan Panah M, Zivadinov R, Weinstock-Guttman B, Benedict RHB, Jakimovski D. Cognitive performance and magnetic resonance imaging in people with multiple sclerosis: A systematic review and meta-analysis. Mult Scler Relat Disord 2024; 88:105705. [PMID: 38885600 DOI: 10.1016/j.msard.2024.105705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 06/03/2024] [Accepted: 06/07/2024] [Indexed: 06/20/2024]
Abstract
BACKGROUND Several studies have shown the different relationships between cognitive functions and structural magnetic resonance imaging (MRI) measurements in people with multiple sclerosis (pwMS). However, there is an ongoing debate regarding the magnitude of correlation between MRI measurements and specific cognitive function tests. This systematic review and meta-analysis aimed to synthesize the most consistent correlations between MRI measurements and cognitive function in pwMS. METHODS PubMed/MEDLINE, Embase, Scopus, and Web of Science databases were systematically searched up to February 2023, to find relevant data. The search utilized syntax and medical subject headings (MeSH) relevant to cognitive performance tests and MRI measurements in pwMS. The R software version 4.3.3 with random effect models was used to estimate the pooled effect sizes. RESULTS 13,559 studies were reviewed, of which 136 were included. The meta-analyses showed that thalamic volume had the most significant correlations with Symbol Digit Modalities Test (SDMT) r = 0.47 (95 % CI: 0.39 to 0.56, p < 0.001, I2 = 88 %), Brief Visual Memory Test-Revised-Total Recall (BVMT-TR) r = 0.51 (95 % CI: 0.36 to 0.66, p < 0.001, I2 = 81 %), California Verbal Learning Test-II-Total Recall (CVLT-TR) r = 0.47 (95 % CI: 0.34 to 0.59, p < 0.001, I2 = 69 %,), and Delis-Kaplan Executive Function System (DKEFS) r = 0.48 (95 % CI: 0.34 to 0.63, p < 0.001, I2 = 22 %,). CONCLUSION We conclude that thalamic volume exhibits highest relationships with information processing speed (IPS), visuospatial learning-memory, verbal learning-memory, and executive function in pwMS. A comprehensive understanding of the intricacies of the mechanisms underpinning this association requires additional research.
Collapse
Affiliation(s)
- Omid Mirmosayyeb
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Fardin Nabizadeh
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Elham Moases Ghaffary
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Yazdan Panah
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Center for Biomedical Imaging at the Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Bianca Weinstock-Guttman
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Ralph H B Benedict
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States
| | - Dejan Jakimovski
- Department of Neurology, Jacobs Comprehensive MS Treatment and Research Center, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States; Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY, United States.
| |
Collapse
|
2
|
Wang J, Zhang H, Fang Y, Dong Y, Chao X, Xiao L, Jiang S, Yin D, Wang P, Sun W, Liu X. Functional connectome hierarchy of thalamus impacts fatigue in acute stroke patients. Cereb Cortex 2024; 34:bhad534. [PMID: 38212287 DOI: 10.1093/cercor/bhad534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/13/2024] Open
Abstract
This study aimed to explore the topographic features of thalamic subregions, functional connectomes and hierarchical organizations between thalamus and cortex in poststroke fatigue patients. We consecutively recruited 121 acute ischemic stroke patients (mean age: 59 years) and 46 healthy controls matched for age, sex, and educational level. The mean age was 59 years (range 19-80) and 38% of acute stroke patients were females. Resting-state functional and structural magnetic resonance imaging were conducted on all participants. The fatigue symptoms were measured using the Fatigue Severity Scale. The thalamic functional subdivisions corresponding to the canonical functional network were defined using the winner-take-all parcellation method. Thalamic functional gradients were derived using the diffusion embedding analysis. The results suggested abnormal functional connectivity of thalamic subregions primarily located in the temporal lobe, posterior cingulate gyrus, parietal lobe, and precuneus. The thalamus showed a gradual increase from the medial to the lateral in all groups, but the right thalamus shifted more laterally in poststroke fatigue patients than in non- poststroke fatigue patients. Poststroke fatigue patients also had higher gradient scores in the somatomotor network and the right medial prefrontal and premotor thalamic regions, but lower values in the right lateral prefrontal thalamus. The findings suggested that poststroke fatigue patients had altered functional connectivity and thalamocortical hierarchical organizations, providing new insights into the neural mechanisms of the thalamus.
Collapse
Affiliation(s)
- Jinjing Wang
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| | - Hanhong Zhang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yirong Fang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yiran Dong
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xian Chao
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Lulu Xiao
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| | - Shiyi Jiang
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Dawei Yin
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Peng Wang
- Department of Radiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230036, China
| | - Wen Sun
- Department of Neurology, Centre for Leading Medicine and Advanced Technologies of IHM, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinfeng Liu
- Department of Neurology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210093, China
| |
Collapse
|
3
|
Cabrera-Álvarez J, Doorn N, Maestú F, Susi G. Modeling the role of the thalamus in resting-state functional connectivity: Nature or structure. PLoS Comput Biol 2023; 19:e1011007. [PMID: 37535694 PMCID: PMC10426958 DOI: 10.1371/journal.pcbi.1011007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/15/2023] [Accepted: 07/10/2023] [Indexed: 08/05/2023] Open
Abstract
The thalamus is a central brain structure that serves as a relay station for sensory inputs from the periphery to the cortex and regulates cortical arousal. Traditionally, it has been regarded as a passive relay that transmits information between brain regions. However, recent studies have suggested that the thalamus may also play a role in shaping functional connectivity (FC) in a task-based context. Based on this idea, we hypothesized that due to its centrality in the network and its involvement in cortical activation, the thalamus may also contribute to resting-state FC, a key neurological biomarker widely used to characterize brain function in health and disease. To investigate this hypothesis, we constructed ten in-silico brain network models based on neuroimaging data (MEG, MRI, and dwMRI), and simulated them including and excluding the thalamus, and raising the noise into thalamus to represent the afferences related to the reticular activating system (RAS) and the relay of peripheral sensory inputs. We simulated brain activity and compared the resulting FC to their empirical MEG counterparts to evaluate model's performance. Results showed that a parceled version of the thalamus with higher noise, able to drive damped cortical oscillators, enhanced the match to empirical FC. However, with an already active self-oscillatory cortex, no impact on the dynamics was observed when introducing the thalamus. We also demonstrated that the enhanced performance was not related to the structural connectivity of the thalamus, but to its higher noisy inputs. Additionally, we highlighted the relevance of a balanced signal-to-noise ratio in thalamus to allow it to propagate its own dynamics. In conclusion, our study sheds light on the role of the thalamus in shaping brain dynamics and FC in resting-state and allowed us to discuss the general role of criticality in the brain at the mesoscale level.
Collapse
Affiliation(s)
- Jesús Cabrera-Álvarez
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
| | - Nina Doorn
- Department of Clinical Neurophysiology, University of Twente, Enschede, The Netherlands
| | - Fernando Maestú
- Department of Experimental Psychology, Complutense University of Madrid, Madrid, Spain
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
| | - Gianluca Susi
- Centre for Cognitive and Computational Neuroscience, Madrid, Spain
- Department of Structure of Matter, Thermal Physics and Electronics, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
4
|
Chiang HS, Lydon EA, Kraut MA, Hart J, Mudar RA. Differences in electroencephalography oscillations between normal aging and mild cognitive impairment during semantic memory retrieval. Eur J Neurosci 2023; 58:2278-2296. [PMID: 37122187 PMCID: PMC10531984 DOI: 10.1111/ejn.16001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/16/2023] [Accepted: 04/24/2023] [Indexed: 05/02/2023]
Abstract
Semantic memory remains relatively stable with normal cognitive aging and declines in early stages of neurodegenerative disease. We measured electroencephalography (EEG) oscillatory correlates of semantic memory retrieval to examine the effects of normal and pathological aging. Twenty-nine cognitively healthy young adults (YA), 22 cognitively healthy aging adults (HA) and 20 patients with mild cognitive impairment (MCI) completed a semantic memory retrieval task with concurrent EEG recording in which they judged whether two words (features of objects) led to retrieval of an object (retrieval) or not (non-retrieval). Event-related power changes contrasting the two conditions (retrieval vs. non-retrieval) within theta, alpha, low-beta and high-beta EEG frequency bands were examined for normal aging (YA vs. HA) and pathological aging effects (HA vs. MCI). With no behavioural differences between the two normal age groups, we found later theta and alpha event-related power differences between conditions only in YA and a high-beta event-related power difference only in HA. For pathological aging effects, with reduced accuracy in MCI, we found different EEG patterns of early event-related beta power differences between conditions in MCI compared with HA and an event-related low-beta power difference only in HA. Beta oscillations were correlated with behavioural performance only in HA. We conclude that the aging brain relies on faster (beta) oscillations during the semantic memory task. With pathological aging, retrieval accuracy declines and pattern of beta oscillation changes. The findings provide insights about age-related neural mechanisms underlying semantic memory and have implications for early detection of pathological aging.
Collapse
Affiliation(s)
- Hsueh-Sheng Chiang
- School of Behavioral and Brain Sciences, The University of Texas at Dallas. 800 W Campbell Rd, Richardson, TX 75080, USA
- Department of Neurology, University of Texas Southwestern Medical Center. 5303 Harry Hines Blvd 8th floor, Dallas, TX 75390, USA
| | - Elizabeth A. Lydon
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign. 901 S 6th St, Champaign, IL 61820, USA
| | - Michael A. Kraut
- Department of Radiology and Radiological Science, Johns Hopkins University. 1800 Orleans St. Baltimore, MD 21287, USA
| | - John Hart
- School of Behavioral and Brain Sciences, The University of Texas at Dallas. 800 W Campbell Rd, Richardson, TX 75080, USA
- Department of Neurology, University of Texas Southwestern Medical Center. 5303 Harry Hines Blvd 8th floor, Dallas, TX 75390, USA
| | - Raksha A. Mudar
- Department of Speech and Hearing Science, University of Illinois Urbana-Champaign. 901 S 6th St, Champaign, IL 61820, USA
| |
Collapse
|
5
|
Romanò F, Motl RW, Valsasina P, Amato MP, Brichetto G, Bruschi N, Chataway J, Chiaravalloti ND, Cutter G, Dalgas U, DeLuca J, Farrell R, Feys P, Freeman J, Inglese M, Meza C, Salter A, Sandroff BM, Feinstein A, Rocca MA, Filippi M. Abnormal thalamic functional connectivity correlates with cardiorespiratory fitness and physical activity in progressive multiple sclerosis. J Neurol 2023; 270:3213-3224. [PMID: 36933030 DOI: 10.1007/s00415-023-11664-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 03/19/2023]
Abstract
BACKGROUND Altered thalamic volumes and resting state (RS) functional connectivity (FC) might be associated with physical activity (PA) and cardiorespiratory fitness (CRF) in people with progressive multiple sclerosis (PMS). OBJECTIVES To assess thalamic structural and functional alterations and investigate their correlations with PA/CRF levels in people with PMS. METHODS Seven-day accelerometry and cardiopulmonary exercise testing were used to assess PA/CRF levels in 91 persons with PMS. They underwent 3.0 T structural and RS fMRI acquisition with 37 age/sex-matched healthy controls (HC). Between-group comparisons of MRI measures and their correlations with PA/CRF variables were assessed. RESULTS PMS people had lower volumes compared to HC (all p < 0.001). At corrected threshold, PMS showed decreased intra- and inter-thalamic RS FC, and increased RS FC between the thalamus and the hippocampus, bilaterally. At uncorrected threshold, decreased thalamic RS FC with caudate nucleus, cerebellum and anterior cingulate cortex (ACC), as well as increased thalamic RS FC with occipital regions, were also detected. Lower CRF, measured as peak oxygen consumption (VO2peak), correlated with lower white matter volume (r = 0.31, p = 0.03). Moreover, lower levels of light PA correlated with increased thalamic RS FC with the right hippocampus (r = - 0.3, p = 0.05). DISCUSSION People with PMS showed widespread brain atrophy, as well as pronounced intra-thalamic and thalamo-hippocampal RS FC abnormalities. White matter atrophy correlated with CRF, while increased thalamo-hippocampal RS FC was associated to worse PA levels. Thalamic RS FC might be used to monitor physical impairment and efficacy of rehabilitative and disease-modifying treatments in future studies.
Collapse
Affiliation(s)
- Francesco Romanò
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Robert W Motl
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Paola Valsasina
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy
| | - Maria Pia Amato
- Section Neurosciences, Department NEUROFARBA, University of Florence, Florence, Italy.,IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Giampaolo Brichetto
- Scientific Research Area, Italian Multiple Sclerosis Foundation (FISM), Via Operai 40, 16149, Genoa, Italy.,AISM Rehabilitation Service, Italian Multiple Sclerosis Society, Via Operai 30, 16149, Genoa, Italy
| | - Nicolò Bruschi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy
| | - Jeremy Chataway
- Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, UCL, London, UK.,Biomedical Research Centre, National Institute for Health Research, University College London Hospitals, London, UK
| | - Nancy D Chiaravalloti
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine & Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Gary Cutter
- Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ulrik Dalgas
- Exercise Biology, Department of Public Health, Aarhus University, Dalgas Avenue 4, 8000, Aarhus, Denmark
| | - John DeLuca
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine & Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Rachel Farrell
- Faculty of Brain Sciences, Queen Square MS Centre, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Peter Feys
- Faculty of Rehabilitation Sciences, REVAL, Hasselt University, Diepenbeek, Belgium.,UMSC Hasselt, Pelt, Belgium
| | - Jennifer Freeman
- Faculty of Health, School of Health Professions, University of Plymouth, Devon, UK
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, and Center of Excellence for Biomedical Research, University of Genoa, Genoa, Italy.,IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Cecilia Meza
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, M5R 3B6, Canada
| | - Amber Salter
- Section on Statistical Planning and Analysis, Department of Neurology, UT Southwestern Medical Center, Dallas, TX, USA
| | - Brian M Sandroff
- Kessler Foundation, West Orange, NJ, USA.,Department of Physical Medicine & Rehabilitation, Rutgers NJ Medical School, Newark, NJ, USA
| | - Anthony Feinstein
- Department of Psychiatry, University of Toronto and Sunnybrook Health Sciences Centre, Toronto, ON, M5R 3B6, Canada
| | - Maria A Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.,Vita-Salute San Raffaele University, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy. .,Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Vita-Salute San Raffaele University, Milan, Italy. .,Neurorehabilitation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy. .,Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | | |
Collapse
|
6
|
Niu J, Zheng Z, Wang Z, Xu L, Meng Q, Zhang X, Kuang L, Wang S, Dong L, Qiu J, Jiao Q, Cao W. Thalamo-cortical inter-subject functional correlation during movie watching across the adult lifespan. Front Neurosci 2022; 16:984571. [PMID: 36213738 PMCID: PMC9534554 DOI: 10.3389/fnins.2022.984571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 09/05/2022] [Indexed: 11/13/2022] Open
Abstract
An increasing number of studies have shown that the functional interactions between the thalamus and cerebral cortices play an important role in cognitive function and are influenced by age. Previous studies have revealed age-related changes in the thalamo-cortical system within individuals, while neglecting differences between individuals. Here, we characterized inter-subject functional correlation (ISFC) between the thalamus and several cortical brain networks in 500 healthy participants aged 18–87 years old from the Cambridge Centre for Aging and Neuroscience (Cam-CAN) cohort using movie-watching state fMRI data. General linear models (GLM) were performed to assess age-related changes in ISFC of thalamo-cortical networks and the relationship between ISFC and fluid intelligence. We found significant age-related decreases in ISFC between the posterior thalamus (e.g., ventral posterior nucleus and pulvinar) and the attentional network, sensorimotor network, and visual network (FDR correction with p < 0.05). Meanwhile, the ISFC between the thalamus (mainly the mediodorsal nucleus and ventral thalamic nuclei) and higher-order cortical networks, including the default mode network, salience network and control network, showed complex changes with age. Furthermore, the altered ISFC of thalamo-cortical networks was positively correlated with decreased fluid intelligence (FDR correction with p < 0.05). Overall, our results provide further evidence that alterations in the functional integrity of the thalamo-cortical system might play an important role in cognitive decline during aging.
Collapse
Affiliation(s)
- Jinpeng Niu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Zihao Zheng
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Ziqi Wang
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Longchun Xu
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
| | - Qingmin Meng
- Department of Interventional Radiology, Taian Central Hospital, Tai’an, China
| | - Xiaotong Zhang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Liangfeng Kuang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Shigang Wang
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Li Dong
- Ministry of Education (MOE) Key Laboratory for Neuroinformation, School of Life Sciences and Technology, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianfeng Qiu
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Qing Jiao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
| | - Weifang Cao
- Department of Radiology, The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Department of Radiology, Shandong First Medical University and Shandong Academy of Medical Science, Tai’an, China
- *Correspondence: Weifang Cao,
| |
Collapse
|
7
|
Nieto-Guisado A, Solana-Tramunt M, Marco-Ahulló A, Sevilla-Sánchez M, Cabrejas C, Campos-Rius J, Morales J. The Mediating Role of Vision in the Relationship between Proprioception and Postural Control in Older Adults, as Compared to Teenagers and Younger and Middle-Aged Adults. Healthcare (Basel) 2022; 10:103. [PMID: 35052267 PMCID: PMC8776119 DOI: 10.3390/healthcare10010103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/20/2022] Open
Abstract
The aim of this study is to analyze the mediating role of vision in the relationship between conscious lower limb proprioception (dominant knee) and bipedal postural control (with eyes open and closed) in older adults, as compared with teenagers, younger adults and middle-aged adults. METHODS The sample consisted of 119 healthy, physically active participants. Postural control was assessed using the bipedal Romberg test with participants' eyes open and closed on a force platform. Proprioception was measured through the ability to reposition the knee at 45°, measured with the Goniometer Pro application's goniometer. RESULTS The results showed an indirect relationship between proprioception and postural control with closed eyes in all age groups; however, vision did not mediate this relationship. CONCLUSIONS Older adults outperformed only teenagers on the balance test. The group of older adults was the only one that did not display differences with regard to certain variables when the test was done with open or closed eyes. It seems that age does not influence performance on proprioception tests. These findings help us to optimize the design of training programs for older adults and suggest that physical exercise is a protective factor against age-related decline.
Collapse
Affiliation(s)
- Ainhoa Nieto-Guisado
- Department of Sports Sciences, FPCEE Blanquerna, Ramon Llull University, 08022 Barcelona, Spain; (A.N.-G.); (C.C.); (J.C.-R.); (J.M.)
| | - Monica Solana-Tramunt
- Department of Sports Sciences, FPCEE Blanquerna, Ramon Llull University, 08022 Barcelona, Spain; (A.N.-G.); (C.C.); (J.C.-R.); (J.M.)
| | - Adrià Marco-Ahulló
- Department of Neuropsychology, Methodology, Social and Psychology, Faculty of Psychology, Catholic University of Valencia, 46001 Valencia, Spain;
| | | | - Cristina Cabrejas
- Department of Sports Sciences, FPCEE Blanquerna, Ramon Llull University, 08022 Barcelona, Spain; (A.N.-G.); (C.C.); (J.C.-R.); (J.M.)
| | - Josep Campos-Rius
- Department of Sports Sciences, FPCEE Blanquerna, Ramon Llull University, 08022 Barcelona, Spain; (A.N.-G.); (C.C.); (J.C.-R.); (J.M.)
| | - Jose Morales
- Department of Sports Sciences, FPCEE Blanquerna, Ramon Llull University, 08022 Barcelona, Spain; (A.N.-G.); (C.C.); (J.C.-R.); (J.M.)
| |
Collapse
|
8
|
Lind A, Boraxbekk CJ, Petersen ET, Paulson OB, Andersen O, Siebner HR, Marsman A. Do glia provide the link between low-grade systemic inflammation and normal cognitive ageing? A 1 H magnetic resonance spectroscopy study at 7 tesla. J Neurochem 2021; 159:185-196. [PMID: 34142382 DOI: 10.1111/jnc.15456] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 06/04/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
Low-grade systemic inflammation contributes to ageing-related cognitive decline, possibly by triggering a neuroinflammatory response through glial activation. Using proton magnetic resonance spectroscopy (1 H-MRS) at 7T in normal human individuals from 18 to 79 years in a cross-sectional study, we previously observed higher regional levels of myo-inositol (mIns), total creatine (tCr) and total choline (tCho) in older than younger age groups. Moreover, visuo-spatial working memory (vsWM) correlated negatively with tCr and tCho in anterior cingulate cortex (ACC) and mIns in hippocampus and thalamus. As mIns, tCr and tCho are higher in glia than neurons, this suggest a potential in vivo connection between cognitive ageing and higher regional levels of glia-related metabolites. In the present study, we tested whether these metabolic differences may be related to low-grade systemic inflammation. In the same individuals, plasma concentrations of the proinflammatory markers C-reactive protein (CRP), interleukin 8 (IL-8), and tumour necrosis factor α (TNF-α) were measured on the same day as 1 H-MRS assessments. We tested whether CRP, IL-8, and TNF-α concentrations correlated with the levels of glia-related metabolites. CRP and IL-8, but not TNF-α, were higher in older (69-79 years) than younger (18-26 years) individuals. CRP correlated positively with thalamic mIns and negatively with vsWM. IL-8 correlated positively with ACC tCho and hippocampal mIns, but not with vsWM. Mediation analysis revealed an indirect effect of IL-8 on vsWM via ACC tCho. Together, these findings corroborate the role of glial cells, perhaps via their role in neuroinflammation, as part of the neurobiological link between systemic inflammation and cognitive ageing.
Collapse
Affiliation(s)
- Anna Lind
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Carl-Johan Boraxbekk
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Department of Radiation Sciences, Umeå University, Umeå, Sweden.,Institute of Sports Medicine Copenhagen, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Esben Thade Petersen
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Center for Magnetic Resonance, Department of Health Technology, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Olaf Bjarne Paulson
- Neurobiology Research Unit, Department of Neurology, Copenhagen University Hospital Rigshospitalet, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ove Andersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Clinical Research Centre, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark
| | - Anouk Marsman
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Amager and Hvidovre, Hvidovre, Denmark
| |
Collapse
|
9
|
Das M, Singh V, Uddin LQ, Banerjee A, Roy D. Reconfiguration of Directed Functional Connectivity Among Neurocognitive Networks with Aging: Considering the Role of Thalamo-Cortical Interactions. Cereb Cortex 2021; 31:1970-1986. [PMID: 33253367 DOI: 10.1093/cercor/bhaa334] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/18/2020] [Accepted: 10/14/2020] [Indexed: 12/23/2022] Open
Abstract
A complete picture of how subcortical nodes, such as the thalamus, exert directional influence on large-scale brain network interactions across age remains elusive. Using directed functional connectivity and weighted net causal outflow on resting-state fMRI data, we provide evidence of a comprehensive reorganization within and between neurocognitive networks (default mode: DMN, salience: SN, and central executive: CEN) associated with age and thalamocortical interactions. We hypothesize that thalamus subserves both modality-specific and integrative hub role in organizing causal weighted outflow among large-scale neurocognitive networks. To this end, we observe that within-network directed functional connectivity is driven by thalamus and progressively weakens with age. Secondly, we find that age-associated increase in between CEN- and DMN-directed functional connectivity is driven by both the SN and the thalamus. Furthermore, left and right thalami act as a causal integrative hub exhibiting substantial interactions with neurocognitive networks with aging and play a crucial role in reconfiguring network outflow. Notably, these results were largely replicated on an independent dataset of matched young and old individuals. Our findings strengthen the hypothesis that the thalamus is a key causal hub balancing both within- and between-network connectivity associated with age and maintenance of cognitive functioning with aging.
Collapse
Affiliation(s)
- Moumita Das
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| | - Vanshika Singh
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| | - Lucina Q Uddin
- Department of Psychology, University of Miami, Coral Gables, FL 33124, USA
| | - Arpan Banerjee
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| | - Dipanjan Roy
- Cognitive Brain Dynamics Lab National Brain Research Centre NH-8 Manesar Haryana-122 052, India
| |
Collapse
|
10
|
Chen HJ, Zhang XH, Shi JY, Jiang SF, Sun YF, Zhang L, Li D, Chen R. Thalamic Structural Connectivity Abnormalities in Minimal Hepatic Encephalopathy. Front Neuroanat 2021; 15:592772. [PMID: 33716679 PMCID: PMC7947347 DOI: 10.3389/fnana.2021.592772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/27/2021] [Indexed: 11/30/2022] Open
Abstract
Background and Aims: Numerous studies have demonstrated thalamus-related structural, functional, and metabolic abnormalities in minimal hepatic encephalopathy (MHE). We conducted the first study to investigate thalamic structural connectivity alterations in MHE.
Collapse
Affiliation(s)
- Hua-Jun Chen
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Xiao-Hong Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Jia-Yan Shi
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Shao-Fan Jiang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Yi-Fan Sun
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China
| | - Ling Zhang
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, China.,Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Dan Li
- Department of Gastroenterology and Fujian Institute of Digestive Disease, Fujian Medical University Union Hospital, Fuzhou, China
| | - Rong Chen
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, United States
| |
Collapse
|
11
|
Regional Myo-Inositol, Creatine, and Choline Levels Are Higher at Older Age and Scale Negatively with Visuospatial Working Memory: A Cross-Sectional Proton MR Spectroscopy Study at 7 Tesla on Normal Cognitive Ageing. J Neurosci 2020; 40:8149-8159. [PMID: 32994337 DOI: 10.1523/jneurosci.2883-19.2020] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 08/12/2020] [Accepted: 09/06/2020] [Indexed: 12/18/2022] Open
Abstract
Proton MR spectroscopy (1H-MRS) has been used to assess regional neurochemical brain changes during normal ageing, but results have varied. Exploiting the increased sensitivity at ultra-high field, we performed 1H-MRS in 60 healthy human volunteers to asses age-related differences in metabolite levels and their relation to cognitive ageing. Sex was balanced, and participants were assigned to a younger, middle, and older group according to their age, ranging from 18 to 79 years. They underwent 7T 1H-MRS of the ACC, DLPFC, hippocampus, and thalamus and performed a visuospatial working memory task outside the scanner. A multivariate ANCOVA revealed a significant overall effect of age group on metabolite levels in all regions. Higher levels in the middle than the younger group were observed for myo-inositol (mIns) in DLPFC and hippocampus and total choline (tCho) in ACC. Higher levels in the older than the younger group were observed for mIns in hippocampus and thalamus, total creatine (tCr) and tCho in ACC and hippocampus; lower levels of glutamate (Glu) were observed in DLPFC. Higher levels in the older than the middle group were observed for mIns in hippocampus, tCr in ACC and hippocampus, tCho in hippocampus, and total N-acetyl aspartate (tNAA) in hippocampus. Working memory performance correlated negatively with tCr and tCho levels in ACC and mIns levels in hippocampus and thalamus, but not with tNAA or glutamate levels. As NAA and Glu are commonly regarded to reflect neuronal health and function and concentrations of mIns, tCr, and tCho are higher in glia than neurons, the findings of this study suggest a potential in vivo connection between cognitive ageing and higher regional levels of glia-related metabolites.SIGNIFICANCE STATEMENT Neurochemical ageing is an integral component of age-related cognitive decline. Proton MR spectroscopy (1H-MRS) studies of in vivo neurochemical changes across the lifespan have, however, yielded inconclusive results. 1H-MRS at ultra-high field strength can potentially improve the consistency of findings. Using 7T 1H-MRS, we assessed levels of mIns, tCr, and tCho (glia-related metabolites) and tNAA and Glu (neuron-related metabolites) in ACC, DLPFC, hippocampus, and thalamus. We found higher levels of glia-related metabolites in all brain regions in older individuals. Working memory performance correlated negatively with regional levels of glia-related metabolites. This study is the first to investigate normal ageing in these brain regions using 7T 1H-MRS and findings indicate that glia-related metabolites could be valuable in cognitive ageing studies.
Collapse
|
12
|
Termsarasab P, Thammongkolchai T, Gao J, Wang L, Liang J, Wang X. Cytoplasmic mislocalization and mitochondrial colocalization of TDP-43 are common features between normal aged and young mice. Exp Biol Med (Maywood) 2020; 245:1584-1593. [PMID: 32212857 DOI: 10.1177/1535370220914253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
IMPACT STATEMENT Despite increasing evidence implicating the important role of TDP-43 in the pathogenesis of a wide range of age-related neurodegenerative diseases, there is limited study of TDP-43 proteinopathy and its association with mitochondria during normal aging. Our findings of cytoplasmic accumulation of TDP-43 that is highly colocalized with mitochondria in neurons in selective brain regions in young animals in the absence of neuronal loss provide a novel insight into the development of TDP-43 proteinopathy and its contribution to neuronal loss.
Collapse
Affiliation(s)
- Pichet Termsarasab
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Thananan Thammongkolchai
- Department of Neurology, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
| | - Ju Gao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Luwen Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Jingjing Liang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Xinglong Wang
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA.,Center for Mitochondrial Diseases, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
13
|
Febo M, Rani A, Yegla B, Barter J, Kumar A, Wolff CA, Esser K, Foster TC. Longitudinal Characterization and Biomarkers of Age and Sex Differences in the Decline of Spatial Memory. Front Aging Neurosci 2020; 12:34. [PMID: 32153384 PMCID: PMC7044155 DOI: 10.3389/fnagi.2020.00034] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/04/2020] [Indexed: 01/10/2023] Open
Abstract
The current longitudinal study examined factors (sex, physical function, response to novelty, ability to adapt to a shift in light/dark cycle, brain connectivity), which might predict the emergence of impaired memory during aging. Male and female Fisher 344 rats were tested at 6, 12, and 18 months of age. Impaired spatial memory developed in middle-age (12 months), particularly in males, and the propensity for impairment increased with advanced age. A reduced response to novelty was observed over the course of aging, which is inconsistent with cross-sectional studies. This divergence likely resulted from differences in the history of environmental enrichment/impoverishment for cross-sectional and longitudinal studies. Animals that exhibited lower level exploration of the inner region on the open field test exhibited better memory at 12 months. Furthermore, males that exhibited a longer latency to enter a novel environment at 6 months, exhibited better memory at 12 months. For females, memory at 12 months was correlated with the ability to behaviorally adapt to a shift in light/dark cycle. Functional magnetic resonance imaging of the brain, conducted at 12 months, indicated that the decline in memory was associated with altered functional connectivity within different memory systems, most notably between the hippocampus and multiple regions such as the retrosplenial cortex, thalamus, striatum, and amygdala. Overall, some factors, specifically response to novelty at an early age and the capacity to adapt to shifts in light cycle, predicted spatial memory in middle-age, and spatial memory is associated with corresponding changes in brain connectivity. We discuss similarities and differences related to previous longitudinal and cross-sectional studies, as well as the role of sex differences in providing a theoretical framework to guide future longitudinal research on the trajectory of cognitive decline. In addition to demonstrating the power of longitudinal studies, these data highlight the importance of middle-age for identifying potential predictive indicators of sexual dimorphism in the trajectory in brain and cognitive aging.
Collapse
Affiliation(s)
- Marcelo Febo
- Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Asha Rani
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Brittney Yegla
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Jolie Barter
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Ashok Kumar
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States
| | - Christopher A Wolff
- Department of Physiology and Functional Genomics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Karyn Esser
- Department of Physiology and Functional Genomics, Myology Institute, University of Florida, Gainesville, FL, United States
| | - Thomas C Foster
- Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, United States.,Genetics and Genomics Program, University of Florida, Gainesville, FL, United States
| |
Collapse
|