1
|
Mildner FO, Sykora MM, Hackl H, Amann A, Zelger B, Sprung S, Buch ML, Nocera F, Moser P, Maier H, Augustin F, Manzl C, Kocher F, Pircher A, Lindenmann J, Mykoliuk I, Raftopoulou S, Kargl J, Wolf D, Sopper S, Gamerith G. Soluble PD-L1 shows no association to relapse and overall survival in early stage non-small cell lung cancer (NSCLC). Lung Cancer 2024; 196:107955. [PMID: 39306924 DOI: 10.1016/j.lungcan.2024.107955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 09/08/2024] [Accepted: 09/11/2024] [Indexed: 10/13/2024]
Abstract
BACKGROUND Cancer immune evasion is critical in non-small cell lung cancer (NSCLC) and has been targeted by immunotherapy. High soluble (s)PD-L1 is associated with reduced survival and treatment failure in advanced stages. Here we evaluated the effects of sPD-L1 on T cells, relapse free survival, and overall survival in early stage NSCLC. METHODS In vitro T cell stimulation was performed in the presence of sPD-L1 to evaluate its immunomodulatory activity. Data from The Cancer Genome Atlas (TCGA) were investigated for PD-L1 splice variants and enzymes involved in proteolytic cleavage (i.e. ADAM10). Plasma from 74 NSCLC (stage IA-IIIB), as well as an additional 73 (control cohort) patients was collected prior to curative surgery. Thereafter sPD-L1 levels from an immunosorbent assay were correlated with patient outcome. RESULTS In vitro sPD-L1 inhibited IFN-γ production and proliferation of T cells and induced a terminal effector CD4 T cell subtype expressing CD27. Data from the TCGA demonstrated that elevated mRNA levels of ADAM10 is a negative predictor of outcome in NSCLC patients. To investigate the clinical relevance of these in vitro and TCGA findings, we quantified sPD-L1 in the plasma of early-stage NSCLC patients. In the first cohort we found significantly higher sPD-L1 levels in relapsing NSCLC patients, with a multivariate analysis revealing high sPD-L1 (>1000 pg/mL) as an independent predictor of survival. However, these findings could not be validated in two independent control cohorts. DISCUSSION Although in vitro and TCGA data support the suppressive effect of sPD-L1 we were unable to translate this in our clinical setting. These results may be due to the small patient number and their heterogeneity as well as the lack of a standardized sPD-L1 ELISA. Our inconclusive results regarding the value of sPD-L1 in early stage NSCLC warrant assay validation and further investigation in larger (neo-)adjuvant trials.
Collapse
Affiliation(s)
- F O Mildner
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - M M Sykora
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria; Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria; Department of Biosciences and Medical Biology, University of Salzburg, 5020 Salzburg, Austria
| | - H Hackl
- Institute of Bioinformatics, Biocenter, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - A Amann
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - B Zelger
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - S Sprung
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - M L Buch
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - F Nocera
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - P Moser
- INNPATH, Institute of Pathology, Tirol Kliniken Innsbruck, 6020 Innsbruck, Austria
| | - H Maier
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - F Augustin
- Department of Visceral, Transplant and Thoracic Surgery, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - C Manzl
- Department of Pathology, Neuropathology, and Molecular Pathology, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - F Kocher
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - A Pircher
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - J Lindenmann
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria
| | - I Mykoliuk
- Division of Thoracic and Hyperbaric Surgery, Department of Surgery, Medical University of Graz, 8010 Graz, Austria
| | - S Raftopoulou
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - J Kargl
- Division of Pharmacology, Otto Loewi Research Center, Medical University of Graz, 8010 Graz, Austria
| | - D Wolf
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria
| | - S Sopper
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria; Tyrolean Cancer Research Institute, 6020 Innsbruck, Austria
| | - G Gamerith
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Gupta DS, Gupta DS, Abjani NK, Dave Y, Apte K, Kaur G, Kaur D, Saini AK, Sharma U, Haque S, Tuli HS. Vaccine-based therapeutic interventions in lung cancer management: A recent perspective. Med Oncol 2024; 41:249. [PMID: 39316239 DOI: 10.1007/s12032-024-02489-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/24/2024] [Indexed: 09/25/2024]
Abstract
The incidence of lung cancer continues to grow globally, contributing to an ever-increasing load on healthcare systems. Emerging evidence has indicated lowered efficacy of conventional treatment strategies, such as chemotherapy, surgical interventions and radiotherapy, prompting the need for exploring alternative interventions. A growing focus on immunotherapy and the development of personalized medicine has paved the way for vaccine-based delivery in lung cancer. With various prominent targets such as CD8+T cells and PD-L1, immune-targeted, anti-cancer vaccines have been evaluated in both, pre-clinical and clinical settings, to improve therapeutic outcomes. However, there are a number of challenges that must be addressed, including the scalability of such delivery systems, heterogeneity of lung cancers, and long-term safety as well as efficacy. In addition to this, natural compounds, in combination with immunotherapy, have gained considerable research interest in recent times. This makes it necessary to explore their role in synergism with immune-targeted agents. The authors of this review aim to offer an overview of recent advances in our understanding of lung cancer pathogenesis, detection and management strategies, and the emergence of immunotherapy with a special focus on vaccine delivery. This finding is supported with evidence from testing in non-human and human models, showcasing promising results. Prospects for phytotherapy have also been discussed, in order to combat some pitfalls and limitations. Finally, the future perspectives of vaccine usage in lung cancer management have also been discussed, to offer a holistic perspective to readers, and to prompt further research in the domain.
Collapse
Affiliation(s)
- Dhruv Sanjay Gupta
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Daksh Sanjay Gupta
- Vivekanand Education Society's College of Pharmacy, Chembur, Mumbai, Maharashtra, 400074, India
| | - Nosheen Kamruddin Abjani
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Yash Dave
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ketaki Apte
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 56, India.
| | - Damandeep Kaur
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| | - Adesh Kumar Saini
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
3
|
Vella N, Fenech AG, Petroni Magri V. 3D cell culture models in research: applications to lung cancer pharmacology. Front Pharmacol 2024; 15:1438067. [PMID: 39376603 PMCID: PMC11456561 DOI: 10.3389/fphar.2024.1438067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/26/2024] [Indexed: 10/09/2024] Open
Abstract
Lung cancer remains one of the leading causes of cancer-related mortality worldwide, necessitating innovative research methodologies to improve treatment outcomes and develop novel strategies. The advent of three-dimensional (3D) cell cultures has marked a significant advancement in lung cancer research, offering a more physiologically relevant model compared to traditional two-dimensional (2D) cultures. This review elucidates the various types of 3D cell culture models currently used in lung cancer pharmacology, including spheroids, organoids and engineered tissue models, having pivotal roles in enhancing our understanding of lung cancer biology, facilitating drug development, and advancing precision medicine. 3D cell culture systems mimic the complex spatial architecture and microenvironment of lung tumours, providing critical insights into the cellular and molecular mechanisms of tumour progression, metastasis and drug responses. Spheroids, derived from commercialized cell lines, effectively model the tumour microenvironment (TME), including the formation of hypoxic and nutrient gradients, crucial for evaluating the penetration and efficacy of anti-cancer therapeutics. Organoids and tumouroids, derived from primary tissues, recapitulate the heterogeneity of lung cancers and are instrumental in personalized medicine approaches, supporting the simulation of in vivo pharmacological responses in a patient-specific context. Moreover, these models have been co-cultured with various cell types and biomimicry extracellular matrix (ECM) components to further recapitulate the heterotypic cell-cell and cell-ECM interactions present within the lung TME. 3D cultures have been significantly contributing to the identification of novel therapeutic targets and the understanding of resistance mechanisms against conventional therapies. Therefore, this review summarizes the latest findings in drug research involving lung cancer 3D models, together with the common laboratory-based assays used to study drug effects. Additionally, the integration of 3D cell cultures into lung cancer drug development workflows and precision medicine is discussed. This integration is pivotal in accelerating the translation of laboratory findings into clinical applications, thereby advancing the landscape of lung cancer treatment. By closely mirroring human lung tumours, these models not only enhance our understanding of the disease but also pave the way for the development of more effective and personalized therapeutic strategies.
Collapse
Affiliation(s)
| | - Anthony G. Fenech
- Department of Clinical Pharmacology and Therapeutics, Faculty of Medicine and Surgery, University of Malta, Msida, Malta
| | | |
Collapse
|
4
|
Hadzi-Petrushev N, Stojchevski R, Jakimovska A, Stamenkovska M, Josifovska S, Stamatoski A, Sazdova I, Sopi R, Kamkin A, Gagov H, Mladenov M, Avtanski D. GLUT5-overexpression-related tumorigenic implications. Mol Med 2024; 30:114. [PMID: 39107723 PMCID: PMC11304774 DOI: 10.1186/s10020-024-00879-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024] Open
Abstract
Glucose transporter 5 (GLUT5) overexpression has gained increasing attention due to its profound implications for tumorigenesis. This manuscript provides a comprehensive overview of the key findings and implications associated with GLUT5 overexpression in cancer. GLUT5 has been found to be upregulated in various cancer types, leading to alterations in fructose metabolism and enhanced glycolysis, even in the presence of oxygen, a hallmark of cancer cells. This metabolic shift provides cancer cells with an alternative energy source and contributes to their uncontrolled growth and survival. Beyond its metabolic roles, recent research has unveiled additional aspects of GLUT5 in cancer biology. GLUT5 overexpression appears to play a critical role in immune evasion mechanisms, which further worsens tumor progression and complicates therapeutic interventions. This dual role of GLUT5 in both metabolic reprogramming and immune modulation highlights its significance as a potential diagnostic marker and therapeutic target. Understanding the molecular mechanisms driving GLUT5 overexpression is crucial for developing targeted therapeutic strategies that can disrupt the unique vulnerabilities of GLUT5-overexpressing cancer cells. This review emphasizes the complexities surrounding GLUT5's involvement in cancer and underscores the pressing need for continued research to unlock its potential as a diagnostic biomarker and therapeutic target, ultimately improving cancer management and patient outcomes.
Collapse
Affiliation(s)
- Nikola Hadzi-Petrushev
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Radoslav Stojchevski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA
| | - Anastasija Jakimovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Mimoza Stamenkovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Slavica Josifovska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Aleksandar Stamatoski
- Faculty of Dental Medicine, University Clinic for Maxillofacial Surgery in Skopje, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
| | - Iliyana Sazdova
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Ramadan Sopi
- Faculty of Medicine, University of Prishtina, Prishtina, 10 000, Kosovo
| | - Andre Kamkin
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Hristo Gagov
- Department of Animal and Human Physiology, Faculty of Biology, Sofia University 'St. Kliment Ohridski', Sofia, 1504, Bulgaria
| | - Mitko Mladenov
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, Skopje, 1000, North Macedonia
- Institute of Physiology of the Federal State Autonomous Educational Institution of Higher Education "N.I. Pirogov Russian National Research Medical University" Ministry of Health, Moscow, Russian Federation
| | - Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, Northwell Health, 110 E 59th Street, New York, NY, 10022, USA.
- Feinstein Institutes for Medical Research, Manhasset, NY, 11030, USA.
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, 11549, USA.
| |
Collapse
|
5
|
Wu Y, Yu G, Jin K, Qian J. Advancing non-small cell lung cancer treatment: the power of combination immunotherapies. Front Immunol 2024; 15:1349502. [PMID: 39015563 PMCID: PMC11250065 DOI: 10.3389/fimmu.2024.1349502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 06/10/2024] [Indexed: 07/18/2024] Open
Abstract
Non-small cell lung cancer (NSCLC) remains an unsolved challenge in oncology, signifying a substantial global health burden. While considerable progress has been made in recent years through the emergence of immunotherapy modalities, such as immune checkpoint inhibitors (ICIs), monotherapies often yield limited clinical outcomes. The rationale behind combining various immunotherapeutic or other anticancer agents, the mechanistic underpinnings, and the clinical evidence supporting their utilization is crucial in NSCLC therapy. Regarding the synergistic potential of combination immunotherapies, this study aims to provide insights to help the landscape of NSCLC treatment and improve clinical outcomes. In addition, this review article discusses the challenges and considerations of combination regimens, including toxicity management and patient selection.
Collapse
Affiliation(s)
- Yuanlin Wu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Guangmao Yu
- Department of Thoracic Surgery, Shaoxing People’s Hospital, Shaoxing, Zhejiang, China
| | - Ketao Jin
- Department of Gastrointestinal, Colorectal and Anal Surgery, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, Zhejiang, China
| | - Jun Qian
- Department of Colorectal Surgery, Xinchang People’s Hospital, Affiliated Xinchang Hospital, Wenzhou Medical University, Xinchang, Zhejiang, China
| |
Collapse
|
6
|
Yu Q, Ding J, Li S, Li Y. Autophagy in cancer immunotherapy: Perspective on immune evasion and cell death interactions. Cancer Lett 2024; 590:216856. [PMID: 38583651 DOI: 10.1016/j.canlet.2024.216856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Both the innate and adaptive immune systems work together to produce immunity. Cancer immunotherapy is a novel approach to tumor suppression that has arisen in response to the ineffectiveness of traditional treatments like radiation and chemotherapy. On the other hand, immune evasion can diminish immunotherapy's efficacy. There has been a lot of focus in recent years on autophagy and other underlying mechanisms that impact the possibility of cancer immunotherapy. The primary feature of autophagy is the synthesis of autophagosomes, which engulf cytoplasmic components and destroy them by lysosomal degradation. The planned cell death mechanism known as autophagy can have opposite effects on carcinogenesis, either increasing or decreasing it. It is autophagy's job to maintain the balance and proper functioning of immune cells like B cells, T cells, and others. In addition, autophagy controls whether macrophages adopt the immunomodulatory M1 or M2 phenotype. The ability of autophagy to control the innate and adaptive immune systems is noteworthy. Interleukins and chemokines are immunological checkpoint chemicals that autophagy regulates. Reducing antigen presentation to induce immunological tolerance is another mechanism by which autophagy promotes cancer survival. Therefore, targeting autophagy is of importance for enhancing potential of cancer immunotherapy.
Collapse
Affiliation(s)
- Qiang Yu
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Jiajun Ding
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Shisen Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China
| | - Yunlong Li
- Department of Digestive Surgery, Xijing Hospital, Air Force Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Lu Y, Zhang X, Ning J, Zhang M. Immune checkpoint inhibitors as first-line therapy for non-small cell lung cancer: A systematic evaluation and meta-analysis. Hum Vaccin Immunother 2023; 19:2169531. [PMID: 36715018 PMCID: PMC10038046 DOI: 10.1080/21645515.2023.2169531] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 01/04/2023] [Accepted: 01/13/2023] [Indexed: 01/31/2023] Open
Abstract
Recently, immune checkpoint inhibitors (ICIs) present promising application prospects in treating non-small cell lung cancer (NSCLC). This study aimed to investigate optimal treatment strategy by comparing the first-line treatment strategies with ICIs in NSCLC. We retrieved relevant studies on first-line therapy of NSCLC with ICIs. Primary outcomes were overall survival (OS) and progression-free survival (PFS). Secondary outcomes were treatment-related serious adverse events (tr-SAEs) with grade 3 or higher and objective response rate (ORR). We also conducted a Bayesian network meta-analysis. We included 14 studies involving 7,823 patients and compared seven different interventions. In PD-L1 nonselective NSCLC, nivolumab+ipilimumab had good PFS and ORR, pembrolizumab significantly prolonged OS, and nivolumab had the fewest adverse events (AEs). For PD-L1-positive patients, nivolumab remarkably prolonged OS. For those with negative PD-L1, nivolumab+ipilimumab also showed an advantage. In addition, nivolumab+ipilimumab significantly prolonged the PFS in both PD-L1-negative and -positive patients. For patients with PD-L1 tumor proportion score (TPS) within 1-49%, atezolizumab+chemotherapy remarkably prolonged PFS and OS. For those with PD-L1 TPS ≥50%, pembrolizumab prolonged OS and atezolizumab+chemotherapy significantly prolonged PFS. Nivolumab combined with ipilimumab showed advantages in OS, PFS and ORR in most patients. Nivolumab+ipilimumab may be the optimal first-line therapy for NSCLC.
Collapse
Affiliation(s)
- Yu Lu
- Department of General Practice, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaoyan Zhang
- Department of General Practice, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Jiyu Ning
- Department of General Practice, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Manyan Zhang
- Department of Respiration, the First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
8
|
Yang X, Xu T, Song X, Wu Y. Overexpression of NRP1 is Associated with Poor Prognosis via Accelerating Immunosuppression in Head and Neck Squamous Cell Carcinoma. Int J Gen Med 2023; 16:2819-2829. [PMID: 37426519 PMCID: PMC10329464 DOI: 10.2147/ijgm.s409336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 06/27/2023] [Indexed: 07/11/2023] Open
Abstract
Background Neuropilin-1 (NRP1) is a significant molecular structure that participates in many diseases progress including malignant tumors. However, its role in head and neck squamous cell carcinoma (HNSCC) remains to be uncovered. In this study, we determined the function of NRP1 as a crucial biomarker in proliferation, metastasis and immunosuppression in HNSCC. Methods We collected samples of normal tissues (n = 18) and HNSCC tissues (n = 202) for immunohistochemical staining of NRP1 and evaluated its correlation to clinical prognostic characteristics. Furthermore, we enrolled 37 HNSCC patients received immune checkpoint blockade (ICB) treatment with defined therapeutic effects records. The biological process, signal pathways, and immune infiltration relevance to NRP1 were analyzed utilized transcriptome data from The Cancer Genome Atlas (TCGA). Results The NRP1 protein expression was significantly upregulated in HNSCC tissue and was associated with T stage, N stage, histological differentiation, recurrence and NRP1 expression. The high expression of NRP1 indicated poor survival rate and was found to be an independent prognosis factor. Enrichment analysis showed that NRP1 was associated with cell adhesion, extracellular matrix organization, homophilic cell adhesion via plasma membrane in biological process and neuroactive ligand-receptor interaction, protein digestion and absorption, calcium signal pathways. Moreover, NRP1 mRNA level was found positively correlated to cancer associated fibroblast cells, Treg cells and macrophage/monocyte cells. Conclusion NRP1 might be likely to develop into a potential immunoregulation target as well as a predictive biomarker in HNSCC immune treatment.
Collapse
Affiliation(s)
- Xueming Yang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Stomatology, the Affiliated People’s Hospital of Jiangsu University, Zhenjiang, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Teng Xu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Xiaomeng Song
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| | - Yunong Wu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, People’s Republic of China
| |
Collapse
|
9
|
Rekulapelli A, E. Flausino L, Iyer G, Balkrishnan R. Effectiveness of immunological agents in non-small cell lung cancer. Cancer Rep (Hoboken) 2022; 6:e1739. [PMID: 36289059 PMCID: PMC9981233 DOI: 10.1002/cnr2.1739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 08/28/2022] [Accepted: 10/08/2022] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND AND AIM Non-small cell lung cancer (NSCLC) continues to claim millions of lives worldwide. Although its poor prognosis is largely attributed to the lack of adequate and precise detection technologies, cancer cells' suppression of the immune system adds on to the difficulty of identifying abnormal NSCLC tumors in their early stages. Therefore, cancer immunotherapy, which activates the immune system and helps it fight tumors, has recently become the most sought-after technique, especially in the advanced stages of NSCLC, where surgery or chemotherapy may or may not bring about the desired survival benefits in patients. METHODS This review focuses on the various immunotherapeutic interventions and their efficacy in advanced NSCLC clinical trials. Monoclonal antibodies like anti-PD-1/PD-L1 agents and anti-CTLA-4 antibodies, cancer vaccines, oncolytic viruses and adoptive T cell therapy have been discussed in brief. Furthermore, the effects of gender, age, and race on the efficacy of immune checkpoint inhibitors and suggest plausible future approaches in the realm of immuno-oncology. RESULTS Immunotherapy is used alone or in combination either with other immunological agents or with chemotherapy. However, the efficacy of these strategies depends extensively on various demographic variables, as some patients respond perfectly well to immunotherapy, while others do not benefit at all or experience disease progression. By targeting a "hallmark" of cancer (immune evasion), immunotherapy has transformed NSCLC management, though several barriers prevent its complete effectiveness. CONCLUSIONS All these immunological strategies should be interpreted in the current setting of synergistic treatment, in which these agents can be combined with chemotherapy, radiotherapy, and, or surgery following patient and tumor characteristics to proportionate the best-individualized treatment and achieve superior results. To better pursue this goal, further investigations on cost-effectiveness and sex-gender, race, and age differences in immunotherapy are needed.
Collapse
Affiliation(s)
- Akhil Rekulapelli
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| | - Lucas E. Flausino
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA,Faculdade de MedicinaUniversidade de São PauloSão PauloBrazil
| | - Gayatri Iyer
- Department of Pharmaceutical Sciences and TechnologyInstitute of Chemical TechnologyMumbaiIndia
| | - Rajesh Balkrishnan
- Department of Public Health SciencesUniversity of Virginia School of MedicineCharlottesvilleVirginiaUSA
| |
Collapse
|
10
|
Coffey DG, Xu Y, Towlerton AMH, Kowanetz M, Hegde P, Darwish M, Yadav M, Blanchette C, Ruppert SM, Bertino S, Xu Q, Ferretti A, Weinheimer A, Hellmann M, Qin A, Thomas D, Warren EH, Ramnath N. Case report: A persistently expanded T cell response in an exceptional responder to radiation and atezolizumab for metastatic non-small cell lung cancer. Front Immunol 2022; 13:961105. [PMID: 36159875 PMCID: PMC9500393 DOI: 10.3389/fimmu.2022.961105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Most patients with advanced non-small cell lung cancer (NSCLC) do not achieve a durable remission after treatment with immune checkpoint inhibitors. Here we report the clinical history of an exceptional responder to radiation and anti-program death-ligand 1 (PD-L1) monoclonal antibody, atezolizumab, for metastatic NSCLC who remains in a complete remission more than 8 years after treatment. Sequencing of the patient’s T cell repertoire from a metastatic lesion and the blood before and after anti-PD-L1 treatment revealed oligoclonal T cell expansion. Characterization of the dominant T cell clone, which comprised 10% of all clones and increased 10-fold in the blood post-treatment, revealed an activated CD8+ phenotype and reactivity against 4 HLA-A2 restricted neopeptides but not viral or wild-type human peptides, suggesting tumor reactivity. We hypothesize that the patient’s exceptional response to anti-PD-L1 therapy may have been achieved by increased tumor immunogenicity promoted by pre-treatment radiation therapy as well as long-term persistence of oligoclonal expanded circulating T cells.
Collapse
Affiliation(s)
- David G. Coffey
- Department of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, United States
- Department of Medicine, Sylvester Comprehensive Cancer Center, Miami, FL, United States
| | - Yuexin Xu
- Department of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | | | | | - Priti Hegde
- Foundation Medicine, Cambridge, MA, United States
| | | | | | | | | | | | - Qikai Xu
- TScan Therapeutics, Waltham, MA, United States
| | | | | | | | - Angel Qin
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, MI, United States
| | - Edus H. Warren
- Department of Medicine, Fred Hutchinson Cancer Center, Seattle, WA, United States
| | - Nithya Ramnath
- Department of Medicine, University of Michigan, Ann Arbor, MI, United States
- Precision Oncology Program, Veterans Affairs, Ann Arbor Healthcare System, Ann Arbor, MI, United States
- *Correspondence: Nithya Ramnath,
| |
Collapse
|
11
|
Zhou L, Zou M, Xu Y, Lin P, Lei C, Xia X. Nano Drug Delivery System for Tumor Immunotherapy: Next-Generation Therapeutics. Front Oncol 2022; 12:864301. [PMID: 35664731 PMCID: PMC9160744 DOI: 10.3389/fonc.2022.864301] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022] Open
Abstract
Tumor immunotherapy is an artificial stimulation of the immune system to enhance anti-cancer response. It has become a powerful clinical strategy for treating cancer. The number of immunotherapy drug approvals has been increasing in recent years, and many treatments are in clinical and preclinical stages. Despite this progress, the special tumor heterogeneity and immunosuppressive microenvironment of solid tumors made immunotherapy in the majority of cancer cases difficult. Therefore, understanding how to improve the intratumoral enrichment degree and the response rate of various immunotherapy drugs is key to improve efficacy and control adverse reactions. With the development of materials science and nanotechnology, advanced biomaterials such as nanoparticle and drug delivery systems like T-cell delivery therapy can improve effectiveness of immunotherapy while reducing the toxic side effects on non-target cells, which offers innovative ideas for improving immunity therapeutic effectiveness. In this review, we discuss the mechanism of tumor cell immune escape and focus on current immunotherapy (such as cytokine immunotherapy, therapeutic monoclonal antibody immunotherapy, PD-1/PD-L1 therapy, CAR-T therapy, tumor vaccine, oncolytic virus, and other new types of immunity) and its challenges as well as the latest nanotechnology (such as bionic nanoparticles, self-assembled nanoparticles, deformable nanoparticles, photothermal effect nanoparticles, stimuli-responsive nanoparticles, and other types) applications in cancer immunotherapy.
Collapse
Affiliation(s)
- Lili Zhou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Manshu Zou
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Yilin Xu
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Peng Lin
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Chang Lei
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China
| | - Xinhua Xia
- School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
12
|
Sellmer L, Kovács J, Neumann J, Walter J, Kauffmann-Guerrero D, Syunyaeva Z, Fertmann J, Schneider C, Zimmermann J, Behr J, Tufman A. Lymphocytes and sinus histiocytosis in tumor and matched lymph nodes as predictors of survival in non-small-cell lung cancer. Future Oncol 2022; 18:481-489. [PMID: 35023359 DOI: 10.2217/fon-2021-0402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To analyze immune cell populations in non-small-cell lung cancer (NSCLC) tumors and matched tumor-bearing and non-tumor-bearing lymph nodes (ntbLNs) to predict prognosis. Patients & methods: 71 patients with long-term disease-free survival and 80 patients with relapse within 3 years were included in this study. We used Cox regression to identify factors associated with overall survival (OS) and progression-free survival (PFS). Results: Sinus histiocytosis and tumor-infiltrating lymphocyte density in the tumor were positively associated with PFS and OS. CD4 expression in N1 (hazard ratio = 0.72; p = 0.02) and N2 (hazard ratio = 0.91; p = 0.04) ntbLNs were positively correlated with OS and PFS, respectively. Discussion: Immunological markers in ntbLNs could be used to predict survival in NSCLC.
Collapse
Affiliation(s)
- Laura Sellmer
- Department of Medicine V, University Hospital, Member of the German Center for Lung Research, LMU Munich, Ziemssenstraße 1, Munich 80336, Germany
| | - Julia Kovács
- Department of Thoracic Surgery, Thoracic Oncology Centre Munich, LMU Munich, Marchioninistraße 15, Munich 81337, Germany
| | - Jens Neumann
- Institute of Pathology, LMU Munich, Thalkirchner Straße 36, Munich 80337, Germany
| | - Julia Walter
- Department of Medicine V, University Hospital, Member of the German Center for Lung Research, LMU Munich, Ziemssenstraße 1, Munich 80336, Germany
| | - Diego Kauffmann-Guerrero
- Department of Medicine V, University Hospital, Member of the German Center for Lung Research, LMU Munich, Ziemssenstraße 1, Munich 80336, Germany
| | - Zulfiya Syunyaeva
- Department of Medicine V, University Hospital, Member of the German Center for Lung Research, LMU Munich, Ziemssenstraße 1, Munich 80336, Germany
| | - Jan Fertmann
- Department of Thoracic Surgery, Thoracic Oncology Centre Munich, LMU Munich, Marchioninistraße 15, Munich 81337, Germany
| | - Christian Schneider
- Department of Thoracic Surgery, Thoracic Oncology Centre Munich, LMU Munich, Marchioninistraße 15, Munich 81337, Germany
| | - Julia Zimmermann
- Department of Thoracic Surgery, Thoracic Oncology Centre Munich, LMU Munich, Marchioninistraße 15, Munich 81337, Germany
| | - Juergen Behr
- Department of Medicine V, University Hospital, Member of the German Center for Lung Research, LMU Munich, Ziemssenstraße 1, Munich 80336, Germany
| | - Amanda Tufman
- Department of Medicine V, University Hospital, Member of the German Center for Lung Research, LMU Munich, Ziemssenstraße 1, Munich 80336, Germany
| |
Collapse
|
13
|
Cheng Y, Wang C, Wang Y, Dai L. Soluble PD-L1 as a predictive biomarker in lung cancer: a systematic review and meta-analysis. Future Oncol 2021; 18:261-273. [PMID: 34874185 DOI: 10.2217/fon-2021-0641] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Background: We performed a meta-analysis to evaluate the association between soluble PD-L1 (sPD-L1) and survival outcomes and treatment response in lung cancer. Methods & methods: Eligible studies were obtained by searching PubMed, EMBASE and Web of Science. Pooled effect estimates were calculated for overall survival (OS), progression-free survival (PFS) and objective response rate (ORR). Results: Twelve eligible studies with 1188 lung cancer patients were included. High sPD-L1 was significantly associated with worse OS (hazard ratio [HR] = 2.20; 95% CI: 1.59-3.05; p < 0.001) and PFS (HR = 2.42; 95% CI: 1.72-3.42; p < 0.001) in patients treated with immune checkpoint inhibitors (ICIs). Meanwhile, high sPD-L1 predicted worse OS (HR = 1.60; 95% CI: 1.31-1.96; p < 0.001) and lower ORR (odds ratio = 0.52; 95% CI: 0.35-0.80; p = 0.002) in patients treated with non-ICI therapies. Conclusion: sPD-L1 is a potential predictive biomarker of lung cancer.
Collapse
Affiliation(s)
- Yang Cheng
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| | - Chong Wang
- Minimally Invasive Treatment Center, Beijing Chest Hospital, Beijing 101149, China
| | - Yan Wang
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| | - Li Dai
- Department of Respiratory & Critical Care Medicine, Beijing Jishuitan Hospital, The Fourth Medical College of Peking University, Beijing 100035, China
| |
Collapse
|
14
|
Wei X, Yao Y, Wang X, Sun J, Zhao W, Qiu L, Zhai W, Qi Y, Gao Y, Wu Y. Interleukin-36α inhibits colorectal cancer metastasis by enhancing the infiltration and activity of CD8 + T lymphocytes. Int Immunopharmacol 2021; 100:108152. [PMID: 34555640 DOI: 10.1016/j.intimp.2021.108152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/06/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Colorectal cancer is one of the deadliest cancers, and the discovery of new diagnostic biomarkers and therapeutic targets is vital. Interleukin-36α (IL-36α) is a proinflammatory factor that can initiate the inflammatory response and promote the systemic T helper-1 (Th1) immune response. In this study, we investigated the immunological role of IL-36α in CRC. We found that IL-36α was downregulated in human CRC tissues. Patients with high IL-36α levels showed better survival and low IL-36α expression was significantly associated with greater tumor distal metastasis and TNM stage. We constructed two cell lines overexpressing IL-36α (CT26-IL-36α and HT29-IL-36α cells). In vitro assays revealed that IL-36α overexpression reduced the proliferation, migration, and invasion of CT26-IL-36α, and HT29-IL-36α cells. Using CT26-vector and CT26-IL-36α tumor mouse model and lung metastasis models, we found that IL-36α overexpression elicited a significant antitumor effect and inhibited lung metastasis in vivo. These inhibitory effects were associated with an increase in the number of CD3+CD8+ T lymphocytes within the tumor tissue as well as increased cytokine production in CD8+ T lymphocytes present in the tumor, spleen, and draining lymph nodes. Furthermore, we revealed that CT26-IL-36α cells enhanced the secretion of CXCL10 and CXCL11 from chemotactic CD8+ T lymphocytes, as compared with CT26-vector cells. Taken together, these results suggest that IL-36α is a promising therapeutic agent for targeting CRC by promoting the activation, proliferation, and tumor infiltration of T lymphocytes.
Collapse
Affiliation(s)
- Xiuyu Wei
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Yongjie Yao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Xiaoxi Wang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Jiaxin Sun
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China
| | - Wenshan Zhao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Lu Qiu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Wenjie Zhai
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Yuanming Qi
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; Henan Key Laboratory of Bioactive Macromolecules, Zhengzhou University, Zhengzhou 450001, China
| | - Yanfeng Gao
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; School of Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen 518107, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| | - Yahong Wu
- School of Life Sciences, Zhengzhou University, Zhengzhou 450000, China; International Joint Laboratory for Protein and Peptide Drugs of Henan Province, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
15
|
Ouyang Y, Liu W, Zhang N, Yang X, Li J, Long S. Prognostic significance of programmed cell death-ligand 1 expression on circulating tumor cells in various cancers: A systematic review and meta-analysis. Cancer Med 2021; 10:7021-7039. [PMID: 34423578 PMCID: PMC8525108 DOI: 10.1002/cam4.4236] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/03/2021] [Accepted: 08/10/2021] [Indexed: 12/14/2022] Open
Abstract
Background The prognostic significance of programmed cell death‐ligand 1 (PD‐L1) expression on circulating tumor cells (CTCs) has been explored but is still in controversy. We performed, for the first time, a meta‐analysis to systematically evaluate its prognostic value in human cancers. Methods Literature databases were searched for eligible studies prior to June 30, 2021. The pooled hazard ratios (HRs) and 95% confidence intervals (95% CIs) were calculated for the associations of pre‐treatment and post‐treatment PD‐L1+ CTCs with progression‐free survival (PFS) and overall survival (OS). Subgroup analyses with regards to cancer type, treatment, CTC enrichment method, PD‐L1 detection method, cut‐off, and specifically the comparison model were performed. Results We included 30 eligible studies (32 cohorts, 1419 cancer patients) in our analysis. Pre‐treatment PD‐L1+ CTCs detected by immunofluorescence (IF) tended to predict better PFS (HR = 0.55, 95% CI 0.28–1.08, p = 0.084) and OS (HR = 0.61, 95% CI 0.36–1.04, p = 0.067) for immune checkpoint inhibitor (ICI) treatment, but were significantly associated with unfavorable survival for non‐ICI therapies (PFS: HR = 1.85, 95% CI 1.21–2.85, p = 0.005; OS: HR = 2.44, 95% CI 1.69–3.51, p < 0.001). Post‐treatment PD‐L1+ CTCs predicted markedly worse PFS and OS. The prognostic value was obviously modulated by comparison models. Among patients with detectable CTCs, PD‐L1+ individuals had comparable survival to PD‐L1− individuals, except ICI treatment for which PD‐L1+ may predict better PFS (HR = 0.42, 95% CI 0.17–1.06, p = 0.067). Patients with PD‐L1+ CTCs had worse survival prognosis compared to those without PD‐L1+ CTCs in overall analysis (PFS: HR = 2.10, 95% CI 1.59–2.77, p < 0.001; OS: HR = 2.55, 95% CI 1.70–3.81, p < 0.001) and in most subgroups. Conclusions Our analysis demonstrated that PD‐L1 positive expression on CTCs predicted better survival prognosis for ICI treatment but worse survival for other therapies, which thus can be potentially used as a prognostic marker of malignant tumor treatment. However, the prognostic value of PD‐L1+ CTCs for ICI treatment needs validation by more large‐scale studies in the future.
Collapse
Affiliation(s)
- Yushu Ouyang
- Department of Intervention, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Wendao Liu
- Department of Intervention, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Ningning Zhang
- Department of Oncology, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, China
| | - Xiaobing Yang
- Department of Oncology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Jinwei Li
- Department of Intervention, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Shunqin Long
- Department of Oncology, The Second Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| |
Collapse
|
16
|
Wang WJ, Wang J, Ouyang C, Chen C, Xu XF, Ye XQ. Overview of serpin B9 and its roles in cancer (Review). Oncol Rep 2021; 46:190. [PMID: 34278491 DOI: 10.3892/or.2021.8141] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 06/25/2021] [Indexed: 11/06/2022] Open
Abstract
Serine proteinase inhibitor B9 (serpin B9) is a member of the serine protease inhibitor superfamily, which is widely found in animals, plants and microorganisms. Serpin B9 has been reported to protect cells from the immune‑killing effect of granzyme B (GrB) released by lymphocytes. In recent years, an increasing number of studies have indicated that serpin B9 is involved in tumour apoptosis, immune evasion, tumorigenesis, progression, metastasis, drug resistance and even in maintaining the stemness of cancer stem cells (CSCs). Moreover, according to clinical studies, serpin B9 has been demonstrated to be significantly associated with the development of precancerous lesions, a poor prognosis and ineffective therapies, suggesting that serpin B9 may be a potential target for cancer treatment and an indicator of cancer diagnosis; thus, it has begun to attract increased attention from scholars. The present review concisely described the structure and biological functions of the serpin superfamily and serpin B9. In addition, related research on serpins in cancer is discussed in order to provide a comprehensive understanding of the role of serpin B9 in cancer, as well as its clinical significance for cancer diagnosis and prognosis.
Collapse
Affiliation(s)
- Wen-Jun Wang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Jiao Wang
- Department of Respiratory Diseases, Jiujiang First People's Hospital, Jiujiang, Jiangxi 332000, P.R. China
| | - Chao Ouyang
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Chong Chen
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Feng Xu
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| | - Xiao-Qun Ye
- Department of Respiratory Diseases, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, P.R. China
| |
Collapse
|
17
|
Zhang R, Wu S, Ding Q, Fan Q, Dai Y, Guo S, Ye Y, Li C, Zhou M. Recent advances in cell membrane-camouflaged nanoparticles for inflammation therapy. Drug Deliv 2021; 28:1109-1119. [PMID: 34121563 PMCID: PMC8205088 DOI: 10.1080/10717544.2021.1934188] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
During inflammation, inflammatory cells are rapidly recruited to sites of infection or injury, where they cross physiological barriers around the infected site and further infiltrate into the tissues. Other cells, such as erythrocytes, endothelial cells and stem cells, also play prominent roles in host defense and tissue repair. In recent years, nanotechnology has been exploited to deliver drugs to sites of inflammation. For example, nanoparticles camouflaged with a cell membrane are a novel drug-delivery platform that can interact with the immune system and that show great potential for treating inflammation. Encapsulating drugs inside plasma membranes derived from various cells involved in inflammatory processes can be effective against inflammation. This review describes the preparation, characterization, and properties of various types of cell membrane-camouflaged biomimetic nanoparticles. It also summarizes preclinical research into their efficacy against inflammation.
Collapse
Affiliation(s)
- Rongtao Zhang
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Siqiong Wu
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qian Ding
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China.,School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingze Fan
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yan Dai
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Shiwei Guo
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yun Ye
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunhong Li
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Meiling Zhou
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
18
|
Cai X, Lin L, Zhang Q, Wu W, Su A. Bioinformatics analysis of the circRNA-miRNA-mRNA network for non-small cell lung cancer. J Int Med Res 2021; 48:300060520929167. [PMID: 32527185 PMCID: PMC7294496 DOI: 10.1177/0300060520929167] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE Non-small cell lung cancer (NSCLC) accounts for approximately 80% of all lung cancers, but its pathogenesis has not been fully elucidated. Therefore, it is valuable to explore the pathogenesis of NSCLC to improve diagnosis and identify novel treatment biomarkers. METHODS Circular (circ)RNA, micro (mi)RNA, and gene expression datasets of NSCLC were analyzed to identify those that were differentially expressed between tumor and healthy tissues. Common genes were found and pathway enrichment analyses were performed. Survival analysis was used to identify hub genes, and their level of methylation and association with immune cell infiltration were analyzed. Finally, an NSCLC circRNA-miRNA-mRNA network was constructed. RESULTS Eight miRNAs and 211 common genes were identified. Gene ontology and Kyoto Encyclopedia of Genes and Genomes analyses revealed that cell projection morphogenesis, blood vessel morphogenesis, muscle cell proliferation, and synapse organization were enriched. Ten hub genes were found, of which the expression of DTL and RRM2 was significantly related to NSCLC patient prognosis. Significant methylation changes and immune cell infiltration correlations with DTL and RRM2 were also detected. CONCLUSIONS hsa_circ_0001947/hsa-miR-637/RRM2 and hsa_circ_0072305/hsa-miR-127-5p/DTL networks were constructed, and identified molecules may be involved in the occurrence and development of NSCLC.
Collapse
Affiliation(s)
- Xueying Cai
- Department of Respiratory Medicine, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| | - Lixuan Lin
- Department of Basic Medicine, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiuhua Zhang
- Department of Internal Medicine and Oncology, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| | - Weixin Wu
- Department of Internal Medicine and Oncology, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| | - An Su
- Department of Internal Medicine and Oncology, Zhongshan Hospital, Xiamen University, Xiamen City, Fujian Province, China
| |
Collapse
|
19
|
Goff PH, Zeng J, Rengan R, Schaub SK. Radiation and Modulation of the Tumor Immune Microenvironment in Non-Small Cell Lung Cancer. Semin Radiat Oncol 2021; 31:133-139. [PMID: 33610270 DOI: 10.1016/j.semradonc.2020.11.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immune checkpoint inhibitors are approved for a variety of indications for locally advanced and metastatic non-small cell lung cancer (NSCLC), and trials are ongoing in the early-stage setting. There is an unmet need to understand which patients may derive benefit from immunotherapies and how to harness combined modality therapies to improve overall response rates and durability. Here, we review studies from the bench-to-bedside to examine the role of radiation therapy (RT) on the tumor immune microenvironment in NSCLC with an eye toward augmenting antitumor immunity. Together, these data provide a foundation for developing future clinical trials harnessing RT to augment antitumor immunity and highlight the need for correlative translational studies to directly characterize the impact of RT on the human NSCLC tumor immune microenvironment.
Collapse
Affiliation(s)
- Peter H Goff
- University of Washington School of Medicine, Department of Radiation Oncology, Seattle WA.
| | - Jing Zeng
- University of Washington School of Medicine, Department of Radiation Oncology, Seattle WA
| | - Ramesh Rengan
- University of Washington School of Medicine, Department of Radiation Oncology, Seattle WA
| | - Stephanie K Schaub
- University of Washington School of Medicine, Department of Radiation Oncology, Seattle WA
| |
Collapse
|
20
|
Jiang X, Ren L, Tebon P, Wang C, Zhou X, Qu M, Zhu J, Ling H, Zhang S, Xue Y, Wu Q, Bandaru P, Lee J, Kim HJ, Ahadian S, Ashammakhi N, Dokmeci MR, Wu J, Gu Z, Sun W, Khademhosseini A. Cancer-on-a-Chip for Modeling Immune Checkpoint Inhibitor and Tumor Interactions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2004282. [PMID: 33502118 PMCID: PMC7939119 DOI: 10.1002/smll.202004282] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 11/25/2020] [Indexed: 05/12/2023]
Abstract
Cancer immunotherapies, including immune checkpoint inhibitor (ICI)-based therapies, have revolutionized cancer treatment. However, patient response to ICIs is highly variable, necessitating the development of methods to quickly assess efficacy. In this study, an array of miniaturized bioreactors has been developed to model tumor-immune interactions. This immunotherapeutic high-throughput observation chamber (iHOC) is designed to test the effect of anti-PD-1 antibodies on cancer spheroid (MDA-MB-231, PD-L1+) and T cell (Jurkat) interactions. This system facilitates facile monitoring of T cell inhibition and reactivation using metrics such as tumor infiltration and interleukin-2 (IL-2) secretion. Status of the tumor-immune interactions can be easily captured within the iHOC by measuring IL-2 concentration using a micropillar array where sensitive, quantitative detection is allowed after antibody coating on the surface of array. The iHOC is a platform that can be used to model and monitor cancer-immune interactions in response to immunotherapy in a high-throughput manner.
Collapse
Affiliation(s)
- Xing Jiang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- School of Nursing, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Li Ren
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Key Laboratory for Space Bioscience and Biotechnology, School of Life Science, Northwestern Polytechnical University, Xi'an, Shaanxi, 710072, China
| | - Peyton Tebon
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Canran Wang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xingwu Zhou
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Moyuan Qu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, 310006, China
| | - Jixiang Zhu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China
| | - Haonan Ling
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Shiming Zhang
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong
| | - Yumeng Xue
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710000, China
| | - Qingzhi Wu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, China
| | - Praveen Bandaru
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Junmin Lee
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Han-Jun Kim
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Samad Ahadian
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Nureddin Ashammakhi
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Mehmet R Dokmeci
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Jinhui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University & School of Life Sciences, Nanjing University, Nanjing, 210093, China
| | - Zhen Gu
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Wujin Sun
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| | - Ali Khademhosseini
- Department of Bioengineering, Center for Minimally Invasive Therapeutics, California Nanosystems Instituste, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90064, USA
| |
Collapse
|
21
|
DiNatale RG, Hakimi AA, Chan TA. Genomics-based immuno-oncology: bridging the gap between immunology and tumor biology. Hum Mol Genet 2020; 29:R214-R225. [PMID: 33029628 PMCID: PMC7574960 DOI: 10.1093/hmg/ddaa203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/05/2020] [Accepted: 09/08/2020] [Indexed: 12/14/2022] Open
Abstract
The first hypotheses about how the immune system affects cancers were proposed in the early 20th century. These early concepts about cancer immunosurveillance were further developed in the decades that followed, but a detailed understanding of cancer immunity remained elusive. It was only recently, through the advent of high-throughput technologies, that scientists gained the ability to profile tumors with a resolution that allowed for granular assessment of both tumor cells and the tumor microenvironment. The advent of immune checkpoint inhibitors (ICIs), which have proven to be effective cancer therapies in many malignancies, has spawned great interest in developing biomarkers for efficacy, an endeavor that highlighted the value of dissecting tumor immunity using large-scale methods. Response to ICI therapy has been shown to be a highly complex process, where the dynamics of tumor and immune cells is key to success. The need to understand the biologic mechanisms at the tumor-immune interface has given rise to the field of cancer immunogenomics, a discipline that aims to bridge the gap between cancer genomics and classical immunology. We provide a broad overview of this emerging branch of translational science, summarizing common platforms used and recent discoveries in the field, which are having direct clinical implications. Our discussion will be centered around the genetic foundations governing tumor immunity and molecular determinants associated with clinical benefit from ICI therapy. We emphasize the importance of molecular diversity as a driver of anti-tumor immunity and discuss how these factors can be probed using genomic approaches.
Collapse
Affiliation(s)
- Renzo G DiNatale
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - A Ari Hakimi
- Urology Department, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Timothy A Chan
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH 44195, USA
- Lerner Research Institute and Taussig Cancer Center, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
22
|
Zahran AM, Hetta HF, Mansour S, Saad ES, Rayan A. Reviving up dendritic cells can run cancer immune wheel in non-small cell lung cancer: a prospective two-arm study. Cancer Immunol Immunother 2020; 70:733-742. [PMID: 32918587 DOI: 10.1007/s00262-020-02704-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND AIM Lung cancer is the number one cause of cancer-related deaths. Dendritic cells (DCs) are heterogeneous components of innate immunity that play a crucial role in the anti-tumor T cell immunity and may represent a promising approach for tumor immunotherapy. In this study, we aimed to evaluate the frequency of the two major subsets of DCs; plasmacytoid dendritic cells (pDCs) and monocytic dendritic cells (mDCs) in non-small cell lung cancer (NCSLC) and correlating them with different clinicopathologic features and survival outcomes. PATIENTS AND METHODS This study was a case-controlled one, included 50 patients with denovo pathologically confirmed NSCLC and 20 healthy controls of comparable age and gender. After diagnosis and staging of patients, the frequency of DCs was evaluated using flow cytometry. RESULTS We unveiled significantly reduced levels of pDCs (P = 0.024), and mDCs (P = 0.013) in NSCLC patients compared to controls. Furthermore, there was a significant accumulation of pDCs in non-metastatic patients compared to metastatic ones (P < 0.0001), while there was no significant (P = 0.6) differences in mDCs, and mDCs/pDCs ratio (P = 0.9). There was a Significant negative correlation (r = - 0.3, P = 0.04) between OS and mDCs. On the other hand, there was a significantly higher OS with pDCs ≥ 0.82 compared to patients with pDCs < 0.82, log rank Ch2 = 12.128, P < 0.0001. CONCLUSION Despite the controversy about the prognostic role of pDCs not only in NSCLC but also in other solid tumors, our study sheds light on the possible prognostic impact of pDCs and mDCs on treatment outcomes of NSCLC patients.
Collapse
Affiliation(s)
- Asmaa M Zahran
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Helal F Hetta
- Department of Medical Microbiology and Immunology, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt.
- Department of Internal Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, 45267-0595, USA.
| | - Shimaa Mansour
- Clinical Pathology Department, South Egypt Cancer Institute, Assiut University, Assiut, 71515, Egypt
| | - Ereny S Saad
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| | - Amal Rayan
- Clinical Oncology Department, Faculty of Medicine, Assiut University, Assiut, 71515, Egypt
| |
Collapse
|
23
|
Mildner F, Sopper S, Amann A, Pircher A, Pall G, Köck S, Naismith E, Wolf D, Gamerith G. Systematic review: Soluble immunological biomarkers in advanced non-small-cell lung cancer (NSCLC). Crit Rev Oncol Hematol 2020; 153:102948. [PMID: 32645684 DOI: 10.1016/j.critrevonc.2020.102948] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/05/2023] Open
Abstract
In the highly dynamic field of advanced malignancies, biomarkers from liquid samples are urgently needed to improve treatment tailoring. However, the heterogenic data lack direct comparison of assays, vectors and relevant validations are rarely found. Therefore, we classified the available studies based on three categories: Measured vectors, applied technique and detected biomarker. High blood tumor mutational burden and low baseline levels of soluble programmed cell death 1 ligand 1 (PD-L1) appear to predict treatment responses to immunotherapy. A high PD-1+ CD4+ T-cell count was associated with poor overall survival, PD-1+CD8+ T-cells connect to a favorable outcome. Circulating tumor cells expressing PD-L1 were mainly associated with poor overall survival and treatment failure. CONCLUSION: Measurement of immunological factors as liquid biomarkers is feasible and has shown promising results. The use of coherent nomenclatures, cross-platform assay comparisons and validations through appropriate powered clinical trials are urgently required to push this auspicious field.
Collapse
Affiliation(s)
- Finn Mildner
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria; Tiroler Krebsforschung Institut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| | - Sieghart Sopper
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria; Tiroler Krebsforschung Institut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| | - Arno Amann
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria; Tiroler Krebsforschung Institut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| | - Andreas Pircher
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria
| | - Georg Pall
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria
| | - Stefan Köck
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria; Tiroler Krebsforschung Institut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| | - Erin Naismith
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria
| | - Dominik Wolf
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria; Internal Medicine 3, Oncology, Hematology, Immunoncology, Rheumatology, University Hospital Bonn (UKB), Venusberg-Campus 1, 53127, Bonn, Germany; Tiroler Krebsforschung Institut (TKFI), Innrain 66, A-6020, Innsbruck, Austria
| | - Gabriele Gamerith
- Internal Medicine V, Hematology and Oncology, Medical University Innsbruck, Anichstraße 35, A- 6020, Innsbruck, Austria; Tiroler Krebsforschung Institut (TKFI), Innrain 66, A-6020, Innsbruck, Austria.
| |
Collapse
|
24
|
Li H, Huang C, Zhang Z, Feng Y, Wang Z, Tang X, Zhong K, Hu Y, Guo G, Zhou L, Guo W, Xu J, Yang H, Tong A. MEK Inhibitor Augments Antitumor Activity of B7-H3-Redirected Bispecific Antibody. Front Oncol 2020; 10:1527. [PMID: 32984002 PMCID: PMC7477310 DOI: 10.3389/fonc.2020.01527] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Accepted: 07/16/2020] [Indexed: 02/05/2023] Open
Abstract
Targeting cancer antigens by T cell-engaging bispecific antibody (BiAb) or chimeric antigen receptor T cell therapy has achieved successes in hematological cancers, but attempts to use it to fight solid cancers have been disappointing, in part due to antigen escape. MEK inhibitor had limited activity as a single agent, but enhanced antitumor activity when combined with other therapies, such as targeted drugs or immunotherapy agents. This study aimed to analyze the expression of B7-H3 in non-small-cell lung cancer (NSCLC) and bladder cancer (BC) and to evaluate the combinatorial antitumor effect of B7-H3 × CD3 BiAb with MEK inhibitor trametinib. We found B7-H3 was highly expressed in NSCLC and BC compared with normal samples and its increased expression was associated with poor prognosis. Treatment with trametinib alone could induce apoptosis in tumor cell, while has no effect on T cell proliferation, and a noticeable elevation of B7-H3 expression in tumor cells was also observed following treatment. B7-H3 × CD3 BiAb specifically and efficiently redirected their cytotoxicity against B7-H3 overexpressing tumor cells both in vitro and in xenograft mouse models. While trametinib treatment alone affected tumor growth, the combined therapy increased T cell infiltration and significantly suppressed tumor growth. Together, these data suggest that combination therapy with B7-H3 × CD3 BiAb and MEK inhibitor may serve as a new therapeutic strategy in the future clinical practice for the treatment of NSCLC and BC.
Collapse
Affiliation(s)
- Hongjian Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zongliang Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yunyu Feng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Zeng Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Xin Tang
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Kunhong Zhong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Yating Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| | - Liangxue Zhou
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Wenhao Guo
- Department of Abdominal Oncology, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Jianguo Xu
- Department of Neurosurgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Hui Yang
- Department of Otolaryngology, Head and Neck Surgery, West China Medical School, West China Hospital, Sichuan University, Chengdu, China
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu, China
| |
Collapse
|
25
|
Huang Y, Shen A. The prediction potential of neutrophil-to-lymphocyte ratio for the therapeutic outcomes of programmed death receptor-1/programmed death ligand 1 inhibitors in non-small cell lung cancer patients: A meta-analysis. Medicine (Baltimore) 2020; 99:e21718. [PMID: 32846790 PMCID: PMC7447402 DOI: 10.1097/md.0000000000021718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Programmed death receptor-1 (PD-1)/programmed death ligand 1 (PD-L1) inhibitors have been demonstrated to improve the prognosis of patients with advanced non-small cell lung cancer (NSCLC) compared with chemotherapy. However, there were still some non-responders. Thus, how to effectively screen the responder may be an important issue. Recent studies revealed the immune-related indicator, neutrophil-lymphocyte ratio (NLR), may predict the therapeutic effects of anti-PD1/PD-L1 antibodies; however, the results were controversial. This study was to re-evaluate the prognostic potential of NLR for NSCLC patients receiving PD1/PD-L1 inhibitors by performing a meta-analysis. METHODS Eligible studies were identified by searching online databases of PubMed, EMBASE and Cochrane Library. The predictive values of NLR for overall survival, (OS), progression free survival (PFS) and overall response rate (ORR) were estimated by hazard ratio (HR) with 95% confidence interval (CI). RESULTS Twenty-four studies involving 2196 patients were included. The pooled analysis demonstrated that elevated NLR before PD-1/PD-L1 inhibitor treatment was a predictor of poor OS (HR = 2.17; 95% CI: 1.64 - 2.87, P < .001), PFS (HR = 1.54; 95% CI: 1.34 - 1.78, P < .001) and low ORR (HR = 0.64; 95% CI: 0.44 - 0.95, P = .027) in NSCLC patients. Subgroup analysis revealed the predictive ability of NLR for OS and PFS was not changed by ethnicity, sample size, cut-off, HR source, study design or inhibitor type (except the combined anti-PD-L1 group); while its association with ORR was only significant when the cut-off value was less than 5 and the studies were prospectively designed. CONCLUSION Our findings suggest patients with lower NLR may benefit from the use of PD-1/PD-L1 inhibitors to prolong their survival period.
Collapse
|
26
|
Glisson BS, Leidner RS, Ferris RL, Powderly J, Rizvi NA, Keam B, Schneider R, Goel S, Ohr JP, Burton J, Zheng Y, Eck S, Gribbin M, Streicher K, Townsley DM, Patel SP. Safety and Clinical Activity of MEDI0562, a Humanized OX40 Agonist Monoclonal Antibody, in Adult Patients with Advanced Solid Tumors. Clin Cancer Res 2020; 26:5358-5367. [PMID: 32816951 DOI: 10.1158/1078-0432.ccr-19-3070] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 03/06/2020] [Accepted: 07/30/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Immune checkpoint blockade has demonstrated clinical benefits across multiple solid tumor types; however, resistance and relapse often occur. New immunomodulatory targets, which are highly expressed in activated immune cells, are needed. MEDI0562, an agonistic humanized mAb, specifically binds to the costimulatory molecule OX40. This first-in-human study evaluated MEDI0562 in adults with advanced solid tumors. PATIENTS AND METHODS In this phase I, multicenter, open-label, single-arm, dose-escalation (3+3 design) study, patients received 0.03, 0.1, 0.3, 1.0, 3.0, or 10 mg/kg MEDI0562 through intravenous infusion every 2 weeks, until confirmed disease progression or unacceptable toxicity. The primary objective evaluated safety and tolerability. Secondary endpoints included antitumor activity, pharmacokinetics, immunogenicity, and pharmacodynamics. RESULTS In total, 55 patients received ≥1 dose of MEDI0562 and were included in the analysis. The most common tumor type was squamous cell carcinoma of the head and neck (47%). Median duration of treatment was 10 weeks (range, 2-48 weeks). Treatment-related adverse events (TRAEs) occurred in 67% of patients, most commonly fatigue (31%) and infusion-related reactions (14%). Grade 3 TRAEs occurred in 14% of patients with no apparent dose relationship; no TRAEs resulted in death. Two patients had immune-related partial responses per protocol and 44% had stable disease. MEDI0562 induced increased Ki67+ CD4+ and CD8+ memory T-cell proliferation in the periphery and decreased intratumoral OX40+ FOXP3+ cells. CONCLUSIONS MEDI0562 was safely administered at doses up to 10 mg/kg in heavily pretreated patients. On-target pharmacodynamic effects were suggested in this setting. Further evaluation with immune checkpoint inhibitors is ongoing.
Collapse
Affiliation(s)
- Bonnie S Glisson
- The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | - Rom S Leidner
- EACRI - Providence Cancer Center, Portland, Oregon, USA
| | | | - John Powderly
- Carolina BioOncology Institute, Huntersville, North Carolina, USA
| | - Naiyer A Rizvi
- Columbia University Medical Center, New York, New York, USA
| | - Bhumsuk Keam
- Seoul National University Hospital, Seoul, South Korea
| | - Reva Schneider
- Mary Crowley Cancer Research - Medical City Dallas, Dallas, Texas, USA
| | - Sanjay Goel
- Montefiore Einstein Cancer Center, Bronx, New York, USA
| | - James P Ohr
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania, USA
| | | | | | - Steven Eck
- AstraZeneca, Gaithersburg, Maryland, USA
| | | | | | | | | |
Collapse
|
27
|
Chen WL, Jin X, Wang M, Liu D, Luo Q, Tian H, Cai L, Meng L, Bi R, Wang L, Xie X, Yu G, Li L, Dong C, Cai Q, Jia W, Wei W, Jia L. GLUT5-mediated fructose utilization drives lung cancer growth by stimulating fatty acid synthesis and AMPK/mTORC1 signaling. JCI Insight 2020; 5:131596. [PMID: 32051337 DOI: 10.1172/jci.insight.131596] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Accepted: 01/10/2020] [Indexed: 12/22/2022] Open
Abstract
Lung cancer (LC) is a leading cause of cancer-related deaths worldwide. Its rapid growth requires hyperactive catabolism of principal metabolic fuels. It is unclear whether fructose, an abundant sugar in current diets, is essential for LC. We demonstrated that, under the condition of coexistence of metabolic fuels in the body, fructose was readily used by LC cells in vivo as a glucose alternative via upregulating GLUT5, a major fructose transporter encoded by solute carrier family 2 member 5 (SLC2A5). Metabolomic profiling coupled with isotope tracing demonstrated that incorporated fructose was catabolized to fuel fatty acid synthesis and palmitoleic acid generation in particular to expedite LC growth in vivo. Both in vitro and in vivo supplement of palmitoleic acid could restore impaired LC propagation caused by SLC2A5 deletion. Furthermore, molecular mechanism investigation revealed that GLUT5-mediated fructose utilization was required to suppress AMPK and consequently activate mTORC1 activity to promote LC growth. As such, pharmacological blockade of in vivo fructose utilization using a GLUT5 inhibitor remarkably curtailed LC growth. Together, this study underscores the importance of in vivo fructose utilization mediated by GLUT5 in governing LC growth and highlights a promising strategy to treat LC by targeting GLUT5 to eliminate those fructose-addicted neoplastic cells.
Collapse
Affiliation(s)
- Wen-Lian Chen
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xing Jin
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mingsong Wang
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Dan Liu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qin Luo
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hechuan Tian
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lili Cai
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lifei Meng
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Rui Bi
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lei Wang
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Xiao Xie
- Department of Thoracic Cardiovascular Surgery, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Guanzhen Yu
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihui Li
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Changsheng Dong
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qiliang Cai
- Ministry of Education and Ministry of Health Key Lab of Medical Molecular Virology, School of Basic Medical Science, Fudan University, Shanghai, China
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Lijun Jia
- Cancer Institute, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
28
|
Agrawal L, Bacal A, Jain S, Singh V, Emanuele N, Emanuele M, Meah F. Immune checkpoint inhibitors and endocrine side effects, a narrative review. Postgrad Med 2020; 132:206-214. [PMID: 31876444 DOI: 10.1080/00325481.2019.1709344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Immune checkpoint inhibitors (ICPIs) are novel drugs in the field of oncology however carry the risk of immune-related dermatologic, gastrointestinal, and endocrine side effects which can be fatal. These new innovative immunoregulatory drugs have intertwined the fields of oncology and endocrinology. CTLA-4 and PD-1 are co-inhibitory receptors on T cells that turn the T cell 'off' when binding to receptors on APCs. Tumor cells can also carry receptors for CTLA- and PD-1. By rendering T cells inactive, tumor cells can evade immune attack. Antibodies that bind to CTLA-4 and PD-1 lead to T cell activation and destruction of both tumor and normal host cells. ICPIs have been used in a variety of malignancies including melanoma, kidney cancer, and non-small cell lung cancer. A unique underrecognized side effect of the autoimmune response is hypophysitis leading to central adrenal insufficiency which can be fatal. Additional immune-related adverse events (irAEs) include hypothyroidism, hyperthyroidism, diabetes, and hypoparathyroidism.
Collapse
Affiliation(s)
- L Agrawal
- Department of Endocrinology, Edward Hines Junior VA Hospital, Hines, IL, USA
| | - A Bacal
- Department of Endocrinology, Loyola University Medical Center, Maywood, IL, USA
| | - S Jain
- Department of Endocrinology, Loyola University Medical Center, Maywood, IL, USA
| | - V Singh
- Department of Endocrinology, Loyola University Medical Center, Maywood, IL, USA
| | - N Emanuele
- Department of Endocrinology, Edward Hines Junior VA Hospital, Hines, IL, USA
| | - Ma Emanuele
- Department of Endocrinology, Loyola University Medical Center, Maywood, IL, USA
| | - F Meah
- Department of Endocrinology, Edward Hines Junior VA Hospital, Hines, IL, USA
| |
Collapse
|
29
|
Yadav DK, Jain V, Dinda AK, Agarwala S. Tumor-Infiltrating Lymphocytes in Wilms Tumor. Indian J Med Paediatr Oncol 2020. [DOI: 10.4103/ijmpo.ijmpo_115_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Abstract
Purpose: T-lymphocytes-infiltrating tumors (TILs) are white blood cells (CD3+) found within the tumor and are thought to indicate a T-cell-mediated specific immune response. The purpose was to evaluate the presence and the subtypes of TILs in Wilms tumor (WT) specimens. Materials and Methods: A prospective study was conducted, and consecutive cases of WT registered and treated at our center were included in the study. The resected tumor was processed by taking multiple sections from the tumor and the peritumoral area. The sections were then processed for evaluating TILs and their subtypes (CD4 + and CD8+). TILs were assessed as a percentage of the total mononuclear cell infiltration in both these areas in all specimens. Results: Twenty-four consecutive specimens of WT were studied. The mean TILs (CD3+) counts was significantly higher (P = 0.001) in the peritumoral area (22.64 ± 1.42; range 20.2%–25%) as compared to the tumor (21.08 ± 2.42; range 14.6%–23.1%). The mean T-Helper (CD4+) counts was also significantly higher (P < 0.001) in the peritumoral area (13.04 ± 1.79; range 10.5%–16.5%) than in the tumor (7.30 ± 1.81; range 4.2%–10.1%). The mean cytolytic T-lymphocytes (CTLs-CD8+) counts in peritumoral area were 6.64 ± 1.09 (range 4.2%–9.2%), while in the tumor, it was 11.96 ± 3.09 (range 3.6%–16.4%). Two patients died on follow-up due to recurrence. These patients showed a markedly lower CD8+ cell count and higher CD4+/CD8+ ratio in the tumor. Conclusion: T-cells infiltration takes place in WT, and most of the patients demonstrate a higher concentration of CTL (CD8+) in the tumor as compared to the peritumoral area.
Collapse
Affiliation(s)
- Devendra Kumar Yadav
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Vishesh Jain
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sandeep Agarwala
- Department of Pediatric Surgery, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
30
|
Hipólito A, Mendes C, Serpa J. The Metabolic Remodelling in Lung Cancer and Its Putative Consequence in Therapy Response. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:311-333. [PMID: 32130706 DOI: 10.1007/978-3-030-34025-4_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide in both men and women. Conventional chemotherapy has failed to provide long-term benefits for many patients and in the past decade, important advances were made to understand the underlying molecular/genetic mechanisms of lung cancer, allowing the unfolding of several other pathological entities. Considering these molecular subtypes, and the appearance of promising targeted therapies, an effective personalized control of the disease has emerged, nonetheless benefiting a small proportion of patients. Although immunotherapy has also appeared as a new hope, it is still not accessible to the majority of patients with lung cancer.The metabolism of energy and biomass is the basis of cellular survival. This is true for normal cells under physiological conditions and it is also true for pathophysiologically altered cells, such as cancer cells. Thus, knowledge of the metabolic remodelling that occurs in cancer cells in the sense of, on one hand, surviving in the microenvironment of the organ in which the tumour develops and, on the other hand, escaping from drugs conditioned microenvironment, is essential to understand the disease and to develop new therapeutic approaches.
Collapse
Affiliation(s)
- Ana Hipólito
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Cindy Mendes
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal
| | - Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
31
|
Tøndell A, Wahl SGF, Sponaas AM, Sørhaug S, Børset M, Haug M. Ectonucleotidase CD39 and Checkpoint Signalling Receptor Programmed Death 1 are Highly Elevated in Intratumoral Immune Cells in Non-small-cell Lung Cancer. Transl Oncol 2020; 13:17-24. [PMID: 31733591 PMCID: PMC6872777 DOI: 10.1016/j.tranon.2019.09.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 01/17/2023] Open
Abstract
Lung cancer is the leading cause of cancer death in both sexes worldwide and has a predicted 5-year survival rate of <20%. Immunotherapy targeting immune checkpoints such as the programmed death 1 (PD-1) signaling pathway has led to a shift of paradigm in the treatment of advanced non-small-cell lung cancer (NSCLC) but remains without effect in ∼80% of patients. Accumulating evidence suggests that several immunosuppressive mechanisms may work together in NSCLC. The contribution and cooperation between different immunosuppressive mechanisms in NSCLC remain unknown. Recently, the CD39-adenosine pathway has gained increasing attention as a crucial immunosuppressive mechanism and possible target for immunotherapy. Immune cells were extracted from lung and tumor tissue after lung resection in 12 patients by combined enzymatic and mechanical tissue disaggregation. A multiparameter flow cytometry panel was established to investigate the expression and coexpression of CD39 and PD-1 on key lymphocyte subtypes. Frequencies of CD39+, PD-1+, and CD39+/PD-1+cells were higher among both CD4+ and CD8+ T cells isolated from NSCLC tumor tissue than in T cells from normal lung tissue. Similarly, the frequency of FoxP3+ CD4+ T cells (Tregs) was highly significantly elevated in tumor tissue compared to adjacent lung tissue. The consistent upregulation of CD39 on immune cells in tumor microenvironment indicates that the CD39 signaling pathway may, in addition to the PD-1 pathway, represent another important mechanism for tumor-induced immunosuppression in NSCLC. In addition, the present study indicates that a comprehensive immune response profiling with flow cytometry may be both feasible and clinically relevant.
Collapse
Affiliation(s)
- Anders Tøndell
- Department of Thoracic Medicine, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway.
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Anne-Marit Sponaas
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sveinung Sørhaug
- Department of Thoracic Medicine, St.Olavs University Hospital, Trondheim, Norway
| | - Magne Børset
- Department of Immunology and Transfusion Medicine, St.Olavs University Hospital, Trondheim, Norway; Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Markus Haug
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway; Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway; Department of Infectious Diseases, St. Olavs University Hospital, Trondheim, Norway
| |
Collapse
|
32
|
Metabolic Remodelling: An Accomplice for New Therapeutic Strategies to Fight Lung Cancer. Antioxidants (Basel) 2019; 8:antiox8120603. [PMID: 31795465 PMCID: PMC6943435 DOI: 10.3390/antiox8120603] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022] Open
Abstract
Metabolic remodelling is a hallmark of cancer, however little has been unravelled in its role in chemoresistance, which is a major hurdle to cancer control. Lung cancer is a leading cause of death by cancer, mainly due to the diagnosis at an advanced stage and to the development of resistance to therapy. Targeted therapeutic agents combined with comprehensive drugs are commonly used to treat lung cancer. However, resistance mechanisms are difficult to avoid. In this review, we will address some of those therapeutic regimens, resistance mechanisms that are eventually developed by lung cancer cells, metabolic alterations that have already been described in lung cancer and putative new therapeutic strategies, and the integration of conventional drugs and genetic and metabolic-targeted therapies. The oxidative stress is pivotal in this whole network. A better understanding of cancer cell metabolism and molecular adaptations underlying resistance mechanisms will provide clues to design new therapeutic strategies, including the combination of chemotherapeutic and targeted agents, considering metabolic intervenients. As cancer cells undergo a constant metabolic adaptive drift, therapeutic regimens must constantly adapt.
Collapse
|
33
|
Qin A, Rengan R, Lee S, Santana-Davila R, Goulart BHL, Martins R, Baik C, Kalemkerian GP, Hassan KA, Schneider BJ, Hayman JA, Jolly S, Hearn J, Lawrence TS, Towlerton AMH, Tewari M, Thomas D, Zhao L, Brown N, Frankel TL, Warren EH, Ramnath N. A Pilot Study of Atezolizumab Plus Hypofractionated Image Guided Radiation Therapy for the Treatment of Advanced Non-Small Cell Lung Cancer. Int J Radiat Oncol Biol Phys 2019; 108:170-177. [PMID: 31756415 DOI: 10.1016/j.ijrobp.2019.10.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/23/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Preclinical data and subset analyses from immunotherapy clinical trials indicate that prior radiation therapy was associated with better progression-free survival and overall survival when combined with immune checkpoint inhibitors in patients with non-small cell lung cancer. We present a prospective study of hypofractionated image guided radiation therapy (HIGRT) to a single site of metastatic disease concurrently with atezolizumab in patients with metastatic non-small cell lung cancer. METHODS AND MATERIALS Patients meeting eligibility criteria received 1200 mg of atezolizumab intravenously every 3 weeks with concurrent 3- or 5-fraction HIGRT starting no later than the second cycle. The 3-fraction regimen employed a minimum of 8 Gy per fraction compared with 6 Gy for the 5-fraction regimen. Imaging was obtained every 12 weeks to assess response. RESULTS From October 2015 to February 2017, 12 patients were enrolled in the study (median age 64; range, 55-77 years). The best response by the Response Evaluation in Solid Tumors criteria was partial response in 3 and stable disease in 3, for a disease control rate of 50%. Five patients had a grade 3 immune-related adverse event, including choreoretinitis (n = 1), pneumonitis (n = 1), transaminitis (n = 1), fatigue (n = 1), and peripheral neuropathy (n = 1). The median progression-free survival was 2.3 months, and the median overall survival was 6.9 months (range, 0.4-not reached). There was no clear association between peripheral blood T cell repertoire characteristics at baseline, PD-L1, or tumor mutations and response or outcome. One long-term survivor exhibited oligoclonal T cell populations in a baseline tumor biopsy that were consistently detected in peripheral blood over the entire course of the study. CONCLUSIONS HIGRT plus atezolizumab resulted in an overall response rate of 25% and disease control rate of 50% in this pilot study. The incidence of grade 3 adverse events was similar to that of atezolizumab alone. Alhough it was a pilot study with limited sample size, the results generated hypotheses worthy of further investigation.
Collapse
Affiliation(s)
- Angel Qin
- Department of Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Washington, Seattle, Washington; Clinical Research Division, Fred Hutchinson Cancer Research Center
| | - Sylvia Lee
- Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Rafael Santana-Davila
- Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Bernardo H L Goulart
- Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Renato Martins
- Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Christina Baik
- Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Gregory P Kalemkerian
- Department of Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Khaled A Hassan
- Department of Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Bryan J Schneider
- Department of Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - James A Hayman
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Shruti Jolly
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jason Hearn
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Theodore S Lawrence
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | | | - Muneesh Tewari
- Department of Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan
| | - Dafydd Thomas
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | - Lili Zhao
- Department of Biostatistics, University of Michigan, Ann Arbor, Michigan
| | - Noah Brown
- Department of Pathology, University of Michigan, Ann Arbor, Michigan
| | | | - Edus H Warren
- Clinical Research Division, Fred Hutchinson Cancer Research Center; Department of Medicine, University of Washington, Seattle, Washington
| | - Nithya Ramnath
- Department of Medicine, Hematology-Oncology, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
34
|
Karuppasamy R, Veerappapillai S, Maiti S, Shin WH, Kihara D. Current progress and future perspectives of polypharmacology : From the view of non-small cell lung cancer. Semin Cancer Biol 2019; 68:84-91. [PMID: 31698087 DOI: 10.1016/j.semcancer.2019.10.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 10/22/2019] [Accepted: 10/28/2019] [Indexed: 12/17/2022]
Abstract
A pre-eminent subtype of lung carcinoma, Non-small cell lung cancer accounts for paramount causes of cancer-associated mortality worldwide. Undeterred by the endeavour in the treatment strategies, the overall cure and survival rates for NSCLC remain substandard, particularly in metastatic diseases. Moreover, the emergence of resistance to classic anticancer drugs further deteriorates the situation. These demanding circumstances culminate the need of extended and revamped research for the establishment of upcoming generation cancer therapeutics. Drug repositioning introduces an affordable and efficient strategy to discover novel drug action, especially when integrated with recent systems biology driven stratagem. This review illustrates the trendsetting approaches in repurposing along with their numerous success stories with an emphasize on the NSCLC therapeutics. Indeed, these novel hits, in combination with conventional anticancer agents, will ideally make their way the clinics and strengthen the therapeutic arsenal to combat drug resistance in the near future.
Collapse
Affiliation(s)
- Ramanathan Karuppasamy
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India.
| | - Shanthi Veerappapillai
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Sayoni Maiti
- Department of Biotechnology, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore 632014, Tamil Nadu, India
| | - Woong-Hee Shin
- Department of Computer Science, Purdue University, West Lafayette, IN, 47907, United States; Department of Chemistry Education, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, IN, 47907, United States; Department of Computer Science, Purdue University, West Lafayette, IN, 47907, United States; Purdue University, Center for Cancer Research, West Lafayette, IN, 47907, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH, 45229, United States
| |
Collapse
|
35
|
Stutvoet TS, Kol A, de Vries EGE, de Bruyn M, Fehrmann RSN, Terwisscha van Scheltinga AGT, de Jong S. MAPK pathway activity plays a key role in PD-L1 expression of lung adenocarcinoma cells. J Pathol 2019; 249:52-64. [PMID: 30972766 PMCID: PMC6767771 DOI: 10.1002/path.5280] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/11/2019] [Accepted: 04/07/2019] [Indexed: 12/31/2022]
Abstract
Immune checkpoint inhibitors targeting programmed cell death protein 1 (PD-1) and programmed death-ligand 1 (PD-L1) have improved the survival of patients with non-small cell lung cancer (NSCLC). Still, many patients do not respond to these inhibitors. PD-L1 (CD274) expression, one of the factors that influences the efficacy of immune checkpoint inhibitors, is dynamic. Here, we studied the regulation of PD-L1 expression in NSCLC without targetable genetic alterations in EGFR, ALK, BRAF, ROS1, MET, ERBB2 and RET. Analysis of RNA sequencing data from these NSCLCs revealed that inferred IFNγ, EGFR and MAPK signaling correlated with CD274 gene expression in lung adenocarcinoma. In a representative lung adenocarcinoma cell line panel, stimulation with EGF or IFNγ increased CD274 mRNA and PD-L1 protein and membrane levels, which were further enhanced by combining EGF and IFNγ. Similarly, tumor cell PD-L1 membrane levels increased after coculture with activated peripheral blood mononuclear cells. Inhibition of the MAPK pathway, using EGFR inhibitors cetuximab and erlotinib or the MEK 1 and 2 inhibitor selumetinib, prevented EGF- and IFNγ-induced CD274 mRNA and PD-L1 protein and membrane upregulation, but had no effect on IFNγ-induced MHC-I upregulation. Interestingly, although IFNγ increases transcriptional activity of CD274, MAPK signaling also increased stabilization of CD274 mRNA. In conclusion, MAPK pathway activity plays a key role in EGF- and IFNγ-induced PD-L1 expression in lung adenocarcinoma without targetable genetic alterations and may present a target to improve the efficacy of immunotherapy. © 2019 The Authors. Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Thijs S Stutvoet
- Department of Medical Oncology, Cancer Research Center GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Arjan Kol
- Department of Medical Oncology, Cancer Research Center GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Elisabeth GE de Vries
- Department of Medical Oncology, Cancer Research Center GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Marco de Bruyn
- Department of Obstetrics and Gynecology, Cancer Research Center GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Rudolf SN Fehrmann
- Department of Medical Oncology, Cancer Research Center GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | | | - Steven de Jong
- Department of Medical Oncology, Cancer Research Center GroningenUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
36
|
Jagoda EM, Vasalatiy O, Basuli F, Opina ACL, Williams MR, Wong K, Lane KC, Adler S, Ton AT, Szajek LP, Xu B, Butcher D, Edmondson EF, Swenson RE, Greiner J, Gulley J, Eary J, Choyke PL. Immuno-PET Imaging of the Programmed Cell Death-1 Ligand (PD-L1) Using a Zirconium-89 Labeled Therapeutic Antibody, Avelumab. Mol Imaging 2019; 18:1536012119829986. [PMID: 31044647 PMCID: PMC6498777 DOI: 10.1177/1536012119829986] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation. METHODS [89Zr]Zr-DFO-PD-L1 monoclonal antibody (mAb) was synthesized using avelumab conjugated to desferrioxamine. In vitro binding studies and biodistribution studies were performed with PD-L1+MDA-MB231 cells and MDA-MB231 xenograft mouse models, respectively. Biodistributions were determined at 1, 2, 3, 5, and 7 days post coinjection of [89Zr]Zr-DFO-PD-L1 mAb without or with unlabeled avelumab (10, 20, 40, and 400 µg). RESULTS [89Zr]Zr-DFO-PD-L1 mAb exhibited high affinity (Kd ∼ 0.3 nM) and detected moderate PD-L1 expression levels in MDA-MB231 cells. The spleen and lymph nodes exhibited the highest [89Zr]Zr-DFO-PD-L1 mAb uptakes in all time points, while MDA-MB231 tumor uptakes were lower but highly retained. In the unlabeled avelumab dose escalation studies, spleen tissue-muscle ratios decreased in a dose-dependent manner indicating specific [89Zr]Zr-DFO-PD-L1 mAb binding to PD-L1. In contrast, lymph node and tumor tissue-muscle ratios increased 4- to 5-fold at 20 and 40 µg avelumab doses. CONCLUSIONS [89Zr]Zr-DFO-PD-L1 mAb exhibited specific and high affinity for PD-L1 in vitro and had target tissue uptakes correlating with PD-L1 expression levels in vivo. [89Zr]Zr-DFO-PD-L1 mAb uptake in PD-L1+tumors increased with escalating doses of avelumab.
Collapse
Affiliation(s)
- Elaine M Jagoda
- 1 Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - Olga Vasalatiy
- 2 Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Falguni Basuli
- 2 Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Ana Christina L Opina
- 2 Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Mark R Williams
- 1 Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - Karen Wong
- 1 Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - Kelly C Lane
- 2 Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Steve Adler
- 1 Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - Anita Thein Ton
- 1 Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | | | - Biying Xu
- 2 Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - Donna Butcher
- 4 Pathology & Histotechnology Lab Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Elijah F Edmondson
- 4 Pathology & Histotechnology Lab Frederick National Laboratory for Cancer Research, NCI, Frederick, MD, USA
| | - Rolf E Swenson
- 2 Imaging Probe Development Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Rockville, MD, USA
| | - John Greiner
- 5 Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, MD, USA
| | - James Gulley
- 6 Genitourinary Malignancies Branch, National Cancer Institute, Bethesda, MD, USA.,7 Clinical Research Directorate/CMRP, Leidos Biomedical Research Inc. (formerly SAIC-Frederick, Inc.), Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Janet Eary
- 8 Cancer Imaging Program, National Cancer Institute, Bethesda, MD, USA
| | - Peter L Choyke
- 1 Molecular Imaging Program, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|
37
|
Aldarouish M, Su X, Qiao J, Gao C, Chen Y, Dai A, Zhang T, Shu Y, Wang C. Immunomodulatory effects of chemotherapy on blood lymphocytes and survival of patients with advanced non-small cell lung cancer. Int J Immunopathol Pharmacol 2019; 33:2058738419839592. [PMID: 30968711 PMCID: PMC6458672 DOI: 10.1177/2058738419839592] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
A better understanding of the immune profile of non-small cell lung cancer (NSCLC) and the immunomodulatory impact of chemotherapy is essential to develop current therapeutic approaches. Herein, we collected peripheral blood from 20 healthy donors and 50 patients with advanced NSCLC, before and after chemotherapy, followed by phenotypic analysis of lymphocyte subsets and assessment of the correlation between their post-chemotherapy levels and progression-free survival (PFS). Results showed that, before chemotherapy, the levels of CD8+ lymphocytes, PD-1+CD4+, Th2, and Th17 cells were elevated in patients’ peripheral blood, in contrast to natural killer (NK) cells and Th1 cells. Besides, there was no remarkable difference in the frequency of PD-1+CD8+ cells between patients and healthy controls. After chemotherapy, the levels of CD8+ lymphocytes, NK, Th2, Th17, and Treg were declined, in contrast to the level of Th1 cells which was markedly increased. Importantly, chemotherapy had no impact on the frequencies of PD-1+CD8+ and PD-1+CD4+ cells. PFS was significantly better in patients with low percentage of PD-1+CD4+ T cells than those with high percentage. Patients with high content of Th1 cells showed longer PFS than those with low content. The low percentages of Th17 and Treg cells were correlated with longer PFS, even though the difference did not reach statistical significance. In conclusion, the imbalance of lymphocyte subsets is a hallmark of NSCLC. Furthermore, the high level of PD-1+CD4+ cells plays a crucial role in the progression of NSCLC and could be used as a prognostic marker; and the high level of Th1 could predict better clinical outcomes of chemotherapy.
Collapse
Affiliation(s)
- Mohanad Aldarouish
- 1 Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Xiangyu Su
- 1 Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Jianbing Qiao
- 2 Department of Respiratory, Nanjing Chest Hospital, Nanjing, People's Republic of China
| | - Chanchan Gao
- 1 Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yan Chen
- 1 Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Anwei Dai
- 3 Department of Oncology, Kunshan Traditional Chinese Medicine Hospital, Kunshan, People's Republic of China
| | - Tianyu Zhang
- 4 Department of Microbiology and Immunology, School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Yongqian Shu
- 5 The First Affiliated Hospital of Nanjing Medical University (Jiangsu Provincial People's Hospital), Nanjing, People's Republic of China
| | - Cailian Wang
- 1 Department of Oncology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, People's Republic of China
| |
Collapse
|
38
|
López González M, Oosterhoff D, Lindenberg JJ, Milenova I, Lougheed SM, Martiáñez T, Dekker H, Quixabeira DCA, Hangalapura B, Joore J, Piersma SR, Cervera-Carrascon V, Santos JM, Scheper RJ, Verheul HMW, Jiménez CR, Van De Ven R, Hemminki A, Van Beusechem VW, De Gruijl TD. Constitutively active GSK3β as a means to bolster dendritic cell functionality in the face of tumour-mediated immune suppression. Oncoimmunology 2019; 8:e1631119. [PMID: 31646076 PMCID: PMC6791458 DOI: 10.1080/2162402x.2019.1631119] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/31/2019] [Accepted: 06/08/2019] [Indexed: 01/05/2023] Open
Abstract
In patients with cancer, the functionality of Dendritic Cells (DC) is hampered by high levels of tumor-derived suppressive cytokines, which interfere with DC development and maturation. Poor DC development can limit the efficacy of immune checkpoint blockade and in vivo vaccination approaches. Interference in intracellular signaling cascades downstream from the receptors of major tumor-associated suppressive cytokines like IL-10 and IL-6, might improve DC development and activation, and thus enhance immunotherapy efficacy. We performed exploratory functional screens on arrays consisting of >1000 human kinase peptide substrates to identify pathways involved in DC development and its inhibition by IL-10 or IL-6. The resulting alterations in phosphorylation of the kinome substrate profile pointed to glycogen-synthase kinase-3β (GSK3β) as a pivotal kinase in both DC development and suppression. GSK3β inhibition blocked human DC differentiation in vitro, which was accompanied by decreased levels of IL-12p70 secretion, and a reduced capacity for T cell priming. More importantly, adenoviral transduction of monocytes with a constitutively active form of GSK3β induced resistance to the suppressive effects of IL-10 and melanoma-derived supernatants alike, resulting in improved DC development, accompanied by up-regulation of co-stimulatory markers, an increase in CD83 expression levels in mature DC, and diminished release of IL-10. Moreover, adenovirus-mediated intratumoral manipulation of this pathway in an in vivo melanoma model resulted in DC activation and recruitment, and in improved immune surveillance and tumor control. We propose the induction of constitutive GSK3β activity as a novel therapeutic means to bolster DC functionality in the tumor microenvironment.
Collapse
Affiliation(s)
- Marta López González
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Dinja Oosterhoff
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Jelle J Lindenberg
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Ioanna Milenova
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Sinead M Lougheed
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Tania Martiáñez
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Henk Dekker
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Dafne Carolina Alves Quixabeira
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Basav Hangalapura
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Jos Joore
- PepScope B.V., VB Utrecht, Netherlands
| | - Sander R Piersma
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Victor Cervera-Carrascon
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Joao Manuel Santos
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland
| | - Rik J Scheper
- Department of Pathology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Henk M W Verheul
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Connie R Jiménez
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Rieneke Van De Ven
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,TILT Biotherapeutics Ltd, Helsinki, Finland.,Department Oncology, Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| | - Victor W Van Beusechem
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| | - Tanja D De Gruijl
- Department of Medical Oncology, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, Cancer Center Amsterdam, HV Amsterdam, The Netherlands
| |
Collapse
|
39
|
Song Q, Hawkins GA, Wudel L, Chou P, Forbes E, Pullikuth AK, Liu L, Jin G, Craddock L, Topaloglu U, Kucera G, O’Neill S, Levine EA, Sun P, Watabe K, Lu Y, Alexander‐Miller MA, Pasche B, Miller LD, Zhang W. Dissecting intratumoral myeloid cell plasticity by single cell RNA-seq. Cancer Med 2019; 8:3072-3085. [PMID: 31033233 PMCID: PMC6558497 DOI: 10.1002/cam4.2113] [Citation(s) in RCA: 104] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 12/18/2022] Open
Abstract
Tumor-infiltrating myeloid cells are the most abundant leukocyte population within tumors. Molecular cues from the tumor microenvironment promote the differentiation of immature myeloid cells toward an immunosuppressive phenotype. However, the in situ dynamics of the transcriptional reprogramming underlying this process are poorly understood. Therefore, we applied single cell RNA-seq (scRNA-seq) to computationally investigate the cellular composition and transcriptional dynamics of tumor and adjacent normal tissues from 4 early-stage non-small cell lung cancer (NSCLC) patients. Our scRNA-seq analyses identified 11 485 cells that varied in identity and gene expression traits between normal and tumor tissues. Among these, myeloid cell populations exhibited the most diverse changes between tumor and normal tissues, consistent with tumor-mediated reprogramming. Through trajectory analysis, we identified a differentiation path from CD14+ monocytes to M2 macrophages (monocyte-to-M2). This differentiation path was reproducible across patients, accompanied by increased expression of genes (eg, MRC1/CD206, MSR1/CD204, PPARG, TREM2) with significantly enriched functions (Oxidative phosphorylation and P53 pathway) and decreased expression of genes (eg, CXCL2, IL1B) with significantly enriched functions (TNF-α signaling via NF-κB and inflammatory response). Our analysis further identified a co-regulatory network implicating upstream transcription factors (JUN, NFKBIA) in monocyte-to-M2 differentiation, and activated ligand-receptor interactions (eg, SFTPA1-TLR2, ICAM1-ITGAM) suggesting intratumoral mechanisms whereby epithelial cells stimulate monocyte-to-M2 differentiation. Overall, our study identified the prevalent monocyte-to-M2 differentiation in NSCLC, accompanied by an intricate transcriptional reprogramming mediated by specific transcriptional activators and intercellular crosstalk involving ligand-receptor interactions.
Collapse
Affiliation(s)
- Qianqian Song
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Gregory A. Hawkins
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of BiochemistryWake Forest School of MedicineWinston SalemNorth Carolina
| | - Leonard Wudel
- Department of SurgeryWake Forest School of MedicineWinston SalemNorth Carolina
| | - Ping‐Chieh Chou
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Elizabeth Forbes
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Ashok K. Pullikuth
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Liang Liu
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Guangxu Jin
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Lou Craddock
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Umit Topaloglu
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Gregory Kucera
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Stacey O’Neill
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of PathologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Edward A. Levine
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of SurgeryWake Forest School of MedicineWinston SalemNorth Carolina
| | - Peiqing Sun
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Kounosuke Watabe
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Yong Lu
- Department of Immunology and MicrobiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | | | - Boris Pasche
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Lance D. Miller
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| | - Wei Zhang
- Center for Cancer Genomics and Precision OncologyWake Forest Baptist Comprehensive Cancer Center, Wake Forest Baptist Medical CenterWinston SalemNorth Carolina
- Department of Cancer BiologyWake Forest School of MedicineWinston SalemNorth Carolina
| |
Collapse
|
40
|
Carreau NA, Diefenbach CS. Immune targeting of the microenvironment in classical Hodgkin's lymphoma: insights for the hematologist. Ther Adv Hematol 2019; 10:2040620719846451. [PMID: 31105921 PMCID: PMC6501496 DOI: 10.1177/2040620719846451] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 04/02/2019] [Indexed: 12/31/2022] Open
Abstract
While up to 80% of patients with Hodgkin's lymphoma (HL) are cured with first-line therapy, relapsed/refractory (R/R) disease remains a clinical challenge and is fatal for many young patients. HL is unique in that the tumor cells (Hodgkin Reed-Sternberg; HRS cells) are a small fraction (<1%) of the tumor bulk, with the remaining tumor composed of the cells of the tumor microenvironment (TME). The support and integrity of the TME is necessary for HRS cell growth and survival. Targeting the programmed death 1 pathway has shown exciting activity in relapsed HL and led to United States Food and Drug Administration approval of the checkpoint inhibitors, nivolumab and pembrolizumab, for R/R HL. Novel combinations with checkpoint blockade therapy (CBT), targeted approaches such as combinations of CBT with brentuximab vedotin or chemotherapy, chimeric antigen receptor T-cells, and the use of CBT to potentially sensitize to subsequent therapy are being investigated as treatment approaches. As understanding of the HL TME grows, hopefully this will increase the number of rational therapeutic targets.
Collapse
Affiliation(s)
- Nicole A Carreau
- Division of Hematology and Medical Oncology, Perlmutter Cancer Center at NYU Langone Health, New York University School of Medicine & NYU Langone Medical Center, New York, NY, USA
| | - Catherine S Diefenbach
- Division of Hematology and Medical Oncology, Perlmutter Cancer Center at NYU Langone Health, New York University School of Medicine & NYU Langone Medical Center, 240 East 38 Street, 19 Floor, New York, NY 10016, USA
| |
Collapse
|
41
|
de Leve S, Wirsdörfer F, Jendrossek V. Targeting the Immunomodulatory CD73/Adenosine System to Improve the Therapeutic Gain of Radiotherapy. Front Immunol 2019; 10:698. [PMID: 31024543 PMCID: PMC6460721 DOI: 10.3389/fimmu.2019.00698] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Extracellular adenosine is a potent endogenous immunosuppressive mediator critical to the maintenance of homeostasis in various normal tissues including the lung. Adenosine is either released from stressed or injured cells or generated from extracellular adenine nucleotides by the concerted action of the ectoenzymes ectoapyrase (CD39) and 5′ ectonucleotidase (CD73) that catabolize ATP to adenosine. An acute CD73-dependent increase of adenosine in normal tissues mostly exerts tissue protective functions whereas chronically increased adenosine-levels in tissues exposed to DNA damaging chemotherapy or radiotherapy promote pathologic remodeling processes and fibrosis for example in the skin and the lung. Importantly, cancer cells also express CD73 and high CD73 expression in the tumor tissue has been linked to poor overall survival and recurrence free survival in patients suffering from breast and ovarian cancer. CD73 and adenosine support growth-promoting neovascularization, metastasis, and survival in cancer cells. In addition, adenosine can promote tumor intrinsic or therapy-induced immune escape by various mechanisms that dampen the immune system. Consequently, modulating CD73 or cancer-derived adenosine in the tumor microenvironment emerges as an attractive novel therapeutic strategy to limit tumor progression, improve antitumor immune responses, avoid therapy-induced immune deviation, and potentially limit normal tissue toxicity. However, the role of CD73/adenosine signaling in the tumor and normal tissue responses to radiotherapy and its use as therapeutic target to improve the outcome of radiotherapy approaches is less understood. The present review will highlight the dual role of CD73 and adenosine in tumor and tissue responses to radiotherapy with a special focus to the lung. It will also discuss the potential benefits and risks of pharmacologic modulation of the CD73/adenosine system to increase the therapeutic gain of radiotherapy or combined radioimmunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| |
Collapse
|
42
|
Wirsdörfer F, de Leve S, Jendrossek V. Combining Radiotherapy and Immunotherapy in Lung Cancer: Can We Expect Limitations Due to Altered Normal Tissue Toxicity? Int J Mol Sci 2018; 20:ijms20010024. [PMID: 30577587 PMCID: PMC6337556 DOI: 10.3390/ijms20010024] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/18/2018] [Accepted: 12/19/2018] [Indexed: 02/08/2023] Open
Abstract
In recent decades, technical advances in surgery and radiotherapy, as well as breakthroughs in the knowledge on cancer biology, have helped to substantially improve the standard of cancer care with respect to overall response rates, progression-free survival, and the quality of life of cancer patients. In this context, immunotherapy is thought to have revolutionized the standard of care for cancer patients in the long term. For example, immunotherapy approaches such as immune checkpoint blockade are currently increasingly being used in cancer treatment, either alone or in combination with chemotherapy or radiotherapy, and there is hope from the first clinical trials that the appropriate integration of immunotherapy into standard care will raise the success rates of cancer therapy to a new level. Nevertheless, successful cancer therapy remains a major challenge, particularly in tumors with either pronounced resistance to chemotherapy and radiation treatment, a high risk of normal tissue complications, or both, as in lung cancer. Chemotherapy, radiotherapy and immunotherapy have the capacity to evoke adverse effects in normal tissues when administered alone. However, therapy concepts are usually highly complex, and it is still not clear if combining immunotherapy with radio(chemo)therapy will increase the risk of normal tissue complications, in particular since normal tissue toxicity induced by chemotherapy and radiotherapy can involve immunologic processes. Unfortunately, no reliable biomarkers are available so far that are suited to predict the unique normal tissue sensitivity of a given patient to a given treatment. Consequently, clinical trials combining radiotherapy and immunotherapy are attracting major attention, not only regarding efficacy, but also with regard to safety. In the present review, we summarize the current knowledge of radiation-induced and immunotherapy-induced effects in tumor and normal tissue of the lung, and discuss the potential limitations of combined radio-immunotherapy in lung cancer with a focus on the suspected risk for enhanced acute and chronic normal tissue toxicity.
Collapse
Affiliation(s)
- Florian Wirsdörfer
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany.
| | - Simone de Leve
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany.
| | - Verena Jendrossek
- Institute of Cell Biology (Cancer Research), University Hospital Essen, 45147 Essen, Germany.
| |
Collapse
|
43
|
Durvalumab: a newly approved checkpoint inhibitor for the treatment of urothelial carcinoma. Curr Probl Cancer 2018; 43:181-194. [PMID: 30270097 DOI: 10.1016/j.currproblcancer.2018.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 08/30/2018] [Indexed: 12/14/2022]
Abstract
Until a recent introduction to checkpoint inhibitors, there were limited second-line chemotherapy options for urothelial carcinoma (UC) patients with disease progression after first-line, platinum-based treatment. Outcomes for patients with advanced disease over the past 30 years have highlighted a need for new and better therapy. In response to evolving interest, durvalumab (MEDI4736) was introduced as a potential treatment for advanced stages of UC. Durvalumab is a selective, high-affinity, human IgG1 kappa monoclonal antibody engineered with a triple mutation to reduce toxicity. This checkpoint inhibitor has shown promise in advanced UC and is currently the topic of much discussion in the cancer research community. This review article will explore the details surrounding durvalumab, while also giving a brief overview of additional immunotherapeutic agents utilized for UC.
Collapse
|
44
|
Kanwal B, Biswas S, Seminara RS, Jeet C. Immunotherapy in Advanced Non-small Cell Lung Cancer Patients: Ushering Chemotherapy Through the Checkpoint Inhibitors? Cureus 2018; 10:e3254. [PMID: 30416904 PMCID: PMC6217867 DOI: 10.7759/cureus.3254] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
New ways of exploiting the immune system for cancer treatment have been tested for decades with moderate outcomes. Based on previous immunotherapy knowledge, agents targeting immune checkpoints seem to be remarkably effective in a wide range of tumors. Immune checkpoint inhibitors in metastatic non-small cell lung cancer (NSCLC) provide longlasting responses in specific patients. Nevertheless, with overall response rates ≤ 20%, combinational protocols for various patient subgroups are needed. A good partner treatment to immunotherapy could be chemotherapy, as it successfully modulates the immune response either by controlling or enhancing the antitumor immune activity. Primary research provides promising results in metastatic NSCLC patients using this approach, but further large-scale trials are needed. The implementation of immunotherapy in nonmetastatic cases is also appealing. We review the potential clinical benefits of immunotherapy alone or in concert with chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Bushra Kanwal
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington DC, USA
| | - Sharmi Biswas
- Pediatric, California Institute of Behavioral Neurosciences & Psychology, Fairfield, California , USA
| | - Robert S Seminara
- Neuroscience, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| | - Charan Jeet
- Research, California Institute of Behavioral Neurosciences & Psychology, Fairfield, USA
| |
Collapse
|
45
|
Okuma Y, Wakui H, Utsumi H, Sagawa Y, Hosomi Y, Kuwano K, Homma S. Soluble Programmed Cell Death Ligand 1 as a Novel Biomarker for Nivolumab Therapy for Non-Small-cell Lung Cancer. Clin Lung Cancer 2018; 19:410-417.e1. [PMID: 29859759 DOI: 10.1016/j.cllc.2018.04.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/06/2018] [Accepted: 04/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Biomarkers for predicting the effect of anti-programmed cell death 1 (PD-1) monoclonal antibody against non-small-cell lung cancer (NSCLC) are urgently required. Although it is known that the blood levels of soluble programmed cell death ligand 1 (sPD-L1) are elevated in various malignancies, the nature of sPD-L1 has not been thoroughly elucidated. We investigated the significance of plasma sPD-L1 levels as a biomarker for anti-PD-1 monoclonal antibody, nivolumab therapy. PATIENTS AND METHODS The present prospective study included 39 NSCLC patients. The patients were treated with nivolumab at the dose of 3 mg/kg every 2 weeks, and the effects of nivolumab on NSCLC were assessed according to the change in tumor size, time to treatment failure (TTF), and overall survival (OS). The baseline plasma sPD-L1 concentration was determined using an enzyme-linked immunosorbent assay. RESULTS The area under the curve of the receiver operating characteristic curve was 0.761. The calculated optimal cutoff point for sPD-L1 in the plasma samples was 3.357 ng/mL. Of the 39 patients, 59% with low plasma sPD-L1 levels achieved a complete response or partial response and 25% of those with high plasma sPD-L1 levels did so. In addition, 22% of the patients with low plasma sPD-L1 levels developed progressive disease compared with 75% of those with high plasma sPD-L1 levels. The TTF and OS were significantly longer for those patients with low plasma sPD-L1 levels compared with the TTF and OS for those with high plasma sPD-L1 levels. CONCLUSION The clinical benefit from nivolumab therapy was significantly associated with the baseline plasma sPD-L1 levels. Plasma sPD-L1 levels might represent a novel biomarker for the prediction of the efficacy of nivolumab therapy against NSCLC.
Collapse
Affiliation(s)
- Yusuke Okuma
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan; Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Hiroshi Wakui
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Hirofumi Utsumi
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Yukiko Sagawa
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan
| | - Yukio Hosomi
- Department of Thoracic Oncology and Respiratory Medicine, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo, Japan
| | - Kazuyoshi Kuwano
- Division of Respiratory Diseases, Department of Internal Medicine, Jikei University School of Medicine, Tokyo, Japan
| | - Sadamu Homma
- Division of Oncology, Research Center for Medical Sciences, Jikei University School of Medicine, Tokyo, Japan.
| |
Collapse
|
46
|
Zhou L, Zhang X, Li H, Niu C, Yu D, Yang G, Liang X, Wen X, Li M, Cui J. Validating the pivotal role of the immune system in low-dose radiation-induced tumor inhibition in Lewis lung cancer-bearing mice. Cancer Med 2018; 7:1338-1348. [PMID: 29479834 PMCID: PMC5911597 DOI: 10.1002/cam4.1344] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 10/18/2017] [Accepted: 12/26/2017] [Indexed: 12/17/2022] Open
Abstract
Although low-dose radiation (LDR) possesses the two distinct functions of inducing hormesis and adaptive responses, which result in immune enhancement and tumor inhibition, its clinical applications have not yet been elucidated. The major obstacle that hinders the application of LDR in the clinical setting is that the mechanisms underlying induction of tumor inhibition are unclear, and the risks associated with LDR are still unknown. Thus, to overcome this obstacle and elucidate the mechanisms mediating the antitumor effects of LDR, in this study, we established an in vivo lung cancer model to investigate the participation of the immune system in LDR-induced tumor inhibition and validated the pivotal role of the immune system by impairing immunity with high-dose radiation (HDR) of 1 Gy. Additionally, the LDR-induced adaptive response of the immune system was also observed by sequential HDR treatment in this mouse model. We found that LDR-activated T cells and natural killer cells and increased the cytotoxicity of splenocytes and the infiltration of T cells in the tumor tissues. In contrast, when immune function was impaired by HDR pretreatment, LDR could not induce tumor inhibition. However, when LDR was administered before HDR, the immunity could be protected from impairment, and tumor growth could be inhibited to some extent, indicating the induction of the immune adaptive response by LDR. Therefore, we demonstrated that immune enhancement played a key role in LDR-induced tumor inhibition. These findings emphasized the importance of the immune response in tumor radiotherapy and may help promote the application of LDR as a novel approach in clinical practice.
Collapse
MESH Headings
- Animals
- Biomarkers
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/metabolism
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/radiotherapy
- Cytokines/metabolism
- Disease Models, Animal
- Female
- Immune System/radiation effects
- Immunohistochemistry
- Immunomodulation/radiation effects
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Lymphocyte Activation
- Lymphocytes, Tumor-Infiltrating/immunology
- Lymphocytes, Tumor-Infiltrating/metabolism
- Lymphocytes, Tumor-Infiltrating/pathology
- Mice
- Radiation Dosage
- Radiation, Ionizing
- Spleen/cytology
- Spleen/immunology
- Spleen/metabolism
- T-Lymphocytes/immunology
- T-Lymphocytes/metabolism
- Tumor Burden/radiation effects
Collapse
Affiliation(s)
- Lei Zhou
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Xiaoying Zhang
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Hui Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Chao Niu
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Dehai Yu
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Guozi Yang
- Department of Radiation‐OncologyThe First Hospital of Jilin UniversityChangchun130021China
| | - Xinyue Liang
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Xue Wen
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Min Li
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| | - Jiuwei Cui
- Cancer CenterThe First Hospital of Jilin UniversityChangchun130021China
| |
Collapse
|
47
|
Watanabe T, Hida AI, Inoue N, Imamura M, Fujimoto Y, Akazawa K, Hirota S, Miyoshi Y. Abundant tumor infiltrating lymphocytes after primary systemic chemotherapy predicts poor prognosis in estrogen receptor-positive/HER2-negative breast cancers. Breast Cancer Res Treat 2017; 168:135-145. [PMID: 29168063 DOI: 10.1007/s10549-017-4575-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 11/10/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE The therapeutic effect of systemic treatment for breast cancer (BC) generally depends on its intrinsic subtypes. In addition, tumor infiltrating lymphocytes (TILs) are considered to be an independent factor for tumor shrinkage and disease prognosis. High TILs at baseline or after primary systemic chemotherapy are reported to be associated with better survival in triple-negative or human epithelial growth factor receptor 2 (HER2)-positive BCs. However, the prognostic value of TILs in estrogen receptor (ER)-positive and HER2-negative (ER+/HER2-) BC is still controversial. METHODS We assessed TIL score (low, intermediate, and high) before and after primary systemic chemotherapy in every subtype of BC, and compared the clinical outcomes. Biopsy specimens of 47 triple-negative, 58 HER2+ and 91 ER+/HER2- BCs were used to assess TILs before treatment. To assess TILs after treatment, we examined residual invasive carcinoma in surgically resected samples of 28 triple-negative, 30 HER2+ and 80 ER+/HER2- BCs. RESULTS A high TIL score in triple-negative BC before treatment resulted in a significantly higher proportion of pathological complete response (pCR). In contrast, ER+/HER2- BC exhibited fewer instances of pCR than other subtypes. Although not statistically significant, ER+/HER2- cases with a high TIL score also tended to achieve pCR (p = 0.088). Moreover, we revealed that low TIL BCs after chemotherapy, but not at baseline, had significantly better relapse-free survival in ER+/HER2- BC (p = 0.034). CONCLUSION Pathological examination of TILs after treatment may be a surrogate marker for prognosis in ER+/HER2- BC.
Collapse
Affiliation(s)
- Takahiro Watanabe
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Akira I Hida
- Department of Pathology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.,Department of Pathology, Matsuyama Red Cross Hospital, 1 Bunkyo, Matsuyama, Ehime, 790-8524, Japan
| | - Natsuko Inoue
- Division of Breast and Endocrine, Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Michiko Imamura
- Division of Breast and Endocrine, Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Yukie Fujimoto
- Division of Breast and Endocrine, Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Kouhei Akazawa
- Department of Medical Informatics, Niigata University Medical and Dental Hospital, Chuo-ku, Niigata, Japan
| | - Seiichi Hirota
- Department of Surgical Pathology, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan
| | - Yasuo Miyoshi
- Division of Breast and Endocrine, Department of Surgery, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, Japan.
| |
Collapse
|
48
|
Inamura K, Yokouchi Y, Kobayashi M, Ninomiya H, Sakakibara R, Nishio M, Okumura S, Ishikawa Y. Relationship of tumor PD-L1 (CD274) expression with lower mortality in lung high-grade neuroendocrine tumor. Cancer Med 2017; 6:2347-2356. [PMID: 28925087 PMCID: PMC5633594 DOI: 10.1002/cam4.1172] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 06/28/2017] [Accepted: 07/31/2017] [Indexed: 12/27/2022] Open
Abstract
Programmed death-ligand 1 (PD-L1) promotes immunosuppression by binding to PD-1 on T lymphocytes. Although tumor PD-L1 expression is a potential predictive marker of clinical response to anti-PD-1/PD-L1 therapy, little is known about its association with clinicopathological features, including prognosis, in high-grade neuroendocrine tumors (HGNETs), including small-cell lung carcinoma (SCLC) and large-cell neuroendocrine carcinoma (LCNEC), of the lung. We immunohistochemically examined the membranous of expression of PD-L1 in 115 consecutive surgical cases of lung HGNET (74 SCLC cases and 41 LCNEC cases). We examined the prognostic association of tumor PD-L1 positivity using the log-rank test as well as Cox proportional hazards regression models to calculate the hazard ratio (HR) for mortality. Programmed death-ligand 1 immunostaining (at least 5% tumor cells) was observed in 25 (21%) of the 115 HGNET cases. In a univariable analysis, PD-L1 positivity was associated with lower lung cancer-specific (univariable HR = 0.23; 95% confidence interval [CI] = 0.056-0.64; P = 0.0028) and overall (univariable HR = 0.28; 95% CI = 0.11-0.60; P = 0.0005) mortality. Additionally, in a multivariable analysis, PD-L1 positivity was independently associated with lower lung cancer-specific (multivariable HR = 0.24; 95% CI = 0.058-0.67; P = 0.0039) and overall (multivariable HR = 0.29; 95% CI = 0.11-0.61; P = 0.0006) mortality. Our study demonstrated the prevalence of PD-L1 positivity in lung HGNET cases, and the independent association of tumor PD-L1 positivity with lower mortality in lung HGNET cases. Further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Kentaro Inamura
- Division of PathologyThe Cancer InstituteDepartment of PathologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
| | - Yusuke Yokouchi
- Division of PathologyThe Cancer InstituteDepartment of PathologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
- Translational Medicine & Clinical Pharmacology DepartmentDaiichi Sankyo Co., Ltd.1‐2‐58, HiromachiShinagawa‐kuTokyo140‐0005Japan
| | - Maki Kobayashi
- Division of PathologyThe Cancer InstituteDepartment of PathologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
| | - Hironori Ninomiya
- Division of PathologyThe Cancer InstituteDepartment of PathologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
| | - Rie Sakakibara
- Division of PathologyThe Cancer InstituteDepartment of PathologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
- Department of Integrated PulmonologyTokyo Medical and Dental University1‐5‐45, YushimaBunkyo‐kuTokyo113‐8519Japan
| | - Makoto Nishio
- Department of Thoracic Medical OncologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
| | - Sakae Okumura
- Department of Thoracic Surgical OncologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 AriakeKoto‐kuTokyo135‐8550Japan
| | - Yuichi Ishikawa
- Division of PathologyThe Cancer InstituteDepartment of PathologyThe Cancer Institute HospitalJapanese Foundation for Cancer Research3‐8‐31 Ariake, Koto‐kuTokyo135‐8550Japan
| |
Collapse
|
49
|
Greystoke A, Steele N, Arkenau HT, Blackhall F, Md Haris N, Lindsay CR, Califano R, Voskoboynik M, Summers Y, So K, Ghiorghiu D, Dymond AW, Hossack S, Plummer R, Dean E. SELECT-3: a phase I study of selumetinib in combination with platinum-doublet chemotherapy for advanced NSCLC in the first-line setting. Br J Cancer 2017; 117:938-946. [PMID: 28950288 PMCID: PMC5625674 DOI: 10.1038/bjc.2017.271] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 05/26/2017] [Accepted: 07/20/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND We investigated selumetinib (AZD6244, ARRY-142886), an oral, potent, and highly selective, allosteric MEK1/2 inhibitor, plus platinum-doublet chemotherapy for patients with advanced/metastatic non-small cell lung cancer. METHODS In this Phase I, open-label study (NCT01809210), treatment-naïve patients received selumetinib (50, 75, 100 mg BID PO) plus standard doses of gemcitabine or pemetrexed plus cisplatin or carboplatin. Primary objectives were safety, tolerability, and determination of recommended Phase II doses. RESULTS Fifty-five patients received treatment: selumetinib 50 or 75 mg plus gemcitabine/cisplatin (n=10); selumetinib 50 mg plus gemcitabine/carboplatin (n=9); selumetinib 50, 75 or 100 mg plus pemetrexed/carboplatin (n=21); selumetinib 75 mg plus pemetrexed/cisplatin (n=15). Most frequent adverse events (AEs) were fatigue, nausea, diarrhoea and vomiting. Grade ⩾3 selumetinib-related AEs were reported in 30 (55%) patients. Dose-limiting toxicities (all n=1) were Grade 4 anaemia (selumetinib 75 mg plus gemcitabine/cisplatin), Grade 4 thrombocytopenia/epistaxis and Grade 4 thrombocytopenia (selumetinib 50 mg plus gemcitabine/carboplatin), Grade 4 febrile neutropenia (selumetinib 100 mg plus pemetrexed/carboplatin), and Grade 3 lethargy (selumetinib 75 mg plus pemetrexed/cisplatin). Partial responses were confirmed in 11 (20%) and unconfirmed in 9 (16%) patients. CONCLUSIONS Standard doses of pemetrexed/carboplatin or pemetrexed/cisplatin were tolerated with selumetinib 75 mg BID. The selumetinib plus gemcitabine-containing regimens were not tolerated.
Collapse
Affiliation(s)
- Alastair Greystoke
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Nicola Steele
- The Beatson West of Scotland Cancer Centre, Glasgow, UK
| | | | | | - Noor Md Haris
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | | | | | | | - Yvonne Summers
- The Christie Hospital NHS Foundation Trust, Manchester, UK
| | | | | | | | | | - Ruth Plummer
- Northern Centre for Cancer Care, Freeman Hospital, Newcastle upon Tyne, UK
| | - Emma Dean
- The Christie Hospital NHS Foundation Trust, Manchester, UK
| |
Collapse
|
50
|
Bruno TC, Ebner PJ, Moore BL, Squalls OG, Waugh KA, Eruslanov EB, Singhal S, Mitchell JD, Franklin WA, Merrick DT, McCarter MD, Palmer BE, Kern JA, Slansky JE. Antigen-Presenting Intratumoral B Cells Affect CD4 + TIL Phenotypes in Non-Small Cell Lung Cancer Patients. Cancer Immunol Res 2017; 5:898-907. [PMID: 28848053 DOI: 10.1158/2326-6066.cir-17-0075] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 07/10/2017] [Accepted: 08/21/2017] [Indexed: 12/25/2022]
Abstract
Effective immunotherapy options for patients with non-small cell lung cancer (NSCLC) are becoming increasingly available. The immunotherapy focus has been on tumor-infiltrating T cells (TILs); however, tumor-infiltrating B cells (TIL-Bs) have also been reported to correlate with NSCLC patient survival. The function of TIL-Bs in human cancer has been understudied, with little focus on their role as antigen-presenting cells and their influence on CD4+ TILs. Compared with other immune subsets detected in freshly isolated primary tumors from NSCLC patients, we observed increased numbers of intratumoral B cells relative to B cells from tumor-adjacent tissues. Furthermore, we demonstrated that TIL-Bs can efficiently present antigen to CD4+ TILs and alter the CD4+ TIL phenotype using an in vitro antigen-presentation assay. Specifically, we identified three CD4+ TIL responses to TIL-Bs, which we categorized as activated, antigen-associated, and nonresponsive. Within the activated and antigen-associated CD4+ TIL population, activated TIL-Bs (CD19+CD20+CD69+CD27+CD21+) were associated with an effector T-cell response (IFNγ+ CD4+ TILs). Alternatively, exhausted TIL-Bs (CD19+CD20+CD69+CD27-CD21-) were associated with a regulatory T-cell phenotype (FoxP3+ CD4+ TILs). Our results demonstrate a new role for TIL-Bs in NSCLC tumors in their interplay with CD4+ TILs in the tumor microenvironment, establishing them as a potential therapeutic target in NSCLC immunotherapy. Cancer Immunol Res; 5(10); 898-907. ©2017 AACR.
Collapse
Affiliation(s)
- Tullia C Bruno
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Peggy J Ebner
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brandon L Moore
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Olivia G Squalls
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Katherine A Waugh
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado
| | - Evgeniy B Eruslanov
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sunil Singhal
- Division of Thoracic Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John D Mitchell
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Wilbur A Franklin
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Daniel T Merrick
- Department of Pathology, University of Colorado School of Medicine, Aurora, Colorado
| | - Martin D McCarter
- Department of Surgery, University of Colorado School of Medicine, Aurora, Colorado
| | - Brent E Palmer
- Division of Allergy and Clinical Immunology, University of Colorado School of Medicine, Aurora, Colorado
| | - Jeffrey A Kern
- Division of Oncology, National Jewish Health, Denver, Colorado
| | - Jill E Slansky
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado.
| |
Collapse
|