1
|
Kato K, Yasui H, Sato-Akaba H, Emoto MC, Fujii HG, Kmiec MM, Kuppusamy P, Mizuno Y, Kuge Y, Nagane M, Yamashita T, Inanami O. Feasibility study of multimodal imaging for redox status and glucose metabolism in tumor. Free Radic Biol Med 2024; 218:57-67. [PMID: 38574976 DOI: 10.1016/j.freeradbiomed.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 03/17/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
Understanding the tumor redox status is important for efficient cancer treatment. Here, we noninvasively detected changes in the redox environment of tumors before and after cancer treatment in the same individuals using a novel compact and portable electron paramagnetic resonance imaging (EPRI) device and compared the results with glycolytic information obtained through autoradiography using 2-deoxy-2-[18F]fluoro-d-glucose ([18F]FDG). Human colon cancer HCT116 xenografts were used in the mice. We used 3-carbamoyl-PROXYL (3CP) as a paramagnetic and redox status probe for the EPRI of tumors. The first EPRI was followed by the intraperitoneal administration of buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis, or X-ray irradiation of the tumor. A second EPRI was performed on the following day. Autoradiography was performed after the second EPRI. After imaging, the tumor sections were evaluated by histological analysis and the amount of reducing substances in the tumor was measured. BSO treatment and X-ray irradiation significantly decreased the rate of 3CP reduction in tumors. Redox maps of tumors obtained from EPRI can be compared with tissue sections of approximately the same cross section. BSO treatment reduced glutathione levels in tumors, whereas X-ray irradiation did not alter the levels of any of the reducing substances. Comparison of the redox map with the autoradiography of [18F]FDG revealed that regions with high reducing power in the tumor were active in glucose metabolism; however, this correlation disappeared after X-ray irradiation. These results suggest that the novel compact and portable EPRI device is suitable for multimodal imaging, which can be used to study tumor redox status and therapeutic efficacy in cancer, and for combined analysis with other imaging modalities.
Collapse
Affiliation(s)
- Kazuhiro Kato
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hironobu Yasui
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan; One Health Research Center, Hokkaido University, Hokkaido, Japan.
| | - Hideo Sato-Akaba
- Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Miho C Emoto
- Department of Clinical Laboratory Science, School of Medical Technology, Health Sciences University of Hokkaido, Sapporo, Hokkaido, Japan
| | - Hirotada G Fujii
- Advanced Research Promotion Center, Health Sciences University of Hokkaido, Ishikari, Hokkaido, Japan
| | - Maciej M Kmiec
- Departments of Radiology and Radiation Oncology, Geisel School of Medicine, Dartmouth College, NH, USA
| | - Periannan Kuppusamy
- Departments of Radiology and Radiation Oncology, Geisel School of Medicine, Dartmouth College, NH, USA
| | - Yuki Mizuno
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Hokkaido, Japan; Global Center for Biomedical Science and Engineering, Faculty of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Masaki Nagane
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Tadashi Yamashita
- Laboratory of Biochemistry, School of Veterinary Medicine, Azabu University, Sagamihara, Kanagawa, Japan
| | - Osamu Inanami
- Laboratory of Radiation Biology, Department of Applied Veterinary Sciences, Faculty of Veterinary Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
2
|
Kietzmann T. Vitamin C: From nutrition to oxygen sensing and epigenetics. Redox Biol 2023; 63:102753. [PMID: 37263060 PMCID: PMC10245123 DOI: 10.1016/j.redox.2023.102753] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/03/2023] Open
Abstract
Vitamin C is unbeatable - at least when it comes to sales. Of all the vitamin preparations, those containing vitamin C sell best. This is surprising because vitamin C deficiency is extremely rare. Nevertheless, there is still controversy about whether the additional intake of vitamin C supplements is essential for our health. In this context, the possible additional benefit is in most cases merely reduced to the known effect as an antioxidant. However, new findings in recent years on the mechanisms of oxygen-sensing and epigenetic control underpin the multifaceted role of vitamin C in a biological context and have therefore renewed interest in it. In the present article, therefore, known facts are linked to these new key data. In addition, available clinical data on vitamin C use of cancer therapy are summarized.
Collapse
Affiliation(s)
- Thomas Kietzmann
- University of Oulu, Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, P.O. Box 3000, 90014, Oulu, Finland.
| |
Collapse
|
3
|
Yuan J, Zhang YH, Hua X, Hong HQ, Shi W, Liu KX, Liu ZX, Huang P. Genetically predicted vitamin C levels significantly affect patient survival and immunotypes in multiple cancer types. Front Immunol 2023; 14:1177580. [PMID: 37283769 PMCID: PMC10239825 DOI: 10.3389/fimmu.2023.1177580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Background Recent observational studies and meta-analyses have shown that vitamin C reduces cancer incidence and mortality, but the underlying mechanisms remain unclear. We conducted a comprehensive pan-cancer analysis and biological validation in clinical samples and animal tumor xenografts to understand its prognostic value and association with immune characteristics in various cancers. Methods We used the Cancer Genome Atlas gene expression data involving 5769 patients and 20 cancer types. Vitamin C index (VCI) was calculated using the expression of 11 genes known to genetically predict vitamin C levels, which were classified into high and low subgroups. The correlation between VCI and patient overall survival (OS), tumor mutational burden (TMB), microsatellite instability (MSI), and immune microenvironment was evaluated, using Kaplan-Meier analysis method and ESTIMATE (https://bioinformatics.mdanderson.org/estimate/). Clinical samples of breast cancer and normal tissues were used to validate the expression of VCI-related genes, and animal experiments were conducted to test the impact of vitamin C on colon cancer growth and immune cell infiltration. Results Significant changes in expression of VCI-predicted genes were observed in multiple cancer types, especially in breast cancer. There was a correlation of VCI with prognosis in all samples (adjusted hazard ratio [AHR] = 0.87; 95% confidence interval [CI] = 0.78-0.98; P = 0.02). The specific cancer types that exhibited significant correlation between VCI and OS included breast cancer (AHR = 0.14; 95% CI = 0.05-0.40; P < 0.01), head and neck squamous cell carcinoma (AHR = 0.20; 95% CI = 0.07-0.59; P < 0.01), kidney clear cell carcinoma (AHR = 0.66; 95% CI = 0.48-0.92; P = 0.01), and rectum adenocarcinoma (AHR = 0.01; 95% CI = 0.001-0.38; P = 0.02). Interestingly, VCI was correlated with altered immunotypes and associated with TMB and MSI negatively in colon and rectal adenocarcinoma (P < 0.001) but positively in lung squamous cell carcinoma (P < 0.05). In vivo study using mice bearing colon cancer xenografts demonstrated that vitamin C could inhibit tumor growth with significant impact on immune cell infiltration. Conclusion VCI is significantly correlated with OS and immunotypes in multiple cancers, and vitamin C might have therapeutic potential in colon cancer.
Collapse
Affiliation(s)
- Jing Yuan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yu-hong Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Xin Hua
- Department of Radiation Oncology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Hui-qi Hong
- Department of Oncology, Shunde Hospital of Southern Medical University, Foshan, China
| | - Wei Shi
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Kun-xiang Liu
- State Key Laboratory of Applied Optics, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ze-xian Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Peng Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
- Metabolomics Innovation Center, Sun Yat-sen University Zhongshan School of Medicine, Guangzhou, China
| |
Collapse
|
4
|
Srivastava S, Dubey AK, Madaan R, Bala R, Gupta Y, Dhiman BS, Kumar S. Emergence of nutrigenomics and dietary components as a complementary therapy in cancer prevention. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:89853-89873. [PMID: 36367649 DOI: 10.1007/s11356-022-24045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
Cancer is an illness characterized by abnormal cell development and the capability to infiltrate or spread to rest of the body. A tumor is the term for this abnormal growth that develops in solid tissues like an organ, muscle, or bone and can spread to other parts of the body through the blood and lymphatic systems. Nutrition is a critical and immortal environmental component in the development of all living organisms encoding the relationship between a person's nutrition and their genes. Nutrients have the ability to modify gene expression and persuade alterations in DNA and protein molecules which is researched scientifically in nutrigenomics. These interactions have a significant impact on the pharmacokinetic properties of bioactive dietary components as well as their site of action/molecular targets. Nutrigenomics encompasses nutrigenetics, epigenetics, and transcriptomics as well as other "omic" disciplines like proteomics and metabolomics to explain the vast disparities in cancer risk among people with roughly similar life style. Clinical trials and researches have evidenced that alternation of dietary habits is potentially one of the key approaches for reducing cancer risk in an individual. In this article, we will target how nutrigenomics and functional food work as preventive therapy in reducing the risk of cancer.
Collapse
Affiliation(s)
| | - Ankit Kumar Dubey
- Institute of Scholars, Bengaluru, 577102, Karnataka, India.
- iGlobal Research and Publishing Foundation, New Delhi, 110059, India.
| | - Reecha Madaan
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Rajni Bala
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Yugam Gupta
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | | | - Suresh Kumar
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, 147002, Punjab, India
| |
Collapse
|
5
|
Phadke I, Pouzolles M, Machado A, Moraly J, Gonzalez-Menendez P, Zimmermann VS, Kinet S, Levine M, Violet PC, Taylor N. Vitamin C deficiency reveals developmental differences between neonatal and adult hematopoiesis. Front Immunol 2022; 13:898827. [PMID: 36248829 PMCID: PMC9562198 DOI: 10.3389/fimmu.2022.898827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 09/02/2022] [Indexed: 11/25/2022] Open
Abstract
Hematopoiesis, a process that results in the differentiation of all blood lineages, is essential throughout life. The production of 1x1012 blood cells per day, including 200x109 erythrocytes, is highly dependent on nutrient consumption. Notably though, the relative requirements for micronutrients during the perinatal period, a critical developmental window for immune cell and erythrocyte differentiation, have not been extensively studied. More specifically, the impact of the vitamin C/ascorbate micronutrient on perinatal as compared to adult hematopoiesis has been difficult to assess in animal models. Even though humans cannot synthesize ascorbate, due to a pseudogenization of the L-gulono-γ-lactone oxidase (GULO) gene, its generation from glucose is an ancestral mammalian trait. Taking advantage of a Gulo-/- mouse model, we show that ascorbic acid deficiency profoundly impacts perinatal hematopoiesis, resulting in a hypocellular bone marrow (BM) with a significant reduction in hematopoietic stem cells, multipotent progenitors, and hematopoietic progenitors. Furthermore, myeloid progenitors exhibited differential sensitivity to vitamin C levels; common myeloid progenitors and megakaryocyte-erythrocyte progenitors were markedly reduced in Gulo-/- pups following vitamin C depletion in the dams, whereas granulocyte-myeloid progenitors were spared, and their frequency was even augmented. Notably, hematopoietic cell subsets were rescued by vitamin C repletion. Consistent with these data, peripheral myeloid cells were maintained in ascorbate-deficient Gulo-/- pups while other lineage-committed hematopoietic cells were decreased. A reduction in B cell numbers was associated with a significantly reduced humoral immune response in ascorbate-depleted Gulo-/- pups but not adult mice. Erythropoiesis was particularly sensitive to vitamin C deprivation during both the perinatal and adult periods, with ascorbate-deficient Gulo-/- pups as well as adult mice exhibiting compensatory splenic differentiation. Furthermore, in the pathological context of hemolytic anemia, vitamin C-deficient adult Gulo-/- mice were not able to sufficiently increase their erythropoietic activity, resulting in a sustained anemia. Thus, vitamin C plays a pivotal role in the maintenance and differentiation of hematopoietic progenitors during the neonatal period and is required throughout life to sustain erythroid differentiation under stress conditions.
Collapse
Affiliation(s)
- Ira Phadke
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Marie Pouzolles
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Alice Machado
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Josquin Moraly
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
| | - Pedro Gonzalez-Menendez
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Valérie S. Zimmermann
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Sandrina Kinet
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- Laboratory of Excellence GR-Ex, Paris, France
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| | - Naomi Taylor
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health (NIH), Bethesda, MD, United States
- Institut de Génétique Moléculaire de Montpellier, University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Montpellier, France
- *Correspondence: Mark Levine, ; Pierre-Christian Violet, ; Naomi Taylor,
| |
Collapse
|
6
|
High-Dose Vitamin C for Cancer Therapy. Pharmaceuticals (Basel) 2022; 15:ph15060711. [PMID: 35745630 PMCID: PMC9231292 DOI: 10.3390/ph15060711] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/25/2022] [Accepted: 06/01/2022] [Indexed: 12/24/2022] Open
Abstract
In recent years, the idea that Vitamin C (Vit-C) could be utilized as a form of anti-cancer therapy has generated many contradictory arguments. Recent insights into the physiological characteristics of Vit-C, its pharmacokinetics, and results from preclinical reports, however, suggest that high-dose Vit-C could be effectively utilized in the management of various tumor types. Studies have shown that the pharmacological action of Vit-C can attack various processes that cancerous cells use for their growth and development. Here, we discuss the anti-cancer functions of Vit-C, but also the potential for the use of Vit-C as an epigenetic regulator and immunotherapy enhancer. We also provide a short overview of the current state of systems for scavenging reactive oxygen species (ROS), especially in the context of their influencing high-dose Vit-C toxicity for the inhibition of cancer growth. Even though the mechanisms of Vit-C action are promising, they need to be supported with robust randomized and controlled clinical trials. Moreover, upcoming studies should focus on how to define the most suitable cancer patient populations for high-dose Vit-C treatments and develop effective strategies that combine Vit-C with various concurrent cancer treatment regimens.
Collapse
|
7
|
Burgess ER, Crake RLI, Phillips E, Morrin HR, Royds JA, Slatter TL, Wiggins GAR, Vissers MCM, Robinson BA, Dachs GU. Increased Ascorbate Content of Glioblastoma Is Associated With a Suppressed Hypoxic Response and Improved Patient Survival. Front Oncol 2022; 12:829524. [PMID: 35419292 PMCID: PMC8995498 DOI: 10.3389/fonc.2022.829524] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 02/23/2022] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma multiforme is a challenging disease with limited treatment options and poor survival. Glioblastoma tumours are characterised by hypoxia that activates the hypoxia inducible factor (HIF) pathway and controls a myriad of genes that drive cancer progression. HIF transcription factors are regulated at the post-translation level via HIF-hydroxylases. These hydroxylases require oxygen and 2-oxoglutarate as substrates, and ferrous iron and ascorbate as cofactors. In this retrospective observational study, we aimed to determine whether ascorbate played a role in the hypoxic response of glioblastoma, and whether this affected patient outcome. We measured the ascorbate content and members of the HIF-pathway of clinical glioblastoma samples, and assessed their association with clinicopathological features and patient survival. In 37 samples (37 patients), median ascorbate content was 7.6 μg ascorbate/100 mg tissue, range 0.8 – 20.4 μg ascorbate/100 mg tissue. In tumours with above median ascorbate content, HIF-pathway activity as a whole was significantly suppressed (p = 0.005), and several members of the pathway showed decreased expression (carbonic anhydrase-9 and glucose transporter-1, both p < 0.01). Patients with either lower tumour HIF-pathway activity or higher tumour ascorbate content survived significantly longer than patients with higher HIF-pathway or lower ascorbate levels (p = 0.011, p = 0.043, respectively). Median survival for the low HIF-pathway score group was 362 days compared to 203 days for the high HIF-pathway score group, and median survival for the above median ascorbate group was 390 days, compared to the below median ascorbate group with 219 days. The apparent survival advantage associated with higher tumour ascorbate was more prominent for the first 8 months following surgery. These associations are promising, suggesting an important role for ascorbate-regulated HIF-pathway activity in glioblastoma that may impact on patient survival.
Collapse
Affiliation(s)
- Eleanor R Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Rebekah L I Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Metastasis Research Laboratory, GIGA-Cancer, University of Liège, Liege, Belgium
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Helen R Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Cancer Society Tissue Bank, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A Royds
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Tania L Slatter
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - George A R Wiggins
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, and Department of Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
8
|
de Keijzer MJ, de Klerk DJ, de Haan LR, van Kooten RT, Franchi LP, Dias LM, Kleijn TG, van Doorn DJ, Heger M. Inhibition of the HIF-1 Survival Pathway as a Strategy to Augment Photodynamic Therapy Efficacy. Methods Mol Biol 2022; 2451:285-403. [PMID: 35505024 DOI: 10.1007/978-1-0716-2099-1_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Photodynamic therapy (PDT) is a non-to-minimally invasive treatment modality that utilizes photoactivatable drugs called photosensitizers to disrupt tumors with locally photoproduced reactive oxygen species (ROS). Photosensitizer activation by light results in hyperoxidative stress and subsequent tumor cell death, vascular shutdown and hypoxia, and an antitumor immune response. However, sublethally afflicted tumor cells initiate several survival mechanisms that account for decreased PDT efficacy. The hypoxia inducible factor 1 (HIF-1) pathway is one of the most effective cell survival pathways that contributes to cell recovery from PDT-induced damage. Several hundred target genes of the HIF-1 heterodimeric complex collectively mediate processes that are involved in tumor cell survival directly and indirectly (e.g., vascularization, glucose metabolism, proliferation, and metastasis). The broad spectrum of biological ramifications culminating from the activation of HIF-1 target genes reflects the importance of HIF-1 in the context of therapeutic recalcitrance. This chapter elaborates on the involvement of HIF-1 in cancer biology, the hypoxic response mechanisms, and the role of HIF-1 in PDT. An overview of inhibitors that either directly or indirectly impede HIF-1-mediated survival signaling is provided. The inhibitors may be used as pharmacological adjuvants in combination with PDT to augment therapeutic efficacy.
Collapse
Affiliation(s)
- Mark J de Keijzer
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Daniel J de Klerk
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Lianne R de Haan
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Robert T van Kooten
- Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands
| | - Leonardo P Franchi
- Departamento de Bioquímica e Biologia Molecular, Instituto de Ciências Biológicas (ICB) 2, Universidade Federal de Goiás (UFG), Goiânia, GO, Brazil
- Faculty of Philosophy, Sciences, and Letters of Ribeirão Preto, epartment of Chemistry, Center of Nanotechnology and Tissue Engineering-Photobiology and Photomedicine Research Group,University of São Paulo, São Paulo, Brazil
| | - Lionel M Dias
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Tony G Kleijn
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Diederick J van Doorn
- Department of Gastroenterology and Hepatology, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, People's Republic of China.
- Department of Pharmaceutics, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
| |
Collapse
|
9
|
Fu Y, Xu F, Jiang L, Miao Z, Liang X, Yang J, Larsson SC, Zheng JS. Circulating vitamin C concentration and risk of cancers: a Mendelian randomization study. BMC Med 2021; 19:171. [PMID: 34325683 PMCID: PMC8323227 DOI: 10.1186/s12916-021-02041-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/21/2021] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Circulating vitamin C concentrations have been associated with several cancers in observational studies, but little is known about the causal direction of the associations. This study aims to explore the potential causal relationship between circulating vitamin C and risk of five most common cancers in Europe. METHODS We used summary-level data for genetic variants associated with plasma vitamin C in a large vitamin C genome-wide association study (GWAS) meta-analysis on 52,018 Europeans, and the corresponding associations with lung, breast, prostate, colon, and rectal cancer from GWAS consortia including up to 870,984 participants of European ancestry. We performed two-sample, bi-directional Mendelian randomization (MR) analyses using inverse-variance-weighted method as the primary approach, while using 6 additional methods (e.g., MR-Egger, weighted median-based, and mode-based methods) as sensitivity analysis to detect and adjust for pleiotropy. We also conducted a meta-analysis of prospective cohort studies and randomized controlled trials to examine the association of vitamin C intakes with cancer outcomes. RESULTS The MR analysis showed no evidence of a causal association of circulating vitamin C concentration with any examined cancer. Although the odds ratio (OR) per one standard deviation increase in genetically predicted circulating vitamin C concentration was 1.34 (95% confidence interval 1.14 to 1.57) for breast cancer in the UK Biobank, this association could not be replicated in the Breast Cancer Association Consortium with an OR of 1.05 (0.94 to 1.17). Smoking initiation, as a positive control for our reverse MR analysis, showed a negative association with circulating vitamin C concentration. However, there was no strong evidence of a causal association of any examined cancer with circulating vitamin C. Sensitivity analysis using 6 different analytical approaches yielded similar results. Moreover, our MR results were consistent with the null findings from the meta-analysis exploring prospective associations of dietary or supplemental vitamin C intakes with cancer risk, except that higher dietary vitamin C intake, but not vitamin C supplement, was associated with a lower risk of lung cancer (risk ratio: 0.84, 95% confidence interval 0.71 to 0.99). CONCLUSIONS These findings provide no evidence to support that physiological-level circulating vitamin C has a large effect on risk of the five most common cancers in European populations, but we cannot rule out very small effect sizes.
Collapse
Affiliation(s)
- Yuanqing Fu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Fengzhe Xu
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Longda Jiang
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD, Australia
| | - Zelei Miao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Xinxiu Liang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
| | - Jian Yang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China
| | - Susanna C Larsson
- Unit of Cardiovascular and Nutritional Epidemiology, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Ju-Sheng Zheng
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, 18 Shilongshan Rd, Cloud Town, Hangzhou, 310024, China.
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
10
|
Fujii J. Ascorbate is a multifunctional micronutrient whose synthesis is lacking in primates. J Clin Biochem Nutr 2021; 69:1-15. [PMID: 34376908 PMCID: PMC8325764 DOI: 10.3164/jcbn.20-181] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/07/2020] [Indexed: 02/06/2023] Open
Abstract
Ascorbate (vitamin C) is an essential micronutrient in primates, and exhibits multiple physiological functions. In addition to antioxidative action, ascorbate provides reducing power to α-ketoglutarate-dependent non-heme iron dioxygenases, such as prolyl hydroxylases. Demethylation of histones and DNA with the aid of ascorbate results in the reactivation of epigenetically silenced genes. Ascorbate and its oxidized form, dehydroascorbate, have attracted interest in terms of their roles in cancer therapy. The last step in the biosynthesis of ascorbate is catalyzed by l-gulono-γ-lactone oxidase whose gene Gulo is commonly mutated in all animals that do not synthesize ascorbate. One common explanation for this deficiency is based on the increased availability of ascorbate from foods. In fact, pathways for ascorbate synthesis and the detoxification of xenobiotics by glucuronate conjugation share the metabolic processes up to UDP-glucuronate, which prompts another hypothesis, namely, that ascorbate-incompetent animals might have developed stronger detoxification systems in return for their lack of ability to produce ascorbate, which would allow them to cope with their situation. Here, we overview recent advances in ascorbate research and propose that an enhanced glucuronate conjugation reaction may have applied positive selection pressure on ascorbate-incompetent animals, thus allowing them to dominate the animal kingdom.
Collapse
Affiliation(s)
- Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata 990-9585, Japan
| |
Collapse
|
11
|
Brabson JP, Leesang T, Mohammad S, Cimmino L. Epigenetic Regulation of Genomic Stability by Vitamin C. Front Genet 2021; 12:675780. [PMID: 34017357 PMCID: PMC8129186 DOI: 10.3389/fgene.2021.675780] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
DNA methylation plays an important role in the maintenance of genomic stability. Ten-eleven translocation proteins (TETs) are a family of iron (Fe2+) and α-KG -dependent dioxygenases that regulate DNA methylation levels by oxidizing 5-methylcystosine (5mC) to generate 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). These oxidized methylcytosines promote passive demethylation upon DNA replication, or active DNA demethylation, by triggering base excision repair and replacement of 5fC and 5caC with an unmethylated cytosine. Several studies over the last decade have shown that loss of TET function leads to DNA hypermethylation and increased genomic instability. Vitamin C, a cofactor of TET enzymes, increases 5hmC formation and promotes DNA demethylation, suggesting that this essential vitamin, in addition to its antioxidant properties, can also directly influence genomic stability. This review will highlight the functional role of DNA methylation, TET activity and vitamin C, in the crosstalk between DNA methylation and DNA repair.
Collapse
Affiliation(s)
- John P Brabson
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Tiffany Leesang
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Sofia Mohammad
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Luisa Cimmino
- Department of Biochemistry and Molecular Biology, Miller School of Medicine, University of Miami, Miami, FL, United States.,Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
12
|
Crake RLI, Burgess ER, Royds JA, Phillips E, Vissers MCM, Dachs GU. The Role of 2-Oxoglutarate Dependent Dioxygenases in Gliomas and Glioblastomas: A Review of Epigenetic Reprogramming and Hypoxic Response. Front Oncol 2021; 11:619300. [PMID: 33842321 PMCID: PMC8027507 DOI: 10.3389/fonc.2021.619300] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
Gliomas are a heterogeneous group of cancers that predominantly arise from glial cells in the brain, but may also arise from neural stem cells, encompassing low-grade glioma and high-grade glioblastoma. Whereas better diagnosis and new treatments have improved patient survival for many cancers, glioblastomas remain challenging with a highly unfavorable prognosis. This review discusses a super-family of enzymes, the 2-oxoglutarate dependent dioxygenase enzymes (2-OGDD) that control numerous processes including epigenetic modifications and oxygen sensing, and considers their many roles in the pathology of gliomas. We specifically describe in more detail the DNA and histone demethylases, and the hypoxia-inducible factor hydroxylases in the context of glioma, and discuss the substrate and cofactor requirements of the 2-OGDD enzymes. Better understanding of how these enzymes contribute to gliomas could lead to the development of new treatment strategies.
Collapse
Affiliation(s)
- Rebekah L. I. Crake
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Eleanor R. Burgess
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Janice A. Royds
- Department of Pathology, University of Otago, Dunedin, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Margreet C. M. Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| | - Gabi U. Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago Christchurch, Christchurch, New Zealand
| |
Collapse
|
13
|
Rajendran G, Taylor JA, Woolbright BL. Natural products as a means of overcoming cisplatin chemoresistance in bladder cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:69-84. [PMID: 35582013 PMCID: PMC9019192 DOI: 10.20517/cdr.2020.69] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 11/05/2020] [Accepted: 11/12/2020] [Indexed: 12/17/2022]
Abstract
Cisplatin remains an integral part of the treatment for muscle invasive bladder cancer. A large number of patients do not respond to cisplatin-based chemotherapy and efficacious salvage regimens are limited. Immunotherapy has offered a second line of treatment; however, only approximately 20% of patients respond, and molecular subtyping of tumors indicates there may be significant overlap in those patients that respond to cisplatin and those patients that respond to immunotherapy. As such, restoring sensitivity to cisplatin remains a major hurdle to improving patient care. One potential source of compounds for enhancing cisplatin is naturally derived bioactive products such as phytochemicals, flavonoids and others. These compounds can activate a diverse array of different pathways, many of which can directly promote or inhibit cisplatin sensitivity. The purpose of this review is to understand current drug development in the area of natural products and to assess how these compounds may enhance cisplatin treatment in bladder cancer patients.
Collapse
Affiliation(s)
- Ganeshkumar Rajendran
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - John A Taylor
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Benjamin L Woolbright
- Department of Urology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
14
|
Abstract
2-Oxoglutarate-dependent dioxygenases (2OGDDs) are a superfamily of enzymes that play diverse roles in many biological processes, including regulation of hypoxia-inducible factor-mediated adaptation to hypoxia, extracellular matrix formation, epigenetic regulation of gene transcription and the reprogramming of cellular metabolism. 2OGDDs all require oxygen, reduced iron and 2-oxoglutarate (also known as α-ketoglutarate) to function, although their affinities for each of these co-substrates, and hence their sensitivity to depletion of specific co-substrates, varies widely. Numerous 2OGDDs are recurrently dysregulated in cancer. Moreover, cancer-specific metabolic changes, such as those that occur subsequent to mutations in the genes encoding succinate dehydrogenase, fumarate hydratase or isocitrate dehydrogenase, can dysregulate specific 2OGDDs. This latter observation suggests that the role of 2OGDDs in cancer extends beyond cancers that harbour mutations in the genes encoding members of the 2OGDD superfamily. Herein, we review the regulation of 2OGDDs in normal cells and how that regulation is corrupted in cancer.
Collapse
Affiliation(s)
- Julie-Aurore Losman
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
| | - Peppi Koivunen
- Faculty of Biochemistry and Molecular Medicine, Biocenter Oulu, Oulu Center for Cell-Matrix Research, University of Oulu, Oulu, Finland
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Boston, MA, USA.
- Howard Hughes Medical Institute (HHMI), Chevy Chase, MD, USA.
| |
Collapse
|
15
|
Kovina AP, Petrova NV, Razin SV, Kantidze OL. L-Ascorbic Acid in the Epigenetic Regulation of Cancer Development and Stem Cell Reprogramming. Acta Naturae 2020; 12:5-14. [PMID: 33456974 PMCID: PMC7800602 DOI: 10.32607/actanaturae.11060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/07/2020] [Indexed: 11/30/2022] Open
Abstract
Recent studies have significantly expanded our understanding of the mechanisms of L-ascorbic acid (ASC, vitamin C) action, leading to the emergence of several hypotheses that validate the possibility of using ASC in clinical practice. ASC may be considered an epigenetic drug capable of reducing aberrant DNA and histone hypermethylation, which could be helpful in the treatment of some cancers and neurodegenerative diseases. The clinical potency of ASC is also associated with regenerative medicine; in particular with the production of iPSCs. The effect of ASC on somatic cell reprogramming is most convincingly explained by a combined enhancement of the activity of the enzymes involved in the active demethylation of DNA and histones. This review describes how ASC can affect the epigenetic status of a cell and how it can be used in anticancer therapy and stem cell reprogramming.
Collapse
Affiliation(s)
- A. P. Kovina
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - N. V. Petrova
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - S. V. Razin
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| | - O. L. Kantidze
- Institute of Gene Biology Russian Academy of Sciences, Moscow, 119334 Russia
| |
Collapse
|
16
|
Abstract
![]()
Vitamin
C (ascorbic acid) is a water-soluble antioxidant and a
cofactor for a large number of enzymes. It is present in all tissues
and especially abundant in corneal epithelium, stem cells, and neurons.
Although similar to thiols in its ability to react with many reactive
oxygen species (ROS), ascorbate is much better (>100× faster)
than glutathione at scavenging of primary ROS (superoxide radical
and singlet oxygen). Ascorbate appears to be especially important
for elimination of O2•– in the
nucleus which contains little or no SOD activity. Cofactor functions
of ascorbate involve the maintenance of activity of Fe(II)/2-oxoglutarate-dependent
dioxygenases via reduction of Fe(III). The most prominent activity
of ascorbate-dependent dioxygenases in the cytoplasm is hydroxylation
of prolines in proteins involved in the formation of extracellular
matrix and regulation of metabolism and hypoxia responses. In the
nucleus, ascorbate is important for oxidative demethylation of 5-methylcytosine
in DNA (by TET proteins) and removal of methyl groups from histone
lysines (by JmjC demethylases). Differentiation and other cellular
reprograming processes involving DNA demethylation are especially
sensitive to ascorbate insufficiency. High doses of vitamin C alone
or in combinations with drugs produced cancer-suppressive effects
which involved redox, immune, and epigenetic mechanisms. Solutions
to vitamin C deficiency in cultured cells are discussed to improve
the physiological relevance of in vitro models. An
abundance of vitamin C in rodents limits their ability to fully recapitulate
human sensitivity to adverse health effects of malnutrition and xenobiotics,
including neurotoxicity, lung injury, and intergenerational and other
epigenetic effects.
Collapse
Affiliation(s)
- Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, 70 Ship Street, Providence, Rhode Island 02912, United States
| |
Collapse
|
17
|
Ishii N, Homma T, Guo X, Yamada KI, Yamada S, Fujii J. Ascorbic acid prevents N-nitrosodiethylamine-induced hepatic injury and hepatocarcinogenesis in Akr1a-knockout mice. Toxicol Lett 2020; 333:192-201. [PMID: 32805337 DOI: 10.1016/j.toxlet.2020.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/13/2020] [Accepted: 08/10/2020] [Indexed: 12/11/2022]
Abstract
To gain insights into the benefits of ascorbic acid (AsA) in hepatoprotection, we examined the status of Akr1a-/- (KO) mice, which biosynthesize AsA at about 10% the rate as Akr1a+/+ (WT) mice, in terms of their response to an N-nitrosodiethylamine (NDEA)-induced hepatic injury. The intraperitoneal injection of NDEA (35 mg/kg) started at 4 weeks of age and was performed at weekly intervals thereafter. While the fatality rate was substantial in the KO mice, AsA supplementation (1.5 mg/ml in the drinking water) greatly extended their life-spans. Only two out of 54 KO mice survived to 28 weeks, and both contained approximately an order of magnitude greater number of tumor nodules compared to WT mice or KO mice with AsA supplementation. Histological and biochemical examinations at 20 weeks indicated that AsA potently protected against the hepatotoxic action of NDEA. Interestingly, the AsA levels in the liver were higher in the AsA-supplemented KO mouse groups that had received the NDEA treatment compared to the corresponding control group. While the protein levels of Cyp2e1, an enzyme that plays a major role in the bioactivation of NDEA, had declined to a similar extent among the experimental groups, p-nitrophenol-oxidizing activity was sustained at high levels in the KO mouse livers but AsA supplementation suppressed this activity. These findings confirm that AsA is a potent micronutrient that copes with hepatic injury and cancer development caused by exposure to NDEA in the livers of Akr1a-knockout mice.
Collapse
Affiliation(s)
- Naoki Ishii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, 990-9585, Japan
| | - Takujiro Homma
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, 990-9585, Japan
| | - Xin Guo
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa, 920-0293, Japan
| | - Ken-Ichi Yamada
- Physical Chemistry for Life Science Laboratory, Faculty of Pharmaceutical Sciences, Kyushu University, 3-1-1 Maidashi Higashi-ku, Fukuoka 812-8582, Japan; AMED-CREST, Japan Agency for Medical Research and Development, Tokyo, Japan
| | - Sohsuke Yamada
- Department of Pathology and Laboratory Medicine, Kanazawa Medical University, 1-1 Uchinada, Ishikawa, 920-0293, Japan
| | - Junichi Fujii
- Department of Biochemistry and Molecular Biology, Graduate School of Medical Science, Yamagata University, Yamagata, 990-9585, Japan.
| |
Collapse
|
18
|
Duan L, Tao J, Yang X, Ye L, Wu Y, He Q, Duan Y, Chen L, Zhu J. HVEM/HIF-1α promoted proliferation and inhibited apoptosis of ovarian cancer cells under hypoxic microenvironment conditions. J Ovarian Res 2020; 13:40. [PMID: 32312328 PMCID: PMC7168979 DOI: 10.1186/s13048-020-00646-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 04/07/2020] [Indexed: 12/16/2022] Open
Abstract
Background Our previous studies showed the expression of herpes virus entry mediator (HVEM) is high in ovarian cancer samples and correlated to the patient clinic pathological features. As we all know, the hypoxic environment is the main feature of tumor. In this work, we explored the role of HVEM in hypoxic ovarian cancer cells and its effects on HIF-1α, a transcription factor responding to hypoxia. Methods The expression of HVEM, HIF-1α and apoptosis-related genes was detected by qRT-PCR and western blot. The proliferation and apoptosis of the ovarian cancer cells were determined with the Cell Counting Kit-8 assay and AnnexinV-FITC/PI-stained flow cytometry assay, respectively. Results The expression of HVEM was positively correlated to that of HIF-1α. The expression of HVEM and HIF-1α under hypoxic conditions was higher than that under normoxic conditions, which suggested that the level of HVEM and HIF-1α correlates with prolonged periods of hypoxia in ovarian cancer. The overexpression of HVEM promoted cell proliferation and inhibited cell apoptosis under hypoxic condition. HVEM overexpression elevated the expression of HIF-1α and Bcl-2 (anti-apoptotic protein), and reduced the expression of Bax (pro-apoptotic protein). In addition, overexpression of HVEM activated the AKT/mTOR signaling. Moreover, knockdown of HVEM had the completely opposite effects. Conclusion These data indicated that HVEM signaling might promote HIF-1α activity via AKT/mTOR signaling pathway and thus to regulate tumor growth in ovarian cancer under the hypoxic conditions. Furthermore, these findings indicate that this molecular mechanism could represent a therapeutic target for ovarian cancer.
Collapse
Affiliation(s)
- Liyan Duan
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Tao
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xiaoqian Yang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Ye
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yueqian Wu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Qizhi He
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yingchun Duan
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Li Chen
- Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China
| | - Jianlong Zhu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China. .,Department of Gynecology and Obstetrics, Shanghai Pudong Hospital, Fudan University School of Medicine, No. 2800 Gongwei Road, Pudong New Area, Shanghai, 201399, China.
| |
Collapse
|
19
|
Pro- and Antioxidant Effects of Vitamin C in Cancer in correspondence to Its Dietary and Pharmacological Concentrations. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:7286737. [PMID: 31934267 PMCID: PMC6942884 DOI: 10.1155/2019/7286737] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022]
Abstract
Vitamin C is an antioxidant that may scavenge reactive oxygen species preventing DNA damage and other effects important in cancer transformation. Dietary vitamin C from natural sources is taken with other compounds affecting its bioavailability and biological effects. High pharmacological doses of vitamin C may induce prooxidant effects, detrimental for cancer cells. An oxidized form of vitamin C, dehydroascorbate, is transported through glucose transporters, and cancer cells switch from oxidative phosphorylation to glycolysis in energy production so an excess of vitamin C may limit glucose transport and ATP production resulting in energetic crisis and cell death. Vitamin C may change the metabolomic and epigenetic profiles of cancer cells, and activation of ten-eleven translocation (TET) proteins and downregulation of pluripotency factors by the vitamin may eradicate cancer stem cells. Metastasis, the main reason of cancer-related deaths, requires breakage of anatomical barriers containing collagen, whose synthesis is promoted by vitamin C. Vitamin C induces degradation of hypoxia-inducible factor, HIF-1, essential for the survival of tumor cells in hypoxic conditions. Dietary vitamin C may stimulate the immune system through activation of NK and T cells and monocytes. Pharmacological doses of vitamin C may inhibit cancer transformation in several pathways, but further studies are needed to address both mechanistic and clinical aspects of this effect.
Collapse
|
20
|
Sherman HG, Jovanovic C, Abuawad A, Kim DH, Collins H, Dixon JE, Cavanagh R, Markus R, Stolnik S, Rawson FJ. Mechanistic insight into heterogeneity of trans-plasma membrane electron transport in cancer cell types. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:628-639. [DOI: 10.1016/j.bbabio.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 06/18/2019] [Accepted: 06/19/2019] [Indexed: 12/28/2022]
|
21
|
Abstract
Over the past century, the notion that vitamin C can be used to treat cancer has generated much controversy. However, new knowledge regarding the pharmacokinetic properties of vitamin C and recent high-profile preclinical studies have revived interest in the utilization of high-dose vitamin C for cancer treatment. Studies have shown that pharmacological vitamin C targets many of the mechanisms that cancer cells utilize for their survival and growth. In this Opinion article, we discuss how vitamin C can target three vulnerabilities many cancer cells share: redox imbalance, epigenetic reprogramming and oxygen-sensing regulation. Although the mechanisms and predictive biomarkers that we discuss need to be validated in well-controlled clinical trials, these new discoveries regarding the anticancer properties of vitamin C are promising to help identify patient populations that may benefit the most from high-dose vitamin C therapy, developing effective combination strategies and improving the overall design of future vitamin C clinical trials for various types of cancer.
Collapse
Affiliation(s)
- Bryan Ngo
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Justin M Van Riper
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Lewis C Cantley
- Meyer Cancer Center, Department of Medicine, Weill Cornell Medicine, New York, NY, USA.
| | - Jihye Yun
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
22
|
Campbell EJ, Dachs GU, Morrin HR, Davey VC, Robinson BA, Vissers MCM. Activation of the hypoxia pathway in breast cancer tissue and patient survival are inversely associated with tumor ascorbate levels. BMC Cancer 2019; 19:307. [PMID: 30943919 PMCID: PMC6448303 DOI: 10.1186/s12885-019-5503-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
Background The transcription factor hypoxia inducible factor (HIF) -1 drives tumor growth and metastasis and is associated with poor prognosis in breast cancer. Ascorbate can moderate HIF-1 activity in vitro and is associated with HIF pathway activation in a number of cancer types, but whether tissue ascorbate levels influence the HIF pathway in breast cancer is unknown. In this study we investigated the association between tumor ascorbate levels and HIF-1 activation and patient survival in human breast cancer. Methods In a retrospective analysis of human breast cancer tissue, we analysed primary tumor and adjacent uninvolved tissue from 52 women with invasive ductal carcinoma. We measured HIF-1α, HIF-1 gene targets CAIX, BNIP-3 and VEGF, and ascorbate content. Patient clinical outcomes were evaluated against these parameters. Results HIF-1 pathway proteins were upregulated in tumor tissue and increased HIF-1 activation was associated with higher tumor grade and stage, with increased vascular invasion and necrosis, and with decreased disease-free and disease-specific survival. Grade 1 tumors had higher ascorbate levels than did grade 2 or 3 tumors. Higher ascorbate levels were associated with less tumor necrosis, with lower HIF-1 pathway activity and with increased disease-free and disease-specific survival. Conclusions Our findings indicate that there is a direct correlation between intracellular ascorbate levels, activation of the HIF-1 pathway and patient survival in breast cancer. This is consistent with the known capacity of ascorbate to stimulate the activity of the regulatory HIF hydroxylases and suggests that optimisation of tumor ascorbate could have clinical benefit via modulation of the hypoxic response.
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand.,Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand
| | - Helen R Morrin
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand.,Cancer Society Tissue Bank, University of Otago, Christchurch, 8011, New Zealand
| | - Valerie C Davey
- Christchurch Breast Cancer Patient Register, Christchurch Hospital, Christchurch, 8011, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8011, New Zealand.,Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch, and Department of Medicine, University of Otago, Christchurch, 8011, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, 8140, New Zealand.
| |
Collapse
|
23
|
Blaszczak W, Barczak W, Masternak J, Kopczyński P, Zhitkovich A, Rubiś B. Vitamin C as a Modulator of the Response to Cancer Therapy. Molecules 2019; 24:E453. [PMID: 30695991 PMCID: PMC6384696 DOI: 10.3390/molecules24030453] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/26/2019] [Indexed: 01/04/2023] Open
Abstract
Ascorbic acid (vitamin C) has been gaining attention as a potential treatment for human malignancies. Various experimental studies have shown the ability of pharmacological doses of vitamin C alone or in combinations with clinically used drugs to exert beneficial effects in various models of human cancers. Cytotoxicity of high doses of vitamin C in cancer cells appears to be related to excessive reactive oxygen species generation and the resulting suppression of the energy production via glycolysis. A hallmark of cancer cells is a strongly upregulated aerobic glycolysis, which elevates its relative importance as a source of ATP (Adenosine 5'-triphosphate). Aerobic glycolysis is maintained by a highly increased uptake of glucose, which is made possible by the upregulated expression of its transporters, such as GLUT-1, GLUT-3, and GLUT-4. These proteins can also transport the oxidized form of vitamin C, dehydroascorbate, permitting its preferential uptake by cancer cells with the subsequent depletion of critical cellular reducers as a result of ascorbate formation. Ascorbate also has a potential to affect other aspects of cancer cell metabolism due to its ability to promote reduction of iron(III) to iron(II) in numerous cellular metalloenzymes. Among iron-dependent dioxygenases, important targets for stimulation by vitamin C in cancer include prolyl hydroxylases targeting the hypoxia-inducible factors HIF-1/HIF-2 and histone and DNA demethylases. Altered metabolism of cancer cells by vitamin C can be beneficial by itself and promote activity of specific drugs.
Collapse
Affiliation(s)
- Wiktoria Blaszczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Wojciech Barczak
- Radiobiology Lab, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
- Department of Head and Neck Surgery, Poznan University of Medical Sciences, The Greater Poland Cancer Centre, Garbary, 61-866 Poznan, Poland.
| | - Julia Masternak
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| | - Przemysław Kopczyński
- Centre for Orthodontic Mini-implants at the Department and Clinic of Maxillofacial Orthopedics and Orthodontics, Poznan University of Medical Sciences, 60-812 Poznan, Poland.
| | - Anatoly Zhitkovich
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI 02912, USA.
| | - Błażej Rubiś
- Department of Clinical Chemistry and Molecular Diagnostics, Poznan University of Medical Sciences, 60-355 Poznan, Poland.
| |
Collapse
|
24
|
Shenoy N, Creagan E, Witzig T, Levine M. Ascorbic Acid in Cancer Treatment: Let the Phoenix Fly. Cancer Cell 2018; 34:700-706. [PMID: 30174242 PMCID: PMC6234047 DOI: 10.1016/j.ccell.2018.07.014] [Citation(s) in RCA: 124] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 06/25/2018] [Accepted: 07/28/2018] [Indexed: 01/25/2023]
Abstract
Vitamin C (ascorbic acid, ascorbate), despite controversy, has re-emerged as a promising anti-cancer agent. Recent knowledge of intravenous ascorbate pharmacokinetics and discovery of unexpected mechanisms of ascorbate action have spawned many investigations. Two mechanisms of anti-cancer activity with ascorbate have gained prominence: hydrogen peroxide-induced oxidative stress and DNA demethylation mediated by ten-eleven translocation enzyme activation. Here, we highlight salient aspects of the evolution of ascorbate in cancer treatment, provide insights into the pharmacokinetics of ascorbate, describe mechanisms of its anti-cancer activity in relation to the pharmacokinetics, outline promising preclinical and clinical evidence, and recommend future directions.
Collapse
Affiliation(s)
- Niraj Shenoy
- Division of Hematology & Medical Oncology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; Department of Medicine (Oncology), Albert Einstein College of Medicine- Montefiore Medical Center, 1300 Morris Park Avenue, Bronx, NY 10467, USA.
| | - Edward Creagan
- Division of Hematology & Medical Oncology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Thomas Witzig
- Division of Hematology & Medical Oncology, Department of Medicine, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892-1372, USA.
| |
Collapse
|
25
|
Cimmino L, Neel BG, Aifantis I. Vitamin C in Stem Cell Reprogramming and Cancer. Trends Cell Biol 2018; 28:698-708. [PMID: 29724526 PMCID: PMC6102081 DOI: 10.1016/j.tcb.2018.04.001] [Citation(s) in RCA: 122] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/04/2023]
Abstract
Vitamin C is an essential dietary requirement for humans. In addition to its known role as an antioxidant, vitamin C is a cofactor for Fe2+- and α-ketoglutarate-dependent dioxygenases (Fe2+/α-KGDDs) which comprise a large number of diverse enzymes, including collagen prolyl hydroxylases and epigenetic regulators of histone and DNA methylation. Vitamin C can modulate embryonic stem cell (ESC) function, enhance reprogramming of fibroblasts to induced pluripotent stem cells (iPSCs), and hinder the aberrant self-renewal of hematopoietic stem cells (HSCs) through its ability to enhance the activity of either Jumonji C (JmjC) domain-containing histone demethylases or ten-eleven translocation (TET) DNA hydroxylases. Given that epigenetic dysregulation is a known driver of malignancy, vitamin C may play a novel role as an epigenetic anticancer agent.
Collapse
Affiliation(s)
- Luisa Cimmino
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,To Whom Correspondence Should Be Addressed: Luisa Cimmino, Ph.D. or Iannis Aifantis, Ph.D. Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine 521 First Avenue, Smilow 1303 New York, NY 10016 or
| | - Benjamin G. Neel
- Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA
| | - Iannis Aifantis
- Department of Pathology, NYU School of Medicine, New York, NY, 10016, USA.,Laura and Isaac Perlmutter Cancer Center and Helen L. and Martin S. Kimmel Center for Stem Cell Biology, NYU School of Medicine, New York, NY, 10016, USA.,To Whom Correspondence Should Be Addressed: Luisa Cimmino, Ph.D. or Iannis Aifantis, Ph.D. Department of Pathology and Laura and Isaac Perlmutter Cancer Center, New York University School of Medicine 521 First Avenue, Smilow 1303 New York, NY 10016 or
| |
Collapse
|
26
|
Carr AC, Cook J. Intravenous Vitamin C for Cancer Therapy - Identifying the Current Gaps in Our Knowledge. Front Physiol 2018; 9:1182. [PMID: 30190680 PMCID: PMC6115501 DOI: 10.3389/fphys.2018.01182] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/06/2018] [Indexed: 02/04/2023] Open
Abstract
The use of intravenous vitamin C (IVC) for cancer therapy has long been an area of intense controversy. Despite this, high dose IVC has been administered for decades by complementary health care practitioners and physicians, with little evidence base resulting in inconsistent clinical practice. In this review we pose a series of questions of relevance to both researchers and clinicians, and also patients themselves, in order to identify current gaps in our knowledge. These questions include: Do oncology patients have compromised vitamin C status? Is intravenous the optimal route of vitamin C administration? Is IVC safe? Does IVC interfere with chemotherapy or radiotherapy? Does IVC decrease the toxic side effects of chemotherapy and improve quality of life? What are the relevant mechanisms of action of IVC? What are the optimal doses, frequency, and duration of IVC therapy? Researchers have made massive strides over the last 20 years and have addressed many of these important aspects, such as the best route for administration, safety, interactions with chemotherapy, quality of life, and potential mechanisms of action. However, we still do not know the answers to a number of fundamental questions around best clinical practice, such as how much, how often and for how long to administer IVC to oncology patients. These questions point the way forward for both basic research and future clinical trials.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - John Cook
- New Brighton Health Care, Christchurch, New Zealand
| |
Collapse
|
27
|
Hu C, Chen M, Jiang R, Guo Y, Wu M, Zhang X. Exosome-related tumor microenvironment. J Cancer 2018; 9:3084-3092. [PMID: 30210631 PMCID: PMC6134819 DOI: 10.7150/jca.26422] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 07/05/2018] [Indexed: 12/29/2022] Open
Abstract
The tumor microenvironment (tumor cells are located in the internal and external environment) is vital for the occurrence, growth and metastasis of tumors. An increasing number of studies have shown that exosomes are closely related to the tumor microenvironment. The mechanisms involved, however, are unclear. The focus of this review is on the exosome-related tumor microenvironment and other relevant factors, such as hypoxia, inflammation and angiogenesis. Many studies have suggested that exosomes are important mediators of metastasis, angiogenesis, and immune modulation in the tumor microenvironment. Additionally, exosomes can be isolated from bodily fluids of cancer patients, including urine, blood, saliva, milk, tumor effusion, cerebrospinal fluid, amniotic fluid and so on. Consequently, exosomes are potential biomarkers for clinical predictions and are also good drug carriers because they can cross the biofilm without triggering an immune response. Collectively, these findings illustrate that exosomes are crucial for developing potential targets for a new generation of pharmaceutical therapies that would improve the tumor microenvironment.
Collapse
Affiliation(s)
- Cheng Hu
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Meijuan Chen
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Rilei Jiang
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Yuanyuan Guo
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Mianhua Wu
- Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| | - Xu Zhang
- School of Medicine and Life Sciences , Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China.,Jiangsu Collaborative Innovation Center of Traditional Chinese Medicine (TCM) Prevention and Treatment of Tumor, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, P.R. China
| |
Collapse
|
28
|
Nauman G, Gray JC, Parkinson R, Levine M, Paller CJ. Systematic Review of Intravenous Ascorbate in Cancer Clinical Trials. Antioxidants (Basel) 2018; 7:antiox7070089. [PMID: 30002308 PMCID: PMC6071214 DOI: 10.3390/antiox7070089] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/03/2018] [Accepted: 07/06/2018] [Indexed: 02/02/2023] Open
Abstract
Background: Ascorbate (vitamin C) has been evaluated as a potential treatment for cancer as an independent agent and in combination with standard chemotherapies. This review assesses the evidence for safety and clinical effectiveness of intravenous (IV) ascorbate in treating various types of cancer. Methods: Single arm and randomized Phase I/II trials were included in this review. The PubMed, MEDLINE, and Cochrane databases were searched. Results were screened by three of the authors (GN, RP, and CJP) to determine if they met inclusion criteria, and then summarized using a narrative approach. Results: A total of 23 trials involving 385 patients met the inclusion criteria. Only one trial, in ovarian cancer, randomized patients to receive vitamin C or standard of care (chemotherapy). That trial reported an 8.75 month increase in progression-free survival (PFS) and an improved trend in overall survival (OS) in the vitamin C treated arm. Conclusion: Overall, vitamin C has been shown to be safe in nearly all patient populations, alone and in combination with chemotherapies. The promising results support the need for randomized placebo-controlled trials such as the ongoing placebo-controlled trials of vitamin C and chemotherapy in prostate cancer.
Collapse
Affiliation(s)
- Gina Nauman
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Clinical Nutrition Section, Bethesda, MD 20892, USA.
| | - Javaughn Corey Gray
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Rose Parkinson
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| | - Mark Levine
- National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases, Clinical Nutrition Section, Bethesda, MD 20892, USA.
| | - Channing J Paller
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins Medical Institutions, Baltimore, MD 21287, USA.
| |
Collapse
|
29
|
Vissers MCM, Das AB. Potential Mechanisms of Action for Vitamin C in Cancer: Reviewing the Evidence. Front Physiol 2018; 9:809. [PMID: 30018566 PMCID: PMC6037948 DOI: 10.3389/fphys.2018.00809] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/08/2018] [Indexed: 12/12/2022] Open
Abstract
Whether vitamin C (ascorbate) has a role to play as an anti-cancer agent has been debated for decades. Ascorbate has been used by cancer patients in an unregulated environment, either as a dietary supplement or in pharmacological doses administered by infusion, with numerous reports of clinical benefit, but in the absence of rigorous clinical trial data. The design of appropriate clinical trials has been hindered by a lack of understanding of the mechanism(s) of action that would inform the choice of effective dose, timing of administration and likely responsive cancer models. More recently, expanded understanding of the biological activities of ascorbate has led to a number of plausible hypotheses for mechanisms of anti-cancer activity. Prominent among these are the generation of significant quantities of hydrogen peroxide by the autoxidation of supra-physiological concentrations of ascorbate and stimulation of the 2-oxoglutarate-dependent dioxygenase family of enzymes (2-OGDDs) that have a cofactor requirement for ascorbate. Hydrogen peroxide generation is postulated to generate oxidative stress that preferentially targets cancer cells. The 2-OGDDs include the hydroxylases that regulate the hypoxic response, a major driver of tumor survival, angiogenesis, stem cell phenotype and metastasis, and the epigenetic histone and DNA demethylases. The latter are of particular interest, with recent studies suggesting a promising role for ascorbate in the regulation of the ten-eleven translocase (TET) DNA demethylases in hematological cancers. Support for these proposed mechanisms has come from many in vitro studies, and xenograft animal models have consistently shown an anti-cancer effect of ascorbate administration. However, decisive evidence for any particular mechanism(s) of action is not yet available from an in vivo setting. With a number of early phase clinical trials currently underway, evidence for potential mechanism(s) of action is required to inform the most appropriate study design and choice of cancer model. Hopefully such information will result in sound clinical data that will avert adding any further controversy to this already contentious debate.
Collapse
Affiliation(s)
- Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| | - Andrew B Das
- Centre for Free Radical Research, Department of Pathology and Biomedical Science, University of Otago, Christchurch, Christchurch, New Zealand
| |
Collapse
|
30
|
Chen X, Liu Y, Shan Y, Jin X, Shi Q, Jia C. Oxidized low-density lipoprotein suppresses mouse granulosa cell differentiation through disruption of the hypoxia-inducible factor 1 pathway. Mol Reprod Dev 2017; 84:1306-1313. [PMID: 29155477 DOI: 10.1002/mrd.22933] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 11/06/2017] [Indexed: 12/22/2022]
Abstract
Obesity predisposes women to reproductive disorders. One symptom of obesity in women is higher levels of oxidized Low-density lipoprotein (oxLDL) in serum and preovulatory follicles. The present study was designed to test the hypothesis that oxLDL might impair follicle differentiation and luteinization. Given that Hypoxia-inducible factor 1 (HIF1) plays crucial roles in supporting follicle differentiation and luteinization in mammals, we focused on oxLDL-mediated events that may affect the HIF1 pathway. We report that exposure to oxLDL diminished the expression of HIF1α and its target genes and suppressed the differentiation of mouse luteinized granulosa cells following induction by human Chorionic gonadotophin (hCG) under hypoxic conditions (1% oxygen). Significantly, the proteasome inhibitor MG-132 prevented this oxLDL-attenuation differentiation phenotype by blocking HIF1α degradation. Together, these findings suggest that suppression of granulosa cell differentiation by oxLDL, via HIF1α down-regulation, may contribute the negative effects of obesity on female fertility.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Departmentof Urology, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Yanhong Liu
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Yanhong Shan
- Department of Obstetrics, First Hospital, Jilin University, Changchun, China
| | - Xingyi Jin
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, China
| | - Qingyang Shi
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| | - Chunshu Jia
- Centre for Reproductive Medicine, Centre for Prenatal Diagnosis, First Hospital, Jilin University, Changchun, China
| |
Collapse
|
31
|
Bivona JJ, Patel S, Vajdy M. Induction of cellular and molecular Immunomodulatory pathways by vitamin E and vitamin C. Expert Opin Biol Ther 2017; 17:1539-1551. [PMID: 28905653 DOI: 10.1080/14712598.2017.1375096] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Vitamins E and C are well known small molecules that have been used to maintain health for decades. Recent studies of the cellular and molecular pathways leading to immunomodulation by these molecules have been of interest, as have their anti-oxidant properties and signal transduction pathways for curing or improving infectious diseases and cancer. Areas covered: Herein, the authors provide a definition and the structural classification of vitamins E and C and how these molecules influence cellular function. The studies include in vitro, ex vivo and in vivo studies in animal models as well as clinical trials. The authors give particular focus to the scientifically factual and putative roles of these molecules in innate and adaptive immunomodulation and prevention or cure of diseases. Expert opinion: The antioxidant properties of vitamins E and C are well studied. However, whether there is a link between their antioxidant and immunomodulation properties is unclear. In addition, there is a strong, albeit putative, prevailing notion that vitamin C can prevent or cure infectious diseases or cancer. Presently, while there is proven evidence that vitamin E possesses immunomodulatory properties that may play a positive role in disease outcomes, this evidence is less available for vitamin C.
Collapse
Affiliation(s)
- Joseph J Bivona
- a EpitoGenesis, Inc , Vernon , CT , USA.,b Department of Medicine , University of Vermont , Burlington , VT , USA
| | | | | |
Collapse
|
32
|
Panisova E, Kery M, Sedlakova O, Brisson L, Debreova M, Sboarina M, Sonveaux P, Pastorekova S, Svastova E. Lactate stimulates CA IX expression in normoxic cancer cells. Oncotarget 2017; 8:77819-77835. [PMID: 29100428 PMCID: PMC5652817 DOI: 10.18632/oncotarget.20836] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/08/2017] [Indexed: 11/25/2022] Open
Abstract
Besides hypoxia, other factors and molecules such as lactate, succinate, and reactive oxygen species activate transcription factor hypoxia-inducible factor-1 (HIF-1) even in normoxia. One of the main target gene products of HIF-1 is carbonic anhydrase IX (CA IX). CA IX is overexpressed in many tumors and serves as prognostic factor for hypoxic, aggressive and malignant cancers. CA IX is also induced in normoxia in high cell density. In this study, we observed that lactate induces CA IX expression in normoxic cancer cells in vitro and in vivo. We further evidenced that participation of both HIF-1 and specificity protein 1 (SP1) transcription factors is crucial for lactate-driven normoxic induction of the CA9 gene. By inducing CA IX, lactate can facilitate the maintenance of cancer cell aggressive behavior in normoxia.
Collapse
Affiliation(s)
- Elena Panisova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martin Kery
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Olga Sedlakova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Lucie Brisson
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium.,Inserm UMR1069, Nutrition, Croissance et Cancer, Université François-Rabelais, Tours, France
| | - Michaela Debreova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Martina Sboarina
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Pierre Sonveaux
- Unit of Pharmacology and Therapeutics, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain (UCL), Brussels, Belgium
| | - Silvia Pastorekova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Eliska Svastova
- Institute of Virology, Biomedical Research Center, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
33
|
Mustafi S, Sant DW, Liu ZJ, Wang G. Ascorbate induces apoptosis in melanoma cells by suppressing Clusterin expression. Sci Rep 2017. [PMID: 28623268 PMCID: PMC5473908 DOI: 10.1038/s41598-017-03893-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Pharmacological levels of ascorbate have long been suggested as a potential treatment of cancer. However, we observed that EC50 of ascorbate was at a similar level for cultured healthy melanocytes and melanoma cells, suggesting a limit of pharmacological ascorbate in treating cancer. Loss of 5-hydroxymethylcytosine (5 hmC) is an epigenetic hallmark of cancer and ascorbate promotes 5 hmC generation by serving as a cofactor for TET methylcytosine dioxygenases. Our previous work demonstrated that ascorbate treatment at physiological level (100 μM) increased 5 hmC content in melanoma cells toward the level of healthy melanocytes. Here we show that 100 µM of ascorbate induced apoptosis in A2058 melanoma cells. RNA-seq analysis revealed that expression of the Clusterin (CLU) gene, which is related to apoptosis, was downregulated by ascorbate. The suppression of CLU was verified at transcript level in different melanoma cell lines, and at protein level in A2058 cells. The anti-apoptotic cytoplasmic CLU was decreased, while the pro-apoptotic nuclear CLU was largely maintained, after ascorbate treatment. These changes in CLU subcellular localization were also associated with Bax and caspases activation, Bcl-xL sequestration, and cytochrome c release. Taken together, this study establishes an impending therapeutic role of physiological ascorbate to potentiate apoptosis in melanoma.
Collapse
Affiliation(s)
- Sushmita Mustafi
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - David W Sant
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Zhao-Jun Liu
- Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Gaofeng Wang
- John P. Hussman Institute for Human Genomics, Dr. John T. Macdonald Foundation Department of Human Genetics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA. .,Dr. Nasser Ibrahim Al-Rashid Orbital Vision Research Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
34
|
Wohlrab C, Phillips E, Dachs GU. Vitamin C Transporters in Cancer: Current Understanding and Gaps in Knowledge. Front Oncol 2017; 7:74. [PMID: 28484682 PMCID: PMC5402541 DOI: 10.3389/fonc.2017.00074] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 04/06/2017] [Indexed: 11/14/2022] Open
Abstract
Sufficient uptake and whole body distribution of vitamin C (ascorbate) is essential for many biochemical processes, including some that are vital for tumor growth and spread. Uptake of ascorbate into cancer cells is modulated by availability, tumor blood flow, tissue diffusion parameters, and ascorbate transport proteins. Uptake into cells is mediated by two families of transport proteins, namely, the solute carrier gene family 23, consisting of sodium-dependent vitamin C transporters (SVCTs) 1 and 2, and the SLC2 family of glucose transporters (GLUTs). GLUTs transport the oxidized form of the vitamin, dehydroascorbate (DHA), which is present at negligible to low physiological levels. SVCT1 and 2 are capable of accumulating ascorbate against a concentration gradient from micromolar concentrations outside to millimolar levels inside of cells. Investigating the expression and regulation of SVCTs in cancer has only recently started to be included in studies focused on the role of ascorbate in tumor formation, progression, and response to therapy. This review gives an overview of the current, limited knowledge of ascorbate transport across membranes, as well as tissue distribution, gene expression, and the relevance of SVCTs in cancer. As tumor ascorbate accumulation may play a role in the anticancer activity of high dose ascorbate treatment, further research into ascorbate transport in cancer tissue is vital.
Collapse
Affiliation(s)
- Christina Wohlrab
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Elisabeth Phillips
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch, New Zealand
| |
Collapse
|
35
|
Carr AC, McCall C. The role of vitamin C in the treatment of pain: new insights. J Transl Med 2017; 15:77. [PMID: 28410599 PMCID: PMC5391567 DOI: 10.1186/s12967-017-1179-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/05/2017] [Indexed: 02/07/2023] Open
Abstract
The vitamin C deficiency disease scurvy is characterised by musculoskeletal pain and recent epidemiological evidence has indicated an association between suboptimal vitamin C status and spinal pain. Furthermore, accumulating evidence indicates that vitamin C administration can exhibit analgesic properties in some clinical conditions. The prevalence of hypovitaminosis C and vitamin C deficiency is high in various patient groups, such as surgical/trauma, infectious diseases and cancer patients. A number of recent clinical studies have shown that vitamin C administration to patients with chronic regional pain syndrome decreases their symptoms. Acute herpetic and post-herpetic neuralgia is also diminished with high dose vitamin C administration. Furthermore, cancer-related pain is decreased with high dose vitamin C, contributing to enhanced patient quality of life. A number of mechanisms have been proposed for vitamin C’s analgesic properties. Herein we propose a novel analgesic mechanism for vitamin C; as a cofactor for the biosynthesis of amidated opioid peptides. It is well established that vitamin C participates in the amidation of peptides, through acting as a cofactor for peptidyl-glycine α-amidating monooxygenase, the only enzyme known to amidate the carboxy terminal residue of neuropeptides and peptide hormones. Support for our proposed mechanism comes from studies which show a decreased requirement for opioid analgesics in surgical and cancer patients administered high dose vitamin C. Overall, vitamin C appears to be a safe and effective adjunctive therapy for acute and chronic pain relief in specific patient groups.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Cate McCall
- Centre for Postgraduate Nursing Studies, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand
| |
Collapse
|
36
|
Ascorbic acid, but not dehydroascorbic acid increases intracellular vitamin C content to decrease Hypoxia Inducible Factor -1 alpha activity and reduce malignant potential in human melanoma. Biomed Pharmacother 2016; 86:502-513. [PMID: 28012930 DOI: 10.1016/j.biopha.2016.12.056] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 12/09/2016] [Accepted: 12/14/2016] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Accumulation of hypoxia inducible factor-1 alpha (HIF-1α) in malignant tissue is known to contribute to oncogenic progression and is inversely associated with patient survival. Ascorbic acid (AA) depletion in malignant tissue may contribute to aberrant normoxic activity of HIF-1α. While AA supplementation has been shown to attenuate HIF-1α function in malignant melanoma, the use of dehydroascorbic acid (DHA) as a therapeutic means to increase intracellular AA and modulate HIF-1α function is yet to be evaluated. Here we compared the ability of AA and DHA to increase intracellular vitamin C content and decrease the malignant potential of human melanoma by reducing the activity of HIF-1α. METHODS HIF-1α protein accumulation was evaluated by western blot and transcriptional activity was evaluated by reporter gene assay using a HIF-1 HRE-luciferase plasmid. Protein expressions and subcellular localizations of vitamin C transporters were evaluated by western blot and confocal imaging. Intracellular vitamin C content following AA, ascorbate 2-phosphate (A2P), or DHA supplementation was determined using a vitamin C assay. Malignant potential was accessed using a 3D spheroid Matrigel invasion assay. Data was analyzed by One or Two-way ANOVA with Tukey's multiple comparisons test as appropriate with p<0.05 considered significant. RESULTS Melanoma cells expressed both sodium dependent vitamin C (SVCT) and glucose (GLUT) transporters for AA and DHA transport respectively, however advanced melanomas responded favorably to AA, but not DHA. Physiological glucose conditions significantly impaired intracellular vitamin C accumulation following DHA treatment. Consequently, A2P and AA, but not DHA treated cells demonstrated lower HIF-1α protein expression and activity, and reduced malignant potential. The ability of AA to regulate HIF-1α was dependent on SVCT2 function and SVCT2 was not significantly inhibited at pH representative of the tumor microenvironment. CONCLUSIONS The use of ascorbic acid as an adjuvant cancer therapy remains under investigated. While AA and A2P were capable of modulating HIF-1α protein accumulation/activity, DHA supplementation resulted in minimal intracellular vitamin C activity with decreased ability to inhibit HIF-1α activity and malignant potential in advanced melanoma. Restoring AA dependent regulation of HIF-1α in malignant cells may prove beneficial in reducing chemotherapy resistance and improving treatment outcomes.
Collapse
|
37
|
Campbell EJ, Vissers MCM, Wohlrab C, Hicks KO, Strother RM, Bozonet SM, Robinson BA, Dachs GU. Pharmacokinetic and anti-cancer properties of high dose ascorbate in solid tumours of ascorbate-dependent mice. Free Radic Biol Med 2016; 99:451-462. [PMID: 27567539 DOI: 10.1016/j.freeradbiomed.2016.08.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 08/23/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022]
Abstract
Despite recent evidence for an anti-tumour role for high-dose ascorbate, potential mechanisms of action are still unclear. At mM concentrations that are achieved with high-dose intravenous administration, autoxidation of ascorbate can generate cytotoxic levels of H2O2. Ascorbate is also a required co-factor for the hydroxylases that suppress the transcription factor hypoxia-inducible factor (HIF-1). HIF-1 supports an aggressive tumour phenotype and is associated with poor prognosis, and previous studies have shown that optimizing intracellular ascorbate levels down-regulates HIF-1 activation. In this study we have simultaneously measured ascorbate concentrations and the HIF-1 pathway activity in tumour tissue following high dose ascorbate administration, and have studied tumour growth and physiology. Gulo-/- mice, a model of the human ascorbate dependency condition, were implanted with syngeneic Lewis lung tumours, 1g/kg ascorbate was administered into the peritoneum, and ascorbate concentrations were monitored in plasma, liver and tumours. Ascorbate levels peaked within 30min, and although plasma and liver ascorbate returned to baseline within 16h, tumour levels remained elevated for 48h, possibly reflecting increased stability in the hypoxic tumour environment. The expression of HIF-1 and its target proteins was down-regulated with tumour ascorbate uptake. Elevated tumour ascorbate levels could be maintained with daily administration, and HIF-1 and vascular endothelial growth factor protein levels were reduced in these conditions. Increased tumour ascorbate was associated with slowed tumour growth, reduced tumour microvessel density and decreased hypoxia. Alternate day administration of ascorbate resulted in lower tumour levels and did not consistently decrease HIF-1 pathway activity. Levels of sodium-dependent vitamin C transporters 1 and 2 were not clearly associated with ascorbate accumulation by murine tumour cells in vitro or in vivo. Our results support the suppression of the hypoxic response by ascorbate as a plausible mechanism of action of its anti-tumour activity, and this may be useful in a clinical setting.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/blood
- Antineoplastic Agents/pharmacokinetics
- Antineoplastic Agents/pharmacology
- Antioxidants/metabolism
- Antioxidants/pharmacokinetics
- Antioxidants/pharmacology
- Ascorbic Acid/blood
- Ascorbic Acid/pharmacokinetics
- Ascorbic Acid/pharmacology
- Carcinoma, Lewis Lung/drug therapy
- Carcinoma, Lewis Lung/genetics
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Drug Administration Schedule
- Female
- Gene Expression Regulation, Neoplastic
- Hypoxia-Inducible Factor 1, alpha Subunit/antagonists & inhibitors
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Injections, Intraperitoneal
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Mice
- Mice, Knockout
- Signal Transduction
- Sodium-Coupled Vitamin C Transporters/genetics
- Sodium-Coupled Vitamin C Transporters/metabolism
- Vascular Endothelial Growth Factor A/antagonists & inhibitors
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Elizabeth J Campbell
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Margreet C M Vissers
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Christina Wohlrab
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Kevin O Hicks
- Auckland Cancer Society Research Centre, University of Auckland, Auckland 1142, New Zealand
| | - R Matthew Strother
- Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch 8011, New Zealand
| | - Stephanie M Bozonet
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch 8011, New Zealand
| | - Bridget A Robinson
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand; Canterbury Regional Cancer and Haematology Service, Canterbury District Health Board, Christchurch 8011, New Zealand; Department of Medicine, University of Otago, Christchurch 8011, New Zealand
| | - Gabi U Dachs
- Mackenzie Cancer Research Group, Department of Pathology, University of Otago, Christchurch 8011, New Zealand.
| |
Collapse
|
38
|
Campbell EJ, Vissers MC, Dachs GU. Ascorbate availability affects tumor implantation-take rate and increases tumor rejection in Gulo -/- mice. HYPOXIA 2016; 4:41-52. [PMID: 27800507 PMCID: PMC5085285 DOI: 10.2147/hp.s103088] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In solid tumors, HIF1 upregulates the expression of hundreds of genes involved in cell survival, tumor growth, and adaptation to the hypoxic microenvironment. HIF1 stabilization and activity are suppressed by prolyl and asparagine hydroxylases, which require oxygen as a substrate and ascorbate as a cofactor. This has led us to hypothesize that intracellular ascorbate availability could modify the hypoxic HIF1 response and influence tumor growth. In this study, we investigated the effect of variable intracellular ascorbate levels on HIF1 induction in cancer cells in vitro, and on tumor-take rate and growth in the Gulo-/- mouse. These mice depend on dietary ascorbate, and were supplemented with 3,300 mg/L, 330 mg/L, or 33 mg/L ascorbate in their drinking water, resulting in saturating, medium, or low plasma and tissue ascorbate levels, respectively. In Lewis lung carcinoma cells (LL/2) in culture, optimal ascorbate supplementation reduced HIF1 accumulation under physiological but not pathological hypoxia. LL/2, B16-F10 melanoma, or CMT-93 colorectal cancer cells were implanted subcutaneously into Gulo-/- mice at a range of cell inocula. Establishment of B16-F10 tumors in mice supplemented with 3,300 mg/L ascorbate required an increased number of cancer cells to initiate tumor growth compared with the number of cells required in mice on suboptimal ascorbate intake. Elevated ascorbate intake was also associated with decreased tumor ascorbate levels and a reduction in HIF1α expression and transcriptional activity. Following initial growth, all CMT-93 tumors regressed spontaneously, but mice supplemented with 33 mg/L ascorbate had lower plasma ascorbate levels and grew larger tumors than optimally supplemented mice. The data from this study indicate that improved ascorbate intake is consistent with increased intracellular ascorbate levels, reduced HIF1 activity and reduced tumor initiation and growth, and this may be advantageous in the management of cancer.
Collapse
Affiliation(s)
| | - Margreet Cm Vissers
- Centre for Free Radical Research, Department of Pathology, University of Otago, Christchurch, New Zealand
| | | |
Collapse
|
39
|
Carr AC, Shaw GM, Fowler AA, Natarajan R. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2015; 19:418. [PMID: 26612352 PMCID: PMC4661979 DOI: 10.1186/s13054-015-1131-2] [Citation(s) in RCA: 162] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Severe systemic inflammatory response to infection results in severe sepsis and septic shock, which are the leading causes of death in critically ill patients. Septic shock is characterised by refractory hypotension and is typically managed by fluid resuscitation and administration of catecholamine vasopressors such as norepinephrine. Vasopressin can also be administered to raise mean arterial pressure or decrease the norepinephrine dose. Endogenous norepinephrine and vasopressin are synthesised by the copper-containing enzymes dopamine β-hydroxylase and peptidylglycine α-amidating monooxygenase, respectively. Both of these enzymes require ascorbate as a cofactor for optimal activity. Patients with severe sepsis present with hypovitaminosis C, and pre-clinical and clinical studies have indicated that administration of high-dose ascorbate decreases the levels of pro-inflammatory biomarkers, attenuates organ dysfunction and improves haemodynamic parameters. It is conceivable that administration of ascorbate to septic patients with hypovitaminosis C could improve endogenous vasopressor synthesis and thus ameliorate the requirement for exogenously administered vasopressors. Ascorbate-dependent vasopressor synthesis represents a currently underexplored biochemical mechanism by which ascorbate could act as an adjuvant therapy for severe sepsis and septic shock.
Collapse
Affiliation(s)
- Anitra C Carr
- Department of Pathology, University of Otago, Christchurch, PO Box 4345, Christchurch, 8140, New Zealand.
| | - Geoffrey M Shaw
- Department of Intensive Care Medicine, Christchurch Hospital, Private Bag 4710, Christchurch, 8011, New Zealand.
| | - Alpha A Fowler
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Box 980050, Richmond, VA, 23298, USA.
| | - Ramesh Natarajan
- Division of Pulmonary Disease and Critical Care Medicine, Department of Internal Medicine, School of Medicine, Virginia Commonwealth University, Box 980050, Richmond, VA, 23298, USA.
| |
Collapse
|
40
|
Venturelli S, Sinnberg TW, Niessner H, Busch C. Molecular mechanisms of pharmacological doses of ascorbate on cancer cells. Wien Med Wochenschr 2015; 165:251-7. [PMID: 26065536 DOI: 10.1007/s10354-015-0356-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 04/08/2015] [Indexed: 12/19/2022]
Abstract
Intravenous application of high-dose ascorbate (vitamin C) has been used in complementary medicine since the 1970s to treat cancer patients. In recent years it became evident that high-dose ascorbate in the millimolar range bears selective cytotoxic effects on cancer cells in vitro and in vivo. This anticancer effect is dose dependent, catalyzed by serum components and mediated by reactive oxygen species and ascorbyl radicals, making ascorbate a pro-oxidative pro-drug that catalyzes hydrogen peroxide production in tissues instead of acting as a radical scavenger. It further depends on HIF-1 signaling and oxygen pressure, and shows a strong epigenetic signature (alteration of DNA-methylation and induction of tumor-suppressing microRNAs in cancer cells). The detailed understanding of ascorbate-induced antiproliferative molecular mechanisms warrants in-depth preclinical evaluation in cancer-bearing animal models for the optimization of an efficacious therapy regimen (e.g., combination with hyperbaric oxygen or O2-sensitizers) that subsequently need to be evaluated in clinical trials.
Collapse
Affiliation(s)
- Sascha Venturelli
- Department of Internal Medicine I, Medical University Hospital, Tuebingen, Germany
| | | | | | | |
Collapse
|