1
|
Lam C, Sargon A, Diaz C, Lai Z, Sangaraju D, Yuk I, Barnard G, Misaghi S. Strategies to improve CHO cell culture performance: Targeted deletion of amino acid catabolism and apoptosis genes paired with growth inhibitor supplementation. Biotechnol Prog 2024; 40:e3471. [PMID: 38629737 DOI: 10.1002/btpr.3471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 10/15/2024]
Abstract
Chinese hamster ovary (CHO) cells are the predominant host of choice for recombinant monoclonal antibody (mAb) expression. Recent advancements in gene editing technology have enabled engineering new CHO hosts with higher growth, viability, or productivity. One approach involved knock out (KO) of BCAT1 gene, which codes for the first enzyme in the branched chain amino acid (BCAA) catabolism pathway; BCAT1 KO reduced accumulation of growth inhibitory short chain fatty acid (SCFA) byproducts and improved culture growth and titer when used in conjunction with high-end pH-controlled delivery of glucose (HiPDOG) technology and SCFA supplementation during production. Accumulation of SCFAs in the culture media is critical for metabolic shift toward higher specific productivity and hence titer. Here we describe knocking out BCKDHa/b genes (2XKO), which act downstream of the BCAT1, in a BAX/BAK KO CHO host cell line background to reduce accumulation of growth-inhibitory molecules in culture. Evaluation of the new 4XKO CHO cell lines in fed-batch production cultures (without HiPDOG) revealed that partial KO of BCKDHa/b genes in an apoptosis-resistant (BAX/BAK KO) background can achieve higher viabilities and mAb titers. This was evident when SCFAs were added to boost productivity as such additives negatively impacted culture viability in the WT but not BAX/BAK KO cells during batch production. Altogether, our findings suggest that SCFA addbacks can significantly increase productivity and mAb titers in the context of apoptosis-attenuated CHO cells with partial KO of BCAA genes. Such engineered CHO hosts can offer productivity advantages for expressing biotherapeutics in an industrial setting.
Collapse
Affiliation(s)
- Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Alyssa Sargon
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Camil Diaz
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Zijuan Lai
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, California, USA
| | - Dewakar Sangaraju
- Drug Metabolism and Pharmacokinetics Department, Genentech Inc., South San Francisco, California, USA
| | - Inn Yuk
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Gavin Barnard
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
2
|
Ganapathy K, Lam C, Tsukuda J, Sargon A, Nava A, Harms P, Shen A, Barnard G, Misaghi S. SPEED-MODE cell line development (CLD): Reducing Chinese hamster ovary (CHO) CLD timelines via earlier suspension adaptation and maximizing time spent in the exponential growth phase. Biotechnol Prog 2024; 40:e3479. [PMID: 38716635 DOI: 10.1002/btpr.3479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 10/15/2024]
Abstract
Chinese hamster ovary (CHO) cells are the preferred system for expression of therapeutic proteins and the majority of all biotherapeutics are being expressed by these cell lines. CHO expression systems are readily scalable, resistant to human adventitious agents, and have desirable post-translational modifications, such as glycosylation. Regardless, drug development as a whole is a very costly, complicated, and time-consuming process. Therefore, any improvements that result in reducing timelines are valuable and can provide patients with life-saving drugs earlier. Here we report an effective method (termed SPEED-MODE, herein) to speed up the Cell line Development (CLD) process in a targeted integration (TI) CHO CLD system. Our findings show that (1) earlier single cell cloning (SCC) of transfection pools, (2) speeding up initial titer screening turnaround time, (3) starting suspension adaptation of cultures sooner, and (4) maximizing the time CHO cultures spend in the exponential growth phase can reduce CLD timelines from ~4 to ~3 months. Interestingly, SPEED-MODE timelines closely match the theoretical minimum timeline for CHO CLD assuming that CHO cell division is the rate limiting factor. Clones obtained from SPEED-MODE CLD yielded comparable titer and product quality to those obtained via a standard CLD process. Hence, SPEED-MODE CLD is advantageous for manufacturing biotherapeutics in an industrial setting as it can significantly reduce CLD timelines without compromising titer or product quality.
Collapse
Affiliation(s)
- Kavya Ganapathy
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Joni Tsukuda
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Alyssa Sargon
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Adrian Nava
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Peter Harms
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Amy Shen
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Gavin Barnard
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech Inc., South San Francisco, California, USA
| |
Collapse
|
3
|
Xu Y, Crowe KB, Lieske PL, Barnes M, Bandara K, Chu J, Wei W, Scarcelli JJ, Zhang L. A high-fidelity, dual site-specific integration system in CHO cells by a Bxb1 recombinase. Biotechnol J 2024; 19:e2300410. [PMID: 38375559 DOI: 10.1002/biot.202300410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 11/16/2023] [Accepted: 12/06/2023] [Indexed: 02/21/2024]
Abstract
Site-specific integration (SSI) via recombinase mediated cassette exchange (RMCE) has shown advantages over random integration methods for expression of biotherapeutics. As an extension of our previous work developing SSI host cells, we developed a dual-site SSI system having two independent integration sites at different genomic loci, each containing a unique landing pad (LP). This system was leveraged to generate and compare two RMCE hosts, one (dFRT) compatible with the Flp recombinase, the other (dBxb1) compatible with the Bxb1 recombinase. Our comparison demonstrated that the dBxb1 host was able to generate stable transfectant pools in a shorter time frame, and cells within the dBxb1 transfectant pools were more phenotypically and genotypically stable. We further improved process performance of the dBxb1 host, resulting in desired fed batch performance attributes. Clones derived from this improved host (referred as 41L-11) maintained stable expression profiles over extended generations. While the data represents a significant improvement in the efficiency of our cell line development process, the dual LP architecture also affords a high degree of flexibility for development of complex protein modalities.
Collapse
Affiliation(s)
- Yifeng Xu
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Kerstin B Crowe
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Paulena L Lieske
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Michael Barnes
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Kalpanie Bandara
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Jianlin Chu
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Wei Wei
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - John J Scarcelli
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| | - Lin Zhang
- Cell Line Development, Bioprocess R&D, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, Massachusetts, USA
| |
Collapse
|
4
|
Zhang C, Chang F, Miao H, Fu Y, Tong X, Feng Y, Zheng W, Ma X. Construction and application of a multifunctional CHO cell platform utilizing Cre/ lox and Dre/ rox site-specific recombination systems. Front Bioeng Biotechnol 2023; 11:1320841. [PMID: 38173869 PMCID: PMC10761530 DOI: 10.3389/fbioe.2023.1320841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
During the development of traditional Chinese hamster ovary (CHO) cell lines, target genes randomly integrate into the genome upon entering the nucleus, resulting in unpredictable productivity of cell clones. The characterization and screening of high-yielding cell lines is a time-consuming and expensive process. Site-specific integration is recognized as an effective approach for overcoming random integration and improving production stability. We have designed a multifunctional expression cassette, called CDbox, which can be manipulated by the site-specific recombination systems Cre/lox and Dre/rox. The CDbox expression cassette was inserted at the Hipp11(H11) locus hotspot in the CHO-K1 genome using CRISPR/Cas9 technology, and a compliant CHO-CDbox cell platform was screened and obtained. The CHO-CDbox cell platform was transformed into a pool of EGFP-expressing cells using Cre/lox recombinase-mediated cassette exchange (RMCE) in only 2 weeks, and this expression remained stable for at least 75 generations without the need for drug stress. Subsequently, we used the Dre/rox system to directly eliminate the EGFP gene. In addition, two practical applications of the CHO-CDbox cell platform were presented. The first was the quick construction of the Pembrolizumab antibody stable expression strain, while the second was a protocol for the integration of surface-displayed and secreted antibodies on CHO cells. The previous research on site-specific integration of CHO cells has always focused on the single functionality of insertion of target genes. This newly developed CHO cell platform is expected to offer expanded applicability for protein production and gene function studies.
Collapse
Affiliation(s)
- Chen Zhang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Feng Chang
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Hui Miao
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yunhui Fu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Xikui Tong
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| | - Yu Feng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Wenyun Zheng
- Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, China
| | - Xingyuan Ma
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
5
|
Hamaker NK, Lee KH. High-efficiency and multilocus targeted integration in CHO cells using CRISPR-mediated donor nicking and DNA repair inhibitors. Biotechnol Bioeng 2023; 120:2419-2440. [PMID: 37039773 PMCID: PMC10524319 DOI: 10.1002/bit.28393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 04/12/2023]
Abstract
Efforts to leverage clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) for targeted genomic modifications in mammalian cells are limited by low efficiencies and heterogeneous outcomes. To aid method optimization, we developed an all-in-one reporter system, including a novel superfolder orange fluorescent protein (sfOrange), to simultaneously quantify gene disruption, site-specific integration (SSI), and random integration (RI). SSI strategies that utilize different donor plasmid formats and Cas9 nuclease variants were evaluated for targeting accuracy and efficiency in Chinese hamster ovary cells. Double-cut and double-nick donor formats significantly improved targeting accuracy by 2.3-8.3-fold and 19-22-fold, respectively, compared to standard circular donors. Notably, Cas9-mediated donor linearization was associated with increased RI events, whereas donor nicking minimized RI without sacrificing SSI efficiency and avoided low-fidelity outcomes. A screen of 10 molecules that modulate the major mammalian DNA repair pathways identified two inhibitors that further enhance targeting accuracy and efficiency to achieve SSI in 25% of transfected cells without selection. The optimized methods integrated transgene expression cassettes with 96% efficiency at a single locus and with 53%-55% efficiency at two loci simultaneously in selected clones. The CRISPR-based tools and methods developed here could inform the use of CRISPR/Cas9 in mammalian cell lines, accelerate mammalian cell line engineering, and support advanced recombinant protein production applications.
Collapse
Affiliation(s)
- Nathaniel K. Hamaker
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, 19716, USA
- The National Institute for Innovation in Manufacturing Biopharmaceuticals (NIIMBL), University of Delaware, Newark, DE, 19713, USA
| |
Collapse
|
6
|
Glinšek K, Bozovičar K, Bratkovič T. CRISPR Technologies in Chinese Hamster Ovary Cell Line Engineering. Int J Mol Sci 2023; 24:ijms24098144. [PMID: 37175850 PMCID: PMC10179654 DOI: 10.3390/ijms24098144] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 04/26/2023] [Accepted: 04/28/2023] [Indexed: 05/15/2023] Open
Abstract
The Chinese hamster ovary (CHO) cell line is a well-established platform for the production of biopharmaceuticals due to its ability to express complex therapeutic proteins with human-like glycopatterns in high amounts. The advent of CRISPR technology has opened up new avenues for the engineering of CHO cell lines for improved protein production and enhanced product quality. This review summarizes recent advances in the application of CRISPR technology for CHO cell line engineering with a particular focus on glycosylation modulation, productivity enhancement, tackling adventitious agents, elimination of problematic host cell proteins, development of antibiotic-free selection systems, site-specific transgene integration, and CRISPR-mediated gene activation and repression. The review highlights the potential of CRISPR technology in CHO cell line genome editing and epigenetic engineering for the more efficient and cost-effective development of biopharmaceuticals while ensuring the safety and quality of the final product.
Collapse
Affiliation(s)
- Katja Glinšek
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Krištof Bozovičar
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tomaž Bratkovič
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
7
|
Amiri S, Adibzadeh S, Ghanbari S, Rahmani B, Kheirandish MH, Farokhi-Fard A, Dastjerdeh MS, Davami F. CRISPR-interceded CHO cell line development approaches. Biotechnol Bioeng 2023; 120:865-902. [PMID: 36597180 DOI: 10.1002/bit.28329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/28/2022] [Accepted: 01/02/2023] [Indexed: 01/05/2023]
Abstract
For industrial production of recombinant protein biopharmaceuticals, Chinese hamster ovary (CHO) cells represent the most widely adopted host cell system, owing to their capacity to produce high-quality biologics with human-like posttranslational modifications. As opposed to random integration, targeted genome editing in genomic safe harbor sites has offered CHO cell line engineering a new perspective, ensuring production consistency in long-term culture and high biotherapeutic expression levels. Corresponding the remarkable advancements in knowledge of CRISPR-Cas systems, the use of CRISPR-Cas technology along with the donor design strategies has been pushed into increasing novel scenarios in cell line engineering, allowing scientists to modify mammalian genomes such as CHO cell line quickly, readily, and efficiently. Depending on the strategies and production requirements, the gene of interest can also be incorporated at single or multiple loci. This review will give a gist of all the most fundamental recent advancements in CHO cell line development, such as different cell line engineering approaches along with donor design strategies for targeted integration of the desired construct into genomic hot spots, which could ultimately lead to the fast-track product development process with consistent, improved product yield and quality.
Collapse
Affiliation(s)
- Shahin Amiri
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Setare Adibzadeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samaneh Ghanbari
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Behnaz Rahmani
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mohammad H Kheirandish
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies, Tehran University of Medical Sciences, Tehran, Iran
| | - Aref Farokhi-Fard
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mansoureh S Dastjerdeh
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Fatemeh Davami
- Department of Medical Biotechnology, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
8
|
Oliviero C, Hinz SC, Grzeschik J, Hock B, Kolmar H, Hagens G. Cell Line Development Using Targeted Gene Integration into MAR-Rich Landing Pads for Stable Expression of Transgenes. Methods Mol Biol 2023; 2681:343-359. [PMID: 37405657 DOI: 10.1007/978-1-0716-3279-6_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Integration of a gene of interest (GOI) into the genome of mammalian cells is the first step of cell line development campaigns for the production of biotherapeutics. Besides random integration methods, targeted gene integration approaches have emerged as promising tools over the last few years. In addition to reducing heterogeneity within a pool of recombinant transfectants, this process can also facilitate shorter timelines of the current cell line development process. Herein, we describe protocols for generating host cell lines carrying matrix attachment region (MAR)-rich landing pads (LPs), including BxB1 recombination sites. These LP-containing cell lines allow for site-specific and simultaneous integration of multiple GOIs. The resulting transgene-expressing stable recombinant clones can be used for the production of mono- or multispecific antibodies.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland
| | | | - Björn Hock
- Aerium Therapeutics, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technische Universität Darmstadt, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technologies, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Sion, Switzerland.
| |
Collapse
|
9
|
Fernández-Quintero ML, Ljungars A, Waibl F, Greiff V, Andersen JT, Gjølberg TT, Jenkins TP, Voldborg BG, Grav LM, Kumar S, Georges G, Kettenberger H, Liedl KR, Tessier PM, McCafferty J, Laustsen AH. Assessing developability early in the discovery process for novel biologics. MAbs 2023; 15:2171248. [PMID: 36823021 PMCID: PMC9980699 DOI: 10.1080/19420862.2023.2171248] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 01/18/2023] [Indexed: 02/25/2023] Open
Abstract
Beyond potency, a good developability profile is a key attribute of a biological drug. Selecting and screening for such attributes early in the drug development process can save resources and avoid costly late-stage failures. Here, we review some of the most important developability properties that can be assessed early on for biologics. These include the influence of the source of the biologic, its biophysical and pharmacokinetic properties, and how well it can be expressed recombinantly. We furthermore present in silico, in vitro, and in vivo methods and techniques that can be exploited at different stages of the discovery process to identify molecules with liabilities and thereby facilitate the selection of the most optimal drug leads. Finally, we reflect on the most relevant developability parameters for injectable versus orally delivered biologics and provide an outlook toward what general trends are expected to rise in the development of biologics.
Collapse
Affiliation(s)
- Monica L. Fernández-Quintero
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Anne Ljungars
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Franz Waibl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Victor Greiff
- Department of Immunology, University of Oslo, Oslo, Norway
| | - Jan Terje Andersen
- Department of Immunology, University of Oslo, Oslo University Hospital Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine and Department of Pharmacology, University of Oslo, Oslo, Norway
| | | | - Timothy P. Jenkins
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Bjørn Gunnar Voldborg
- National Biologics Facility, Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Lise Marie Grav
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Sandeep Kumar
- Biotherapeutics Discovery, Boehringer Ingelheim Pharmaceuticals Inc, Ridgefield, CT, USA
| | - Guy Georges
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Hubert Kettenberger
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg, Germany
| | - Klaus R. Liedl
- Center for Molecular Biosciences Innsbruck (CMBI), Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innsbruck, Austria
| | - Peter M. Tessier
- Department of Chemical Engineering, Pharmaceutical Sciences and Biomedical Engineering, Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - John McCafferty
- Department of Medicine, Cambridge Institute of Therapeutic Immunology and Infectious Disease, University of Cambridge, Cambridge, UK
- Maxion Therapeutics, Babraham Research Campus, Cambridge, UK
| | - Andreas H. Laustsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| |
Collapse
|
10
|
Yang W, Zhang J, Xiao Y, Li W, Wang T. Screening Strategies for High-Yield Chinese Hamster Ovary Cell Clones. Front Bioeng Biotechnol 2022; 10:858478. [PMID: 35782513 PMCID: PMC9247297 DOI: 10.3389/fbioe.2022.858478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 05/23/2022] [Indexed: 12/20/2022] Open
Abstract
Chinese hamster ovary (CHO) cells are by far the most commonly used mammalian expression system for recombinant expression of therapeutic proteins in the pharmaceutical industry. The development of high-yield stable cell lines requires processes of transfection, selection, screening and adaptation, among which the screening process requires tremendous time and determines the level of forming highly productive monoclonal cell lines. Therefore, how to achieve productive cell lines is a major question prior to industrial manufacturing. Cell line development (CLD) is one of the most critical steps in the production of recombinant therapeutic proteins. Generation of high-yield cell clones is mainly based on the time-consuming, laborious process of selection and screening. With the increase in recombinant therapeutic proteins expressed by CHO cells, CLD has become a major bottleneck in obtaining cell lines for manufacturing. The basic principles for CLD include preliminary screening for high-yield cell pool, single-cell isolation and improvement of productivity, clonality and stability. With the development of modern analysis and testing technologies, various screening methods have been used for CLD to enhance the selection efficiency of high-yield clonal cells. This review provides a comprehensive overview on preliminary screening methods for high-yield cell pool based on drug selective pressure. Moreover, we focus on high throughput methods for isolating high-yield cell clones and increasing the productivity and stability, as well as new screening strategies used for the biopharmaceutical industry.
Collapse
Affiliation(s)
- Wenwen Yang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
| | - Junhe Zhang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| | - Yunxi Xiao
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, China
| | - Wenqing Li
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
| | - Tianyun Wang
- Department of Biochemistry and Molecular Biology, Xinxiang Medical University, Xinxiang, China
- International Joint Research Laboratory for Recombinant Pharmaceutical Protein Expression System of Henan, Xinxiang, China
- *Correspondence: Tianyun Wang, ; Junhe Zhang,
| |
Collapse
|
11
|
Oliviero C, Hinz SC, Bogen JP, Kornmann H, Hock B, Kolmar H, Hagens G. Generation of a Host Cell line containing a MAR-rich landing pad for site-specific integration and expression of transgenes. Biotechnol Prog 2022; 38:e3254. [PMID: 35396920 PMCID: PMC9539524 DOI: 10.1002/btpr.3254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/22/2022] [Accepted: 03/31/2022] [Indexed: 11/10/2022]
Abstract
In recent years, targeted gene integration (TI) has been introduced as a strategy for the generation of recombinant mammalian cell lines for the production of biotherapeutics. Besides reducing the immense heterogeneity within a pool of recombinant transfectants, TI also aims at shortening the duration of the current cell line development process. Here we describe the generation of a host cell line carrying Matrix‐Attachment Region (MAR)‐rich landing pads (LPs), which allow for the simultaneous and site‐specific integration of multiple genes of interest (GOIs). We show that several copies of each chicken lysozyme 5'MAR‐based LP containing either BxB1 wild type or mutated recombination sites, integrated at one random chromosomal locus of the host cell genome. We further demonstrate that these LP‐containing host cell lines can be used for the site‐specific integration of several GOIs and thus, generation of transgene‐expressing stable recombinant clones. Transgene expression was shown by site‐specific integration of heavy and light chain genes coding for a monospecific antibody (msAb) as well as for a bi‐specific antibody (bsAb). The genetic stability of the herein described LP‐based recombinant clones expressing msAb or bsAb was demonstrated by cultivating the recombinant clones and measuring antibody titers over 85 generations. We conclude that the host cell containing multiple copies of MAR‐rich landing pads can be successfully used for stable expression of one or several GOIs.
Collapse
Affiliation(s)
- Claudia Oliviero
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Steffen C Hinz
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| | - Jan P Bogen
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Henri Kornmann
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland
| | - Björn Hock
- Ferring Biologics Innovation Center, Route de la Corniche 8, CH-1066, Epalinges, Switzerland.,SwissThera SA, Route de la Corniche 4, CH-1066, Epalinges, Switzerland
| | - Harald Kolmar
- Institute for Organic Chemistry and Biochemistry, Technical University of Darmstadt, Alarich-Weiss-Strasse 4, D-64287, Darmstadt, Germany
| | - Gerrit Hagens
- Institute of Life Technology, Haute Ecole d'Ingénierie HES-SO Valais Wallis, Rue de l'Industrie 19, CH-1950 Sion, Switzerland
| |
Collapse
|
12
|
Cre/Lox-based RMCE for Site-specific Integration in CHO Cells. BIOTECHNOL BIOPROC E 2021. [DOI: 10.1007/s12257-020-0332-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Zhang Z, Chen J, Wang J, Gao Q, Ma Z, Xu S, Zhang L, Cai J, Zhou W. Reshaping cell line development and CMC strategy for fast responses to pandemic outbreak. Biotechnol Prog 2021; 37:e3186. [PMID: 34148295 DOI: 10.1002/btpr.3186] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/12/2021] [Accepted: 06/17/2021] [Indexed: 12/20/2022]
Abstract
The global pandemic outbreak COVID-19 (SARS-COV-2), has prompted many pharmaceutical companies to develop vaccines and therapeutic biologics for its prevention and treatment. Most of the therapeutic biologics are common human IgG antibodies, which were identified by next-generation sequencing (NGS) with the B cells from the convalescent patients. To fight against pandemic outbreaks like COVID-19, biologics development strategies need to be optimized to speed up the timeline. Since the advent of therapeutic biologics, strategies of transfection and cell line selection have been continuously improved for greater productivity and efficiency. NGS has also been implemented for accelerated cell bank testing. These recent advances enable us to rethink and reshape the chemistry, manufacturing, and controls (CMC) strategy in order to start supplying Good Manufacturing Practices (GMP) materials for clinical trials as soon as possible. We elucidated an accelerated CMC workflow for biologics, including using GMP-compliant pool materials for phase I clinical trials, selecting the final clone with product quality similar to that of phase I materials for late-stage development and commercial production.
Collapse
Affiliation(s)
- Zheng Zhang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Ji Chen
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Junghao Wang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Qiao Gao
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Zhujun Ma
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Shurong Xu
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Li Zhang
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Jill Cai
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| | - Weichang Zhou
- Waigaoqiao Free Trade Zone, WuXi Biologics, Shanghai, China
| |
Collapse
|
14
|
Ng D, Zhou M, Zhan D, Yip S, Ko P, Yim M, Modrusan Z, Joly J, Snedecor B, Laird MW, Shen A. Development of a targeted integration Chinese hamster ovary host directly targeting either one or two vectors simultaneously to a single locus using the Cre/Lox recombinase-mediated cassette exchange system. Biotechnol Prog 2021; 37:e3140. [PMID: 33666334 DOI: 10.1002/btpr.3140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/02/2021] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Cell line development (CLD) by random integration (RI) can be labor intensive, inconsistent, and unpredictable due to uncontrolled gene integration after transfection. Unlike RI, targeted integration (TI) based CLD introduces the antibody-expressing cassette to a predetermined site by recombinase-mediated cassette exchange (RMCE). The key to success for the development of a TI host for therapeutic antibody production is to identify a transcriptionally active hotspot that enables highly efficient RMCE and antibody expression with good stability. In this study, a genome wide search for hotspots in the Chinese hamster ovary (CHO)-K1-M genome by either RI or PiggyBac (PB) transposase-based integration has been described. Two CHO-K1-M derived TI host cells were established with the Cre/Lox RMCE system and are described here. Both TI hosts contain a GFP-expressing landing pad flanked by two incompatible LoxP recombination sites (L3 and 2L). In addition, a third incompatible LoxP site (LoxFAS) is inserted in the GFP landing pad to enable an innovative two-plasmid based RMCE strategy, in which two separate vectors can be targeted to a single locus simultaneously. Cell lines generated by the TI system exhibit comparable or higher productivity, better stability and fewer sequence variant (SV) occurrences than the RI cell lines.
Collapse
Affiliation(s)
- Domingos Ng
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Meixia Zhou
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | | | - Shirley Yip
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Peggy Ko
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Mandy Yim
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Zora Modrusan
- DNA Sequencing Lab, Genentech, Inc., San Francisco, California, USA
| | - John Joly
- Department of Analytical Development and Quality Control, Genentech, Inc., San Francisco, California, USA
| | - Brad Snedecor
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Michael W Laird
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| | - Amy Shen
- Department of Cell Culture and Bioprocess Operations, Genentech, Inc., San Francisco, California, USA
| |
Collapse
|
15
|
Gödecke N, Herrmann S, Hauser H, Mayer-Bartschmid A, Trautwein M, Wirth D. Rational Design of Single Copy Expression Cassettes in Defined Chromosomal Sites Overcomes Intraclonal Cell-to-Cell Expression Heterogeneity and Ensures Robust Antibody Production. ACS Synth Biol 2021; 10:145-157. [PMID: 33382574 DOI: 10.1021/acssynbio.0c00519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The expression of endogenous genes as well as transgenes depends on regulatory elements within and surrounding genes as well as their epigenetic modifications. Members of a cloned cell population often show pronounced cell-to-cell heterogeneity with respect to the expression of a certain gene. To investigate the heterogeneity of recombinant protein expression we targeted cassettes into two preselected chromosomal hot-spots in Chinese hamster ovary (CHO) cells. Depending on the gene of interest and the design of the expression cassette, we found strong expression variability that could be reduced by epigenetic modifiers, but not by site-specific recruitment of the modulator dCas9-VPR. In particular, the implementation of ubiquitous chromatin opening elements (UCOEs) reduced cell-to-cell heterogeneity and concomitantly increased expression. The application of this method to recombinant antibody expression confirmed that rational design of cell lines for production of transgenes with predictable and high titers is a promising approach.
Collapse
Affiliation(s)
- Natascha Gödecke
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Sabrina Herrmann
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | - Hansjörg Hauser
- Staff Unit Scientific Strategy, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
| | | | | | - Dagmar Wirth
- RG Model Systems for Infection and Immunity, Helmholtz Centre for Infection Research, Braunschweig 38124, Germany
- Institute of Experimental Hematology, Medical University Hannover, Hannover 30625, Germany
| |
Collapse
|
16
|
Development of recombinase-based targeted integration systems for production of exogenous proteins using transposon-mediated landing pads. CURRENT RESEARCH IN BIOTECHNOLOGY 2021. [DOI: 10.1016/j.crbiot.2021.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Dong E, Lam C, Tang D, Louie S, Yim M, Williams AJ, Sawyer W, Yip S, Carver J, AlBarakat A, Tsukuda J, Snedecor B, Misaghi S. Concurrent transfection of randomized transgene configurations into targeted integration CHO host is an advantageous and cost-effective method for expression of complex molecules. Biotechnol J 2020; 16:e2000230. [PMID: 33259700 DOI: 10.1002/biot.202000230] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022]
Abstract
Complex recombinant proteins are increasingly desired as potential therapeutic options for many disease indications and are commonly expressed in the mammalian Chinese hamster ovary (CHO) cells. Generally, stoichiometric expression and proper folding of all subunits of a complex recombinant protein are required to achieve the desired titers and product qualities for a complex molecule. Targeted integration (TI) cell line development (CLD), which entails the insertion of the desired transgene(s) into a predefined landing-pad in the CHO genome, enables the generation of a homogeneous pool of cells from which clonally stable and high titer clones can be isolated with minimal screening efforts. Despite these advantages, using a single transgene(s) configuration with predetermined gene dosage might not be adequate for the expression of complex molecules. The goal of this study is to develop a method for seamless screening of many vector configurations in a single TI CLD attempt. As testing vector configurations in transient expression systems is not predictive of protein expression in the stable cell lines and parallel TI CLDs with different transgene configurations is resource-intensive, we tested the concept of randomized configuration targeted integration (RCTI) CLD approach for expression of complex molecules. RCTI allows simultaneous transfection of multiple vector configurations, encoding a complex molecule, to generate diverse TI clones each with a single transgene configuration but clone specific productivity and product qualities. Our findings further revealed a direct correlation between transgenes' configuration/copy-number and titer/product quality of the expressed proteins. RCTI CLD enabled, with significantly fewer resources, seamless isolation of clones with comparable titers and product quality attributes to that of several parallel standard TI CLDs. Therefore, RCTI introduces randomness to the TI CLD platform while maintaining all the advantages, such as clone stability and reduced sequence variant levels, that the TI system has to offer.
Collapse
Affiliation(s)
- Emily Dong
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Cynthia Lam
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Danming Tang
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Salina Louie
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Mandy Yim
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Ambrose J Williams
- Purification Development Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - William Sawyer
- Biochemical and Cellular Pharmacology Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Shirley Yip
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Joseph Carver
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Ali AlBarakat
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Joni Tsukuda
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Brad Snedecor
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| | - Shahram Misaghi
- Cell Culture and Bioprocess Operations Department, Genentech, Inc. 1 DNA Way, South San Francisco, California, USA
| |
Collapse
|
18
|
Hilliard W, Lee KH. Systematic identification of safe harbor regions in the CHO genome through a comprehensive epigenome analysis. Biotechnol Bioeng 2020; 118:659-675. [PMID: 33049068 DOI: 10.1002/bit.27599] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022]
Abstract
The Chinese hamster ovary (CHO) cell lines that are used to produce commercial quantities of therapeutic proteins commonly exhibit a decrease in productivity over time in culture, a phenomenon termed production instability. Random integration of the transgenes encoding the protein of interest into locations in the CHO genome that are vulnerable to genetic and epigenetic instability often causes production instability through copy number loss and silencing of expression. Several recent publications have shown that these cell line development challenges can be overcome by using site-specific integration (SSI) technology to insert the transgenes at genomic loci, often called "hotspots," that are transcriptionally permissive and have enhanced stability relative to the rest of the genome. However, extensive characterization of the CHO epigenome is needed to identify hotspots that maintain their desirable epigenetic properties in an industrial bioprocess environment and maximize transcription from a single integrated transgene copy. To this end, the epigenomes and transcriptomes of two distantly related cell lines, an industrially relevant monoclonal antibody-producing cell line and its parental CHO-K1 host, were characterized using high throughput chromosome conformation capture and RNAseq to analyze changes in the epigenome that occur during cell line development and associated changes in system-wide gene expression. In total, 10.9% of the CHO genome contained transcriptionally permissive three-dimensional chromatin structures with enhanced genetic and epigenetic stability relative to the rest of the genome. These safe harbor regions also showed good agreement with published CHO epigenome data, demonstrating that this method was suitable for finding genomic regions with epigenetic markers of active and stable gene expression. These regions significantly reduce the genomic search space when looking for CHO hotspots with widespread applicability and can guide future studies with the goal of maximizing the potential of SSI technology in industrial production CHO cell lines.
Collapse
Affiliation(s)
- William Hilliard
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| | - Kelvin H Lee
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, USA
| |
Collapse
|
19
|
Sergeeva D, Lee GM, Nielsen LK, Grav LM. Multicopy Targeted Integration for Accelerated Development of High-Producing Chinese Hamster Ovary Cells. ACS Synth Biol 2020; 9:2546-2561. [PMID: 32835482 DOI: 10.1021/acssynbio.0c00322] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The ever-growing biopharmaceutical industry relies on the production of recombinant therapeutic proteins in Chinese hamster ovary (CHO) cells. The traditional timelines of CHO cell line development can be significantly shortened by the use of targeted gene integration (TI). However, broad use of TI has been limited due to the low specific productivity (qP) of TI-generated clones. Here, we show a 10-fold increase in the qP of therapeutic glycoproteins in CHO cells through the development and optimization of a multicopy TI method. We used a recombinase-mediated cassette exchange (RMCE) platform to investigate the effect of gene copy number, 5' and 3' gene regulatory elements, and landing pad features on qP. We evaluated the limitations of multicopy expression from a single genomic site as well as multiple genomic sites and found that a transcriptional bottleneck can appear with an increase in gene dosage. We created a dual-RMCE system for simultaneous multicopy TI in two genomic sites and generated isogenic high-producing clones with qP of 12-14 pg/cell/day and product titer close to 1 g/L in fed-batch. Our study provides an extensive characterization of the multicopy TI method and elucidates the relationship between gene copy number and protein expression in mammalian cells. Moreover, it demonstrates that TI-generated CHO cells are capable of producing therapeutic proteins at levels that can support their industrial manufacture.
Collapse
Affiliation(s)
- Daria Sergeeva
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| | - Gyun Min Lee
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Department of Biological Sciences, KAIST, Daejeon 34141, Republic of Korea
| | - Lars Keld Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane 4072, Australia
| | - Lise Marie Grav
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby 2800, Denmark
| |
Collapse
|
20
|
Abstract
Following the success of and the high demand for recombinant protein-based therapeutics during the last 25 years, the pharmaceutical industry has invested significantly in the development of novel treatments based on biologics. Mammalian cells are the major production systems for these complex biopharmaceuticals, with Chinese hamster ovary (CHO) cell lines as the most important players. Over the years, various engineering strategies and modeling approaches have been used to improve microbial production platforms, such as bacteria and yeasts, as well as to create pre-optimized chassis host strains. However, the complexity of mammalian cells curtailed the optimization of these host cells by metabolic engineering. Most of the improvements of titer and productivity were achieved by media optimization and large-scale screening of producer clones. The advances made in recent years now open the door to again consider the potential application of systems biology approaches and metabolic engineering also to CHO. The availability of a reference genome sequence, genome-scale metabolic models and the growing number of various “omics” datasets can help overcome the complexity of CHO cells and support design strategies to boost their production performance. Modular design approaches applied to engineer industrially relevant cell lines have evolved to reduce the time and effort needed for the generation of new producer cells and to allow the achievement of desired product titers and quality. Nevertheless, important steps to enable the design of a chassis platform similar to those in use in the microbial world are still missing. In this review, we highlight the importance of mammalian cellular platforms for the production of biopharmaceuticals and compare them to microbial platforms, with an emphasis on describing novel approaches and discussing still open questions that need to be resolved to reach the objective of designing enhanced modular chassis CHO cell lines.
Collapse
|
21
|
Srirangan K, Loignon M, Durocher Y. The use of site-specific recombination and cassette exchange technologies for monoclonal antibody production in Chinese Hamster ovary cells: retrospective analysis and future directions. Crit Rev Biotechnol 2020; 40:833-851. [DOI: 10.1080/07388551.2020.1768043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Kajan Srirangan
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Martin Loignon
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
| | - Yves Durocher
- Mammalian Cell Expression, Human Health Therapeutics Research Centre, National Research Council Canada, Montréal, Québec, Canada
- Département de biochimie et médecine moléculaire, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
22
|
Carver J, Ng D, Zhou M, Ko P, Zhan D, Yim M, Shaw D, Snedecor B, Laird MW, Lang S, Shen A, Hu Z. Maximizing antibody production in a targeted integration host by optimization of subunit gene dosage and position. Biotechnol Prog 2020; 36:e2967. [DOI: 10.1002/btpr.2967] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/10/2020] [Accepted: 01/17/2020] [Indexed: 11/06/2022]
Affiliation(s)
- Joe Carver
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Domingos Ng
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Michelle Zhou
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Peggy Ko
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Dejin Zhan
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Mandy Yim
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - David Shaw
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Brad Snedecor
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Michael W. Laird
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Steven Lang
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Amy Shen
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| | - Zhilan Hu
- Department of Cell CultureGenentech, Inc. South San Francisco California USA
| |
Collapse
|
23
|
Gaidukov L, Wroblewska L, Teague B, Nelson T, Zhang X, Liu Y, Jagtap K, Mamo S, Tseng WA, Lowe A, Das J, Bandara K, Baijuraj S, Summers NM, Lu TK, Zhang L, Weiss R. A multi-landing pad DNA integration platform for mammalian cell engineering. Nucleic Acids Res 2019; 46:4072-4086. [PMID: 29617873 PMCID: PMC5934685 DOI: 10.1093/nar/gky216] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 03/14/2018] [Indexed: 12/11/2022] Open
Abstract
Engineering mammalian cell lines that stably express many transgenes requires the precise insertion of large amounts of heterologous DNA into well-characterized genomic loci, but current methods are limited. To facilitate reliable large-scale engineering of CHO cells, we identified 21 novel genomic sites that supported stable long-term expression of transgenes, and then constructed cell lines containing one, two or three 'landing pad' recombination sites at selected loci. By using a highly efficient BxB1 recombinase along with different selection markers at each site, we directed recombinase-mediated insertion of heterologous DNA to selected sites, including targeting all three with a single transfection. We used this method to controllably integrate up to nine copies of a monoclonal antibody, representing about 100 kb of heterologous DNA in 21 transcriptional units. Because the integration was targeted to pre-validated loci, recombinant protein expression remained stable for weeks and additional copies of the antibody cassette in the integrated payload resulted in a linear increase in antibody expression. Overall, this multi-copy site-specific integration platform allows for controllable and reproducible insertion of large amounts of DNA into stable genomic sites, which has broad applications for mammalian synthetic biology, recombinant protein production and biomanufacturing.
Collapse
Affiliation(s)
- Leonid Gaidukov
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Brian Teague
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tom Nelson
- Cell Line Development, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, MA 01810, USA
| | - Xin Zhang
- Biomedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Yan Liu
- Biomedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Kalpana Jagtap
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Selamawit Mamo
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Wen Allen Tseng
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexis Lowe
- Biomedicine Design, Pfizer Inc, Cambridge, MA 02139, USA
| | - Jishnu Das
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Ragon Institute of MGH, MIT & Harvard, Cambridge, MA 02139, USA
| | - Kalpanie Bandara
- Cell Line Development, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, MA 01810, USA
| | - Swetha Baijuraj
- Cell Line Development, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, MA 01810, USA
| | - Nevin M Summers
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Timothy K Lu
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.,Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Lin Zhang
- Cell Line Development, Biotherapeutics Pharmaceutical Science, Pfizer Inc, Andover, MA 01810, USA
| | - Ron Weiss
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
24
|
Zhu J, Hatton D. New Mammalian Expression Systems. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 165:9-50. [PMID: 28585079 DOI: 10.1007/10_2016_55] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
There are an increasing number of recombinant antibodies and proteins in preclinical and clinical development for therapeutic applications. Mammalian expression systems are key to enabling the production of these molecules, and Chinese hamster ovary (CHO) cell platforms continue to be central to delivery of the stable cell lines required for large-scale production. Increasing pressure on timelines and efficiency, further innovation of molecular formats and the shift to new production systems are driving developments of these CHO cell line platforms. The availability of genome and transcriptome data coupled with advancing gene editing tools are increasing the ability to design and engineer CHO cell lines to meet these challenges. This chapter aims to give an overview of the developments in CHO expression systems and some of the associated technologies over the past few years.
Collapse
Affiliation(s)
- Jie Zhu
- MedImmune, One MedImmune Way, Gaithersburg, MD, 20878, USA
| | - Diane Hatton
- MedImmune, Milstein Building, Granta Park, Cambridge, CB21 6GH, UK.
| |
Collapse
|
25
|
Utilizing a regulated targeted integration cell line development approach to systematically investigate what makes an antibody difficult to express. Biotechnol Prog 2019; 35:e2772. [DOI: 10.1002/btpr.2772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/19/2018] [Accepted: 12/27/2018] [Indexed: 01/08/2023]
|
26
|
Hamaker NK, Lee KH. Site-specific Integration Ushers in a New Era of Precise CHO Cell Line Engineering. Curr Opin Chem Eng 2018; 22:152-160. [PMID: 31086757 DOI: 10.1016/j.coche.2018.09.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Chinese hamster ovary (CHO) cells are widely used for the production of therapeutic proteins. Customarily, CHO production cell lines are established through random integration, which requires laborious screening of many clones to isolate suitable producers. In contrast, site-specific integration (SSI) accelerates cell line development by targeting integration of transgenes to pre-validated genomic loci capable of supporting high and stable expression. To date, a relatively small number of these so called 'hot spots' have been identified, mainly through empirical methods. Nevertheless, nuclease-mediated and recombinase-mediated SSI have revolutionized cell line engineering by enabling rational and reproducible transgene targeting.
Collapse
Affiliation(s)
- Nathaniel K Hamaker
- Delaware Biotechnology Institute, Newark, DE.,Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| | - Kelvin H Lee
- Delaware Biotechnology Institute, Newark, DE.,Chemical and Biomolecular Engineering, University of Delaware, Newark, DE
| |
Collapse
|
27
|
O’Brien SA, Lee K, Fu HY, Lee Z, Le TS, Stach CS, McCann MG, Zhang AQ, Smanski MJ, Somia NV, Hu WS. Single Copy Transgene Integration in a Transcriptionally Active Site for Recombinant Protein Synthesis. Biotechnol J 2018; 13:e1800226. [PMID: 30024101 PMCID: PMC7058118 DOI: 10.1002/biot.201800226] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/09/2018] [Indexed: 12/21/2022]
Abstract
For the biomanufacturing of protein biologics, establishing stable cell lines with high transgene transcription is critical for high productivity. Modern genome engineering tools can direct transgene insertion to a specified genomic locus and can potentially become a valuable tool for cell line generation. In this study, the authors survey transgene integration sites and their transcriptional activity to identify characteristics of desirable regions. A lentivirus containing destabilized Green Fluorescent Protein (dGFP) is used to infect Chinese hamster ovary cells at a low multiplicity of infection, and cells with high or low GFP fluorescence are isolated. RNA sequencing and Assay for Transposase Accessible Chromatin using sequencing data shows integration sites with high GFP expression are in larger regions of high transcriptional activity and accessibility, but not necessarily within highly transcribed genes. This method is used to obtain high Immunoglobulin G (IgG) expressing cell lines with a single copy of the transgene integrated into transcriptionally active and accessible genomic regions. Dual recombinase-mediated cassette exchange is then employed to swap the IgG transgene for erythropoietin or tumor necrosis factor receptor-Fc. This work thus highlights a strategy to identify desirable sites for transgene integration and to streamline the development of new product producing cell lines.
Collapse
Affiliation(s)
- Sofie A. O’Brien
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Kyoungho Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Hsu-Yuan Fu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Zion Lee
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Tung S. Le
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Christopher S. Stach
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Meghan G. McCann
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Alicia Q. Zhang
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Nikunj V. Somia
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455-0132 USA
| | - Wei-Shou Hu
- Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455-0132 USA
| |
Collapse
|
28
|
Debottlenecking protein secretion and reducing protein aggregation in the cellular host. Curr Opin Biotechnol 2018; 53:151-157. [DOI: 10.1016/j.copbio.2018.01.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 01/05/2018] [Accepted: 01/08/2018] [Indexed: 01/05/2023]
|
29
|
Kent JA, Bommaraju TV, Barnicki SD, Kyung YS, Zhang GG. Industrial Production of Therapeutic Proteins: Cell Lines, Cell Culture, and Purification. HANDBOOK OF INDUSTRIAL CHEMISTRY AND BIOTECHNOLOGY 2017. [PMCID: PMC7121293 DOI: 10.1007/978-3-319-52287-6_29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
A central pillar of the biotechnology and pharmaceutical industries continues to be the development of biological drug products manufactured from engineered mammalian cell lines. Since the hugely successful launch of human tissue plasminogen activator in 1987 and erythropoietin in 1988, the biopharmaceutical market has grown immensely. In 2014, biotherapeutics made up a significant portion of global drug sales as 7 of the top 10 and 21 of top 50 selling pharmaceuticals in the world were biologics with over US$100 billion in global sales (Table 1, [1]).
Collapse
|
30
|
Inniss MC, Bandara K, Jusiak B, Lu TK, Weiss R, Wroblewska L, Zhang L. A novel Bxb1 integrase RMCE system for high fidelity site-specific integration of mAb expression cassette in CHO Cells. Biotechnol Bioeng 2017; 114:1837-1846. [DOI: 10.1002/bit.26268] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 01/30/2017] [Accepted: 02/08/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Mara C. Inniss
- Cell Line Development; Biotherapeutics Pharmaceutical Science; Pfizer Inc; Andover 01810 Massachusetts
| | - Kalpanie Bandara
- Cell Line Development; Biotherapeutics Pharmaceutical Science; Pfizer Inc; Andover 01810 Massachusetts
| | - Barbara Jusiak
- Synthetic Biology Center; Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Timothy K. Lu
- Synthetic Biology Center; Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Ron Weiss
- Synthetic Biology Center; Department of Biological Engineering; Massachusetts Institute of Technology; Cambridge Massachusetts
| | | | - Lin Zhang
- Cell Line Development; Biotherapeutics Pharmaceutical Science; Pfizer Inc; Andover 01810 Massachusetts
| |
Collapse
|
31
|
Ahmadi M, Mahboudi F, Akbari Eidgahi MR, Nasr R, Nematpour F, Ahmadi S, Ebadat S, Aghaeepoor M, Davami F. Evaluating the efficiency of phiC31 integrase-mediated monoclonal antibody expression in CHO cells. Biotechnol Prog 2016; 32:1570-1576. [PMID: 27604579 DOI: 10.1002/btpr.2362] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 07/19/2016] [Indexed: 01/02/2023]
Abstract
Traditional methods to generate CHO cell lines rely on random integration(s) of the gene of interest and result in unpredictable and unstable protein expression. In comparison, site-specific recombination methods increase the recombinant protein expression by inserting transgene at a locus with specific expression features. PhiC31 serine integrase, catalyze unidirectional integration that occurs at higher frequency in comparison with the reversible integration carried out by recombinases such as Cre. In this study, using different ratios of phiC31 serine integrase, we evaluated the phiC31 mediated gene integration for expression of a humanized IgG1 antibody (mAb0014) in CHO-S cells. Light chain (LC) and heavy chain (HC) genes were expressed in one operon under EF1α promoter and linked by internal ribosome entry site (IRES) element. The clonal selection was carried out by limiting dilution. Targeted integration approach increased recombinant protein yield and stability in cell pools. The productivity of targeted cell pools was about 4 mg/L and about 40 µg/L in the control cell pool. The number of integrated transgenes was about 19 fold higher than the control cells pools. Our results confirmed that the phiC31 integrase leads to mAb expression in more than 90% of colonies. The productivity of the PhiC31 integrated cell pools was stable for three months in the absence of selection as compared with conventional transfection methods. Hence, utilizing PhiC31 integrase can increase protein titer and decrease the required time for protein expression. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 32:1570-1576, 2016.
Collapse
Affiliation(s)
- Maryam Ahmadi
- Medical Biotechnology Dept., Semnan University of Medical Sciences, Semnan, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | | - Reza Nasr
- Medical Biotechnology Dept., Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Nematpour
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Samira Ahmadi
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Saeedeh Ebadat
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | - Mojtaba Aghaeepoor
- Medical Biotechnology Dept., Semnan University of Medical Sciences, Semnan, Iran
| | - Fatemeh Davami
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
32
|
Shatz W, Hass PE, Mathieu M, Kim HS, Leach K, Zhou M, Crawford Y, Shen A, Wang K, Chang DP, Maia M, Crowell SR, Dickmann L, Scheer JM, Kelley RF. Contribution of Antibody Hydrodynamic Size to Vitreal Clearance Revealed through Rabbit Studies Using a Species-Matched Fab. Mol Pharm 2016; 13:2996-3003. [DOI: 10.1021/acs.molpharmaceut.6b00345] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Whitney Shatz
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Philip E. Hass
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mary Mathieu
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Hok Seon Kim
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kim Leach
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Michelle Zhou
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Yongping Crawford
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Amy Shen
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Kathryn Wang
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Debby P. Chang
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Mauricio Maia
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Susan R. Crowell
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Leslie Dickmann
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Justin M. Scheer
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| | - Robert F. Kelley
- Departments of Protein
Chemistry, ‡Antibody Engineering, §Early Stage Cell Culture, ∥Bioanalytical Assay
Services, ⊥Preclinical and Translational Pharmacokinetics, and #Drug Delivery, Genentech Inc., 1 DNA
Way, South San Francisco, California 94080, United States
| |
Collapse
|
33
|
Meinke G, Bohm A, Hauber J, Pisabarro MT, Buchholz F. Cre Recombinase and Other Tyrosine Recombinases. Chem Rev 2016; 116:12785-12820. [PMID: 27163859 DOI: 10.1021/acs.chemrev.6b00077] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Tyrosine-type site-specific recombinases (T-SSRs) have opened new avenues for the predictable modification of genomes as they enable precise genome editing in heterologous hosts. These enzymes are ubiquitous in eubacteria, prevalent in archaea and temperate phages, present in certain yeast strains, but barely found in higher eukaryotes. As tools they find increasing use for the generation and systematic modification of genomes in a plethora of organisms. If applied in host organisms, they enable precise DNA cleavage and ligation without the gain or loss of nucleotides. Criteria directing the choice of the most appropriate T-SSR system for genetic engineering include that, whenever possible, the recombinase should act independent of cofactors and that the target sequences should be long enough to be unique in a given genome. This review is focused on recent advancements in our mechanistic understanding of simple T-SSRs and their application in developmental and synthetic biology, as well as in biomedical research.
Collapse
Affiliation(s)
- Gretchen Meinke
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Andrew Bohm
- Department of Developmental, Molecular & Chemical Biology, Tufts University School of Medicine , Boston, Massachusetts 02111, United States
| | - Joachim Hauber
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology , 20251 Hamburg, Germany
| | | | - Frank Buchholz
- Medical Systems Biology, UCC, Medical Faculty Carl Gustav Carus TU Dresden , 01307 Dresden, Germany
| |
Collapse
|
34
|
Moritz B, Woltering L, Becker PB, Göpfert U. High levels of histone H3 acetylation at the CMV promoter are predictive of stable expression in Chinese hamster ovary cells. Biotechnol Prog 2016; 32:776-86. [DOI: 10.1002/btpr.2271] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/11/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Benjamin Moritz
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
- Biomedical Center and Center for Integrated Protein Science, Molecular Biology Division, Ludwig-Maximilians-University; Munich Germany
| | - Laura Woltering
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
| | - Peter B. Becker
- Biomedical Center and Center for Integrated Protein Science, Molecular Biology Division, Ludwig-Maximilians-University; Munich Germany
| | - Ulrich Göpfert
- Roche Pharmaceutical Research and Early Development, Large Molecule Research, Roche Innovation Center Munich; Germany
| |
Collapse
|
35
|
Baser B, Spehr J, Büssow K, van den Heuvel J. A method for specifically targeting two independent genomic integration sites for co-expression of genes in CHO cells. Methods 2016; 95:3-12. [DOI: 10.1016/j.ymeth.2015.11.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 11/24/2015] [Accepted: 11/26/2015] [Indexed: 11/30/2022] Open
|
36
|
Zhang L, Inniss MC, Han S, Moffat M, Jones H, Zhang B, Cox WL, Rance JR, Young RJ. Recombinase-mediated cassette exchange (RMCE) for monoclonal antibody expression in the commercially relevant CHOK1SV cell line. Biotechnol Prog 2015; 31:1645-56. [DOI: 10.1002/btpr.2175] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 09/11/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Lin Zhang
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Andover MA 01810
| | - Mara C. Inniss
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Andover MA 01810
| | - Shu Han
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Andover MA 01810
| | - Mark Moffat
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Chesterfield MO 63017
| | - Heather Jones
- Cell Line Development, World Wide Pharmaceutical Sciences; BioTherapeutics Research and Development, Pfizer Inc.; Chesterfield MO 63017
| | - Baohong Zhang
- BioTX Clinical Research, Pfizer Inc.; Cambridge MA 02140
| | - Wendy L. Cox
- Cell Culture Development, Lonza Biologics; Slough SL1 4DX U.K
| | - James R. Rance
- Development Services Singapore, Lonza Biologics Tuas Pte Ltd; Singapore
| | - Robert J. Young
- New Expression Technologies Group, Research & Technology, Lonza Biologics; Granta Park, Great Abington, Cambridge CB21 6GS U.K
| |
Collapse
|
37
|
Büssow K. Stable mammalian producer cell lines for structural biology. Curr Opin Struct Biol 2015; 32:81-90. [DOI: 10.1016/j.sbi.2015.03.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/11/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
|
38
|
Zboray K, Sommeregger W, Bogner E, Gili A, Sterovsky T, Fauland K, Grabner B, Stiedl P, Moll HP, Bauer A, Kunert R, Casanova E. Heterologous protein production using euchromatin-containing expression vectors in mammalian cells. Nucleic Acids Res 2015; 43:e102. [PMID: 25977298 PMCID: PMC4652741 DOI: 10.1093/nar/gkv475] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/29/2015] [Indexed: 01/10/2023] Open
Abstract
Upon stable cell line generation, chromosomal integration site of the vector DNA has a major impact on transgene expression. Here we apply an active gene environment, rather than specified genetic elements, in expression vectors used for random integration. We generated a set of Bacterial Artificial Chromosome (BAC) vectors with different open chromatin regions, promoters and gene regulatory elements and tested their impact on recombinant protein expression in CHO cells. We identified the Rosa26 BAC as the most efficient vector backbone showing a nine-fold increase in both polyclonal and clonal production of the human IgG-Fc. Clonal protein production was directly proportional to integrated vector copy numbers and remained stable during 10 weeks without selection pressure. Finally, we demonstrated the advantages of BAC-based vectors by producing two additional proteins, HIV-1 glycoprotein CN54gp140 and HIV-1 neutralizing PG9 antibody, in bioreactors and shake flasks reaching a production yield of 1 g/l.
Collapse
Affiliation(s)
- Katalin Zboray
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Wolfgang Sommeregger
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria Polymun Scientific GmbH, Klosterneuburg, 3400, Austria
| | - Edith Bogner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Andreas Gili
- Polymun Scientific GmbH, Klosterneuburg, 3400, Austria
| | | | | | - Beatrice Grabner
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Patricia Stiedl
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria
| | - Herwig P Moll
- Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
| | | | - Renate Kunert
- Vienna Institute of BioTechnology, Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, 1190, Austria
| | - Emilio Casanova
- Ludwig Boltzmann Institute for Cancer Research (LBI-CR), Vienna, 1090, Austria Institute of Pharmacology, Center of Physiology and Pharmacology, Comprehensive Cancer Center, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
39
|
Hou JJC, Hughes BS, Smede M, Leung KM, Levine K, Rigby S, Gray PP, Munro TP. High-throughput ClonePix FL analysis of mAb-expressing clones using the UCOE expression system. N Biotechnol 2014; 31:214-20. [PMID: 24518824 DOI: 10.1016/j.nbt.2014.02.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 01/21/2014] [Accepted: 02/02/2014] [Indexed: 10/25/2022]
Abstract
Therapeutic recombinant monoclonal antibodies (mAbs) are commonly produced by high-expressing, clonal, mammalian cells. Creation of these clones for manufacturing remains heavily reliant on stringent selection and gene amplification, which in turn can lead to genetic instability, variable expression, product heterogeneity and prolonged development timelines. Inclusion of cis-acting ubiquitous chromatin opening elements (UCOE™) in mammalian expression vectors has been shown to improve productivity and facilitate high-level gene expression irrespective of the chromosomal integration site without lengthy gene amplification protocols. In this study we have used high-throughput robotic clone selection in combination with UCOE™ containing expression vectors to develop a rapid, streamlined approach for early-stage cell line development and isolation of high-expressing clones for mAb production using Chinese hamster ovary (CHO) cells. Our results demonstrate that it is possible to go from transfection to stable clones in only 4 weeks, while achieving specific productivities exceeding 20 pg/cell/day. Furthermore, we have used this approach to quickly screen several process-crucial parameters including IgG subtype, enhancer-promoter combination and UCOE™ length. The use of UCOE™-containing vectors in combination with automated robotic selection provides a rapid method for the selection of stable, high-expressing clones.
Collapse
Affiliation(s)
- Jeff Jia Cheng Hou
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia.
| | - Ben S Hughes
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Matthew Smede
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Kar Man Leung
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Kara Levine
- Pharm Chemical Solution (PCS), EMD Millipore, 2 Gill Street, Woburn, MA 01801, USA
| | - Susan Rigby
- Pharm Chemical Solution (PCS), EMD Millipore, 2 Gill Street, Woburn, MA 01801, USA
| | - Peter P Gray
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| | - Trent P Munro
- The University of Queensland, Australian Institute for Bioengineering and Nanotechnology, Brisbane, QLD 4072, Australia
| |
Collapse
|