1
|
Shoji JY, Davis RP, Mummery CL, Krauss S. Global Literature Analysis of Tumor Organoid and Tumor-on-Chip Research. Cancers (Basel) 2025; 17:108. [PMID: 39796734 PMCID: PMC11719888 DOI: 10.3390/cancers17010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/22/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025] Open
Abstract
Background: Tumor organoid and tumor-on-chip (ToC) platforms replicate aspects of the anatomical and physiological states of tumors. They, therefore, serve as models for investigating tumor microenvironments, metastasis, and immune interactions, especially for precision drug testing. To map the changing research diversity and focus in this field, we performed a quality-controlled text analysis of categorized academic publications and clinical studies. Methods: Previously, we collected metadata of academic publications on organoids or organ-on-chip platforms from PubMed, Web of Science, Scopus, EMBASE, and bioRxiv, published between January 2011 and June 2023. Here, we selected documents from this metadata corpus that were computationally determined as relevant to tumor research and analyzed them using an in-house text analysis algorithm. Additionally, we collected and analyzed metadata from ClinicalTrials.gov of clinical studies related to tumor organoids or ToC as of March 2023. Results and Discussion: From 3551 academic publications and 139 clinical trials, we identified 55 and 24 tumor classes modeled as tumor organoids and ToC models, respectively. The research was particularly active in neural and hepatic/pancreatic tumor organoids, as well as gastrointestinal, neural, and reproductive ToC models. Comparative analysis with cancer statistics showed that lung, lymphatic, and cervical tumors were under-represented in tumor organoid research. Our findings also illustrate varied research topics, including tumor physiology, therapeutic approaches, immune cell involvement, and analytical techniques. Mapping the research geographically highlighted the focus on colorectal cancer research in the Netherlands, though overall the specific research focus of countries did not reflect regional cancer prevalence. These insights not only map the current research landscape but also indicate potential new directions in tumor model research.
Collapse
Affiliation(s)
- Jun-ya Shoji
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Richard P. Davis
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | - Christine L. Mummery
- Department of Anatomy & Embryology, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- The Novo Nordisk Foundation Center for Stem Cell Medicine (reNEW), Leiden University Medical Center, 2300 RC Leiden, The Netherlands
- Department of Applied Stem Cell Technologies, University of Twente, 7522 NB Enschede, The Netherlands
| | - Stefan Krauss
- Hybrid Technology Hub, Centre of Excellence, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
2
|
Shrivastava A, Kumar A, Aggarwal LM, Pradhan S, Choudhary S, Ashish A, Kashyap K, Mishra S. Evolution of Bioelectric Membrane Potentials: Implications in Cancer Pathogenesis and Therapeutic Strategies. J Membr Biol 2024; 257:281-305. [PMID: 39183198 DOI: 10.1007/s00232-024-00323-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Electrophysiology typically deals with the electrical properties of excitable cells like neurons and muscles. However, all other cells (non-excitable) also possess bioelectric membrane potentials for intracellular and extracellular communications. These membrane potentials are generated by different ions present in fluids available in and outside the cell, playing a vital role in communication and coordination between the cell and its organelles. Bioelectric membrane potential variations disturb cellular ionic homeostasis and are characteristic of many diseases, including cancers. A rapidly increasing interest has emerged in sorting out the electrophysiology of cancer cells. Compared to healthy cells, the distinct electrical properties exhibited by cancer cells offer a unique way of understanding cancer development, migration, and progression. Decoding the altered bioelectric signals influenced by fluctuating electric fields benefits understanding cancer more closely. While cancer research has predominantly focussed on genetic and molecular traits, the delicate area of electrophysiological characteristics has increasingly gained prominence. This review explores the historical exploration of electrophysiology in the context of cancer cells, shedding light on how alterations in bioelectric membrane potentials, mediated by ion channels and gap junctions, contribute to the pathophysiology of cancer.
Collapse
Affiliation(s)
- Anju Shrivastava
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India.
| | - Amit Kumar
- Department of Anatomy, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Lalit Mohan Aggarwal
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Satyajit Pradhan
- Radiation Oncology, Mahamana Pandit Madhan Mohan Malaviya Cancer Centre, Varanasi, India
| | - Sunil Choudhary
- Radiotherapy and Radiation Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Ashish Ashish
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Keshav Kashyap
- Department of Physiology, Chhattisgarh Institute of Medical Sciences, Bilaspur, India
| | - Shivani Mishra
- Department of Anatomy, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
3
|
Lee CH, Kang M, Kwak C, Ko YH, Kim JK, Park JY, Bang S, Seo SI, Suh J, Song W, Song C, Lee HH, Chung J, Jeong CW, Jo JK, Choi SH, Choi J, Choi C, Choo SH, Han JH, Hong SH, Hwang EC. Sites of Metastasis and Survival in Metastatic Renal Cell Carcinoma: Results From the Korean Renal Cancer Study Group Database. J Korean Med Sci 2024; 39:e293. [PMID: 39592128 PMCID: PMC11596476 DOI: 10.3346/jkms.2024.39.e293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/20/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND In patients with metastatic renal cell carcinoma (mRCC), sites of metastatic involvement have been reported to be associated with a difference in survival. However, the frequency and survival according to different sites of metastases in Korean patients with mRCC remain unclear. Therefore, this study aimed to assess the frequency of metastatic site involvement and the association between sites of metastatic involvement and survival in Korean patients with mRCC. METHODS This retrospective study used the multicenter cohort of the Korean Renal Cancer Study Group mRCC database to identify patients who started targeted therapy between December 2005 and March 2018. Data on the frequency of metastatic organ involvement at the time of mRCC diagnosis and oncologic outcomes according to different sites of metastasis were analyzed. RESULTS A total of 1,761 patients were eligible for analysis. Of the 1,761 patients, 1,564 (88.8%) had clear cell RCC, and 1,040 (59.1%) had synchronous metastasis. The median number of metastasis sites was 2 (interquartile range [IQR], 1-6). The median age at the initiation of systemic therapy was 60 years (IQR, 29-88), 1,380 (78.4%) were men, and 1,341 (76.1%) underwent nephrectomy. Based on the International Metastatic Renal Cell Carcinoma Database Consortium model, patients were stratified into favorable-, intermediate-, and poor-risk groups with 359 (20.4%), 1,092 (62.0%), and 310 (17.6%) patients, respectively. The lung (70.9%), lymph nodes (37.9%), bone (30.7%), liver (12.7%), adrenal gland (9.8%), and brain (8.2%) were the most common sites of metastasis, followed by the pancreas, pleura, peritoneum, spleen, thyroid, and bowel. Among the most common sites of metastasis (> 5%), the median cancer-specific survival (CSS) ranged from 13.9 (liver) to 29.1 months (lung). An association was observed between liver, bone, and pleural metastases and the shortest median CSS (< 19 months). CONCLUSION In Korean patients with mRCC, metastases to the lung, lymph nodes, bone, liver, adrenal gland, and brain were more frequent than those to other organs. Metastases to the liver, bone, and pleura were associated with poor CSS. The findings of this study may be valuable for patient counseling and guiding future study designs.
Collapse
Affiliation(s)
- Chan Ho Lee
- Department of Urology, Inje University Busan Paik Hospital, Inje University College of Medicine, Busan, Korea
| | - Minyong Kang
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheol Kwak
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Young Hwii Ko
- Department of Urology, Yeungnam University College of Medicine, Daegu, Korea
| | - Jung Kwon Kim
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jae Young Park
- Department of Urology, Korea University Ansan Hospital, Korea University College of Medicine, Ansan, Korea
| | - Seokhwan Bang
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seong Il Seo
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Jungyo Suh
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Wan Song
- Department of Urology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Cheryn Song
- Department of Urology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyung Ho Lee
- Department of Urology, Center for Urologic Cancer, National Cancer Center, Goyang, Korea
| | - Jinsoo Chung
- Department of Urology, Center for Urologic Cancer, National Cancer Center, Goyang, Korea
| | - Chang Wook Jeong
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Ki Jo
- Department of Urology, College of Medicine, Hanyang University, Seoul, Korea
| | - Seock Hwan Choi
- Department of Urology, Kyungpook National University Hospital, School of Medicine, Kyungpook National University, Daegu, Korea
| | - Joongwon Choi
- Department of Urology, Chung-Ang University Gwangmyeong Hospital, Chung-Ang University College of Medicine, Gwangmyeong, Korea
| | - Changil Choi
- Department of Urology, Hallym University Dongtan Sacred Heart Hospital, Hallym University School of Medicine, Hwaseong, Korea
| | - Seol Ho Choo
- Department of Urology, Ajou University Hospital, Ajou University School of Medicine, Suwon, Korea
| | - Jang Hee Han
- Department of Urology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sung-Hoo Hong
- Department of Urology, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Eu Chang Hwang
- Department of Urology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Hwasun, Korea.
| |
Collapse
|
4
|
Geeraerts J, Pivodic L, Rosquin L, Naert E, Crombez G, De Ridder M, Van den Block L. Uncovering the Daily Experiences of People Living With Advanced Cancer Using an Experience Sampling Method Questionnaire: Development, Content Validation, and Optimization Study. JMIR Cancer 2024; 10:e57510. [PMID: 39499557 PMCID: PMC11576598 DOI: 10.2196/57510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/12/2024] [Accepted: 10/02/2024] [Indexed: 11/07/2024] Open
Abstract
BACKGROUND The experience sampling method (ESM), a self-report method that typically uses multiple assessments per day, can provide detailed knowledge of the daily experiences of people with cancer, potentially informing oncological care. The use of the ESM among people with advanced cancer is limited, and no validated ESM questionnaires have been developed specifically for oncology. OBJECTIVE This study aims to develop, content validate, and optimize the digital Experience Sampling Method for People Living With Advanced Cancer (ESM-AC) questionnaire, covering multidimensional domains and contextual factors. METHODS A 3-round mixed methods study was designed in accordance with the Consensus-Based Standards for the Selection of Health Measurement Instruments (COSMIN) and the European Organization for Research and Treatment of Cancer guidelines. The study included semistructured interviews with 43 people with stage IV breast cancer or stage III to IV lung cancer and 8 health care professionals. Round 1 assessed the appropriateness, relative importance, relevance, and comprehensiveness of an initial set of ESM items that were developed based on the existing questionnaires. Round 2 tested the comprehensibility of ESM items. Round 3 tested the usability of the digital ESM-AC questionnaire using the m-Path app. Analyses included descriptive statistics and qualitative content analysis. RESULTS Following the first round, we developed an initial core set of 68 items (to be used with all patients) and a supplementary set (optional; patients select items), both covering physical, psychological, social, spiritual-existential, and global well-being domains and concurrent contexts in which experiences occur. We categorized items to be assessed multiple times per day as momentary items (eg, "At this moment, I feel tired"), once a day in the morning as morning items (eg, "Last night, I slept well"), or once a day in the evening as evening items (eg, "Today, I felt hopeful"). We used participants' evaluations to optimize the questionnaire items, the digital app, and its onboarding manual. This resulted in the ESM-AC questionnaire, which comprised a digital core questionnaire containing 31 momentary items, 2 morning items, and 7 evening items and a supplementary set containing 39 items. Participants largely rated the digital questionnaire as "easy to use," with an average score of 4.5 (SD 0.5) on a scale from 1 ("completely disagree") to 5 ("completely agree"). CONCLUSIONS We developed the ESM-AC questionnaire, a content-validated digital questionnaire for people with advanced breast or lung cancer. It showed good usability when administered on smartphone devices. Future research should evaluate the potential of this ESM tool to uncover daily experiences of people with advanced breast or lung cancer, explore its clinical utility, and extend its validation to other populations with advanced diseases.
Collapse
Affiliation(s)
- Joran Geeraerts
- End-of-Life Care Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lara Pivodic
- End-of-Life Care Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lise Rosquin
- End-of-Life Care Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Eline Naert
- Department of Medical Oncology, Universitair Ziekenhuis Gent, Ghent, Belgium
| | - Geert Crombez
- Department of Experimental Clinical and Health Psychology, Universiteit Gent, Ghent, Belgium
| | - Mark De Ridder
- Translational Radiation Oncology, Physics and Supportive Care Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Lieve Van den Block
- End-of-Life Care Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
5
|
Kottmann V, Kolpeja E, Baumkötter G, Clauder F, Bokel A, Armbruster FP, Drees P, Gercek E, Ritz U. Bone sialoprotein stimulates cancer cell adhesion through the RGD motif and the αvβ3 and αvβ5 integrin receptors. Oncol Lett 2024; 28:542. [PMID: 39310027 PMCID: PMC11413474 DOI: 10.3892/ol.2024.14675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 08/02/2024] [Indexed: 09/25/2024] Open
Abstract
Being implicated in bone metastasis development, bone sialoprotein (BSP) expression is upregulated in patients with cancer. While BSP regulates cancer cell adhesion to the extracellular matrix, to the best of our knowledge, the specific adhesive molecular interactions in metastatic bone disease remain unclear. The present study aimed to improve the understanding of the arginine-glycine-aspartic acid (RGD) sequence of BSP and the integrin receptors αvβ3 and αvβ5 in BSP-mediated cancer cell adhesion. Human breast cancer (MDA-MB-231), prostate cancer (PC-3) and non-small cell lung cancer (NSCLC; NCI-H460) cell lines were cultured on BSP-coated plates. Adhesion assays with varying BSP concentrations were performed to evaluate the effect of exogenous glycine-arginine-glycine-aspartic acid-serine-proline (GRGDSP) peptide and anti-integrin antibodies on the attachment of cancer cells to BSP. Cell attachment was assessed using the alamarBlue® assay. The present results indicated that BSP supported the adhesion of cancer cells. The RGD counterpart GRGDSP peptide reduced the attachment of all tested cancer cell lines to BSP by ≤98.4%. Experiments with anti-integrin antibodies demonstrated differences among integrin receptors and cancer cell types. The αvβ5 antibody decreased NSCLC cell adhesion to BSP by 84.3%, while the αvβ3 antibody decreased adhesion by 14%. The αvβ3 antibody decreased PC-3 cell adhesion to BSP by 46.4%, while the αvβ5 antibody decreased adhesion by 9.5%. Adhesion of MDA-MB-231 cells to BSP was inhibited by 54.7% with αvβ5 antibody. The present results demonstrated that BSP-induced cancer cell adhesion occurs through the binding of the RGD sequence of BSP to the cell integrin receptors αvβ3 and αvβ5. Differences between cancer types were found regarding the mediation via αvβ3 or αvβ5 receptors. The present findings may explain why certain cancer cells preferentially spread to the bone tissue, suggesting that targeting the RGD-integrin binding interaction could be a promising novel cancer treatment option.
Collapse
Affiliation(s)
- Valentina Kottmann
- Department of Orthopaedics and Traumatology, University Medical Center of The Johannes Gutenberg University Mainz, D-55131 Mainz, Germany
| | - Elena Kolpeja
- Department of Orthopaedics and Traumatology, University Medical Center of The Johannes Gutenberg University Mainz, D-55131 Mainz, Germany
| | - Greta Baumkötter
- Department of Orthopaedics and Traumatology, University Medical Center of The Johannes Gutenberg University Mainz, D-55131 Mainz, Germany
| | | | | | | | - Philipp Drees
- Department of Orthopaedics and Traumatology, University Medical Center of The Johannes Gutenberg University Mainz, D-55131 Mainz, Germany
| | - Erol Gercek
- Department of Orthopaedics and Traumatology, University Medical Center of The Johannes Gutenberg University Mainz, D-55131 Mainz, Germany
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, University Medical Center of The Johannes Gutenberg University Mainz, D-55131 Mainz, Germany
| |
Collapse
|
6
|
D’Orsi L, Capasso B, Lamacchia G, Pizzichini P, Ferranti S, Liverani A, Fontana C, Panunzi S, De Gaetano A, Lo Presti E. Recent Advances in Artificial Intelligence to Improve Immunotherapy and the Use of Digital Twins to Identify Prognosis of Patients with Solid Tumors. Int J Mol Sci 2024; 25:11588. [PMID: 39519142 PMCID: PMC11546512 DOI: 10.3390/ijms252111588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
To date, the public health system has been impacted by the increasing costs of many diagnostic and therapeutic pathways due to limited resources. At the same time, we are constantly seeking to improve these paths through approaches aimed at personalized medicine. To achieve the required levels of diagnostic and therapeutic precision, it is necessary to integrate data from different sources and simulation platforms. Today, artificial intelligence (AI), machine learning (ML), and predictive computer models are more efficient at guiding decisions regarding better therapies and medical procedures. The evolution of these multiparametric and multimodal systems has led to the creation of digital twins (DTs). The goal of our review is to summarize AI applications in discovering new immunotherapies and developing predictive models for more precise immunotherapeutic decision-making. The findings from this literature review highlight that DTs, particularly predictive mathematical models, will be pivotal in advancing healthcare outcomes. Over time, DTs will indeed bring the benefits of diagnostic precision and personalized treatment to a broader spectrum of patients.
Collapse
Affiliation(s)
- Laura D’Orsi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Biagio Capasso
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Giuseppe Lamacchia
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Paolo Pizzichini
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Sergio Ferranti
- Department of General Surgery, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (B.C.); (S.F.)
| | - Andrea Liverani
- General Surgery Unit, Regina Apostolorum Hospital, Via S. Francesco d’Assisi, 50, 00041 Albano Laziale, RM, Italy; (G.L.); (A.L.)
| | - Costantino Fontana
- Department of Intensive Care Unit, Policlinico Militare di Roma “Celio”, Piazza Celimontana, 50, 00184 Rome, RM, Italy; (P.P.); (C.F.)
| | - Simona Panunzi
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
| | - Andrea De Gaetano
- National Research Council of Italy, Institute for Systems Analysis and Computer Science “A. Ruberti”, BioMatLab, Via dei Taurini, 19, 00185 Rome, RM, Italy; (L.D.); (S.P.); (A.D.G.)
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
- Department of Biomatics, Óbuda University, Bécsi Road 96/B, H-1034 Budapest, Hungary
| | - Elena Lo Presti
- National Research Council of Italy, Institute for Biomedical Research and Innovation (CNR-IRIB), Via Ugo La Malfa, 153, 90146 Palermo, PA, Italy
| |
Collapse
|
7
|
Pączek S, Zajkowska M, Mroczko B. Pigment Epithelial-Derived Factor in Pancreatic and Liver Cancers-From Inflammation to Cancer. Biomedicines 2024; 12:2260. [PMID: 39457573 PMCID: PMC11504982 DOI: 10.3390/biomedicines12102260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 09/28/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Gastrointestinal (GI) cancers are among the leading causes of mortality worldwide. Despite the emergence of new possibilities that offer hope regarding the successful treatment of these cancers, they still represent a significant global health burden. These cancers can arise from various cell types within the gastrointestinal tract and may exhibit different characteristics, behaviors, and treatment approaches. Both the prognosis and the outcomes of GI treatment remain problematic because these tumors are primarily diagnosed in advanced clinical stages. Current biomarkers exhibit limited sensitivity and specificity. Therefore, when developing strategies for the diagnosis and treatment of GI cancers, it is of fundamental importance to discover new biomarkers capable of addressing the challenges of early-stage diagnosis and the presence of lymph node metastases. Pigment epithelial-derived factor (PEDF) has garnered interest due to its inhibitory effects on the migration and proliferation of cancer cells. This protein has been suggested to be involved in various inflammation-related diseases, including cancer, through various mechanisms. It was also observed that reducing the level of PEDF is sufficient to trigger an inflammatory response. This suggests that PEDF is an endogenous anti-inflammatory factor. Overall, PEDF is a versatile protein with diverse biological functions that span across different tissues and organ systems. Its multifaceted activities make it an intriguing target for therapeutic interventions in various diseases, including cancer, neurodegeneration, and metabolic disorders. This review, for the first time, summarizes the role of PEDF in the pathogenesis of selected GI cancers and its potential utility in early diagnosis, prognosis, and therapeutic strategies for this malignancy.
Collapse
Affiliation(s)
- Sara Pączek
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
| | - Monika Zajkowska
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
| | - Barbara Mroczko
- Department of Biochemical Diagnostics, University Hospital in Białystok, 15-269 Białystok, Poland; (S.P.); (B.M.)
- Department of Neurodegeneration Diagnostics, Medical University of Białystok, 15 A, Waszyngtona St., 15-269 Białystok, Poland
- Department of Biochemical Diagnostics, Medical University of Białystok, 15-089 Białystok, Poland
| |
Collapse
|
8
|
Helland TL, Torous VF. A case of lung FNA with atypical squamous cells. Diagn Cytopathol 2024; 52:589-597. [PMID: 38433597 DOI: 10.1002/dc.25298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/22/2024] [Accepted: 02/23/2024] [Indexed: 03/05/2024]
Abstract
Fine-needle aspiration (FNA) is a commonly employed method for initial diagnosis and work-up of pulmonary nodules. Utilization of rapid on-site evaluation (ROSE) has the added benefit of allowing for triaging of material as appropriate for ancillary studies including microbiology testing. While many pulmonary lesions are easily categorized by cytologic evaluation, more difficult cases exist. In particular, pulmonary lesions demonstrating atypical squamoid cells can cause diagnostic challenge given the morphologic overlap between benign and malignant pulmonary lesions showing atypical squamoid cells. We herein review these common and uncommon squamoid lesions, which may enter within the differential when encountering atypical squamoid cells in pulmonary FNA specimens with emphasis on morphologic pitfalls and approaches to appropriate categorization.
Collapse
Affiliation(s)
- Timothy Leif Helland
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Vanda F Torous
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Bredensteiner L, Ventura D, Rassek P, Schäfers M, Bögemann M, Schindler P, Weckesser M, Rahbar K, Roll W. Determination of the optimal imaging protocol for [18F]PSMA-PET-CT for the detection of bone metastases in prostate cancer patients. Nuklearmedizin 2024; 63:287-293. [PMID: 38996442 DOI: 10.1055/a-2344-6825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
AIM Prostate-specific membrane antigen-positron emission tomography (PSMA-PET) is a widely used diagnostic tool in patients with prostate cancer (PC). However, due to the limited availability of PET scanners and relevant acquisition costs, it is important to consider the indications and acquisition time. The aim of this investigation was to determine whether a PET scan from the skull base to the proximal thigh is sufficient to detect the presence of bone metastases. METHODS A retrospective analysis was conducted on 1050 consecutive [18F]PSMA-1007-PET-CT scans from the head to the proximal lower leg. The PET scans were categorised according to the presence and amount of bone metastases: (1) 1-5, (2) 6-19 and (3) ≥20. Additionally, the PET scans were evaluated for the presence of bone metastases below the proximal thigh as well as bone metastases above the skull base. Imaging results were compared to patients PSA values. RESULTS Of the 391 patients with bone metastases, 146 (37.3%) exhibited metastases located below the proximal thigh and 104 (26.6%) above the skull base. The majority of bone metastases located below the proximal thigh (145, 99.3%) and above the skull base (94, 90.4%) were identified in patients with more than five bone metastases. No solitary distal metastasis was detected. The PSA value correlated significantly with number of bone metastases (e. g., 1-5 vs. ≥20 bone metastases, P < 0.001) and was significantly higher in patients with distal bone metastases (P < 0.001). ROC analysis showed that a PSA value of 11.15 ng/mL is the optimal cut-off for detecting bone metastases located below the proximal thigh, with an AUC of 0.919 (95% CI: 0.892-0.945, sensitivity 87%, specificity 86%). Similarly, the PSA value of 12.86 ng/mL is the optimal cut-off for detecting bone metastases above the skull base with an AUC of 0.904 (95% CI: 0.874-0.935, sensitivity 87%, specificity 83%). CONCLUSION: PSMA-PET acquisition protocols from the skull base to the proximal femur may be sufficient to accurately detect bone metastatic disease in PC. PSA values can provide decision support for individual PET acquisition protocols.
Collapse
Affiliation(s)
- Linus Bredensteiner
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
| | - David Ventura
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
- West German Cancer Center (WTZ), Münster site, Münster, Germany
| | - Philipp Rassek
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
- West German Cancer Center (WTZ), Münster site, Münster, Germany
| | - Michael Schäfers
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
- West German Cancer Center (WTZ), Münster site, Münster, Germany
- European Institute for Molecular Imaging (EIMI), University of Münster, Münster, Germany
| | - Martin Bögemann
- West German Cancer Center (WTZ), Münster site, Münster, Germany
- Department of Urology, University Hospital Münster, Münster, Germany
| | - Philipp Schindler
- West German Cancer Center (WTZ), Münster site, Münster, Germany
- Department of Radiology, University Hospital Münster, Münster, Germany
| | - Matthias Weckesser
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
- West German Cancer Center (WTZ), Münster site, Münster, Germany
| | - Kambiz Rahbar
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
- West German Cancer Center (WTZ), Münster site, Münster, Germany
| | - Wolfgang Roll
- Department of Nuclear Medicine, University Hospital Münster, Munster, Germany
- West German Cancer Center (WTZ), Münster site, Münster, Germany
| |
Collapse
|
10
|
Xue D, Hu S, Zheng R, Luo H, Ren X. Tumor-infiltrating B cells: Their dual mechanistic roles in the tumor microenvironment. Biomed Pharmacother 2024; 179:117436. [PMID: 39270540 DOI: 10.1016/j.biopha.2024.117436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024] Open
Abstract
The occurrence and development of tumors are closely associated with abnormalities in the immune system's structure and function, with tumor immunotherapy being intricately linked to the tumor microenvironment (TME). Early studies on lymphocytes within the TME primarily concentrated on T cells. However, as research has advanced, the multifaceted roles of tumor-infiltrating B cells (TIL-Bs) in tumor immunity, encompassing both anti-tumor and pro-tumor effects, have garnered increasing attention. This paper explored the composition of the TME and the biological characteristics of TIL-Bs, investigating the dual roles within the TME to offer new insights and strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Demin Xue
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shaozhen Hu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Runchen Zheng
- School of Chinese Classics, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Huidan Luo
- Department of Pulmonology, Hechi Hospital of Traditional Chinese Medicine, Guangxi 547000, China
| | - Xi Ren
- Department of Oncology II, Southern Medical University Hospital of Integrated Traditional Chinese and Western Medicine, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
11
|
Schott B, Pinchuk D, Santoro-Fernandes V, Klaneček Ž, Rivetti L, Deatsch A, Perlman S, Li Y, Jeraj R. Uncertainty quantification via localized gradients for deep learning-based medical image assessments. Phys Med Biol 2024; 69:155015. [PMID: 38981594 DOI: 10.1088/1361-6560/ad611d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 07/09/2024] [Indexed: 07/11/2024]
Abstract
Objective.Deep learning models that aid in medical image assessment tasks must be both accurate and reliable to be deployed within clinical settings. While deep learning models have been shown to be highly accurate across a variety of tasks, measures that indicate the reliability of these models are less established. Increasingly, uncertainty quantification (UQ) methods are being introduced to inform users on the reliability of model outputs. However, most existing methods cannot be augmented to previously validated models because they are not post hoc, and they change a model's output. In this work, we overcome these limitations by introducing a novel post hoc UQ method, termedLocal Gradients UQ, and demonstrate its utility for deep learning-based metastatic disease delineation.Approach.This method leverages a trained model's localized gradient space to assess sensitivities to trained model parameters. We compared the Local Gradients UQ method to non-gradient measures defined using model probability outputs. The performance of each uncertainty measure was assessed in four clinically relevant experiments: (1) response to artificially degraded image quality, (2) comparison between matched high- and low-quality clinical images, (3) false positive (FP) filtering, and (4) correspondence with physician-rated disease likelihood.Main results.(1) Response to artificially degraded image quality was enhanced by the Local Gradients UQ method, where the median percent difference between matching lesions in non-degraded and most degraded images was consistently higher for the Local Gradients uncertainty measure than the non-gradient uncertainty measures (e.g. 62.35% vs. 2.16% for additive Gaussian noise). (2) The Local Gradients UQ measure responded better to high- and low-quality clinical images (p< 0.05 vsp> 0.1 for both non-gradient uncertainty measures). (3) FP filtering performance was enhanced by the Local Gradients UQ method when compared to the non-gradient methods, increasing the area under the receiver operating characteristic curve (ROC AUC) by 20.1% and decreasing the false positive rate by 26%. (4) The Local Gradients UQ method also showed more favorable correspondence with physician-rated likelihood for malignant lesions by increasing ROC AUC for correspondence with physician-rated disease likelihood by 16.2%.Significance. In summary, this work introduces and validates a novel gradient-based UQ method for deep learning-based medical image assessments to enhance user trust when using deployed clinical models.
Collapse
Affiliation(s)
- Brayden Schott
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Dmitry Pinchuk
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Victor Santoro-Fernandes
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Žan Klaneček
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Luciano Rivetti
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| | - Alison Deatsch
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Scott Perlman
- Department of Radiology, Section of Nuclear Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
| | - Yixuan Li
- Department of Computer Sciences, School of Computer, Data, & Information Sciences, University of Wisconsin, Madison, WI, United States of America
| | - Robert Jeraj
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States of America
- Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
12
|
Lozano-Calderon SA, Clunk MJ, Gonzalez MR, Sodhi A, Krueger RK, Gruender AC, Greenberg DD. Assessing Pain and Functional Outcomes of Percutaneous Stabilization of Metastatic Pelvic Lesions via Photodynamic Nails: A Bi-Institutional Investigation of Orthopaedic Outcomes. JB JS Open Access 2024; 9:e23.00148. [PMID: 38988331 PMCID: PMC11233101 DOI: 10.2106/jbjs.oa.23.00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/12/2024] Open
Abstract
Background Minimally invasive surgical interventions for metastatic invasion of the pelvis have become more prevalent and varied. Our group hypothesized that the use of percutaneous photodynamic nails (PDNs) would result in decreased pain, improved functional outcomes and level of ambulation, and decreased use of opioid pain medication. Methods We performed a retrospective chart review of patients with metastatic pelvic bone disease undergoing stabilization with PDNs (IlluminOss Medical) at 2 institutions. Functional outcome measures assessed include the Combined Pain and Ambulatory Function (CPAF), Patient-Reported Outcomes Measurement Information System (PROMIS) Physical Function, and PROMIS Global Health-Physical. Pain was assessed using a visual analog scale (VAS). Outcomes were assessed preoperatively and at 6 weeks, 3 months, 6 months, and 1 year following surgery. Results A total of 39 patients treated with PDNs were included. No cases of surgical site infection or implant failure were identified. The median pain VAS score decreased from 8 preoperatively to 0 at the 6-week time point (p < 0.0001). The median CPAF score improved from 5.5 points preoperatively to 7 points at the 3-month mark (p = 0.0132). A significant improvement in physical function was seen at 6 months in the PROMIS Physical Function (p = 0.02) and at both 6 months (p = 0.01) and 1 year (p < 0.01) for the PROMIS Global Health-Physical. The rate of patients prescribed opioid analgesia dropped from 100% preoperatively to 20% at 6 months following surgery (p < 0.001). By 6 weeks, all patients were fully weight-bearing and able to walk independently with or without assistive devices. Conclusions Percutaneous stabilization of metastatic periacetabular defects using PDNs is a safe and effective palliative procedure that has been shown to improve patient mobility and provide early pain relief. Level of Evidence Therapeutic Level IV. See Instructions for Authors for a complete description of levels of evidence.
Collapse
Affiliation(s)
- Santiago A Lozano-Calderon
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Marilee J Clunk
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- University of Toledo College of Medicine and Life Sciences, Toledo, Ohio
| | - Marcos R Gonzalez
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Alisha Sodhi
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
| | - Ryan K Krueger
- Musculoskeletal Oncology Service, Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, Massachusetts
- Harvard John A. Paulson School of Engineering, Harvard University, Cambridge, Massachusetts
| | - Allison C Gruender
- Division of Musculoskeletal Oncology, Department of Orthopaedic Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| | - David D Greenberg
- Division of Musculoskeletal Oncology, Department of Orthopaedic Surgery, Saint Louis University School of Medicine, St. Louis, Missouri
| |
Collapse
|
13
|
Sheth RA, Wehrenberg-Klee E, Patel SP, Brock KK, Fotiadis N, de Baère T. Intratumoral Injection of Immunotherapeutics: State of the Art and Future Directions. Radiology 2024; 312:e232654. [PMID: 39078294 PMCID: PMC11294769 DOI: 10.1148/radiol.232654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 07/31/2024]
Abstract
Systemic immunotherapies have led to tremendous progress across the cancer landscape. However, several challenges exist, potentially limiting their efficacy in the treatment of solid tumors. Direct intratumoral injection can increase the therapeutic index of immunotherapies while overcoming many of the barriers associated with systemic administration, including limited bioavailability to tumors and potential systemic safety concerns. However, challenges remain, including the lack of standardized approaches for administration, issues relating to effective drug delivery, logistical hurdles, and safety concerns specific to this mode of administration. This article reviews the biologic rationale for the localized injection of immunotherapeutic agents into tumors. It also addresses the existing limitations and practical considerations for safe and effective implementation and provide recommendations for optimizing logistics and treatment workflows. It also highlights the critical role that radiologists, interventional radiologists, and medical physicists play in intratumoral immunotherapy with respect to target selection, image-guided administration, and response assessment.
Collapse
Affiliation(s)
- Rahul A. Sheth
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Eric Wehrenberg-Klee
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Sapna P. Patel
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Kristy K. Brock
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Nicos Fotiadis
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| | - Thierry de Baère
- From the Departments of Interventional Radiology (R.A.S.), Melanoma
Medical Oncology (S.P.P.), and Imaging Physics (K.K.B.), University of Texas MD
Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030; Department of
Radiology, Massachusetts General Hospital, Boston, Mass (E.W.K.); Department of
Radiology, Royal Marsden Hospital, London, England (N.F.); and Department of
Interventional Radiology, Institut de Cancérologie Gustave Roussy,
Villejuif, France (T.d.B.)
| |
Collapse
|
14
|
Sirek T, Sirek A, Borawski P, Ryguła I, Król-Jatręga K, Opławski M, Boroń D, Chalcarz M, Ossowski P, Dziobek K, Zmarzły N, Boroń K, Mickiewicz P, Grabarek BO. Expression Profiles of Dopamine-Related Genes and miRNAs Regulating Their Expression in Breast Cancer. Int J Mol Sci 2024; 25:6546. [PMID: 38928253 PMCID: PMC11203454 DOI: 10.3390/ijms25126546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/21/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
This study aimed to assess the expression profile of messenger RNA (mRNA) and microRNA (miRNA) related to the dopaminergic system in five types of breast cancer in Polish women. Patients with five breast cancer subtypes were included in the study: luminal A (n = 130), luminal B (n = 196, including HER2-, n = 100; HER2+, n = 96), HER2+ (n = 36), and TNBC (n = 43); they underwent surgery, during which tumor tissue was removed along with a margin of healthy tissue (control material). The molecular analysis included a microarray profile of mRNAs and miRNAs associated with the dopaminergic system, a real-time polymerase chain reaction preceded by reverse transcription for selected genes, and determinations of their concentration using enzyme-linked immunosorbent assay (ELISA). The conducted statistical analysis showed that five mRNAs statistically significantly differentiated breast cancer sections regardless of subtype compared to control samples; these were dopamine receptor 2 (DRD2), dopamine receptor 3 (DRD3), dopamine receptor 25 (DRD5), transforming growth factor beta 2 (TGF-β-2), and caveolin 2 (CAV2). The predicted analysis showed that hsa-miR-141-3p can regulate the expression of DRD2 and TGF-β-2, whereas hsa-miR-4441 is potentially engaged in the expression regulation of DRD3 and DRD5. In addition, the expression pattern of DRD5 mRNA can also be regulated by has-miR-16-5p. The overexpression of DRD2 and DRD3, with concomitant silencing of DRD5 expression, confirms the presence of dopaminergic abnormalities in breast cancer patients. Moreover, these abnormalities may be the result of miR-141-3P, miR-16-5p, and miR-4441 activity, regulating proliferation or metastasis.
Collapse
Affiliation(s)
- Tomasz Sirek
- Department of Plastic Surgery, Faculty of Medicine, Academia of Silesia, 40-555 Katowice, Poland
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Agata Sirek
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | | | - Izabella Ryguła
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Katarzyna Król-Jatręga
- Department of Plastic and Reconstructive Surgery, Hospital for Minimally Invasive and Reconstructive Surgery in Bielsko-Biała, 43-316 Bielsko-Biala, Poland; (A.S.); (K.K.-J.)
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Marcin Opławski
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Department of Gynecology and Obstetrics, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski University in Kraków, 30-705 Kraków, Poland
| | - Dariusz Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Gynecology and Obstetrics with Gynecologic Oncology, Ludwik Rydygier Memorial Specialized Hospital, 31-826 Kraków, Poland;
- Institute of Clinical Science, Skłodowska-Curie Medical University, 00-136 Warszawa, Poland
- Department of Gynecology and Obstetrics, TOMMED Specjalisci od Zdrowia, 40-662 Katowice, Poland
| | - Michał Chalcarz
- Chalcarz Clinic-Aesthetic Surgery, Aesthetic Medicine, 60-001 Poznan, Poland;
- Bieńkowski Medical Center-Plastic Surgery, 85-020 Bydgoszcz, Poland
| | - Piotr Ossowski
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Konrad Dziobek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Nikola Zmarzły
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Kacper Boroń
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Patrycja Mickiewicz
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
| | - Beniamin Oskar Grabarek
- Department of Medical and Health Sciences, Collegium Medicum, WSB University, 41-300 Dabrowa Górnicza, Poland; (I.R.); (D.B.); (P.O.); (K.D.); (N.Z.); (K.B.); (P.M.); (B.O.G.)
- Department of Molecular, Biology Gyncentrum Fertility Clinic, 40-055 Katowice, Poland
| |
Collapse
|
15
|
Watanabe G, Young K, Rauber E, Khan MF, Suzuki R, Riestenberg R, Umana GE, Palmisciano P. A systematic review of extraneural meningioma metastasis: timing, evolution and outlook. J Neurooncol 2024; 168:187-196. [PMID: 38530549 DOI: 10.1007/s11060-024-04659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/23/2024] [Indexed: 03/28/2024]
Abstract
PURPOSE Extraneural meningioma metastasis is a rare occurrence and may pose a clinical challenge due to its unclear prognosis. In this systematic review, we analyze patient demographics, clinical characteristics, management strategies, and outcomes. METHODS PubMed, EMBASE, Scopus, Cochrane, and Web of Science databases were searched from inception to February 23, 2024 for cases of metastatic meningioma according to PRISMA guidelines. Descriptive statistics, Mann-Whitney U test, Fisher's exact tests, Kaplan-Meier curves, and log-rank tests were used for selected analyses. RESULTS A total of 288 patients (52% male) were included with an average age of 49 years at meningioma diagnosis. Tumors were distributed across WHO grade 1 (38%), 2 (36%), and 3 (26%). Most patients experienced intracranial recurrence (79%) and mean time to first metastasis was approximately 8 years. No change in WHO grade between primary and metastasis was observed for most cases (65%). Treatment of the initial metastasis was most often with surgery (43%), chemotherapy (20%), or no treatment (14%). Half of the patients were alive (50%) with an average follow-up of 3 years following metastasis. Overall median survival was 36 months for the entire cohort. This differed significantly between WHO grade 1 versus 2/3 meningioma primaries (168 vs. 15 months, p < 0.005). CONCLUSION Metastatic meningioma appears to be associated with more positive prognosis than other brain tumor types with extra-neural metastasis or metastasis in general. This is particularly true for cases arising from a WHO grade 1 meningioma.
Collapse
Affiliation(s)
- Gina Watanabe
- John A. Burns School of Medicine, University of Hawaii at Manoa, 5080 Likini St #417, Honolulu, HI, 96818, USA.
| | - Kurtis Young
- Department of Otolaryngology, University of Nevada, Las Vegas, NV, USA
| | - Erin Rauber
- School of Medicine, University of Kansas, Kansas City, KS, USA
| | | | - Reannon Suzuki
- John A. Burns School of Medicine, University of Hawaii at Manoa, 5080 Likini St #417, Honolulu, HI, 96818, USA
| | - Robert Riestenberg
- Department of Neurological Surgery, University of California Davis, Sacramento, CA, USA
| | - Giuseppe E Umana
- Department of Neurosurgery, Trauma Center, Gamma Knife Center, Cannizzaro Hospital, Catania, Italy
| | - Paolo Palmisciano
- Department of Neurological Surgery, University of California Davis, Sacramento, CA, USA
| |
Collapse
|
16
|
Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, Landis MD, Hongo RA, Young KL, Kunchok T, Nabel CS, Crowder KD, Kent JR, Madariaga MLL, Jain RK, Beckermann KE, Lewis CA, Clish CB, Muir A, Rathmell WK, Rathmell J, Vander Heiden MG. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. eLife 2024; 13:RP95652. [PMID: 38787918 PMCID: PMC11126308 DOI: 10.7554/elife.95652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024] Open
Abstract
The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer-driven tissue factors in shaping nutrient availability in these tumors.
Collapse
Affiliation(s)
- Keene L Abbott
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Bradley I Reinfeld
- Medical Scientist Training Program, Vanderbilt UniversityNashvilleUnited States
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
- Graduate Program in Cancer Biology, Vanderbilt UniversityNashvilleUnited States
| | - Amy Deik
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Madelyn D Landis
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Rachel A Hongo
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Kirsten L Young
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Christopher S Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Medicine, Massachusetts General HospitalBostonUnited States
- Harvard Medical SchoolBostonUnited States
| | - Kayla D Crowder
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Johnathan R Kent
- Department of Surgery, University of Chicago MedicineChicagoUnited States
| | | | - Rakesh K Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical SchoolBostonUnited States
| | - Kathryn E Beckermann
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
| | - Caroline A Lewis
- Whitehead Institute for Biomedical ResearchCambridgeUnited States
| | - Clary B Clish
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Alexander Muir
- Ben May Department of Cancer Research, University of ChicagoChicagoUnited States
| | - W Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC)NashvilleUnited States
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMCNashvilleUnited States
| | - Jeffrey Rathmell
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMCNashvilleUnited States
- Department of Pathology, Microbiology and Immunology, VUMCNashvilleUnited States
| | - Matthew G Vander Heiden
- Department of Biology, Massachusetts Institute of TechnologyCambridgeUnited States
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Dana-Farber Cancer InstituteBostonUnited States
| |
Collapse
|
17
|
Li G, Zhao R, Xie Z, Qu X, Duan Y, Zhu Y, Liang H, Tang D, Li Z, He W. Mining bone metastasis related key genes of prostate cancer from the STING pathway based on machine learning. Front Med (Lausanne) 2024; 11:1372495. [PMID: 38835789 PMCID: PMC11148254 DOI: 10.3389/fmed.2024.1372495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
Background Prostate cancer (PCa) is the second most prevalent malignant tumor in male, and bone metastasis occurs in about 70% of patients with advanced disease. The STING pathway, an innate immune signaling mechanism, has been shown to play a key role in tumorigenesis, metastasis, and cancerous bone pain. Hence, exploring regulatory mechanism of STING in PCa bone metastasis will bring novel opportunities for treating PCa bone metastasis. Methods First, key genes were screened from STING-related genes (SRGs) based on random forest algorithm and their predictive performance was evaluated. Subsequently, a comprehensive analysis of key genes was performed to explore their roles in prostate carcinogenesis, metastasis and tumor immunity. Next, cellular experiments were performed to verify the role of RELA in proliferation and migration in PCa cells, meanwhile, based on immunohistochemistry, we verified the difference of RELA expression between PCa primary foci and bone metastasis. Finally, based on the key genes to construct an accurate and reliable nomogram, and mined targeting drugs of key genes. Results In this study, three key genes for bone metastasis were mined from SRGs based on the random forest algorithm. Evaluation analysis showed that the key genes had excellent prediction performance, and it also showed that the key genes played a key role in carcinogenesis, metastasis and tumor immunity in PCa by comprehensive analysis. In addition, cellular experiments and immunohistochemistry confirmed that overexpression of RELA significantly inhibited the proliferation and migration of PCa cells, and RELA was significantly low-expression in bone metastasis. Finally, the constructed nomogram showed excellent predictive performance in Receiver Operating Characteristic (ROC, AUC = 0.99) curve, calibration curve, and Decision Curve Analysis (DCA) curve; and the targeted drugs showed good molecular docking effects. Conclusion In sum, this study not only provides a new theoretical basis for the mechanism of PCa bone metastasis, but also provides novel therapeutic targets and novel diagnostic tools for advanced PCa treatment.
Collapse
Affiliation(s)
- Guiqiang Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Urology, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Runhan Zhao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhou Xie
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiao Qu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yingtao Duan
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yafei Zhu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Hao Liang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Dagang Tang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Zefang Li
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Orthopedics, Qianjiang Hospital Affiliated with Chongqing University, Chongqing, China
| | - Weiyang He
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
18
|
Stribbling SM, Beach C, Ryan AJ. Orthotopic and metastatic tumour models in preclinical cancer research. Pharmacol Ther 2024; 257:108631. [PMID: 38467308 DOI: 10.1016/j.pharmthera.2024.108631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 02/27/2024] [Accepted: 03/08/2024] [Indexed: 03/13/2024]
Abstract
Mouse models of disease play a pivotal role at all stages of cancer drug development. Cell-line derived subcutaneous tumour models are predominant in early drug discovery, but there is growing recognition of the importance of the more complex orthotopic and metastatic tumour models for understanding both target biology in the correct tissue context, and the impact of the tumour microenvironment and the immune system in responses to treatment. The aim of this review is to highlight the value that orthotopic and metastatic models bring to the study of tumour biology and drug development while pointing out those models that are most likely to be encountered in the literature. Important developments in orthotopic models, such as the increasing use of early passage patient material (PDXs, organoids) and humanised mouse models are discussed, as these approaches have the potential to increase the predictive value of preclinical studies, and ultimately improve the success rate of anticancer drugs in clinical trials.
Collapse
Affiliation(s)
- Stephen M Stribbling
- Department of Chemistry, University College London, Gower Street, London WC1E 6BT, UK.
| | - Callum Beach
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK
| | - Anderson J Ryan
- Department of Oncology, University of Oxford, ORCRB, Roosevelt Drive, Oxford OX3 7DQ, UK; Fast Biopharma, Aston Rowant, Oxfordshire, OX49 5SW, UK.
| |
Collapse
|
19
|
Jou E. Clinical and basic science aspects of innate lymphoid cells as novel immunotherapeutic targets in cancer treatment. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 209:1-60. [PMID: 39461748 DOI: 10.1016/bs.pmbts.2024.03.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Immunotherapy has revolutionised cancer treatment over the past decade, demonstrating remarkable efficacy across a broad range of cancer types. However, not all patients or cancer types respond to contemporary clinically-utilised immunotherapeutic strategies, which largely focus on harnessing adaptive immune T cells for cancer treatment. Accordingly, it is increasingly recognised that upstream innate immune pathways, which govern and orchestrate the downstream adaptive immune response, may prove critical in overcoming cancer immunotherapeutic resistance. Innate lymphoid cells (ILCs) are the most recently discovered major innate immune cell population. They have overarching roles in homeostasis and orchestrating protective immunity against pathogens. As innate immune counterparts of adaptive immune T cells, ILCs exert effector functions through the secretion of cytokines and direct cell-to-cell contact, with broad influence on the overall immune response. Importantly, dysregulation of ILC subsets have been associated with a range of diseases, including immunodeficiency disorders, allergy, autoimmunity, and more recently, cancer. ILCs may either promote or inhibit cancer initiation and progression depending on the cancer type and the specific ILC subsets involved. Critically, therapeutic targeting of ILCs and their associated cytokines shows promise against a wide range of cancer types in both preclinical models and early phase oncology clinical trials. This chapter provides a comprehensive overview of the current understanding of ILC subsets and the associated cytokines they produce in cancer pathogenesis, with specific focus on how these innate pathways are, or can be targeted, therapeutically to overcome therapeutic resistance and ultimately improve patient care.
Collapse
Affiliation(s)
- Eric Jou
- Department of Oncology, Oxford University Hospitals, University of Oxford, Oxford, United Kingdom; Kellogg College, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
20
|
Abbott KL, Ali A, Reinfeld BI, Deik A, Subudhi S, Landis MD, Hongo RA, Young KL, Kunchok T, Nabel CS, Crowder KD, Kent JR, Madariaga MLL, Jain RK, Beckermann KE, Lewis CA, Clish CB, Muir A, Rathmell WK, Rathmell JC, Vander Heiden MG. Metabolite profiling of human renal cell carcinoma reveals tissue-origin dominance in nutrient availability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.24.573250. [PMID: 38187626 PMCID: PMC10769456 DOI: 10.1101/2023.12.24.573250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The tumor microenvironment is a determinant of cancer progression and therapeutic efficacy, with nutrient availability playing an important role. Although it is established that the local abundance of specific nutrients defines the metabolic parameters for tumor growth, the factors guiding nutrient availability in tumor compared to normal tissue and blood remain poorly understood. To define these factors in renal cell carcinoma (RCC), we performed quantitative metabolomic and comprehensive lipidomic analyses of tumor interstitial fluid (TIF), adjacent normal kidney interstitial fluid (KIF), and plasma samples collected from patients. TIF nutrient composition closely resembles KIF, suggesting that tissue-specific factors unrelated to the presence of cancer exert a stronger influence on nutrient levels than tumor-driven alterations. Notably, select metabolite changes consistent with known features of RCC metabolism are found in RCC TIF, while glucose levels in TIF are not depleted to levels that are lower than those found in KIF. These findings inform tissue nutrient dynamics in RCC, highlighting a dominant role of non-cancer driven tissue factors in shaping nutrient availability in these tumors.
Collapse
Affiliation(s)
- Keene L. Abbott
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bradley I. Reinfeld
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Graduate Program in Cancer Biology, Vanderbilt University, Nashville, TN, USA
| | - Amy Deik
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sonu Subudhi
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Madelyn D. Landis
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Rachel A. Hongo
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Kirsten L. Young
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | - Christopher S. Nabel
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Medicine, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Johnathan R. Kent
- Department of Surgery, University of Chicago Medicine, Chicago, IL, USA
| | | | - Rakesh K. Jain
- Steele Laboratories of Tumor Biology, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kathryn E. Beckermann
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
| | - Caroline A. Lewis
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Present address: UMass Chan Medical School, Program in Molecular Medicine, Worcester, MA, USA
| | | | - Alexander Muir
- Ben May Department of Cancer Research, University of Chicago, Chicago, IL, USA
| | - W. Kimryn Rathmell
- Department of Medicine, Vanderbilt University Medical Center (VUMC), Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMC, Nashville, TN, USA
| | - Jeffrey C. Rathmell
- Department of Pathology, Microbiology and Immunology, VUMC, Nashville, TN, USA
- Vanderbilt Center for Immunobiology and Vanderbilt-Ingram Cancer Center, VUMC, Nashville, TN, USA
| | - Matthew G. Vander Heiden
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Dana-Farber Cancer Institute, Boston, MA, USA
| |
Collapse
|
21
|
Ahmed S, Prakash A, Kumar Upadhyay A. Evaluation of Different Regimens of Palliative Radiation Therapy for Symptomatic Bone Metastases: An Audit From a Tertiary Care Hospital in Jharkhand, India. Cureus 2024; 16:e53622. [PMID: 38449966 PMCID: PMC10916909 DOI: 10.7759/cureus.53622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2024] [Indexed: 03/08/2024] Open
Abstract
Background This study aimed to assess the efficacy of different radiation therapy regimens in treating patients with symptomatic bone metastases. Methodology A retrospective study was conducted by assigning patients with symptomatic bone metastases from different primary cancers into three groups, namely, Arms A, B, and C. The radiation dose delivered in each arm was as follows: 8 Gray (Gy) in a single fraction for Arm A, 20 Gy in five fractions at the rate of 4 Gy per fraction for Arm B, and 30 Gy in 10 fractions at the rate of 3 Gy per fraction for Arm C. Each arm consisted of 15 patients. A comparison was conducted across all three arms to evaluate pain relief based on the Visual Analog Scale (VAS), performance score improvement based on the Eastern Cooperative Oncology Group (ECOG), and analgesic requirement based on the World Health Organization (WHO) step ladder at one week, one month, and three months. Results The pain relief was measured using the VAS in three different arms, i.e., Arm A, B, and C. After one week, the pain relief was 66.67%, 60%, and 60%, respectively. After one month, it was 73.33% in all three arms. At three months, it was 80%, 86.67%, and 86.67%, respectively. The study also measured the improvement in the ECOG performance score. The improvement in all three arms was 60% after one week and 66.67% in Arm A and 73.33% in Arms B and C after one month. After three months, the improvement was 73.33%, 80%, and 80% in Arms A, B, and C, respectively. The decrease in analgesic usage was also measured in all three arms. After one week, it was 60% in all three arms. After one month, it was 66.67%, 73.33%, and 73.33% in Arms A, B, and C, respectively. At three months, it was 73.33%, 80%, and 80% in Arms A, B, and C, respectively. No significant statistical difference was found between the three arms. Conclusions The efficacy of a single 8 Gy arm was almost equivalent to that of other arms of multifractionated regimens in terms of improvement in pain and performance score and decreased use of analgesics for a short duration of follow-up. For high-volume cancer centers and patients with economic constraints, a single-fraction regime provides effective palliation for painful bone metastases.
Collapse
Affiliation(s)
- Suhail Ahmed
- Radiation Oncology, Meherbai Tata Memorial Hospital, Jamshedpur, IND
| | | | | |
Collapse
|
22
|
Dahms P, Lyons TR. Toward Characterizing Lymphatic Vasculature in the Mammary Gland During Normal Development and Tumor-Associated Remodeling. J Mammary Gland Biol Neoplasia 2024; 29:1. [PMID: 38218743 PMCID: PMC10787674 DOI: 10.1007/s10911-023-09554-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/24/2023] [Indexed: 01/15/2024] Open
Abstract
Lymphatic vasculature has been shown to promote metastatic spread of breast cancer. Lymphatic vasculature, which is made up of larger collecting vessels and smaller capillaries, has specialized cell junctions that facilitate cell intravasation. Normally, these junctions are designed to collect immune cells and other cellular components for immune surveillance by lymph nodes, but they are also utilized by cancer cells to facilitate metastasis. Although lymphatic development overall in the body has been well-characterized, there has been little focus on how the lymphatic network changes in the mammary gland during stages of remodeling such as pregnancy, lactation, and postpartum involution. In this review, we aim to define the currently known lymphangiogenic factors and lymphatic remodeling events during mammary gland morphogenesis. Furthermore, we juxtapose mammary gland pubertal development and postpartum involution to show similarities of pro-lymphangiogenic signaling as well as other molecular signals for epithelial cell survival that are critical in these morphogenic stages. The similar mechanisms include involvement of M2-polarized macrophages that contribute to matrix remodeling and vasculogenesis; signal transducer and activator of transcription (STAT) survival and proliferation signaling; and cyclooxygenase 2 (COX2)/Prostaglandin E2 (PGE2) signaling to promote ductal and lymphatic expansion. Investigation and characterization of lymphangiogenesis in the normal mammary gland can provide insight to targetable mechanisms for lymphangiogenesis and lymphatic spread of tumor cells in breast cancer.
Collapse
Affiliation(s)
- Petra Dahms
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA
| | - Traci R Lyons
- Division of Medical Oncology Senior Scientist, Young Women's Breast Cancer Translational Program, University of Colorado Cancer Center, 12801 E 17th Ave, RC1 South, Mailstop 8117, 80045, Aurora, CO, USA.
- Division of Medical Oncology, Anschutz Medical Center, University of Colorado, Aurora, CO, USA.
- Anschutz Medical Campus Graduate Program in Cancer Biology, University of Colorado, Aurora, USA.
| |
Collapse
|
23
|
Fallon M, Sopata M, Dragon E, Brown MT, Viktrup L, West CR, Bao W, Agyemang A. A Randomized Placebo-Controlled Trial of the Anti-Nerve Growth Factor Antibody Tanezumab in Subjects With Cancer Pain Due to Bone Metastasis. Oncologist 2023; 28:e1268-e1278. [PMID: 37343145 PMCID: PMC10712717 DOI: 10.1093/oncolo/oyad188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
BACKGROUND This phase III, randomized, double-blind, placebo-controlled, parallel-group study assessed the efficacy and safety of tanezumab in subjects with cancer pain predominantly due to bone metastasis receiving background opioid therapy. METHODS Subjects were randomized (stratified by (1) tumor aggressiveness and (2) presence/absence of concomitant anticancer treatment) to placebo or tanezumab 20 mg. Treatment was administered by subcutaneous injection every 8 weeks for 24 weeks (3 doses) followed by a 24-week safety follow-up period. The primary outcome was change in daily average pain in the index bone metastasis cancer pain site (from 0 = no pain to 10 = worst possible pain) from baseline to week 8. RESULTS LS mean (SE) change in pain at week 8 was -1.25 (0.35) for placebo (n = 73) and -2.03 (0.35) for tanezumab 20 mg (n = 72). LS mean (SE) [95% CI] difference from placebo was -0.78 (0.37) [-1.52, -0.04]; P = .0381 with α = 0.0478. The number of subjects with a treatment-emergent adverse event during the treatment period was 50 (68.5%) for placebo and 53 (73.6%) for tanezumab 20 mg. The number of subjects with a prespecified joint safety event was 0 for placebo and 2 (2.8%) for tanezumab 20 mg (pathologic fracture; n = 2). CONCLUSION Tanezumab 20 mg met the primary efficacy endpoint at week 8. Conclusions on longer-term efficacy are limited since the study was not designed to evaluate the durability of the effect beyond 8 weeks. Safety findings were consistent with adverse events expected in subjects with cancer pain due to bone metastasis and the known safety profile of tanezumab. Clinicaltrials.gov identifier: NCT02609828.
Collapse
Affiliation(s)
- Marie Fallon
- Edinburgh Cancer Research Centre, University of Edinburgh, Edinburgh, UK
| | - Maciej Sopata
- Department of Palliative Medicine, Hospice Palium, University of Medical Sciences, Poznan, Poland
| | | | | | | | | | | | | |
Collapse
|
24
|
Estumano VKC, Sagica TDP, Albuquerque GPX, Costa MSCR, Pereira OV, Melo EML, Silva SÉDD, Ramos AMPC. Sociodemographic, clinical and survival profile of adult metastatic patients. Rev Gaucha Enferm 2023; 44:e20230048. [PMID: 38055457 DOI: 10.1590/1983-1447.2023.20230048.en] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/07/2023] [Indexed: 12/08/2023] Open
Abstract
OBJECTIVE To characterize the sociodemographic, clinical and survival profile of adult metastatic patients. METHOD Retrospective cross-sectional study, with secondary data from an oncology care unit, analyzed using logistic regression, Chi-Square test and Fisher's exact test, Kaplan-Meier and Log-Rank tests. RESULTS From the 678 patients, male gender, mean age 59.54 years old and low education level prevailed. The mean time between diagnosis and initiation of treatment was 89.50 days (± 58.87). Increased risk of primary cancer in the digestive tract (OR 1.42). Prevalence of adenocarcinoma (OR 1.53) and metastasis to bone (OR 2.59), lymph nodes (OR 1.75), liver and peritoneum (OR 1.42). The mean overall survival was 4.16 months and a median of 3.0 months. CONCLUSION The main primary site was the digestive system, and the identification of metastases was predominantly unifocal liver in both genders. Overall patient survival was reduced by cancer progression.
Collapse
Affiliation(s)
| | - Taís Dos Passos Sagica
- Universidade do Estado do Pará (UEPA), Programa de Pós-Graduação em Enfermagem. Belém, Pará, Brasil
| | | | | | | | | | | | | |
Collapse
|
25
|
Verspoor FGM, Hannink G, Parry M, Jeys L, Stevenson JD. The Importance of Awaiting Biopsy Results in Solitary Pathological Proximal Femoral Fractures : Do We Need to Biopsy Solitary Pathological Fractures? Ann Surg Oncol 2023; 30:7882-7891. [PMID: 37505350 PMCID: PMC10562502 DOI: 10.1245/s10434-023-13931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/28/2023] [Indexed: 07/29/2023]
Abstract
BACKGROUND The optimal surgical treatment for patients presenting with (impending and complete) pathological proximal femoral fractures is predicated on prognosis. Guidelines recommend a preoperative biopsy to exclude sarcomas, however no evidence confirms a benefit. OBJECTIVE This study aimed to describe the diagnostic accuracy, morbidity and sarcoma incidence of biopsy results in these patients. MATERIAL AND METHODS All patients (n = 153) presenting with pathological proximal femoral fractures between 2000 and 2019 were retrospectively evaluated. Patients after inadvertent surgery (n = 25) were excluded. Descriptive statistics were used to evaluate the accuracy and morbidity of diagnostic biopsies. RESULTS Of 112/128 patients who underwent biopsy, nine (8%) biopsies were unreliable either due to being inconclusive (n = 5) or because the diagnosis changed after resection (n = 4). Of impending fractures, 32% fractured following needle core biopsy. Median time from diagnosis to surgery was 30 days (interquartile range 21-46). The overall biopsy positive predictive value (PPV) to differentiate between sarcoma and non-sarcoma was 1.00 (95% confidence interval [CI] 0.88-1.00). In patients with a previous malignancy (n = 24), biopsy (n = 23) identified the diagnosis in 83% (PPV 0.91, 95% CI 0.71-0.99), of whom five (24%) patients had a new diagnosis. In patients without a history of cancer (n = 61), final diagnosis included carcinomas (n = 24, 39.3%), sarcomas (n = 24, 39.3%), or hematological malignancies (n = 13, 21.3%). Biopsy (n = 58) correctly identified the diagnosis in 66% of patients (PPV 0.80, 95% CI 0.67-0.90). CONCLUSION This study confirms the importance of a preoperative biopsy in solitary pathological proximal femoral fractures due to the risk of sarcoma in patients with and without a history of cancer. However, biopsy delays the time to definite surgery, results can be inconclusive or false, and it risks completion of impending fractures.
Collapse
Affiliation(s)
- Floortje G. M. Verspoor
- Department of Oncology, Royal Orthopaedic Hospital, Birmingham, UK
- Amsterdam UMC, Department of Orthopaedic Surgery, University of Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - Gerjon Hannink
- Department of Operating Rooms, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michael Parry
- Department of Oncology, Royal Orthopaedic Hospital, Birmingham, UK
- Aston University, Birmingham, UK
| | - Lee Jeys
- Department of Oncology, Royal Orthopaedic Hospital, Birmingham, UK
- Aston University, Birmingham, UK
| | - Jonathan D. Stevenson
- Department of Oncology, Royal Orthopaedic Hospital, Birmingham, UK
- Aston University, Birmingham, UK
| |
Collapse
|
26
|
Lee JXT, Tan WR, Low ZS, Lee JQ, Chua D, Yeo WDC, See B, Vos MIG, Yasuda T, Nomura S, Cheng HS, Tan NS. YWHAG Deficiency Disrupts the EMT-Associated Network to Induce Oxidative Cell Death and Prevent Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301714. [PMID: 37759388 PMCID: PMC10625110 DOI: 10.1002/advs.202301714] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 08/28/2023] [Indexed: 09/29/2023]
Abstract
Metastasis involves epithelial-to-mesenchymal transition (EMT), a process that is regulated by complex gene networks, where their deliberate disruption may yield a promising outcome. However, little is known about mechanisms that coordinate these metastasis-associated networks. To address this gap, hub genes with broad engagement across various human cancers by analyzing the transcriptomes of different cancer cell types undergoing EMT are identified. The oncogenic signaling adaptor protein tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma (YWHAG) is ranked top for its clinical relevance and impact. The cellular kinome and transcriptome data are surveyed to construct the regulome of YWHAG, revealing stress responses and metabolic processes during cancer EMT. It is demonstrated that a YWHAG-dependent cytoprotective mechanism in the regulome is embedded in EMT-associated networks to protect cancer cells from oxidative catastrophe through enhanced autophagy during EMT. YWHAG deficiency results in a rapid accumulation of reactive oxygen species (ROS), delayed EMT, and cell death. Tumor allografts show that metastasis potential and overall survival time are correlated with the YWHAG expression level of cancer cell lines. Metastasized tumors have higher expression of YWHAG and autophagy-related genes than primary tumors. Silencing YWHAG diminishes primary tumor volumes, prevents metastasis, and prolongs the median survival period of the mice.
Collapse
Affiliation(s)
- Jeannie Xue Ting Lee
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Wei Ren Tan
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Zun Siong Low
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Jia Qi Lee
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| | - Damien Chua
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Wisely Duan Chi Yeo
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| | - Benedict See
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| | - Marcus Ivan Gerard Vos
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Tomohiko Yasuda
- Department of Gastrointestinal SurgeryGraduate School of MedicineThe University of TokyoTokyo113‐8654Japan
- Department of Gastrointestinal SurgeryNippon Medical School Chiba Hokusoh HospitalChiba270‐1694Japan
| | - Sachiyo Nomura
- Department of Gastrointestinal SurgeryGraduate School of MedicineThe University of TokyoTokyo113‐8654Japan
| | - Hong Sheng Cheng
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
| | - Nguan Soon Tan
- Lee Kong Chian School of MedicineClinical Sciences BuildingNanyang Technological University Singapore11 Mandalay RoadSingapore308232Singapore
- School of Biological SciencesNanyang Technological University Singapore60 Nanyang DriveSingapore637551Singapore
| |
Collapse
|
27
|
Zitricky F, Försti A, Hemminki A, Hemminki O, Hemminki K. Conditional Survival in Prostate Cancer in the Nordic Countries Elucidates the Timing of Improvements. Cancers (Basel) 2023; 15:4132. [PMID: 37627160 PMCID: PMC10453103 DOI: 10.3390/cancers15164132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND The incidence of prostate cancer (PC) increased vastly as a result of prostate-specific antigen (PSA) testing. Survival in PC improved in the PSA-testing era, but changes in clinical presentation have hampered the interpretation of the underlying causes. DESIGN We analyzed survival trends in PC using data from the NORDCAN database for Denmark (DK), Finland (FI), Norway (NO) and Sweden (SE) by analyzing 1-, 5- and 10-year relative survival and conditional relative survival over the course of 50 years (1971-2020). RESULTS In the pre-PSA era, survival improved in FI and SE and improved marginally in NO but not in DK. PSA testing began toward the end of the 1980s; 5-year survival increased by approximately 30%, and 10-year survival improved even more. Conditional survival from years 6 to 10 (5 years) was better than conditional survival from years 2 to 5 (4 years), but by 2010, this difference disappeared in countries other than DK. Survival in the first year after diagnosis approached 100%; by year 5, it was 95%; and by year 10, it was 90% in the best countries, NO and SE. CONCLUSIONS In spite of advances in diagnostics and treatment, further attention is required to improve PC survival.
Collapse
Affiliation(s)
- Frantisek Zitricky
- Biomedical Center, Faculty of Medicine, Charles University Pilsen, 30605 Pilsen, Czech Republic
| | - Asta Försti
- Hopp Children’s Cancer Center (KiTZ), 69120 Heidelberg, Germany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), 69120 Heidelberg, Germany
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland (O.H.)
- Comprehensive Cancer Center, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, 00290 Helsinki, Finland (O.H.)
- Department of Urology, Helsinki University Hospital, 00029 Helsinki, Finland
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine, Charles University Pilsen, 30605 Pilsen, Czech Republic
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, 69120 Heidelberg, Germany
| |
Collapse
|
28
|
Friedman-DeLuca M, Patel PP, Karadal-Ferrena B, Barth ND, Duran CL, Ye X, Papanicolaou M, Condeelis JS, Oktay MH, Borriello L, Entenberg D. Tracking Tumor Cell Dissemination from Lung Metastases Using Photoconversion. J Vis Exp 2023:10.3791/65732. [PMID: 37486129 PMCID: PMC10832329 DOI: 10.3791/65732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023] Open
Abstract
Metastasis - the systemic spread of cancer - is the leading cause of cancer-related deaths. Although metastasis is commonly thought of as a unidirectional process wherein cells from the primary tumor disseminate and seed metastases, tumor cells in existing metastases can also redisseminate and give rise to new lesions in tertiary sites in a process known as "metastasis-from-metastases" or "metastasis-to-metastasis seeding." Metastasis-to-metastasis seeding may increase the metastatic burden and decrease the patient's quality of life and survival. Therefore, understanding the processes behind this phenomenon is crucial to refining treatment strategies for patients with metastatic cancer. Little is known about metastasis-to-metastasis seeding, due in part to logistical and technological limitations. Studies on metastasis-to-metastasis seeding rely primarily on sequencing methods, which may not be practical for researchers studying the exact timing of metastasis-to-metastasis seeding events or what promotes or prevents them. This highlights the lack of methodologies that facilitate the study of metastasis-to-metastasis seeding. To address this, we have developed - and describe herein - a murine surgical protocol for the selective photoconversion of lung metastases, allowing specific marking and fate tracking of tumor cells redisseminating from the lung to tertiary sites. To our knowledge, this is the only method for studying tumor cell redissemination and metastasis-to-metastasis seeding from the lungs that does not require genomic analysis.
Collapse
Affiliation(s)
- Madeline Friedman-DeLuca
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Prachiben P Patel
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Burcu Karadal-Ferrena
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Nicole D Barth
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Camille L Duran
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Xianjun Ye
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Michael Papanicolaou
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center
| | - John S Condeelis
- Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Maja H Oktay
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center
| | - Lucia Borriello
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Department of Cancer and Cellular Biology, Lewis Katz School of Medicine, Fox Chase Cancer Center;
| | - David Entenberg
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center; Cancer Dormancy and Tumor Microenvironment Institute, Albert Einstein College of Medicine/Montefiore Medical Center; Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center; Montefiore Einstein Cancer Center, Albert Einstein College of Medicine/Montefiore Medical Center; Integrated Imaging Program for Cancer Research, Albert Einstein College of Medicine/Montefiore Medical Center;
| |
Collapse
|
29
|
Verdonschot KHM, Arts S, Van den Boezem PB, de Wilt JHW, Fütterer JJ, Stommel MWJ, Overduin CG. Ablative margins in percutaneous thermal ablation of hepatic tumors: a systematic review. Expert Rev Anticancer Ther 2023; 23:977-993. [PMID: 37702571 DOI: 10.1080/14737140.2023.2247564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 08/09/2023] [Indexed: 09/14/2023]
Abstract
INTRODUCTION This study aims to systematically review current evidence on ablative margins and correlation to local tumor progression (LTP) after thermal ablation of hepatocellular carcinoma (HCC) and colorectal liver metastases (CRLM). METHODS A systematic search was performed in PubMed (MEDLINE) and Web of Science to identify all studies that reported on ablative margins (AM) and related LTP rates. Studies were assessed for risk of bias and synthesized separately per tumor type. Where possible, results were pooled to calculate risk differences (RD) as function of AM. RESULTS In total, 2910 articles were identified of which 43 articles were eligible for final analysis. There was high variability in AM measurement methodology across studies in terms of measurement technique, imaging modalities, and timing. Most common margin stratification was < 5 mm and > 5 mm, for which data were available in 25/43 studies (58%). Of these, all studies favored AM > 5 mm to reduce the risk of LTP, with absolute RD of 16% points for HCC and 47% points for CRLM as compared to AM < 5 mm. CONCLUSIONS Current evidence supports AM > 5 mm to reduce the risk of LTP after thermal ablation of HCC and CRLM. However, standardization of AM measurement and reporting is critical to allow future meta-analyses and improved identification of optimal threshold value for clinical use.
Collapse
Affiliation(s)
- K H M Verdonschot
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - S Arts
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - P B Van den Boezem
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J H W de Wilt
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J J Fütterer
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
- The Robotics and Mechatronics research group, Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, Enschede, The Netherlands
| | - M W J Stommel
- Department of Surgery, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - C G Overduin
- Department of Medical Imaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
30
|
Fu X, Wang Q, Du H, Hao H. CXCL8 and the peritoneal metastasis of ovarian and gastric cancer. Front Immunol 2023; 14:1159061. [PMID: 37377954 PMCID: PMC10291199 DOI: 10.3389/fimmu.2023.1159061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/30/2023] [Indexed: 06/29/2023] Open
Abstract
CXCL8 is the most representative chemokine produced autocrine or paracrine by tumor cells, endothelial cells and lymphocytes. It can play a key role in normal tissues and tumors by activating PI3K-Akt, PLC, JAK-STAT, and other signaling pathways after combining with CXCR1/2. The incidence of peritoneal metastasis in ovarian and gastric cancer is extremely high. The structure of the peritoneum and various peritoneal-related cells supports the peritoneal metastasis of cancers, which readily produces a poor prognosis, low 5-year survival rate, and the death of patients. Studies show that CXCL8 is excessively secreted in a variety of cancers. Thus, this paper will further elaborate on the mechanism of CXCL8 and the peritoneal metastasis of ovarian and gastric cancer to provide a theoretical basis for the proposal of new methods for the prevention, diagnosis, and treatment of cancer peritoneal metastasis.
Collapse
|
31
|
Javanmardi Y, Agrawal A, Malandrino A, Lasli S, Chen M, Shahreza S, Serwinski B, Cammoun L, Li R, Jorfi M, Djordjevic B, Szita N, Spill F, Bertazzo S, Sheridan GK, Shenoy V, Calvo F, Kamm R, Moeendarbary E. Endothelium and Subendothelial Matrix Mechanics Modulate Cancer Cell Transendothelial Migration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206554. [PMID: 37051804 PMCID: PMC10238207 DOI: 10.1002/advs.202206554] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 03/19/2023] [Indexed: 06/04/2023]
Abstract
Cancer cell extravasation, a key step in the metastatic cascade, involves cancer cell arrest on the endothelium, transendothelial migration (TEM), followed by the invasion into the subendothelial extracellular matrix (ECM) of distant tissues. While cancer research has mostly focused on the biomechanical interactions between tumor cells (TCs) and ECM, particularly at the primary tumor site, very little is known about the mechanical properties of endothelial cells and the subendothelial ECM and how they contribute to the extravasation process. Here, an integrated experimental and theoretical framework is developed to investigate the mechanical crosstalk between TCs, endothelium and subendothelial ECM during in vitro cancer cell extravasation. It is found that cancer cell actin-rich protrusions generate complex push-pull forces to initiate and drive TEM, while transmigration success also relies on the forces generated by the endothelium. Consequently, mechanical properties of the subendothelial ECM and endothelial actomyosin contractility that mediate the endothelial forces also impact the endothelium's resistance to cancer cell transmigration. These results indicate that mechanical features of distant tissues, including force interactions between the endothelium and the subendothelial ECM, are key determinants of metastatic organotropism.
Collapse
Affiliation(s)
- Yousef Javanmardi
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Ayushi Agrawal
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Andrea Malandrino
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
- Biomaterials, Biomechanics and Tissue Engineering GroupDepartment of Materials Science and Engineering and Research Center for Biomedical EngineeringUniversitat Politécnica de Catalunya (UPC)08019BarcelonaSpain
| | - Soufian Lasli
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Michelle Chen
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Somayeh Shahreza
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
| | - Bianca Serwinski
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Leila Cammoun
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ran Li
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Mehdi Jorfi
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Boris Djordjevic
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- 199 Biotechnologies LtdGloucester RoadLondonW2 6LDUK
| | - Nicolas Szita
- Department of Biochemical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Fabian Spill
- School of MathematicsUniversity of BirminghamEdgbastonBirminghamB152TSUK
| | - Sergio Bertazzo
- Department of Medical Physics and Biomedical EngineeringUniversity College LondonLondonWC1E 6BTUK
| | - Graham K Sheridan
- School of Life SciencesQueen's Medical CentreUniversity of NottinghamNottinghamNG7 2UHUK
| | - Vivek Shenoy
- Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaPA19104USA
| | - Fernando Calvo
- Instituto de Biomedicina y Biotecnología de Cantabria (Consejo Superior de Investigaciones Científicas, Universidad de Cantabria)Santander39011Spain
| | - Roger Kamm
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Emad Moeendarbary
- Department of Mechanical EngineeringUniversity College LondonTorrington PlaceLondonWC1E 7JEUK
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| |
Collapse
|
32
|
Hebert JD, Neal JW, Winslow MM. Dissecting metastasis using preclinical models and methods. Nat Rev Cancer 2023; 23:391-407. [PMID: 37138029 DOI: 10.1038/s41568-023-00568-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/27/2023] [Indexed: 05/05/2023]
Abstract
Metastasis has long been understood to lead to the overwhelming majority of cancer-related deaths. However, our understanding of the metastatic process, and thus our ability to prevent or eliminate metastases, remains frustratingly limited. This is largely due to the complexity of metastasis, which is a multistep process that likely differs across cancer types and is greatly influenced by many aspects of the in vivo microenvironment. In this Review, we discuss the key variables to consider when designing assays to study metastasis: which source of metastatic cancer cells to use and where to introduce them into mice to address different questions of metastasis biology. We also examine methods that are being used to interrogate specific steps of the metastatic cascade in mouse models, as well as emerging techniques that may shed new light on previously inscrutable aspects of metastasis. Finally, we explore approaches for developing and using anti-metastatic therapies, and how mouse models can be used to test them.
Collapse
Affiliation(s)
- Jess D Hebert
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Joel W Neal
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
33
|
Seelen LWF, van den Wildenberg L, van der Kemp WJM, Mohamed Hoesein FAA, Mohammad NH, Molenaar IQ, van Santvoort HC, Prompers JJ, Klomp DWJ. Prospective of 31 P MR Spectroscopy in Hepatopancreatobiliary Cancer: A Systematic Review of the Literature. J Magn Reson Imaging 2023; 57:1144-1155. [PMID: 35916278 DOI: 10.1002/jmri.28372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The incidence of liver and pancreatic cancer is rising. Patients benefit from current treatments, but there are limitations in the evaluation of (early) response to treatment. Tumor metabolic alterations can be measured noninvasively with phosphorus (31 P) magnetic resonance spectroscopy (MRS). PURPOSE To conduct a quantitative analysis of the available literature on 31 P MRS performed in hepatopancreatobiliary cancer and to provide insight into its current and potential for therapy (non-) response assessment. POPULATION Patients with hepatopancreatobiliary cancer. FIELD STRENGTH/SEQUENCE: 31 P MRS. ASSESSMENT The PubMed, EMBASE, and Cochrane library databases were systematically searched for studies published to 17 March 17, 2022. All 31 P MRS studies in hepatopancreatobiliary cancer reporting 31 P metabolite levels were included. STATISTICAL TESTS Relative differences in 31 P metabolite levels/ratios between patients before therapy and healthy controls, and the relative changes in 31 P metabolite levels/ratios in patients before and after therapy were determined. RESULTS The search yielded 10 studies, comprising 301 subjects, of whom 132 (44%) healthy volunteers and 169 (56%) patients with liver cancer of various etiology. To date, 31 P MRS has not been applied in pancreatic cancer. In liver cancer, alterations in levels of 31 P metabolites involved in cell proliferation (phosphomonoesters [PMEs] and phosphodiesters [PDEs]) and energy metabolism (ATP and inorganic phosphate [Pi]) were observed. In particular, liver tumors were associated with elevations of PME/PDE and PME/Pi compared to healthy liver tissue, although there was a broad variety among studies (elevations of 2%-267% and 21%-233%, respectively). Changes in PME/PDE in liver tumors upon therapy were substantial, yet very heterogeneous and both decreases and increases were observed, whereas PME/Pi was consistently decreased after therapy in all studies (-13% to -76%). DATA CONCLUSION 31 P MRS has great potential for treatment monitoring in oncology. Future studies are needed to correlate the changes in 31 P metabolite levels in hepatopancreatobiliary tumors with treatment response. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Leonard W F Seelen
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | | | - Wybe J M van der Kemp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Firdaus A A Mohamed Hoesein
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, UMC Utrecht Cancer Center, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - I Quintus Molenaar
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hjalmar C van Santvoort
- Department of Surgery, UMC Utrecht Cancer Center and St Antonius Hospital Nieuwegein: Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Department of Radiology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
34
|
Petinrin OO, Saeed F, Toseef M, Liu Z, Basurra S, Muyide IO, Li X, Lin Q, Wong KC. Machine learning in metastatic cancer research: Potentials, possibilities, and prospects. Comput Struct Biotechnol J 2023; 21:2454-2470. [PMID: 37077177 PMCID: PMC10106342 DOI: 10.1016/j.csbj.2023.03.046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/26/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023] Open
Abstract
Cancer has received extensive recognition for its high mortality rate, with metastatic cancer being the top cause of cancer-related deaths. Metastatic cancer involves the spread of the primary tumor to other body organs. As much as the early detection of cancer is essential, the timely detection of metastasis, the identification of biomarkers, and treatment choice are valuable for improving the quality of life for metastatic cancer patients. This study reviews the existing studies on classical machine learning (ML) and deep learning (DL) in metastatic cancer research. Since the majority of metastatic cancer research data are collected in the formats of PET/CT and MRI image data, deep learning techniques are heavily involved. However, its black-box nature and expensive computational cost are notable concerns. Furthermore, existing models could be overestimated for their generality due to the non-diverse population in clinical trial datasets. Therefore, research gaps are itemized; follow-up studies should be carried out on metastatic cancer using machine learning and deep learning tools with data in a symmetric manner.
Collapse
Affiliation(s)
| | - Faisal Saeed
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | - Muhammad Toseef
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Zhe Liu
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| | - Shadi Basurra
- DAAI Research Group, Department of Computing and Data Science, School of Computing and Digital Technology, Birmingham City University, Birmingham B4 7XG, UK
| | | | - Xiangtao Li
- School of Artificial Intelligence, Jilin University, Jilin, China
| | - Qiuzhen Lin
- School of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China
| | - Ka-Chun Wong
- Department of Computer Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
- Hong Kong Institute for Data Science, City University of Hong Kong, Kowloon Tong, Kowloon, Hong Kong SAR
| |
Collapse
|
35
|
Klosowski M, Haines L, Alfino L, McMellen A, Leibowitz M, Regan D. Naturally occurring canine sarcomas: Bridging the gap from mouse models to human patients through cross-disciplinary research partnerships. Front Oncol 2023; 13:1130215. [PMID: 37035209 PMCID: PMC10076632 DOI: 10.3389/fonc.2023.1130215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/20/2023] [Indexed: 04/11/2023] Open
Abstract
Fueled by support from the National Cancer Institute's "Cancer Moonshot" program, the past few years have witnessed a renewed interest in the canine spontaneous cancer model as an invaluable resource in translational oncology research. Increasingly, there is awareness that pet dogs with cancer provide an accessible bridge to improving the efficiency of cancer drug discovery and clinical therapeutic development. Canine tumors share many biological, genetic, and histologic features with their human tumor counterparts, and most importantly, retain the complexities of naturally occurring drug resistance, metastasis, and tumor-host immune interactions, all of which are difficult to recapitulate in induced or genetically engineered murine tumor models. The utility of canine models has been particularly apparent in sarcoma research, where the increased incidence of sarcomas in dogs as compared to people has facilitated comparative research resulting in treatment advances benefitting both species. Although there is an increasing awareness of the advantages in using spontaneous canine sarcoma models for research, these models remain underutilized, in part due to a lack of more permanent institutional and cross-institutional infrastructure to support partnerships between veterinary and human clinician-scientists. In this review, we provide an updated overview of historical and current applications of spontaneously occurring canine tumor models in sarcoma research, with particular attention to knowledge gaps, limitations, and growth opportunities within these applications. Furthermore, we propose considerations for working within existing veterinary translational and comparative oncology research infrastructures to maximize the benefit of partnerships between veterinary and human biomedical researchers within and across institutions to improve the utility and application of spontaneous canine sarcomas in translational oncology research.
Collapse
Affiliation(s)
- Marika Klosowski
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Laurel Haines
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Lauren Alfino
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| | - Alexandra McMellen
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO, United States
| | - Michael Leibowitz
- Center for Cancer and Blood Disorders, Children’s Hospital Colorado, Aurora, CO, United States
| | - Daniel Regan
- Flint Animal Cancer Center, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
- Department of Microbiology, Immunology, and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
36
|
Sell MC, Ramlogan-Steel CA, Steel JC, Dhungel BP. MicroRNAs in cancer metastasis: biological and therapeutic implications. Expert Rev Mol Med 2023; 25:e14. [PMID: 36927814 PMCID: PMC10407223 DOI: 10.1017/erm.2023.7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 01/02/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
Cancer metastasis is the primary cause of cancer-related deaths. The seeding of primary tumours at a secondary site is a highly inefficient process requiring substantial alterations in the genetic architecture of cancer cells. These alterations include significant changes in global gene expression patterns. MicroRNAs are small, non-protein coding RNAs which play a central role in regulating gene expression. Here, we focus on microRNA determinants of cancer metastasis and examine microRNA dysregulation in metastatic cancer cells. We dissect the metastatic process in a step-wise manner and summarise the involvement of microRNAs at each step. We also discuss the advantages and limitations of different microRNA-based strategies that have been used to target metastasis in pre-clinical models. Finally, we highlight current clinical trials that use microRNA-based therapies to target advanced or metastatic tumours.
Collapse
Affiliation(s)
- Marie C. Sell
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Charmaine A. Ramlogan-Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Jason C. Steel
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD 4701, Australia
| | - Bijay P. Dhungel
- Gene & Stem Cell Therapy Program Centenary Institute, The University of Sydney, Camperdown, NSW 2050, Australia
- Faculty of Medicine & Health, The University of Sydney, Camperdown, NSW 2050, Australia
| |
Collapse
|
37
|
Patras L, Shaashua L, Matei I, Lyden D. Immune determinants of the pre-metastatic niche. Cancer Cell 2023; 41:546-572. [PMID: 36917952 PMCID: PMC10170403 DOI: 10.1016/j.ccell.2023.02.018] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 03/16/2023]
Abstract
Primary tumors actively and specifically prime pre-metastatic niches (PMNs), the future sites of organotropic metastasis, preparing these distant microenvironments for disseminated tumor cell arrival. While initial studies of the PMN focused on extracellular matrix alterations and stromal reprogramming, it is increasingly clear that the far-reaching effects of tumors are in great part achieved through systemic and local PMN immunosuppression. Here, we discuss recent advances in our understanding of the tumor immune microenvironment and provide a comprehensive overview of the immune determinants of the PMN's spatiotemporal evolution. Moreover, we depict the PMN immune landscape, based on functional pre-clinical studies as well as mounting clinical evidence, and the dynamic, reciprocal crosstalk with systemic changes imposed by cancer progression. Finally, we outline emerging therapeutic approaches that alter the dynamics of the interactions driving PMN formation and reverse immunosuppression programs in the PMN ensuring early anti-tumor immune responses.
Collapse
Affiliation(s)
- Laura Patras
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA; Department of Molecular Biology and Biotechnology, Center of Systems Biology, Biodiversity and Bioresources, Faculty of Biology and Geology, Babes-Bolyai University, Cluj-Napoca, Romania
| | - Lee Shaashua
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
| | - Irina Matei
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| | - David Lyden
- Children's Cancer and Blood Foundation Laboratories, Departments of Pediatrics, and Cell and Developmental Biology, Drukier Institute for Children's Health, Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
38
|
Tichanek F, Försti A, Hemminki A, Hemminki O, Hemminki K. SURVIVAL IN MELANOMA IN THE NORDIC COUNTRIES INTO THE ERA OF TARGETED AND IMMUNOLOGICAL THERAPIES. Eur J Cancer 2023; 186:133-141. [PMID: 37068406 DOI: 10.1016/j.ejca.2023.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 04/08/2023]
Abstract
OBJECTIVES Survival in melanoma has been increasing and the most recent interest is to observe the population-level impact of novel targeted therapies and immunotherapy. We analysed survival in melanoma from Denmark (DK), Finland (FI), Norway (NO) and Sweden (SE) over a 50-years period (1971-2020). METHODS Relative 1-5/1- and 5-year survival data were obtained from the NORDCAN database for the years 1971-2020. We estimated annual changes in survival rates and determined significant breaking points for trends. RESULTS Survival in melanoma has reached the point where 1-year survival is approaching 100% (men 97.5-98.6%, women 98.4-99.3%, depending on the country) and 5-year survival is 93% for men (91.5-95.2%) and 96% for women (95.3-97.2%). The highest survival figures were for DK. Significant increases in both 1- and 5-year survival were observed in most countries even towards the end of the follow-up (from 2006 to 2010-2011-2015 and further to 2016-2020). CONCLUSIONS The main increase in melanoma survival took place up to year 1990, which was probably largely achieved through successful population campaigns for sun protection and programmes for early detection of lesions. Survival increased again after year 2000 up to the last period 2016-2020. This late development coincided with the introduction of targeted therapies using BRAF and BRAF/MEK inhibitors, and towards the end of the time period availability of checkpoint inhibitors. The success of melanoma treatment in DK was mostly likely due to the efficient use of modern therapies and to the centralised treatment for metastatic disease.
Collapse
Affiliation(s)
- Filip Tichanek
- Biomedical Center, Faculty of Medicine, Charles University Pilsen, 30605 Pilsen, Czech Republic; Institute of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Asta Försti
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Finland; Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Otto Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Finland; Department of Urology, Helsinki University Hospital, Helsinki, Finland
| | - Kari Hemminki
- Biomedical Center, Faculty of Medicine, Charles University Pilsen, 30605 Pilsen, Czech Republic; Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 580, D-69120 Heidelberg, Germany.
| |
Collapse
|
39
|
Hemminki K, Tichanek F, Försti A, Hemminki O, Hemminki A. Survival in gastric and esophageal cancers in the Nordic countries through a half century. Cancer Med 2023; 12:10212-10221. [PMID: 36846972 DOI: 10.1002/cam4.5748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Revised: 01/08/2023] [Accepted: 02/16/2023] [Indexed: 03/01/2023] Open
Abstract
BACKGROUND Gastric cancer (GC) and esophageal cancer (EC) are among the most fatal cancers and improving survival in them is a major clinical challenge. Nordic cancer data were recently released up to year 2019. These data are relevant for long-term survival analysis as they originate from high-quality national cancer registries from countries with practically free access to health care, thus documenting 'real-world' experience for entire populations. PATIENTS/METHODS Data were obtained for Danish (DK), Finnish (FI), Norwegian (NO), and Swedish (SE) patients from the NORDCAN database from years 1970 through 2019. Relative 1- and 5-year survival were analyzed, and additionally the difference between 1- and 5-year survival was calculated as a measure of trends between years 1 and 5 after diagnosis. RESULTS Relative 1-year survival for Nordic men and women in GC was 30% in period 1970-74 and it increased close to 60%. Early 5-year survival ranged between 10 and 15% and the last figures were over 30% for all women and NO men while survival for other men remain below 30%. Survival in EC was below that in GC, and it reached over 50% for 1-year survival only for NO patients; 5-year survival reached over 20% only for NO women. For both cancers, the difference between 1- and 5-year survival increased with time. Survival was worst among old patients. CONCLUSION GC and EC survival improved over the 50-year period but the increase in 5-year survival was entirely explained by gains in 1-year survival, which improved at an accelerated pace in EC. The likely reasons for improvements are changes in diagnosis, treatment, and care. The challenges are to push survival past year 1 with attention to old patients. These cancers have a potential for primary prevention through the avoidance of risk factors.
Collapse
Affiliation(s)
- Kari Hemminki
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.,Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Filip Tichanek
- Biomedical Center, Faculty of Medicine, Charles University, Pilsen, Czech Republic.,Institute of Pathological Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Asta Försti
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany.,Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Otto Hemminki
- Department of Urology, Helsinki University Hospital and University of Helsinki, Helsinki, Finland.,Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, University of Helsinki, Helsinki, Finland.,Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
40
|
Rodenak-Kladniew B, Gambaro R, Cisneros JS, Huck-Iriart C, Padula G, Castro GR, Chain CY, Islan GA. Enhanced anticancer activity of encapsulated geraniol into biocompatible lipid nanoparticles against A549 human lung cancer cells. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
41
|
Wang Q, Zhao B, Li J, Zhao J, Wang C, Li Q, Yang W, Xu L, Gong Y. Qilian Formula Inhibits Tumor Cell Growth in a Bone Metastasis Model of Lung Cancer. Integr Cancer Ther 2023; 22:15347354231217274. [PMID: 38130184 DOI: 10.1177/15347354231217274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Bone metastasis is frequently common in advanced lung cancer with the major issue of a pathological fracture. Previous studies suggested that Astragalus membranaceus (Qi) and Ampelopsis japonica (Lian), which are used as folk medicine in China, have potential effects on inhibiting tumor growth and protecting bones, respectively. In this study, an experiment on the inhibitory effect of the Qilian formula (AAF) in vivo was designed to examine tumor growth in bone and osteoclast formation. MATERIALS AND METHODS The bone metastasis xenograft models were established by implanting NCI-H460-luc2 lung cancer cells into the right tibiae bones of mice. After confirming the model's viability through optical imaging 7 days post-implantation, 2 groups, namely the AAF group and the control group, were administered 0.3 mL of AAF extract (9 g/kg/day) or normal saline via intragastric delivery for a duration of 4 weeks. Throughout the study, we longitudinally assessed tumor burden, bone destruction, and weight-bearing capacity in vivo using reporter gene bioluminescence imaging (BLI), micro-CT, and dynamic weight-bearing (DWB) tests. Mechanistic insights were gained through Hematoxylin-eosin (H&E) staining, immunohistochemical (IHC) analysis, western blotting, and flow cytometry. RESULTS Qilian formula produced significant inhibition to the progress of bone destruction and tumor burden in the right tibiae bone in the treatment group. It was further evidenced by molecular imaging in vivo via small animal micro-CT and BLI with parametric quantification, characterizing significantly lower uptake of BLI signal in the treated tumor lesions and improving the pathological changes in the microstructure of bone. Furthermore, DWB tests revealed that Qilian formula treatment significantly maintained the weight-bearing capacity. According to immunohistochemical analysis, the effect of the Qilian formula appeared to involve the suppression of osteoclast formation by lower expression of the tartrate-resistant acid phosphatase. Cell apoptosis and death induction were evidenced by a higher percentage of Bal2、BAX and caspase 3 expressions of Qilian formula-treated tumor tissues. CONCLUSIONS Our study demonstrated a significant inhibitory effect of the Qilian formula on the progression of osteolytic invasion in vivo by suppressing osteoclastogenesis and promoting apoptotic cell death.
Collapse
Affiliation(s)
- Qin Wang
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Bei Zhao
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jiaqi Li
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jingwen Zhao
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chengyan Wang
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Quanyao Li
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Wenxiao Yang
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ling Xu
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Tumor Institute of Traditional Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yabin Gong
- Yueyang Hospital of Integrated Traditional Chinese Medicine and Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
42
|
Direct In Vivo Comparison of 99mTc-Labeled Scaffold Proteins, DARPin G3 and ADAPT6, for Visualization of HER2 Expression and Monitoring of Early Response for Trastuzumab Therapy. Int J Mol Sci 2022; 23:ijms232315181. [PMID: 36499504 PMCID: PMC9740058 DOI: 10.3390/ijms232315181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/07/2022] Open
Abstract
Non-invasive radionuclide molecular visualization of human epidermal growth factor receptor type 2 (HER2) can provide stratification of patients for HER2-targeting therapy. This method can also enable monitoring of the response to such therapies, thereby making treatment personalized and more efficient. Clinical evaluation in a phase I study demonstrated that injections of two scaffold protein-based imaging probes, [99mTc]Tc-(HE)3-G3 and [99mTc]Tc-ADAPT6, are safe, well-tolerated and cause a low level of radioactivity in healthy tissue. The goal of this preclinical study was to select the best probe for stratification of patients and response monitoring. Biodistribution of both tracers was compared in mice bearing SKOV-3 xenografts with high HER2 expression or MDA-MB-468 xenografts with very low expression. Changes in accumulation of the probes in SKOV-3 tumors 24 h after injection of trastuzumab were evaluated. Both [99mTc]Tc-ADAPT6 and [99mTc]Tc-(HE)3-G3 permitted high contrast imaging of HER2-expressing tumors and a clear discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-ADAPT6 has better preconditions for higher sensitivity and specificity of stratification. On the other hand, [99mTc]Tc-(HE)3-G3 is capable of detecting the decrease of HER2 expression on response to trastuzumab therapy only 24 h after injection of the loading dose. This indicates that the [99mTc]Tc-(HE)3-G3 tracer would be better for monitoring early response to such treatment. The results of this study should be considered in planning of further clinical development of HER2 imaging probes.
Collapse
|
43
|
Barakeh DH, Alsolme E, Alqubaishi F, Almutairi A, Alhabeeb L, Al Abdulmohsen S, Almohsen SS, Alayed D, AlAnazi SR, AlZahrani M, Binowayn AM, AlOtaibi SS, Alkhureeb FA, Al Shakweer W, Al-Hindi H, Alassiri A, Robinson HA, Abedalthagafi M. Clinicopathologic and genomic characterizations of brain metastases using a comprehensive genomic panel. Front Med (Lausanne) 2022; 9:947456. [PMID: 36507516 PMCID: PMC9729258 DOI: 10.3389/fmed.2022.947456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Central nervous system (CNS) metastasis is the most common brain tumor type in adults. Compared to their primary tumors, these metastases undergo a variety of genetic changes to be able to survive and thrive in the complex tissue microenvironment of the brain. In clinical settings, the majority of traditional chemotherapies have shown limited efficacy against CNS metastases. However, the discovery of potential driver mutations, and the development of drugs specifically targeting affected signaling pathways, could change the treatment landscape of CNS metastasis. Genetic studies of brain tumors have so far focused mainly on common cancers in western populations. In this study, we performed Next Generation Sequencing (NGS) on 50 pairs of primary tumors, including but not limited to colorectal, breast, renal and thyroid tumors, along with their brain metastatic tumor tissue counterparts, from three different local tertiary centers in Saudi Arabia. We identified potentially clinically relevant mutations in brain metastases that were not detected in corresponding primary tumors, including mutations in the PI3K, CDK, and MAPK pathways. These data highlight the differences between primary cancers and brain metastases and the importance of acquiring and analyzing brain metastatic samples for further clinical management.
Collapse
Affiliation(s)
- Duna H. Barakeh
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia,Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Ebtehal Alsolme
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Fatimah Alqubaishi
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Amal Almutairi
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Lamees Alhabeeb
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia,Department of Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Shahd S. Almohsen
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | - Doaa Alayed
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | | | - Malak AlZahrani
- Department of Pathology, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia
| | | | - Sarah S. AlOtaibi
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia
| | | | - Wafa Al Shakweer
- Department of Pathology, King Fahad Medical City, Riyadh, Saudi Arabia
| | - Hindi Al-Hindi
- Department of Pathology, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Ali Alassiri
- Department of Pathology and Laboratory Medicine, King Abdulaziz Medical City, Riyadh, Saudi Arabia
| | | | - Malak Abedalthagafi
- Genomics Research Department, King Fahad Medical City, Riyadh, Saudi Arabia,Department of Pathology and Laboratory Medicine, Emory University Hospital, Atlanta, GA, United States,*Correspondence: Malak Abedalthagafi,
| |
Collapse
|
44
|
Conway JW, Braden J, Wilmott JS, Scolyer RA, Long GV, Pires da Silva I. The effect of organ-specific tumor microenvironments on response patterns to immunotherapy. Front Immunol 2022; 13:1030147. [DOI: 10.3389/fimmu.2022.1030147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 11/04/2022] [Indexed: 11/18/2022] Open
Abstract
Immunotherapy, particularly immune checkpoint inhibitors, have become widely used in various settings across many different cancer types in recent years. Whilst patients are often treated on the basis of the primary cancer type and clinical stage, recent studies have highlighted disparity in response to immune checkpoint inhibitors at different sites of metastasis, and their impact on overall response and survival. Studies exploring the tumor immune microenvironment at different organ sites have provided insights into the immune-related mechanisms behind organ-specific patterns of response to immunotherapy. In this review, we aimed to highlight the key learnings from clinical studies across various cancers including melanoma, lung cancer, renal cell carcinoma, colorectal cancer, breast cancer and others, assessing the association of site of metastasis and response to immune checkpoint inhibitors. We also summarize the key clinical and pre-clinical findings from studies exploring the immune microenvironment of specific sites of metastasis. Ultimately, further characterization of the tumor immune microenvironment at different metastatic sites, and understanding the biological drivers of these differences, may identify organ-specific mechanisms of resistance, which will lead to more personalized treatment approaches for patients with innate or acquired resistance to immunotherapy.
Collapse
|
45
|
Larkina M, Plotnikov E, Bezverkhniaia E, Shabanova Y, Tretyakova M, Yuldasheva F, Zelchan R, Schulga A, Konovalova E, Vorobyeva A, Garousi J, Gräslund T, Belousov M, Tolmachev V, Deyev S. Comparative Preclinical Evaluation of Peptide-Based Chelators for the Labeling of DARPin G3 with 99mTc for Radionuclide Imaging of HER2 Expression in Cancer. Int J Mol Sci 2022; 23:13443. [PMID: 36362226 PMCID: PMC9653920 DOI: 10.3390/ijms232113443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/25/2022] [Accepted: 10/28/2022] [Indexed: 11/15/2023] Open
Abstract
Non-invasive radionuclide imaging of human epidermal growth factor receptor type 2 (HER2) expression in breast, gastroesophageal, and ovarian cancers may stratify patients for treatment using HER2-targeted therapeutics. Designed ankyrin repeat proteins (DARPins) are a promising type of targeting probe for radionuclide imaging. In clinical studies, the DARPin [99mTc]Tc-(HE)3-G3 labeled using a peptide-based chelator His-Glu-His-Glu-His-Glu ((HE)3), provided clear imaging of HER2 expressing breast cancer 2-4 h after injection. The goal of this study was to evaluate if the use of cysteine-containing peptide-based chelators Glu-Glu-Glu-Cys (E3C), Gly-Gly-Gly-Cys (G3C), and Gly-Gly-Gly-Ser-Cys connected via a (Gly-Gly-Gly-Ser)3-linker (designated as G3-(G3S)3C) would further improve the contrast of imaging using 99mTc-labeled derivatives of G3. The labeling of the new variants of G3 provided a radiochemical yield of over 95%. Labeled G3 variants bound specifically to human HER2-expressing cancer cell lines with affinities in the range of 1.9-5 nM. Biodistribution of [99mTc]Tc-G3-G3C, [99mTc]Tc-G3-(G3S)3C, and [99mTc]Tc-G3-E3C in mice was compared with the biodistribution of [99mTc]Tc-(HE)3-G3. It was found that the novel variants provide specific accumulation in HER2-expressing human xenografts and enable discrimination between tumors with high and low HER2 expression. However, [99mTc]Tc-(HE)3-G3 provided better contrast between tumors and the most frequent metastatic sites of HER2-expressing cancers and is therefore more suitable for clinical applications.
Collapse
Affiliation(s)
- Mariia Larkina
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Evgenii Plotnikov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Ekaterina Bezverkhniaia
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Yulia Shabanova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Maria Tretyakova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Feruza Yuldasheva
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
| | - Roman Zelchan
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Nuclear Medicine, Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, 634009 Tomsk, Russia
| | - Alexey Schulga
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Elena Konovalova
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Anzhelika Vorobyeva
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Javad Garousi
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 11417 Stockholm, Sweden
| | - Torbjörn Gräslund
- Department of Protein Science, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, 11417 Stockholm, Sweden
| | - Mikhail Belousov
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Pharmaceutical Analysis, Siberian State Medical University, 634050 Tomsk, Russia
| | - Vladimir Tolmachev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Department of Immunology, Genetics and Pathology, Uppsala University, 75185 Uppsala, Sweden
| | - Sergey Deyev
- Research Centrum for Oncotheranostics, Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, 634050 Tomsk, Russia
- Molecular Immunology Laboratory, Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
46
|
Imaging of Metastatic Disease to the Ovary/Adnexa. Magn Reson Imaging Clin N Am 2022; 31:93-107. [DOI: 10.1016/j.mric.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Liu D, Bai J, Chen Q, Tan R, An Z, Xiao J, Qu Y, Xu Y. Brain metastases: It takes two factors for a primary cancer to metastasize to brain. Front Oncol 2022; 12:1003715. [PMID: 36248975 PMCID: PMC9554149 DOI: 10.3389/fonc.2022.1003715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/12/2022] [Indexed: 11/13/2022] Open
Abstract
Brain metastasis of a cancer is a malignant disease with high mortality, but the cause and the molecular mechanism remain largely unknown. Using the samples of primary tumors of 22 cancer types in the TCGA database, we have performed a computational study of their transcriptomic data to investigate the drivers of brain metastases at the basic physics and chemistry level. Our main discoveries are: (i) the physical characteristics, namely electric charge, molecular weight, and the hydrophobicity of the extracellular structures of the expressed transmembrane proteins largely affect a primary cancer cell’s ability to cross the blood-brain barrier; and (ii) brain metastasis may require specific functions provided by the activated enzymes in the metastasizing primary cancer cells for survival in the brain micro-environment. Both predictions are supported by published experimental studies. Based on these findings, we have built a classifier to predict if a given primary cancer may have brain metastasis, achieving the accuracy level at AUC = 0.92 on large test sets.
Collapse
Affiliation(s)
- Dingyun Liu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Jun Bai
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- School of Artificial Intelligence, Jilin University, Changchun, China
| | - Qian Chen
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Renbo Tan
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Zheng An
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States
| | - Jun Xiao
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Yingwei Qu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- College of Computer Science and Technology, Jilin University, Changchun, China
| | - Ying Xu
- Center for Cancer Systems Biology, China-Japan Union Hospital of Jilin University, Changchun, China
- Computational Systems Biology Lab, Department of Biochemistry and Molecular Biology and Institute of Bioinformatics, The University of Georgia, Athens, GA, United States
- *Correspondence: Ying Xu,
| |
Collapse
|
48
|
Diagnosis and Pattern Identification of Intrathoracic Malignant Melanoma Metastasis: A Retrospective Single Center Analysis. Diagnostics (Basel) 2022; 12:diagnostics12092254. [PMID: 36140655 PMCID: PMC9497793 DOI: 10.3390/diagnostics12092254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/11/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
The lung is a frequent site of secondary malignancies. Melanoma is a malignant tumor originating from melanocytes, that accounts for the majority of death related to skin cancers. In advanced stages, it can also present with intrathoracic metastasis, particularly in the lungs, but infrequent intrathoracic manifestations are possible. A retrospective analysis of the cases referred to the pulmonary endoscopy unit of the hospital of Reggio Emilia in the last 10 years (since December 2012) was carried out, discovering 17 cases of melanoma metastasis with thoracic localizations, either with or without a diagnosis of primary melanoma. Four repetitive patterns of clinical-radiological presentation have been identified and described through the same number of paradigmatic clinical cases: nodal involvement (35%), lung mass(es) (41%), diffuse pulmonary involvement (12%), and pleural involvement (12%). These different presentations imply the use of different diagnostic techniques, with an overall high diagnostic yield (87.5%). Finally, a brief analysis of survival based on the pattern of presentation has been performed, finding no statistically significant differences between the four groups at metastasis diagnosis (p-value = 0.06, median survival of respectively 54, 8, 9, and 26 months from metastasis diagnosis), while there is a significant difference considering patients with lung involvement versus nodal/pleural involvement (p = 0.01).
Collapse
|
49
|
Bergqvist J, Hedman C, Schultz T, Strang P. Equal receipt of specialized palliative care in breast and prostate cancer: a register study. Support Care Cancer 2022; 30:7721-7730. [PMID: 35697884 PMCID: PMC9385819 DOI: 10.1007/s00520-022-07150-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE There are inequalities in cancer treatment. This study aimed to investigate whether receipt of specialized palliative care (SPC) is affected by typical female and male diagnoses (breast and prostate cancer), age, socioeconomic status (SES), comorbidities as measured by the Charlson Comorbidity Index (CCI), or living arrangements (home vs nursing home residence). Furthermore, we wanted to investigate if receipt of SPC affects the place of death, or correlated with emergency department visits, or hospital admissions. METHODS All breast and prostate cancer patients who died with verified distant metastases during 2015-2019 in the Stockholm Region were included (n = 2516). We used univariable and stepwise (forward) logistic multiple regression models. RESULTS Lower age, lower CCI score, and higher SES significantly predicted receipt of palliative care 3 months before death (p = .007-p < .0001). Patients with prostate cancer, a lower CCI score, receiving palliative care services, or living in a nursing home were admitted to a hospital or visited an emergency room less often during their last month of life (p = .01 to < .0001). Patients receiving palliative care services had a low likelihood of dying in an acute care hospital (p < .001). Those who died in a hospital were younger, had a lower CCI score, and had received less palliative care or nursing home services (p = .02- < .0001). CONCLUSION Age, comorbidities, and nursing home residence affected the likelihood of receiving SPC. However, the diagnosis of breast versus prostate cancer did not. Emergency room visits, hospital admissions, and hospital deaths are registered less often for patients with SPC.
Collapse
Affiliation(s)
- Jenny Bergqvist
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
- Breast Center, Department of Surgery, Capio St Gorans Sjukhus, St Görans plan 1, 112 19, Stockholm, Sweden.
| | - Christel Hedman
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- R & D Department, Stockholms Sjukhem Foundation, 102 26, P. O. Box 12230, Stockholm, Sweden
| | - Torbjörn Schultz
- R & D Department, Stockholms Sjukhem Foundation, 102 26, P. O. Box 12230, Stockholm, Sweden
| | - Peter Strang
- R & D Department, Stockholms Sjukhem Foundation, 102 26, P. O. Box 12230, Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
- Regional Cancer Centre Stockholm-Gotland, Stockholm, Sweden
| |
Collapse
|
50
|
Chen C, Huang R, Zhou J, Guo L, Xiang S. Formation of pre-metastatic bone niche in prostate cancer and regulation of traditional chinese medicine. Front Pharmacol 2022; 13:897942. [PMID: 36059977 PMCID: PMC9428453 DOI: 10.3389/fphar.2022.897942] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 07/06/2022] [Indexed: 11/24/2022] Open
Abstract
Prostate cancer with bone metastasis has a high cancer-specific mortality. Thus, it is essential to delineate the mechanism of bone metastasis. Pre-metastatic niche (PMN) is a concept in tumor metastasis, which is characterized by tumor-secreted factors, reprogramming of stromal cells, and immunosuppression by myeloid-derived suppressor cells (MDSC), which is induced by bone marrow-derived cells (BMDC) in the target organ. However, PMN does not explain the predilection of prostate cancer towards bone metastasis. In this review, we discuss the initiation of bone metastasis of prostate cancer from the perspective of PMN and tumor microenvironment in a step-wise manner. Furthermore, we present a new concept called pre-metastatic bone niche, featuring inherent BMDC, to interpret bone metastasis. Moreover, we illustrate the regulation of traditional Chinese medicine on PMN.
Collapse
|