1
|
Zuckerbrot-Schuldenfrei M, Zilberberg A, Efroni S. The compositional behavior of the human T cell receptor repertoire in ovarian cancer compared to healthy donors. Sci Data 2025; 12:175. [PMID: 39880820 PMCID: PMC11779844 DOI: 10.1038/s41597-024-04335-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 12/18/2024] [Indexed: 01/31/2025] Open
Abstract
The distinctive characteristics of an individual's T cell receptor repertoire are crucial in recognizing and responding to a diverse array of antigens, contributing to immune specificity and adaptability. The repertoire, famously vast due to a series of cellular mechanisms, can be quantified using repertoire sequencing. In this study, we sampled the repertoire of 85 women: ovarian cancer patients (OC) and healthy donors (HD), generating a dataset of T cell clones and their abundance. For the alpha chain we obtained 6.4·106 reads, with an average of 75936 clones per sample, and an average of 30607 clonotypes per sample. For the beta chain we obtained 13.6·106 reads, with an average of 160400 clones per sample, and an average of 70071 clonotypes per sample. The changes in dynamics of the repertoire can be observed in response to disease, with specific clones undergoing clonal expansion and contraction. The data provided here offers a unique view of immune system behavior in health and disease and can be used to stratify OC and HD.
Collapse
Affiliation(s)
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan, Israel.
| |
Collapse
|
2
|
Cai Y, Luo M, Yang W, Xu C, Wang P, Xue G, Jin X, Cheng R, Que J, Zhou W, Pang B, Xu S, Li Y, Jiang Q, Xu Z. The Deep Learning Framework iCanTCR Enables Early Cancer Detection Using the T-cell Receptor Repertoire in Peripheral Blood. Cancer Res 2024; 84:1915-1928. [PMID: 38536129 DOI: 10.1158/0008-5472.can-23-0860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 07/20/2023] [Accepted: 03/19/2024] [Indexed: 06/05/2024]
Abstract
T cells recognize tumor antigens and initiate an anticancer immune response in the very early stages of tumor development, and the antigen specificity of T cells is determined by the T-cell receptor (TCR). Therefore, monitoring changes in the TCR repertoire in peripheral blood may offer a strategy to detect various cancers at a relatively early stage. Here, we developed the deep learning framework iCanTCR to identify patients with cancer based on the TCR repertoire. The iCanTCR framework uses TCRβ sequences from an individual as an input and outputs the predicted cancer probability. The model was trained on over 2,000 publicly available TCR repertoires from 11 types of cancer and healthy controls. Analysis of several additional publicly available datasets validated the ability of iCanTCR to distinguish patients with cancer from noncancer individuals and demonstrated the capability of iCanTCR for the accurate classification of multiple cancers. Importantly, iCanTCR precisely identified individuals with early-stage cancer with an AUC of 86%. Altogether, this work provides a liquid biopsy approach to capture immune signals from peripheral blood for noninvasive cancer diagnosis. SIGNIFICANCE Development of a deep learning-based method for multicancer detection using the TCR repertoire in the peripheral blood establishes the potential of evaluating circulating immune signals for noninvasive early cancer detection.
Collapse
Affiliation(s)
- Yideng Cai
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Meng Luo
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyi Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Chang Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Pingping Wang
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Guangfu Xue
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Xiyun Jin
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Rui Cheng
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Jinhao Que
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Wenyang Zhou
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Boran Pang
- Center for Difficult and Complicated Abdominal Surgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shouping Xu
- Department of Breast Cancer, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yu Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Qinghua Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| | - Zhaochun Xu
- School for Interdisciplinary Medicine and Engineering, Harbin Medical University, Harbin, China
| |
Collapse
|
3
|
Li Y, Ji L, Zhang Y, Zhang J, Reuben A, Zeng H, Huang Q, Wei Q, Tan S, Xia X, Li W, Zhang J, Tian P. The combination of tumor mutational burden and T-cell receptor repertoire predicts the response to immunotherapy in patients with advanced non-small cell lung cancer. MedComm (Beijing) 2024; 5:e604. [PMID: 38840771 PMCID: PMC11151154 DOI: 10.1002/mco2.604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/27/2024] [Accepted: 05/01/2024] [Indexed: 06/07/2024] Open
Abstract
Tumor mutational burden (TMB) and T-cell receptor (TCR) might predict the response to immunotherapy in patients with non-small cell lung cancer (NSCLC). However, the predictive value of the combination of TMB and TCR was not clear. Targeted DNA and TCR sequencing were performed on tumor biopsy specimens. We combined TMB and TCR diversity into a TMB-and-TCR (TMR) score using logistic regression. In total, 38 patients with advanced NSCLC were divided into a discovery set (n = 17) and validation set (n = 21). A higher TMR score was associated with better response and longer progression-free survival to immunotherapy in both the discovery set and validation set. The performance of TMR score was confirmed in the two external validation cohorts of 225 NSCLC patients and 306 NSCLC patients. Tumors with higher TMR scores were more likely to combine with LRP1B gene mutation (p = 0.027) and top 1% CDR3 sequences (p = 0.001). Furthermore, LRP1B allele frequency was negatively correlated with the top 1% CDR3 sequences (r = -0.55, p = 0.033) and positively correlated with tumor shrinkage (r = 0.68, p = 0.007). The TMR score could serve as a potential predictive biomarker for the response to immunotherapy in advanced NSCLC.
Collapse
Affiliation(s)
- Yalun Li
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital of Sichuan University, Precision Medicine Key Laboratory of Sichuan ProvinceChengduSichuanChina
- Lung Cancer Center/Lung Cancer InstituteWest China Hospital, Sichuan UniversityChengduSichuanChina
| | - Liyan Ji
- Geneplus‐Beijing InstituteBeijingChina
| | | | - Jiexin Zhang
- Departments of Bioinformatics and Computational BiologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Alexandre Reuben
- Department of Thoracic/Head and Neck Medical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Hao Zeng
- Department of Pulmonary and Critical Care MedicineWest China Hospital, West China School of Medicine, Sichuan UniversityChengduSichuanChina
| | - Qin Huang
- Department of Pulmonary and Critical Care MedicineWest China Hospital, West China School of Medicine, Sichuan UniversityChengduSichuanChina
| | - Qi Wei
- Department of Pulmonary and Critical Care MedicineWest China Hospital, West China School of Medicine, Sichuan UniversityChengduSichuanChina
| | - Sihan Tan
- Department of Pulmonary and Critical Care MedicineWest China Hospital, West China School of Medicine, Sichuan UniversityChengduSichuanChina
| | | | - Weimin Li
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital of Sichuan University, Precision Medicine Key Laboratory of Sichuan ProvinceChengduSichuanChina
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical OncologyUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Department of Genomic MedicineUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Lung Cancer Genomics ProgramUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
- Lung Cancer Interception ProgramUniversity of Texas MD Anderson Cancer CenterHoustonTexasUSA
| | - Panwen Tian
- Department of Pulmonary and Critical Care MedicineState Key Laboratory of Respiratory Health and MultimorbidityWest China Hospital of Sichuan University, Precision Medicine Key Laboratory of Sichuan ProvinceChengduSichuanChina
- Lung Cancer Center/Lung Cancer InstituteWest China Hospital, Sichuan UniversityChengduSichuanChina
| |
Collapse
|
4
|
Zuckerbrot-Schuldenfrei M, Aviel-Ronen S, Zilberberg A, Efroni S. Ovarian cancer is detectable from peripheral blood using machine learning over T-cell receptor repertoires. Brief Bioinform 2024; 25:bbae075. [PMID: 38483254 PMCID: PMC10938541 DOI: 10.1093/bib/bbae075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 01/17/2024] [Accepted: 02/07/2024] [Indexed: 03/17/2024] Open
Abstract
The extraordinary diversity of T cells and B cells is critical for body maintenance. This diversity has an important role in protecting against tumor formation. In humans, the T-cell receptor (TCR) repertoire is generated through a striking stochastic process called V(D)J recombination, in which different gene segments are assembled and modified, leading to extensive variety. In ovarian cancer (OC), an unfortunate 80% of cases are detected late, leading to poor survival outcomes. However, when detected early, approximately 94% of patients live longer than 5 years after diagnosis. Thus, early detection is critical for patient survival. To determine whether the TCR repertoire obtained from peripheral blood is associated with tumor status, we collected blood samples from 85 women with or without OC and obtained TCR information. We then used machine learning to learn the characteristics of samples and to finally predict, over a set of unseen samples, whether the person is with or without OC. We successfully stratified the two groups, thereby associating the peripheral blood TCR repertoire with the formation of OC tumors. A careful study of the origin of the set of T cells most informative for the signature indicated the involvement of a specific invariant natural killer T (iNKT) clone and a specific mucosal-associated invariant T (MAIT) clone. Our findings here support the proposition that tumor-relevant signal is maintained by the immune system and is coded in the T-cell repertoire available in peripheral blood. It is also possible that the immune system detects tumors early enough for repertoire technologies to inform us near the beginning of tumor formation. Although such detection is made by the immune system, we might be able to identify it, using repertoire data from peripheral blood, to offer a pragmatic way to search for early signs of cancer with minimal patient burden, possibly with enhanced sensitivity.
Collapse
Affiliation(s)
| | - Sarit Aviel-Ronen
- Adelson School of Medicine, Ariel University, Ariel 40700, Israel and Sheba Medical Center, Tel-Hashomer, Ramat Gan 526200, Israel
| | - Alona Zilberberg
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Sol Efroni
- The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
5
|
Zemanek T, Nova Z, Nicodemou A. Tumor-Infiltrating Lymphocytes and Adoptive Cell Therapy: State of the Art in Colorectal, Breast and Lung Cancer. Physiol Res 2023; 72:S209-S224. [PMID: 37888965 PMCID: PMC10669950 DOI: 10.33549/physiolres.935155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/07/2023] [Indexed: 12/01/2023] Open
Abstract
Our knowledge of tumor-infiltrating lymphocytes (TILs) is dramatically expanding. These cells have proven prognostic and therapeutic value for many cancer outcomes and potential to treat also disseminated breast, colorectal, or lung cancer. However, the therapeutical outcome of TILs is negatively affected by tumor mutational burden and neoantigens. On the other hand, it can be improved in combination with checkpoint blockade therapy. This knowledge and rapid detection techniques alongside gene editing allow us to classify and modify T cells in many ways. Hence, to tailor them precisely to the patient´s needs as to program T cell receptors to recognize specific tumor-associated neoantigens and to insert them into lymphocytes or to select tumor neoantigen-specific T cells, for the development of vaccines that recognize tumor-specific antigens in tumors or metastases. Further studies and clinical trials in the field are needed for an even better-detailed understanding of TILs interactions and aiming in the fight against multiple cancers.
Collapse
Affiliation(s)
- T Zemanek
- Lambda Life, Bratislava, Slovak Republic.
| | | | | |
Collapse
|
6
|
Tébar-Martínez R, Martín-Arana J, Gimeno-Valiente F, Tarazona N, Rentero-Garrido P, Cervantes A. Strategies for improving detection of circulating tumor DNA using next generation sequencing. Cancer Treat Rev 2023; 119:102595. [PMID: 37390697 DOI: 10.1016/j.ctrv.2023.102595] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 06/23/2023] [Indexed: 07/02/2023]
Abstract
Cancer has become a global health issue and liquid biopsy has emerged as a non-invasive tool for various applications. In cancer, circulating tumor DNA (ctDNA) can be detected from cell-free DNA (cfDNA) obtained from plasma and has potential for early diagnosis, treatment, resistance, minimal residual disease detection, and tumoral heterogeneity identification. However, the low frequency of ctDNA requires techniques for accurate analysis. Multitarget assay such as Next Generation Sequencing (NGS) need improvement to achieve limits of detection that can identify the low frequency variants present in the cfDNA. In this review, we provide a general overview of the use of cfDNA and ctDNA in cancer, and discuss techniques developed to optimize NGS as a tool for ctDNA detection. We also summarize the results obtained using NGS strategies in both investigational and clinical contexts.
Collapse
Affiliation(s)
- Roberto Tébar-Martínez
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Precision Medicine Unit, INCLIVA Health Research Institute, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain.
| | - Jorge Martín-Arana
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Bioinformatics Unit, INCLIVA Health Research Institute, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain.
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College of London Cancer Institute, 72 Huntley St, WC1E 6DD London, United Kingdom.
| | - Noelia Tarazona
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Health Institute Carlos III, CIBERONC, C/ Sinesio Delgado, 4, 28029 Madrid, Spain.
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, INCLIVA Health Research Institute, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain.
| | - Andrés Cervantes
- Department of Medical Oncology, INCLIVA Health Research Institute, University of Valencia, C. de Menéndez y Pelayo, 4, 46010 Valencia, Spain; Health Institute Carlos III, CIBERONC, C/ Sinesio Delgado, 4, 28029 Madrid, Spain.
| |
Collapse
|
7
|
Qin M, Chen G, Hou J, Wang L, Wang Q, Wang L, Jiang D, Hu Y, Xie B, Chen J, Wei H, Xu G. Tumor-infiltrating lymphocyte: features and prognosis of lymphocytes infiltration on colorectal cancer. Bioengineered 2022; 13:14872-14888. [PMID: 36633318 PMCID: PMC9995135 DOI: 10.1080/21655979.2022.2162660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Tumor-infiltrating lymphocytes (TILs) are vital elements of the tumor microenvironment (TME), and the anti-tumor activity of TILs on colorectal cancer (CRC) has been a topic of concern. However, the characteristics and prognosis of the various types of lymphocyte infiltration in CRC have not been fully explained. Our study aimed to identify distinct features and prognosis of TILs. We integrated multiple-cohort databases to illustrate the features, proportions, and prognosis of TILs on CRC. We found that macrophages were significantly enriched in CRC. When we used the scRNA-seq database to further evaluate the proportion of TILs, we noticed markedly higher numbers of CD4 + T cell, B cell, and CD8 + T cell in four Gene Expression Omnibus Series (GSE) CRC cohorts. Interestingly, we found that the infiltrating level of TIL subgroups from highest to lowest is always dendritic cells, CD8 + T cells, CD4 + T cells, neutrophils, B cells, and macrophages; the proportion of infiltration is largely constant regardless of mutations in specific genes or somatic copy number variation (sCNV). In addition, the data corroborated that CD4+ TILs and CD8+ TILs have certain application values in the prognosis of CRCs, and age negatively related to CD8+ TILs and B plasma infiltration. Finally, patients with CRC who are older than 70 years have a better response to immune-checkpoint blockade.
Collapse
Affiliation(s)
- Miao Qin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Gang Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jinxia Hou
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Li Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Qunfeng Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Lina Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Dan Jiang
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| | - Ye Hu
- Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bei Xie
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Jing Chen
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Hulai Wei
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Guangxian Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, Institute of Clinical Laboratory, Guangdong Medical University, Dongguan, China
| |
Collapse
|
8
|
Wang X, Muzaffar J, Kirtane K, Song F, Johnson M, Schell MJ, Li J, Yoder SJ, Conejo-Garcia JR, Guevara-Patino JA, Bonomi M, Bhateja P, Rocco JW, Steuer CE, Saba NF, Chung CH. T cell repertoire in peripheral blood as a potential biomarker for predicting response to concurrent cetuximab and nivolumab in head and neck squamous cell carcinoma. J Immunother Cancer 2022; 10:e004512. [PMID: 35676062 PMCID: PMC9185557 DOI: 10.1136/jitc-2022-004512] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2022] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND T cell receptor (TCR) signaling profile is a fundamental property that underpins both adaptive and innate immunity in the host. Despite its potential clinical relevance, the TCR repertoire in peripheral blood has not been thoroughly explored for its value as an immunotherapy efficacy biomarker in head and neck squamous cell carcinoma (HNSCC). The purpose of the present study is to characterize and compare the TCR repertoire in peripheral blood mononuclear cells (PBMC) from patients with HNSCC treated with the combination of cetuximab and nivolumab. METHODS We used the immunoSEQ assay to sequence the TCR beta (TCR-B) chain repertoire from serially obtained PBMC at baseline and during the treatments from a total of 41 patients who received the combination (NCT03370276). Key TCR repertoire metrics, including diversity and clonality, were calculated and compared between patients with different therapy responses and clinical characteristics (eg, human papillomavirus (HPV) status and smoking history). Patient survival outcomes were compared according to patient groups stratified by the TCR-B clonotyping. To confirm the observed patterns in TCR spectrum, samples from patients who achieved complete response (CR) and partial response (PR) were further profiled with the immunoSEQ deep resolution assay. RESULTS Our data indicated that the patients who achieved CR and PR had an increased TCR sequence diversity in their baseline samples, this tendency being more pronounced in HPV-negative patients or those with a smoking history. Notably, the CR/PR group had the lowest proportion of patients with oligoclonal TCR clones (2 out of 8 patients), followed by the stable disease group (9 out of 20 patients) and lastly the progressive disease group (7 out of 10 patients). An overall trend toward favorable patient survival was also observed in the polyclonal group. Finally, we reported the shared TCR clones across patients within the same response group, as well as the shared clones by aligning immunoSEQ reads with TCR data retrieved from The Cancer Genome Atlas- head and neck squamous cell carcinoma (TCGA-HNSC) cohort. CONCLUSIONS Our data suggest that, despite the great clinical heterogeneity of HNSCC and the limited responders in the present cohort, the peripheral TCR repertoires from pretreatment PBMC may be developed as biomarkers for the benefit of immunotherapy in HNSCC.
Collapse
Affiliation(s)
- Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jameel Muzaffar
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Kedar Kirtane
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Feifei Song
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Matthew Johnson
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Michael J Schell
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jiannong Li
- Department of Biostatistics and Bioinformatics, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Sean J Yoder
- Department of Molecular Genomics Core, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jose R Conejo-Garcia
- Department of Immunology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Jose A Guevara-Patino
- Department of Immunology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| | - Marcelo Bonomi
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Priyanka Bhateja
- Department of Internal Medicine, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - James W Rocco
- Department of Otolaryngology, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA
| | - Conor E Steuer
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Nabil F Saba
- Department of Hematology and Medical Oncology, Winship Cancer Institute, Emory University, Atlanta, Georgia, USA
| | - Christine H Chung
- Department of Head and Neck-Endocrine Oncology, H Lee Moffitt Cancer Center and Research Center Inc, Tampa, Florida, USA
| |
Collapse
|
9
|
Pauken KE, Lagattuta KA, Lu BY, Lucca LE, Daud AI, Hafler DA, Kluger HM, Raychaudhuri S, Sharpe AH. TCR-sequencing in cancer and autoimmunity: barcodes and beyond. Trends Immunol 2022; 43:180-194. [PMID: 35090787 PMCID: PMC8882139 DOI: 10.1016/j.it.2022.01.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/04/2022] [Accepted: 01/04/2022] [Indexed: 01/21/2023]
Abstract
The T cell receptor (TCR) endows T cells with antigen specificity and is central to nearly all aspects of T cell function. Each naïve T cell has a unique TCR sequence that is stably maintained during cell division. In this way, the TCR serves as a molecular barcode that tracks processes such as migration, differentiation, and proliferation of T cells. Recent technological advances have enabled sequencing of the TCR from single cells alongside deep molecular phenotypes on an unprecedented scale. In this review, we discuss strengths and limitations of TCR sequences as molecular barcodes and their application to study immune responses following Programmed Death-1 (PD-1) blockade in cancer. Additionally, we consider applications of TCR data beyond use as a barcode.
Collapse
Affiliation(s)
- Kristen E Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA.
| | - Kaitlyn A Lagattuta
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Benjamin Y Lu
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Liliana E Lucca
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Adil I Daud
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - David A Hafler
- Department of Neurology and Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Harriet M Kluger
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital, Boston, MA, USA; Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA; Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA; Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Centre for Genetics and Genomics Versus Arthritis, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PL, UK
| | - Arlene H Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
10
|
Ostmeyer J, Lucas E, Christley S, Lea J, Monson N, Tiro J, Cowell LG. Biophysicochemical motifs in T cell receptor sequences as a potential biomarker for high-grade serous ovarian carcinoma. PLoS One 2020; 15:e0229569. [PMID: 32134923 PMCID: PMC7058380 DOI: 10.1371/journal.pone.0229569] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/09/2020] [Indexed: 11/18/2022] Open
Abstract
We previously showed, in a pilot study with publicly available data, that T cell receptor (TCR) repertoires from tumor infiltrating lymphocytes (TILs) could be distinguished from adjacent healthy tissue repertoires by the presence of TCRs bearing specific, biophysicochemical motifs in their antigen binding regions. We hypothesized that such motifs might allow development of a novel approach to cancer detection. The motifs were cancer specific and achieved high classification accuracy: we found distinct motifs for breast versus colorectal cancer-associated repertoires, and the colorectal cancer motif achieved 93% accuracy, while the breast cancer motif achieved 94% accuracy. In the current study, we sought to determine whether such motifs exist for ovarian cancer, a cancer type for which detection methods are urgently needed. We made two significant advances over the prior work. First, the prior study used patient-matched TILs and healthy repertoires, collecting healthy tissue adjacent to the tumors. The current study collected TILs from patients with high-grade serous ovarian carcinoma (HGSOC) and healthy ovary repertoires from cancer-free women undergoing hysterectomy/salpingo-oophorectomy for benign disease. Thus, the classification task is distinguishing women with cancer from women without cancer. Second, in the prior study, classification accuracy was measured by patient-hold-out cross-validation on the training data. In the current study, classification accuracy was additionally assessed on an independent cohort not used during model development to establish the generalizability of the motif to unseen data. Classification accuracy was 95% by patient-hold-out cross-validation on the training set and 80% when the model was applied to the blinded test set. The results on the blinded test set demonstrate a biophysicochemical TCR motif found overwhelmingly in women with HGSOC but rarely in women with healthy ovaries, strengthening the proposal that cancer detection approaches might benefit from incorporation of TCR motif-based biomarkers. Furthermore, these results call for studies on large cohorts to establish higher classification accuracies, as well as for studies in other cancer types.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Elena Lucas
- Department of Pathology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Scott Christley
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Jayanthi Lea
- Department of Obstetrics and Gynecology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Nancy Monson
- Department of Neurology and Neurotherapeutics, Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Jasmin Tiro
- Department of Population and Data Sciences, UT Southwestern Medical Center, Dallas, TX, United States of America
| | - Lindsay G. Cowell
- Department of Population and Data Sciences, Department of Immunology, UT Southwestern Medical Center, Dallas, TX, United States of America
- * E-mail:
| |
Collapse
|
11
|
Cowell LG. The Diagnostic, Prognostic, and Therapeutic Potential of Adaptive Immune Receptor Repertoire Profiling in Cancer. Cancer Res 2019; 80:643-654. [PMID: 31888887 DOI: 10.1158/0008-5472.can-19-1457] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 10/14/2019] [Accepted: 12/17/2019] [Indexed: 11/16/2022]
Abstract
Lymphocytes play a critical role in antitumor immune responses. They are directly targeted by some therapies, and the composition and spatial organization of intratumor T-cell populations is prognostic in some cancer types. A better understanding of lymphocyte population dynamics over the course of disease and in response to therapy is urgently needed to guide therapy decisions and to develop new therapy targets. Deep sequencing of the repertoire of antigen receptor-encoding genes expressed in a lymphocyte population has become a widely used approach for profiling the population's immune status. Lymphocyte antigen receptor repertoire deep sequencing data can be used to assess the clonal richness and diversity of lymphocyte populations; to track clone members over time, between tissues, and across lymphocyte subsets; to detect clonal expansion; and to detect the recruitment of new clones into a tissue. Repertoire sequencing is thus a critical complement to other methods of lymphocyte and immune profiling in cancer. This review describes the current state of knowledge based on repertoire sequencing studies conducted on human cancer patients, with a focus on studies of the T-cell receptor beta chain locus. The review then outlines important questions left unanswered and suggests future directions for the field.
Collapse
Affiliation(s)
- Lindsay G Cowell
- Department of Population and Data Sciences, Department of Immunology, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
12
|
Lian J, Liu J, Yue Y, Li F, Chen X, Zhang Z, Ping Y, Qin G, Li L, Zhang K, Liu S, Zhang L, Qiao S, Liu N, Zheng Y, Wu J, Zeng Q, Zhang Y. The repertoire features of T cell receptor β-chain of different age and gender groups in healthy Chinese individuals. Immunol Lett 2019; 208:44-51. [PMID: 30905825 DOI: 10.1016/j.imlet.2019.03.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 02/24/2019] [Accepted: 03/13/2019] [Indexed: 01/15/2023]
|
13
|
Ma J, Sun G, Zhu P, Liu S, Ou M, Chen Z, Zou C, Chan FL, Dai Y, Sui W. Determination of the complexity and diversity of the TCR β-chain CDR3 repertoire in bladder cancer using high-throughput sequencing. Oncol Lett 2019; 17:3808-3816. [PMID: 30881501 PMCID: PMC6403507 DOI: 10.3892/ol.2019.10015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 12/06/2018] [Indexed: 01/09/2023] Open
Abstract
The present study aimed to investigate the complexity and diversity of the T lymphocyte immune repertoire in patients with bladder cancer. To do so, the immune state of patients was assessed. The study also aimed to elucidate the aetiology and pathogenesis of bladder cancer to provide a novel theoretical basis for disease prevention, diagnosis, treatment and prognosis monitoring. Cancerous and paracancerous (control) tissue samples were collected from five patients diagnosed with muscle-invasive bladder cancer. Multiplex polymerase chain reaction and Illumina high-throughput sequencing were used to determine the characteristics and clonal diversity of the T-cell receptor (TCR) β-chain complementarity-determining region 3 (CDR3) gene in the cancerous and paracancerous tissues of patients with bladder cancer. The degree of clonal expansion in malignant samples was significantly higher than in adjacent samples. Furthermore, ΤCRβ variable (TRBV), ΤCRβ diversity (TRBD) and ΤCRβ joining (TRBJ) repertoires were significantly different in cancerous samples compared with adjacent samples. In addition, 13 identified V-J pairs were highly expressed in cancerous samples whereas they had low expression in control samples. In conclusion, the degree of T-cell clonal expansion in bladder cancerous tissue was higher than in paracancerous tissue, whereas the immune diversity of the tissues of patients with bladder cancer was significantly lower. The DNA sequence and amino acid sequences, and V-J combination level may be used to comprehensively understand the diversity and characteristics of TCR CDR3 in bladder cancer and paracancerous tissues, and to evaluate the immune status of bladder cancer to develop therapeutic targets and biomarkers for prognosis monitoring.
Collapse
Affiliation(s)
- Jingsheng Ma
- Nephrology Department, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin No. 181 Hospital (The Affiliated Guilim Hospital of Southern Medical University), Guilin, Guangxi 541002, P.R. China
| | - Guoping Sun
- Central Laboratory of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Peng Zhu
- Central Laboratory of Shenzhen Pingshan People's Hospital, Shenzhen, Guangdong 518118, P.R. China
| | - Song Liu
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Minglin Ou
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Zhiqiang Chen
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Chang Zou
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Frank Leing Chan
- Cancer Biology and Experimental Therapeutics, School of Biomedical Sciences, The Chinese University of Hong Kong, SAR, P.R. China
| | - Yong Dai
- Clinical Medical Research Center of The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, Guangdong 518020, P.R. China
| | - Weiguo Sui
- Nephrology Department, Guangxi Key Laboratory of Metabolic Diseases Research, Guilin No. 181 Hospital (The Affiliated Guilim Hospital of Southern Medical University), Guilin, Guangxi 541002, P.R. China
| |
Collapse
|
14
|
Ping Y, Song M, Wang M, Li Z, Zhang Y. CDR3 repertoire diversity of CD8+ T lymphocytes in patients with HCV. Cell Immunol 2019; 336:34-39. [PMID: 30591202 DOI: 10.1016/j.cellimm.2018.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 12/10/2018] [Accepted: 12/19/2018] [Indexed: 12/25/2022]
Abstract
T cell receptors (TCR) diversity is known to serve as a defining hallmark of the antigen-reactive T cell repertoire. Complementarity determining region 3 (CDR3) was the most important region for the recognition of peptide-major histocompatibility complex (MHC) complexes and represented the diversity of TCR repertoire. In this study, we detected the CDR3 spectratypes by complexity scoring system to assess TCR repertoire diversity and further analyzed the correlation of CDR3 score with CD8+ T cell function and with the prognosis of chronic hepatitis C virus (HCV)-infected patients. The results demonstrated that CDR3 score was related to CD8+ T cell function and prognosis by analyzing the clinical indicators such as viral load (VL), rapid virologic response (RVR), early virologic response (EVR) and sustained virologic response (SVR). Importantly, we found that Vβ27, a member of CDR3 subfamily, might play an important role in the clearance of HCV. These findings indicate that TCR diversity maybe serve as a biomarker to predict the clinical parameters of HCV-infected patients.
Collapse
Affiliation(s)
- Yu Ping
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
| | - Mengjia Song
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China
| | - Meng Wang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Zhiqin Li
- Department of Infection, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China
| | - Yi Zhang
- Biotherapy Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China; Engineering Key Laboratory for Cell Therapy of Henan Province, Zhengzhou, Henan 450052, China; Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan, China.
| |
Collapse
|
15
|
Liu X, Cui Y, Zhang Y, Liu Z, Zhang Q, Wu W, Zheng Z, Li S, Zhang Z, Li Y. A comprehensive study of immunology repertoires in both preoperative stage and postoperative stage in patients with colorectal cancer. Mol Genet Genomic Med 2019; 7:e504. [PMID: 30628178 PMCID: PMC6418368 DOI: 10.1002/mgg3.504] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 09/25/2018] [Accepted: 10/05/2018] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer (CRC) is the 3rd most common cancer type in the world. The correlation between immune repertoire and prognosis of CRC has been well studied in the last decades. The diversity and stability of the immune cells can be measured by hypervariable complementarity-determining region 3 (CDR3) segments of the T-cell receptor (TCR). METHODS In this study, we collected five healthy controls and 19 CRC patients' peripheral blood mononuclear cells (PBMCs) in three stages, namely 1 day preoperative, 3 days' postoperative, and 7 days' postoperative, respectively. Simultaneously, we have also done the comparative analysis of these two different anesthesia methods, namely TIVA and CEGA. Sequencing of the TCR segments has been performed by multiplex PCR and high-throughput next-generation sequencing. We also analyzed the distribution of CDR3 length, highly expansion clones (HECs), TRBV, and TRBJ gene usage. RESULTS Our result showed a significant difference between TCR CDR3 length distribution and HEC distribution between CRC patients and healthy controls. We also found that TRBV11-2, TRBV12-1, TRBV16, TRBV3-2, TRBV4-2, TRBV4-3, TRBV5-4, TRBV6-8, TRBV7-8, TRBV7-9 and RBV11-2, TRBV12-1, TRBV16, TRBV3-2, TRBV4-2, TRBV4-3, TRBV5-4, TRBV6-8, TRBV7-8, and TRBV7-9 usages are different between CRC patients and healthy controls. CONCLUSION In conclusion, CRC patients were presented with different immune repertoire in comparison with healthy controls. In this study, significant difference in TRBV and TRBJ gene usage in between case and control group could provide some potential biomarker for the diagnosis and the treatment of the patients with CRC.
Collapse
Affiliation(s)
- Xicheng Liu
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Yuanyuan Cui
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Yaoxian Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Zhanli Liu
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Qiuli Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Wenyan Wu
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Zihao Zheng
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Shien Li
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Zhongjun Zhang
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| | - Yali Li
- Department of Anesthesiology, Shenzhen People's Hospital, 2nd Clinical Medical College of Jinan University, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Ostmeyer J, Christley S, Toby IT, Cowell LG. Biophysicochemical Motifs in T-cell Receptor Sequences Distinguish Repertoires from Tumor-Infiltrating Lymphocyte and Adjacent Healthy Tissue. Cancer Res 2019; 79:1671-1680. [PMID: 30622114 DOI: 10.1158/0008-5472.can-18-2292] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 11/16/2018] [Accepted: 01/03/2019] [Indexed: 12/19/2022]
Abstract
Immune repertoire deep sequencing allows comprehensive characterization of antigen receptor-encoding genes in a lymphocyte population. We hypothesized that this method could enable a novel approach to diagnose disease by identifying antigen receptor sequence patterns associated with clinical phenotypes. In this study, we developed statistical classifiers of T-cell receptor (TCR) repertoires that distinguish tumor tissue from patient-matched healthy tissue of the same organ. The basis of both classifiers was a biophysicochemical motif in the complementarity determining region 3 (CDR3) of TCRβ chains. To develop each classifier, we extracted 4-mers from every TCRβ CDR3 and represented each 4-mer using biophysicochemical features of its amino acid sequence combined with quantification of 4-mer (or receptor) abundance. This representation was scored using a logistic regression model. Unlike typical logistic regression, the classifier is fitted and validated under the requirement that at least 1 positively labeled 4-mer appears in every tumor repertoire and no positively labeled 4-mers appear in healthy tissue repertoires. We applied our method to publicly available data in which tumor and adjacent healthy tissue were collected from each patient. Using a patient-holdout cross-validation, our method achieved classification accuracy of 93% and 94% for colorectal and breast cancer, respectively. The parameter values for each classifier revealed distinct biophysicochemical properties for tumor-associated 4-mers within each cancer type. We propose that such motifs might be used to develop novel immune-based cancer screening assays. SIGNIFICANCE: This study presents a novel computational approach to identify T-cell repertoire differences between normal and tumor tissue.See related commentary by Zoete and Coukos, p. 1299.
Collapse
Affiliation(s)
- Jared Ostmeyer
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Scott Christley
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Inimary T Toby
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas
| | - Lindsay G Cowell
- Department of Clinical Sciences, UT Southwestern Medical Center, Dallas, Texas.
| |
Collapse
|
17
|
Abstract
The rapid development of immunomodulatory cancer therapies has led to a concurrent increase in the application of informatics techniques to the analysis of tumors, the tumor microenvironment, and measures of systemic immunity. In this review, the use of tumors to gather genetic and expression data will first be explored. Next, techniques to assess tumor immunity are reviewed, including HLA status, predicted neoantigens, immune microenvironment deconvolution, and T-cell receptor sequencing. Attempts to integrate these data are in early stages of development and are discussed in this review. Finally, we review the application of these informatics strategies to therapy development, with a focus on vaccines, adoptive cell transfer, and checkpoint blockade therapies.
Collapse
Affiliation(s)
- J Hammerbacher
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston
| | - A Snyder
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York
- Adaptive Biotechnologies, Seattle, USA
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW The genetic susceptibility and dominant protection for type 1 diabetes (T1D) associated with human leukocyte antigen (HLA) haplotypes, along with minor risk variants, have long been thought to shape the T cell receptor (TCR) repertoire and eventual phenotype of autoreactive T cells that mediate β-cell destruction. While autoantibodies provide robust markers of disease progression, early studies tracking autoreactive T cells largely failed to achieve clinical utility. RECENT FINDINGS Advances in acquisition of pancreata and islets from T1D organ donors have facilitated studies of T cells isolated from the target tissues. Immunosequencing of TCR α/β-chain complementarity determining regions, along with transcriptional profiling, offers the potential to transform biomarker discovery. Herein, we review recent studies characterizing the autoreactive TCR signature in T1D, emerging technologies, and the challenges and opportunities associated with tracking TCR molecular profiles during the natural history of T1D.
Collapse
Affiliation(s)
- Laura M Jacobsen
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Amanda Posgai
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Howard R Seay
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Michael J Haller
- Department of Pediatrics, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida Diabetes Institute, Gainesville, FL, USA.
| |
Collapse
|
19
|
Nakanishi K, Kukita Y, Segawa H, Inoue N, Ohue M, Kato K. Characterization of the T-cell receptor beta chain repertoire in tumor-infiltrating lymphocytes. Cancer Med 2016; 5:2513-21. [PMID: 27465739 PMCID: PMC5055180 DOI: 10.1002/cam4.828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 11/11/2022] Open
Abstract
Tumor‐infiltrating lymphocytes (TILs) are direct effectors of tumor immunity, and their characterization is important for further development of immunotherapy. Recent advances in high‐throughput sequencing technologies have enabled a comprehensive analysis of T‐cell receptor (TCR) complementarity‐determining region 3 (CDR3) sequences, which may provide information of therapeutic importance. We developed a high‐fidelity target sequencing method with the ability for absolute quantitation, and performed large‐scale sequencing of TCR beta chain (TCRB) CDR3 regions in TILs and peripheral blood lymphocytes (PBLs). The estimated TCRB repertoire sizes of PBLs from four healthy individuals and TILs from four colorectal cancer tissue samples were 608,664–1,003,098 and 90,228–223,757, respectively. The usage of J‐ and V‐regions was similar in PBLs and TILs. Proportions of CDR3 amino acid (aa) sequences occupying more than 0.01% of the total molecular population were 0.33–0.43% in PBLs and 1.3–3.6% in TILs. Additional low coverage sequencing of 15 samples identified five CDR3 aa sequences that were shared by nine patients, one sequence shared by 10 patients, and one sequence shared by 12 patients. The estimated size of the TCRB repertoire in TILs was significantly smaller than that in PBLs. The proportion of abundant species (>0.01%) in TILs was larger than that in PBLs. Shared CDR3 aa sequences represent a response to common antigens, and the identification of such CDR3 sequences may be beneficial in developing clinical biomarkers.
Collapse
Affiliation(s)
- Katsumi Nakanishi
- Department of Molecular and Medical Genetics, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Yoji Kukita
- Department of Molecular and Medical Genetics, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Hidenobu Segawa
- Department of Molecular and Medical Genetics, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Norimitsu Inoue
- Department of Tumor Immunology, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Masayuki Ohue
- Department of Surgery, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan
| | - Kikuya Kato
- Department of Molecular and Medical Genetics, Research Institute, Osaka Medical Center for Cancer and Cardiovascular Diseases, Osaka, Japan.
| |
Collapse
|