1
|
Park YS, Kim ES, Deyrup ST, Lee JW, Shim SH. Cytotoxic Peptaibols from Trichoderma strigosum. JOURNAL OF NATURAL PRODUCTS 2024; 87:2081-2094. [PMID: 39038494 DOI: 10.1021/acs.jnatprod.4c00590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Five new lipopeptaibols (1-5) and eight new 19-residue peptaibols (8-15) along with two known lipopeptaibols, lipovelutibols C (6) and D (7) were isolated from Trichoderma strigosum. The planar structures of the newly discovered peptaibols (1-5, 8-15) were elucidated using 1D and 2D NMR, and UPLC-MS/MS data. The absolute configurations for new peptaibols (1-5, 8-15) were elucidated using the advanced Marfey's method and GITC (2,3,4,6-tetra-O-acetyl-β-d-glucopyranosyl isothiocyanate) derivatization. Through analysis of CD spectra, these peptabols were found to have right-handed helical conformations. While most of the new compounds were significantly more active than the positive control, 9, 10, 12, and 15 containing Ser and Leu at positions 10 and 11, respectively, were the most cytotoxic against MDA-MB-231, SNU449, SKOV3, DU145, and HCT116 cancer cell lines, and the 19-residue peptaibols were generally more potent than lipopeptaibols.
Collapse
Affiliation(s)
- Yun Seo Park
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eun-Sook Kim
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Stephen T Deyrup
- Department of Chemistry and Biochemistry, Siena College, Londonville, New York 12211, United States
| | - Jin Woo Lee
- College of Pharmacy, Duksung Women's University, Seoul 01369, Republic of Korea
| | - Sang Hee Shim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
2
|
Setargie A, Wang C, Zhang L, Xu Y. Chromatographic and mass spectroscopic guided discovery of Trichoderma peptaibiotics and their bioactivity. ENGINEERING MICROBIOLOGY 2024; 4:100135. [PMID: 39629330 PMCID: PMC11611045 DOI: 10.1016/j.engmic.2023.100135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 12/07/2024]
Abstract
Peptaibiotics are linear or cyclic peptide antibiotics characterized by the non-proteinogenic amino acid, alpha-aminoisobutyric acid. They exhibit a wide range of bioactivity against various pathogens. This report presents a comprehensive review of analytical methods for Trichoderma cultivation, production, isolation, screening, purification, and characterization of peptaibiotics, along with their bioactivity. Numerous techniques are currently available for each step, and we focus on describing the most commonly used and recently developed chromatographic and spectroscopic techniques. Investigating peptaibiotics requires efficient culture media, growth conditions, and isolation and purification techniques. The combination of chromatographic and spectroscopic tools offers a better opportunity for characterizing and identifying peptaibiotics. The evaluation of the chemical and biological properties of this compound has also been explored concerning its potential application in pharmaceutical and other industries. This review aims to summarize available data on the techniques and tools used to screen and purify peptaibiotics from Trichoderma fungi and bioactivity against various pathogens.
Collapse
Affiliation(s)
- Adigo Setargie
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
- Institute of Biotechnology, Bahir Dar University, P.O. Box. 79, Bahir Dar, Ethiopia
| | - Chen Wang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Liwen Zhang
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| | - Yuquan Xu
- Biotechnology Research Institute, The Chinese Academy of Agricultural Sciences, 12 Zhongguancun South Street, Beijing 100081, China
| |
Collapse
|
3
|
Tapia SM, Macías LG, Pérez-Torrado R, Daroqui N, Manzanares P, Querol A, Barrio E. A novel aminotransferase gene and its regulator acquired in Saccharomyces by a horizontal gene transfer event. BMC Biol 2023; 21:102. [PMID: 37158891 PMCID: PMC10169451 DOI: 10.1186/s12915-023-01566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 03/16/2023] [Indexed: 05/10/2023] Open
Abstract
BACKGROUND Horizontal gene transfer (HGT) is an evolutionary mechanism of adaptive importance, which has been deeply studied in wine S. cerevisiae strains, where those acquired genes conferred improved traits related to both transport and metabolism of the nutrients present in the grape must. However, little is known about HGT events that occurred in wild Saccharomyces yeasts and how they determine their phenotypes. RESULTS Through a comparative genomic approach among Saccharomyces species, we detected a subtelomeric segment present in the S. uvarum, S. kudriavzevii, and S. eubayanus species, belonging to the first species to diverge in the Saccharomyces genus, but absent in the other Saccharomyces species. The segment contains three genes, two of which were characterized, named DGD1 and DGD2. DGD1 encodes dialkylglicine decarboxylase, whose specific substrate is the non-proteinogenic amino acid 2-aminoisobutyric acid (AIB), a rare amino acid present in some antimicrobial peptides of fungal origin. DGD2 encodes putative zinc finger transcription factor, which is essential to induce the AIB-dependent expression of DGD1. Phylogenetic analysis showed that DGD1 and DGD2 are closely related to two adjacent genes present in Zygosaccharomyces. CONCLUSIONS The presented results show evidence of an early HGT event conferring new traits to the ancestor of the Saccharomyces genus that could be lost in the evolutionary more recent Saccharomyces species, perhaps due to loss of function during the colonization of new habitats.
Collapse
Affiliation(s)
- Sebastián M Tapia
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Laura G Macías
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | | | - Noemi Daroqui
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Paloma Manzanares
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Amparo Querol
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain
| | - Eladio Barrio
- Instituto de Agroquímica y Tecnología de los Alimentos, IATA-CSIC, Paterna, Spain.
- Departament de Genètica, Universitat de València, Valencia, Spain.
| |
Collapse
|
4
|
Characterization of Peptaibols Produced by a Marine Strain of the Fungus Trichoderma endophyticum via Mass Spectrometry, Genome Mining and Phylogeny-Based Prediction. Metabolites 2023; 13:metabo13020221. [PMID: 36837841 PMCID: PMC9961477 DOI: 10.3390/metabo13020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 02/05/2023] Open
Abstract
Trichoderma is recognized as a prolific producer of nonribosomal peptides (NRPs) known as peptaibols, which have remarkable biological properties, such as antimicrobial and anticancer activities, as well as the ability to promote systemic resistance in plants against pathogens. In this study, the sequencing of 11-, 14- and 15-res peptaibols produced by a marine strain of Trichoderma isolated from the ascidian Botrylloides giganteus was performed via liquid chromatography coupled to high-resolution tandem mass spectrometry (LC-MS/MS). Identification, based on multilocus phylogeny, revealed that our isolate belongs to the species T. endophyticum, which has never been reported in marine environments. Through genome sequencing and genome mining, 53 biosynthetic gene clusters (BGCs) were identified as being related to bioactive natural products, including two NRP-synthetases: one responsible for the biosynthesis of 11- and 14-res peptaibols, and another for the biosynthesis of 15-res. Substrate prediction, based on phylogeny of the adenylation domains in combination with molecular networking, permitted extensive annotation of the mass spectra related to two new series of 15-res peptaibols, which are referred to herein as "endophytins". The analyses of synteny revealed that the origin of the 15-module peptaibol synthetase is related to 18, 19 and 20-module peptaibol synthetases, and suggests that the loss of modules may be a mechanism used by Trichoderma species for peptaibol diversification. This study demonstrates the importance of combining genome mining techniques, mass spectrometry analysis and molecular networks for the discovery of new natural products.
Collapse
|
5
|
Elfiati D, Faulina SA, Rahayu LM, Aryanto A, Dewi RT, Rachmat HH, Turjaman M, Royyani MF, Susilowati A, Hidayat A. Culturable endophytic fungal assemblages from Styrax sumatrana and Stryax benzoin and their potential as antifungal, antioxidant, and alpha-glucosidase inhibitory resources. Front Microbiol 2022; 13:974526. [DOI: 10.3389/fmicb.2022.974526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022] Open
Abstract
Benzoin resin, produced by the native Indonesian trees Styrax sumatrana and Styrax benzoin, has been incorporated into medical practices to treat wounds, erythema, and many other conditions for centuries. Endophytic fungi that reside within medicinal plants have antimicrobial, antioxidant, and α-glucosidase inhibitory capacities, contributing to plant health and derivative products. In this study, we determined the antifungal, antioxidant, and α-glucosidase inhibitory capacities of endophytic fungal isolates from three different tissues (leaves, bark, and stems) of S. sumatrana and S. benzoin trees. The genera of fungal isolates were determined by phylogenetic analysis of internal transcribed spacer sequences. A total of 58 fungal isolates were classified into 15 different fungal genera from eight taxonomic orders—Hypocreales, Botryosphaeriales, Glomerellales, Diaphortales, Pleosporales, Eurotiales, Xylariales, and Mucorales—with a pattern of host species specificity. Among these isolates, Trichoderma sp. 6407 consistently exhibited high inhibition of the growth of plant pathogens Fusarium sp., Trichoderma viride, and Aspergillus niger. With respect to antioxidant activity, Phyllosticta sp. 6454 consistently showed 2,2-diphenyl-1-picrylhydrazyl inhibition (37.59 ± 0.05%), 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid)-based antioxidant activity (25.04 ± 0.27 mgTE/g), and α-glucosidase inhibitory activity (52.15 ± 10.08%). Neopestalotiopsis sp. 6431 was notably potent in 2,2-diphenyl-1-picrylhydrazyl inhibition (49.65 ± 0.80%), ferric reducing antioxidant power-based antioxidant activity (197.49 ± 8.65 mgTE/g), and α-glucosidase inhibitory activity (52.88 ± 4.93%). This study revealed that Trichoderma sp. 6407, Phyllosticta sp. 6454, and Neopestalotiopsis sp. 6431 exhibited antifungal, antioxidant, and α-glucosidase inhibitory activities.
Collapse
|
6
|
Nascimento LAC, Sousa RO, Almeida MPO, Cariaco Y, Gomes AO, Miranda NC, França FBF, Venâncio MDFA, Silva CAT, Lima WR, Barbosa BF, Santos JL, Silva NM. The ethanolic extract of the fungus Trichoderma stromaticum decreases the Toxoplasma gondii replication in vitro and ameliorates the experimental toxoplasmosis in vivo. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100173. [DOI: 10.1016/j.crmicr.2022.100173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
7
|
Alfaro-Vargas P, Bastos-Salas A, Muñoz-Arrieta R, Pereira-Reyes R, Redondo-Solano M, Fernández J, Mora-Villalobos A, López-Gómez JP. Peptaibol Production and Characterization from Trichoderma asperellum and Their Action as Biofungicide. J Fungi (Basel) 2022; 8:1037. [PMID: 36294602 PMCID: PMC9605287 DOI: 10.3390/jof8101037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/01/2022] [Accepted: 09/17/2022] [Indexed: 11/23/2022] Open
Abstract
Peptaibols (Paib), are a class of biologically active peptides isolated from soil, fungi and molds, which have interesting properties as antimicrobial agents. Paib production was optimized in flasks by adding sucrose as a carbon source, 2-aminoisobutyric acid (Aib) as an additive amino acid, and F. oxysporum cell debris as an elicitor. Paib were purified, sequenced and identified by High-performance liquid chromatography (HPLC)coupled to mass spectrometry. Afterward, a Paib extract was obtained from the optimized fermentations. The biological activity of these extracts was evaluated using in vitro and in vivo methods. The extract inhibited the growth of specific plant pathogens, and it showed inhibition rates similar to those from commercially available fungicides. Growth inhibition rates were 92.2, 74.2, 58.4 and 36.2% against Colletotrichum gloeosporioides, Botrytis cinerea, Alternaria alternata and Fusarium oxysporum, respectively. Furthermore, the antifungal activity was tested in tomatoes inoculated with A. alternata, the incidence of the disease in tomatoes treated with the extract was 0%, while the untreated fruit showed a 92.5% incidence of infection Scanning electron microscopy images showed structural differences between the fungi treated with or without Paib. The most visual alterations were sunk and shriveled morphology in spores, while the hyphae appeared to be fractured, rough and dehydrated.
Collapse
Affiliation(s)
- Pamela Alfaro-Vargas
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - Alisson Bastos-Salas
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
- Faculty of Microbiology, University of Costa Rica, Rodrigo Facio University City, San Jose 11501-2060, Costa Rica
| | - Rodrigo Muñoz-Arrieta
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - Reinaldo Pereira-Reyes
- National Nanotechnology Laboratory, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - Mauricio Redondo-Solano
- Research Center for Tropical Diseases (CIET) and Food Microbiology Research and Training Laboratory (LIMA), Faculty of Microbiology, University of Costa Rica, Rodrigo Facio University City, San Jose 11501-2060, Costa Rica
| | - Julián Fernández
- Instituto Clodomiro Picado, Faculty of Microbiology, University of Costa Rica, San Jose 11501-2060, Costa Rica
| | - Aníbal Mora-Villalobos
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
| | - José Pablo López-Gómez
- National Center for Biotechnological Innovations, National Center for High Technology, San Jose 1174-1200, Costa Rica
- Microbiome Biotechnology Department, Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), 14469 Potsdam, Germany
| |
Collapse
|
8
|
Hou X, Sun R, Feng Y, Zhang R, Zhu T, Che Q, Zhang G, Li D. Peptaibols: Diversity, bioactivity, and biosynthesis. ENGINEERING MICROBIOLOGY 2022; 2:100026. [PMID: 39629030 PMCID: PMC11610996 DOI: 10.1016/j.engmic.2022.100026] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/27/2022] [Accepted: 06/01/2022] [Indexed: 12/06/2024]
Abstract
Peptaibols are a large family of linear, amphipathic polypeptides consisting of 5-20 amino acid residues generated from the fungal nonribosomal peptide synthetase (NRPS) pathway. With a relatively high content of non-proteinogenic amino acids such as α-aminoisobutyrate (Aib) and isovaline (Iva) in the skeleton, peptaibols exhibit a wide range of biological activities, including anti-microbial, cytotoxic, and neuroleptic effects. With five peptaibols brought to market for use as biocontrol agents, this class of peptides has received increasing attention from both biochemists and pharmacologists. In this review, we summarized the progress made in structural characterization, elucidation of biosynthetic pathways, and investigation of biosynthesis elucidation and bioactivities, to promote further efforts to develop peptaibols as pharmaceuticals.
Collapse
Affiliation(s)
- Xuewen Hou
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Ruonan Sun
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yanyan Feng
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Runfang Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tianjiao Zhu
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Qian Che
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Guojian Zhang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Marine Biomedical Research Institute of Qingdao, Qingdao 266101, China
| | - Dehai Li
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
- Laboratory for Marine Drugs and Bioproducts, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Huilgol SN, Nandeesha KL, Banu H. Fungal Biocontrol Agents: An Eco-friendly Option for the Management of Plant Diseases to Attain Sustainable Agriculture in India. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
González Y, de los Santos-Villalobos S, Castro-Longoria E. Trichoderma Secondary Metabolites Involved in Microbial Inhibition. Fungal Biol 2022. [DOI: 10.1007/978-3-030-91650-3_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Singh V, Pathania AS, Sharma S, Malik FA, Kumar A, Singh D, Vishwakarma RA. Total Synthesis and Conformational Analysis of Naturally Occurring Lipovelutibols along with Lead Optimization of Lipovelutibol D. ACS OMEGA 2021; 6:6070-6080. [PMID: 33718698 PMCID: PMC7948224 DOI: 10.1021/acsomega.0c04038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/31/2020] [Indexed: 06/12/2023]
Abstract
Four lipopeptaibols, namely, lipovelutibols A-D, were recently isolated from psychrotrophic fungus Trichoderma velutinum and reported to have significant cytotoxic activity against HL-60, MDA-MD-231, A549, and LS180 cancer cell lines. In the present study, these peptides were synthesized in a solution using a segment condensation approach. The conformational analysis of these peptides carried out using CD spectrophotometry revealed the formation of 310-helix, and the NMR-VT experiments showed intramolecular hydrogen bonding for NH-5, NH-6, and NH-7. Lipovelutibol D showed potent cytotoxic activity and was chosen for lead optimization. It involved N- and C-terminal truncation, N- and C-terminal modification, random deletion, l/d configuration replacement, and other synthetic analogues. These were tested against various breast cancer cell lines. The C-terminal aldehyde analogue resulting from lead optimization of lipovelutibol D was found to have almost twofold enhanced cytotoxicity against MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Varun
Pratap Singh
- Medicinal
Chemistry Division, CSIR−Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
- School
of Biotechnology, Faculty of Sciences, Shri
Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Anup Singh Pathania
- Academy
of Scientific and Innovative Research, Jammu 180001, India
- Pharmacology
Division, CSIR−Indian Institute of
Integrative Medicine, Canal Road, Jammu, Kashmir 180001, India
| | - Sonia Sharma
- Academy
of Scientific and Innovative Research, Jammu 180001, India
- Pharmacology
Division, CSIR−Indian Institute of
Integrative Medicine, Canal Road, Jammu, Kashmir 180001, India
| | - Fayaz Ahmed Malik
- Academy
of Scientific and Innovative Research, Jammu 180001, India
- Pharmacology
Division, CSIR−Indian Institute of
Integrative Medicine, Canal Road, Jammu, Kashmir 180001, India
| | - Anil Kumar
- School
of Biotechnology, Faculty of Sciences, Shri
Mata Vaishno Devi University, Katra, Jammu and Kashmir 182320, India
| | - Deepika Singh
- Medicinal
Chemistry Division, CSIR−Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research, Jammu 180001, India
- Quality
Control and Quality Assurance, CSIR−Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- Medicinal
Chemistry Division, CSIR−Indian Institute
of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific and Innovative Research, Jammu 180001, India
| |
Collapse
|
12
|
Lee JW, Collins JE, Wendt KL, Chakrabarti D, Cichewicz RH. Leveraging Peptaibol Biosynthetic Promiscuity for Next-Generation Antiplasmodial Therapeutics. JOURNAL OF NATURAL PRODUCTS 2021; 84:503-517. [PMID: 33565879 PMCID: PMC7941592 DOI: 10.1021/acs.jnatprod.0c01370] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Malaria remains a worldwide threat, afflicting over 200 million people each year. The emergence of drug resistance against existing therapeutics threatens to destabilize global efforts aimed at controlling Plasmodium spp. parasites, which is expected to leave vast portions of humanity unprotected against the disease. To address this need, systematic testing of a fungal natural product extract library assembled through the University of Oklahoma Citizen Science Soil Collection Program has generated an initial set of bioactive extracts that exhibit potent antiplasmodial activity (EC50 < 0.30 μg/mL) and low levels of toxicity against human cells (less than 50% reduction in HepG2 growth at 25 μg/mL). Analysis of the two top-performing extracts from Trichoderma sp. and Hypocrea sp. isolates revealed both contained chemically diverse assemblages of putative peptaibol-like compounds that were responsible for their antiplasmodial actions. Purification and structure determination efforts yielded 30 new peptaibols and lipopeptaibols (1-14 and 28-43), along with 22 known metabolites (15-27 and 44-52). While several compounds displayed promising activity profiles, one of the new metabolites, harzianin NPDG I (14), stood out from the others due to its noteworthy potency (EC50 = 0.10 μM against multi-drug-resistant P. falciparum line Dd2) and absence of gross toxicity toward HepG2 at the highest concentrations tested (HepG2 EC50 > 25 μM, selectivity index > 250). The unique chemodiversity afforded by these fungal isolates serves to unlock new opportunities for translating peptaibols into a bioactive scaffold worthy of further development.
Collapse
Affiliation(s)
| | | | - Karen L. Wendt
- Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Debopam Chakrabarti
- Corresponding Authors: Robert H. Cichewicz – Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States; ; Debopam Chakrabarti – Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States;
| | - Robert H. Cichewicz
- Corresponding Authors: Robert H. Cichewicz – Natural Products Discovery Group, Institute for Natural Products Applications and Research Technologies, Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States; ; Debopam Chakrabarti – Division of Molecular Microbiology, Burnett School of Biomedical Sciences, University of Central Florida, Orlando, Florida 32826, United States;
| |
Collapse
|
13
|
Abd Alla El-Bialy H, Adel-Fattah Mohamed Shahin A, El-Fouly MZ, Awad MA, Khalifa ELSZ, Fahmy SM. Volatiles and functional peptides compositions of Trichoderma variants induced by a new strategy of irradiation. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
14
|
Marik T, Tyagi C, Racić G, Rakk D, Szekeres A, Vágvölgyi C, Kredics L. New 19-Residue Peptaibols from Trichoderma Clade Viride. Microorganisms 2018; 6:microorganisms6030085. [PMID: 30103563 PMCID: PMC6165201 DOI: 10.3390/microorganisms6030085] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/07/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Abstract
Trichoderma koningiopsis and T. gamsii belong to clade Viride of Trichoderma, the largest and most diverse group of this genus. They produce a wide range of bioactive secondary metabolites, including peptaibols with antibacterial, antifungal, and antiviral properties. The unusual amino acid residues of peptaibols, i.e., α-aminoisobutyric acid (Aib), isovaline (Iva), and the C-terminal 1,2-amino alcohol make them unique among peptides. In this study, the peptaibiomes of T. koningiopsis and T. gamsii were investigated by HPLC-ESI-MS. The examined strains appeared to produce 19-residue peptaibols, most of which are unknown from literature, but their amino acid sequences are similar to those of trikoningins, tricholongins, trichostrigocins, trichorzianins, and trichorzins. A new group of peptaibols detected in T. koningiopsis are described here under the name “Koningiopsin”. Trikoningin KA V, the closest peptaibol compound to the peptaibols produced by these two strains, was selected for structural investigation by short MD simulation, which revealed that many residues show high preference for left handed helix formation. The bioactivity of the peptaibol mixtures produced by T. koningiopsis and T. gamsii was tested on agar plates against bacteria, yeasts, and filamentous fungi. The results revealed characteristic differences in bioactivities towards the different groups of target microorganisms, which can be explained with the differences in their cell wall structures.
Collapse
Affiliation(s)
- Tamás Marik
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Chetna Tyagi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - Gordana Racić
- Faculty of Environmental Protection, Educons University, Vojvode Putnika 87, 21208 Sremska Kamenica, Serbia.
| | - Dávid Rakk
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
- Doctoral School in Biology, Faculty of Science and Informatics, University of Szeged, H-6726 Szeged, Hungary.
| | - András Szekeres
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - Csaba Vágvölgyi
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| | - László Kredics
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Közép fasor 52, H-6726 Szeged, Hungary.
| |
Collapse
|
15
|
Singh VP, Yedukondalu N, Sharma V, Kushwaha M, Sharma R, Chaubey A, Kumar A, Singh D, Vishwakarma RA. Lipovelutibols A-D: Cytotoxic Lipopeptaibols from the Himalayan Cold Habitat Fungus Trichoderma velutinum. JOURNAL OF NATURAL PRODUCTS 2018; 81:219-226. [PMID: 29373791 DOI: 10.1021/acs.jnatprod.6b00873] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four novel lipovelutibols A (1), B (2), C (3), and D (4) containing six amino acid residues with leucinol at the C-terminus and a fatty acyl moiety (n-octanoyl) at its N-terminus were isolated from the psychrotrophic fungus Trichoderma velutinum collected from the Himalayan cold habitat. The structures (1-4) were determined by NMR and MS/MS, and the stereochemistry of amino acids by Marfey's method. Lipopeptaibols 2 and 4 were found to contain d-isovaline, a nonproteinogenic amino acid, but lacked α-aminoisobutyric acid, characteristic of peptaibols. Cytotoxic activity of 2 and 4 was observed against HL-60, LS180, MDA-MB-231, and A549 cancer cell lines.
Collapse
Affiliation(s)
- Varun Pratap Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
- Department of Biotechnology, Faculty of Sciences, Shri Mata Vaishno Devi University , Katra, Jammu and Kashmir 182320, India
| | - Nalli Yedukondalu
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Vandana Sharma
- Quality Control and Quality Assurance, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Manoj Kushwaha
- Quality Control and Quality Assurance, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Richa Sharma
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Asha Chaubey
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Fermentation Technology Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Anil Kumar
- Department of Biotechnology, Faculty of Sciences, Shri Mata Vaishno Devi University , Katra, Jammu and Kashmir 182320, India
| | - Deepika Singh
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
- Academy of Scientific and Innovative Research , Jammu 180 001, India
- Quality Control and Quality Assurance, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
| | - Ram A Vishwakarma
- Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine , Canal Road, Jammu 180 001, India
- Academy of Scientific and Innovative Research , Jammu 180 001, India
| |
Collapse
|
16
|
Cariaco Y, Lima WR, Sousa R, Nascimento LAC, Briceño MP, Fotoran WL, Wunderlich G, Dos Santos JL, Silva NM. Ethanolic extract of the fungus Trichoderma stromaticum decreases inflammation and ameliorates experimental cerebral malaria in C57BL/6 mice. Sci Rep 2018; 8:1547. [PMID: 29367729 PMCID: PMC5784021 DOI: 10.1038/s41598-018-19840-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/05/2018] [Indexed: 01/31/2023] Open
Abstract
Increased resistance to the first-line treatment against P. falciparum malaria, artemisinin-based combination therapies, has been reported. Here, we tested the effect of crude ethanolic extract of the fungus Trichoderma stromaticum (Ext-Ts) on the growth of P. falciparum NF54 in infected human red blood cells (ihRBCs) and its anti-malarial and anti-inflammatory properties in a mouse model of experimental cerebral malaria. For this purpose, ihRBCs were treated with Ext-Ts and analysed for parasitaemia; C57BL/6 mice were infected with P. berghei ANKA (PbA), treated daily with Ext-Ts, and clinical, biochemical, histological and immunological features of the disease were monitored. It was observed that Ext-Ts presented a dose-dependent ability to control P. falciparum in ihRBCs. In addition, it was demonstrated that Ext-Ts treatment of PbA-infected mice was able to increase survival, prevent neurological signs and decrease parasitaemia at the beginning of infection. These effects were associated with systemically decreased levels of lipids and IFN-γ, ICAM-1, VCAM-1 and CCR5 cerebral expression, preserving blood brain barrier integrity and attenuating the inflammatory lesions in the brain, liver and lungs. These results suggest that Ext-Ts could be a source of immunomodulatory and antimalarial compounds that could improve the treatment of cerebral malaria.
Collapse
Affiliation(s)
- Yusmaris Cariaco
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Wânia Rezende Lima
- Institute of Exact and Natural Sciences, Federal University of Mato Grosso, Rondonópolis, 78735-901, Mato Grosso, Brazil
| | - Romulo Sousa
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Layane Alencar Costa Nascimento
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | - Marisol Pallete Briceño
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil
| | | | - Gerhard Wunderlich
- Department of Parasitology, University of São Paulo, São Paulo, 05508-900, Brazil
| | | | - Neide Maria Silva
- Laboratory of Immunopathology, Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, 38400-902, Minas Gerais, Brazil.
| |
Collapse
|
17
|
Development and validation of LC–MS methods for peptaibol quantification in fungal extracts according to their lengths. J Chromatogr B Analyt Technol Biomed Life Sci 2016; 1009-1010:25-33. [DOI: 10.1016/j.jchromb.2015.11.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 10/20/2015] [Accepted: 11/21/2015] [Indexed: 01/31/2023]
|
18
|
Pérez E, Rubio MB, Cardoza RE, Gutiérrez S, Bettiol W, Monte E, Hermosa R. The importance of chorismate mutase in the biocontrol potential of Trichoderma parareesei. Front Microbiol 2015; 6:1181. [PMID: 26579090 PMCID: PMC4621298 DOI: 10.3389/fmicb.2015.01181] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 10/12/2015] [Indexed: 11/20/2022] Open
Abstract
Species of Trichoderma exert direct biocontrol activity against soil-borne plant pathogens due to their ability to compete for nutrients and to inhibit or kill their targets through the production of antibiotics and/or hydrolytic enzymes. In addition to these abilities, Trichoderma spp. have beneficial effects for plants, including the stimulation of defenses and the promotion of growth. Here we study the role in biocontrol of the T. parareesei Tparo7 gene, encoding a chorismate mutase (CM), a shikimate pathway branch point leading to the production of aromatic amino acids, which are not only essential components of protein synthesis but also the precursors of a wide range of secondary metabolites. We isolated T. parareesei transformants with the Tparo7 gene silenced. Compared with the wild-type, decreased levels of Tparo7 expression in the silenced transformants were accompanied by reduced CM activity, lower growth rates on different culture media, and reduced mycoparasitic behavior against the phytopathogenic fungi Rhizoctonia solani, Fusarium oxysporum and Botrytis cinerea in dual cultures. By contrast, higher amounts of the aromatic metabolites tyrosol, 2-phenylethanol and salicylic acid were detected in supernatants from the silenced transformants, which were able to inhibit the growth of F. oxysporum and B. cinerea. In in vitro plant assays, Tparo7-silenced transformants also showed a reduced capacity to colonize tomato roots. The effect of Tparo7-silencing on tomato plant responses was examined in greenhouse assays. The growth of plants colonized by the silenced transformants was reduced and the plants exhibited an increased susceptibility to B. cinerea in comparison with the responses observed for control plants. In addition, the plants turned yellowish and were defective in jasmonic acid- and ethylene-regulated signaling pathways which was seen by expression analysis of lipoxygenase 1 (LOX1), ethylene-insensitive protein 2 (EIN2) and pathogenesis-related protein 1 (PR-1) genes.
Collapse
Affiliation(s)
- Esclaudys Pérez
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research (CIALE), University of SalamancaSalamanca, Spain
| | - M. Belén Rubio
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research (CIALE), University of SalamancaSalamanca, Spain
| | - Rosa E. Cardoza
- Area of Microbiology, University School of Agricultural Engineers, University of León, Campus de PonferradaPonferrada, Spain
| | - Santiago Gutiérrez
- Area of Microbiology, University School of Agricultural Engineers, University of León, Campus de PonferradaPonferrada, Spain
| | - Wagner Bettiol
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research (CIALE), University of SalamancaSalamanca, Spain
- Embrapa EnvironmentJaguariúna, Brazil
| | - Enrique Monte
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research (CIALE), University of SalamancaSalamanca, Spain
| | - Rosa Hermosa
- Department of Microbiology and Genetics, Spanish-Portuguese Centre for Agricultural Research (CIALE), University of SalamancaSalamanca, Spain
| |
Collapse
|
19
|
Degenkolb T, Fog Nielsen K, Dieckmann R, Branco-Rocha F, Chaverri P, Samuels GJ, Thrane U, von Döhren H, Vilcinskas A, Brückner H. Peptaibol, Secondary-Metabolite, and Hydrophobin Pattern of Commercial Biocontrol Agents Formulated with Species of theTrichoderma harzianumComplex. Chem Biodivers 2015; 12:662-84. [DOI: 10.1002/cbdv.201400300] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Indexed: 11/05/2022]
|
20
|
Kamala T, Devi SI, Sharma KC, Kennedy K. Phylogeny and taxonomical investigation of Trichoderma spp. from Indian region of Indo-Burma Biodiversity hot spot region with special reference to Manipur. BIOMED RESEARCH INTERNATIONAL 2015; 2015:285261. [PMID: 25699268 PMCID: PMC4324893 DOI: 10.1155/2015/285261] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/14/2014] [Accepted: 11/16/2014] [Indexed: 11/18/2022]
Abstract
Towards assessing the genetic diversity and occurrence of Trichoderma species from the Indian region of Indo-Burma Biodiversity hotspot, a total of 193 Trichoderma strains were isolated from cultivated soils of nine different districts of Manipur comprising 4 different agroclimatic zones. The isolates were grouped based on the morphological characteristics. ITS-RFLP of the rDNA region using three restriction digestion enzymes: Mob1, Taq1, and Hinf1, showed interspecific variations among 65 isolates of Trichoderma. Based on ITS sequence data, a total of 22 different types of representative Trichoderma species were reported and phylogenetic analysis showed 4 well-separated main clades in which T. harzianum was found to be the most prevalent spp. among all the Trichoderma spp. Combined molecular and phenotypic data leads to the development of a taxonomy of all the 22 different Trichoderma spp., which was reported for the first time from this unique region. All these species were found to produce different extrolites and enzymes responsible for the biocontrol activities against the harmful fungal phytopathogens that hamper in food production. This potential indigenous Trichoderma spp. can be targeted for the development of suitable bioformulation against soil and seedborne pathogens in sustainable agricultural practice.
Collapse
Affiliation(s)
- Th. Kamala
- Institute of Bioresources and Sustainable Development, Ministry of Science & Technology, Government of India, Takyelpat Institutional Area, Imphal, Manipur 795001, India
| | - S. Indira Devi
- Institute of Bioresources and Sustainable Development, Ministry of Science & Technology, Government of India, Takyelpat Institutional Area, Imphal, Manipur 795001, India
| | - K. Chandradev Sharma
- Institute of Bioresources and Sustainable Development, Ministry of Science & Technology, Government of India, Takyelpat Institutional Area, Imphal, Manipur 795001, India
| | - K. Kennedy
- Institute of Bioresources and Sustainable Development, Ministry of Science & Technology, Government of India, Takyelpat Institutional Area, Imphal, Manipur 795001, India
| |
Collapse
|
21
|
Biosynthesis and Molecular Genetics of Peptaibiotics—Fungal Peptides Containing Alpha, Alpha-Dialkyl Amino Acids. Fungal Biol 2015. [DOI: 10.1007/978-1-4939-2531-5_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Röhrich CR, Jaklitsch WM, Voglmayr H, Iversen A, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Front line defenders of the ecological niche! Screening the structural diversity of peptaibiotics from saprotrophic and fungicolous Trichoderma/Hypocrea species. FUNGAL DIVERS 2014; 69:117-146. [PMID: 25722662 PMCID: PMC4338523 DOI: 10.1007/s13225-013-0276-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Approximately 950 individual sequences of non-ribosomally biosynthesised peptides are produced by the genus Trichoderma/Hypocrea that belong to a perpetually growing class of mostly linear antibiotic oligopeptides, which are rich in the non-proteinogenic α-aminoisobutyric acid (Aib). Thus, they are comprehensively named peptaibiotics. Notably, peptaibiotics represent ca. 80 % of the total inventory of secondary metabolites currently known from Trichoderma/Hypocrea. Their unique membrane-modifying bioactivity results from amphipathicity and helicity, thus making them ideal candidates in assisting both colonisation and defence of the natural habitats by their fungal producers. Despite this, reports on the in vivo-detection of peptaibiotics have scarcely been published in the past. In order to evaluate the significance of peptaibiotic production for a broader range of potential producers, we screened nine specimens belonging to seven hitherto uninvestigated fungicolous or saprotrophic Trichoderma/Hypocrea species by liquid chromatography coupled to electrospray high resolution mass spectrometry. Sequences of peptaibiotics found were independently confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. Of the nine species examined, five were screened positive for peptaibiotics. A total of 78 peptaibiotics were sequenced, 56 (=72 %) of which are new. Notably, dihydroxyphenylalaninol and O-prenylated tyrosinol, two C-terminal residues, which have not been reported for peptaibiotics before, were found as well as new and recurrent sequences carrying the recently described tyrosinol residue at their C-terminus. The majority of peptaibiotics sequenced are 18- or 19-residue peptaibols. Structural homologies with 'classical representatives' of subfamily 1 (SF1)-peptaibiotics argue for the formation of transmembrane ion channels, which are prone to facilitate the producer capture and defence of its substratum.
Collapse
Affiliation(s)
- Christian R Röhrich
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany. Present Address: AB SCIEX Germany GmbH, Landwehrstrasse 54, 64293 Darmstadt, Germany
| | - Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Anita Iversen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark. Present Address: Danish Emergency Management Agency, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Andreas Vilcinskas
- Bioresources Project Group, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Winchesterstrasse 2, 35394 Giessen, Germany; Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Ulf Thrane
- Department of Systems Biology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of Berlin, Franklinstrasse 29, 10587 Berlin, Germany
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Thomas Degenkolb
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
23
|
Carroux A, Van Bohemen AI, Roullier C, Robiou du Pont T, Vansteelandt M, Bondon A, Zalouk-Vergnoux A, Pouchus YF, Ruiz N. Unprecedented 17-residue peptaibiotics produced by marine-derived Trichoderma atroviride. Chem Biodivers 2013; 10:772-86. [PMID: 23681725 DOI: 10.1002/cbdv.201200398] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Indexed: 11/07/2022]
Abstract
In the course of investigations on marine-derived toxigenic fungi, five strains of Trichoderma atroviride were studied for their production of peptaibiotics. While these five strains were found to produce classical 19-residue peptaibols, three of them exhibited unusual peptidic sodium-adduct [M + 2 Na](2+) ion peaks at m/z between 824 and 854. The sequencing of these peptides led to two series of unprecedented 17-residue peptaibiotics based on the model Ac-XXX-Ala-Ala-XXX-XXX-Gln-Aib-Aib-Aib-Ala/Ser-Lxx-Aib-Pro-XXX-Aib-Lxx-[C(129) ]. The C-terminus of these new peptides was common to all of them, and its elemental formula C5 H9 N2 O2 was established by HR-MS. It could correspond to the cyclized form of N(δ) -hydroxyornithine which has already been observed at the C-terminus of various peptidic siderophores. The comparison of the sequences of 17- and 19-residue peptides showed similarities for positions 1-16. This observation seems to indicate a common biosynthesis pathway. Both new 17-residue peptaibiotics and 19-residue peptaibols exhibited weak in vitro cytotoxicities against KB cells.
Collapse
Affiliation(s)
- Angélique Carroux
- University of Nantes, LUNAM, Faculty of Pharmacy, MMS, F-44000 Nantes
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Kimonyo A, Brückner H. Sequences of metanicins, 20-residue peptaibols from the ascomycetous fungus CBS 597.80. Chem Biodivers 2013; 10:813-26. [PMID: 23681727 DOI: 10.1002/cbdv.201300064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2013] [Indexed: 11/12/2022]
Abstract
Four linear 20-residue peptaibols, named metanicins (MTCs) A-D, were isolated from submerged cultures of the ascomycetous fungus CBS 597.80. Structure elucidation was performed by a combination of fast-atom-bombardment mass spectrometry (FAB-MS), electrospray ionization MS, Edman degradation of isolated fragments, and amino acid analysis by ion-exchange and gas chromatography, and enantioselective HPLC. The sequences of MTC A(B) are (amino acid exchange in B and C in parentheses): Ac-Aib-Ala-Aib-Ala-Aib-Ala-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib(D-Iva)-Gln-Gln-Pheol and of MTC C(D) Ac-Aib-Ala-Aib-Ala-Aib-Ala-Gln-Aib-Val-Aib-Gly-Leu-Aib-Pro-Val-Aib-Aib(D-Iva)-Gln-Gln-Pheol (Ac, acetyl; Aib, α-aminoisobutyric acid; Iva, isovaline; Pheol, L-phenylalaninol). The peptides are related, and some of the sequences are identical, to other 20-residue peptaibols isolated from Trichoderma species. MTCs show moderate activities against Micrococcus luteus, Enterococcus faecalis, and Staphylococcus aureus, and very low activities against Bacillus subtilis. The producer has originally been identified and deposited as Metarhizium anisopliae var. anisopliae CBS 597.80. Although this identification has been withdrawn by Centralbureau voor Schimmelcultures (CBS) in the meantime, the accession number will be retained - independently from any taxonomic revisions.
Collapse
Affiliation(s)
- Anastase Kimonyo
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition IFZ, Institute of Nutritional Science, Department of Food Sciences, University of Giessen, Heinrich-Buff-Ring 26 - 32, D-35392 Giessen.
| | | |
Collapse
|
25
|
Sequential determination of new peptaibols asperelines G-Z12 produced by marine-derived fungus Trichoderma asperellum using ultrahigh pressure liquid chromatography combined with electrospray-ionization tandem mass spectrometry. J Chromatogr A 2013; 1309:90-5. [PMID: 23973015 DOI: 10.1016/j.chroma.2013.08.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 07/02/2013] [Accepted: 08/04/2013] [Indexed: 11/20/2022]
Abstract
Thirty-eight short peptaibols in a microheterogeneous mixture derived from the fermentation broth of a marine-derived fungus Trichoderma asperellum were determined using ultrahigh pressure liquid chromatography in combination with electrospray-ionization tandem mass spectrometry (UHPLC-ESIMS/MS) techniques, including thirty-two new peptaibols namely asperelines G-Z13. The C-terminus bonded to proline (aspereline Z9) or hydroxyprolinol (aspereline Z12) is rarely found in nature. So far, it is the largest number of peptaibols to be detected at once on the basis of the selected ion monitoring (SIM) mode coupled to precursor scan techniques.
Collapse
|
26
|
Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Vilcinskas A, Nielsen KF, Thrane U, von Döhren H, Brückner H, Degenkolb T. Screening the biosphere: the fungicolous fungus Trichoderma phellinicola, a prolific source of hypophellins, new 17-, 18-, 19-, and 20-residue peptaibiotics. Chem Biodivers 2013; 10:787-812. [PMID: 23681726 PMCID: PMC3734673 DOI: 10.1002/cbdv.201200339] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Indexed: 02/04/2023]
Abstract
To investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened a specimen of the fungicolous fungus Trichoderma phellinicola (syn. Hypocrea phellinicola) growing on its natural host Phellinus ferruginosus. Results revealed that a particular group of non-ribosomal antibiotic polypeptides, peptaibiotics, which contain the non-proteinogenic marker amino acid, α-aminoisobutyric acid, was biosynthesized in the natural habitat by the fungicolous producer and, consequently, released into the host. By means of liquid chromatography coupled to electrospray high-resolution time-of-flight mass spectrometry, we detected ten 20-residue peptaibols in the specimen. Sequences of peptaibiotics found in vivo were independently confirmed by analyzing the peptaibiome of an agar plate culture of T. phellinicola CBS 119283 (ex-type) grown under laboratory conditions. Notably, this strain could be identified as a potent producer of 39 new 17-, 18-, and 19-residue peptaibiotics, which display the same building scheme as the 20-residue peptaibols found in the specimen. Two of the 19-residue peptaibols are tentatively assigned to carry tyrosinol, a novel C-terminal residue, as deduced from high-resolution tandem mass-spectrometry data. For the new peptaibiotics produced by T. phellinicola, the name 'hypophellin(s)', based on the teleomorph name, is introduced.
Collapse
Affiliation(s)
- Christian René Röhrich
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project GroupWinchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: ; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: )
| | - Anita Iversen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Walter Michael Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of ViennaRennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: ; H. V.: phone: +43-4277-54050, e-mail: )
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of ViennaRennweg 14, A-1030 Vienna (W. M. J.: phone: +43-1-4277-54055, e-mail: ; H. V.: phone: +43-4277-54050, e-mail: )
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project GroupWinchesterstrasse 2, D-35394 Giessen (C. R. R.: phone: +49-641-99-37617, e-mail: ; A. V.: phone: +49-641-99-39500, fax: +49-641-4808-581, e-mail: )
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU)Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: )
| | - Kristian Fog Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Ulf Thrane
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
| | - Hans von Döhren
- Biochemistry and Molecular Biology OE 2, Institute of Chemistry, Technical University of BerlinFranklinstraße 29, D-10587 Berlin (phone: +49-30-314-22697; fax: +49-30-314-24783; e-mail: )
| | - Hans Brückner
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of GiessenHeinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-711-349919; e-mail: )
| | - Thomas Degenkolb
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark (DTU)Søltofts Plads, Building 221, DK-2800 Kgs. Lyngby (A. I.: phone: +45-45252725, e-mail: ; K. F. N.: phone: +45-45252602, fax: +45-45884922, e-mail: ; U. T.: phone: +45-45252630, fax: 45-45884148, e-mail: )
- Interdisciplinary Research Centre for BioSystems, Land Use and Nutrition (IFZ), Department of Applied Entomology, Institute of Phytopathology and Applied Zoology (IPAZ), University of Giessen (JLU)Heinrich-Buff-Ring 26–32, D-35392 Gießen (phone: +49-641-99-37601; e-mail: )
| |
Collapse
|
27
|
Röhrich CR, Iversen A, Jaklitsch WM, Voglmayr H, Berg A, Dörfelt H, Thrane U, Vilcinskas A, Nielsen KF, Von Döhren H, Brückner H, Degenkolb T. Hypopulvins, novel peptaibiotics from the polyporicolous fungus Hypocrea pulvinata, are produced during infection of its natural hosts. Fungal Biol 2012; 116:1219-1231. [PMID: 23245616 PMCID: PMC4886835 DOI: 10.1016/j.funbio.2012.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 02/07/2023]
Abstract
In order to investigate the significance of antibiotics for the producing organism(s) in the natural habitat, we screened specimens of the polyporicolous fungus Hypocrea pulvinata growing on its natural hosts Piptoporus betulinus and Fomitopsis pinicola. Results showed that a particular group of nonribosomally biosynthesised antibiotic polypeptides, the peptaibiotics, which contain the nonproteinogenic marker amino acid α-aminoisobutyric acid (Aib), was produced in the natural habitat by the fungicolous producer and, consequently, released into the host. Using liquid chromatography coupled to electrospray high-resolution mass spectrometry we detected especially 19-, but also 11-, 18-, and 20-residue peptaibiotics in the five infected specimens analysed. Structures of peptaibiotics found were confirmed by analysing the peptaibiome of pure agar cultures obtained by single-ascospore isolation from the specimens. The 19-residue peptaibols were determined as deletion sequences of the trichosporins B lacking the Aib residue in position 6. Notably, 26 of the 28 peptaibiotics sequenced were novel; therefore the name 'hypopulvins' was introduced. Considering not only the ubiquity of both the two host species but also the highly specific association between H. pulvinata and P. betulinus/F. pinicola, and the abundance of this fungicolous species in north temperate regions of the world, a decisive role for the peptaibiotics detected in this study is predicted, which may act as mediators of the complex interactions between the basidiomycetous host and its fungicolous ascomycete 'partner'. Structural analogies of the hypopulvins, particularly with other 18-, 19-, and 20-residue peptaibiotics, suggest that the hypopulvins are forming transmembrane ion channels and could thus support the hypothesis of a parasitic lifestyle of the fungicolous producer.
Collapse
Affiliation(s)
- Christian René Röhrich
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstraße 2, 35394 Gießen, Germany
| | - Anita Iversen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Walter Michael Jaklitsch
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Hermann Voglmayr
- Department of Systematic and Evolutionary Botany, Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, 1030 Vienna, Austria
| | - Albrecht Berg
- Department of Biomaterials, Innovent e.V., Prüssingstraße 27 B, 07745 Jena, Germany
| | - Heinrich Dörfelt
- Department of Microbial Communication, Institute of Microbiology, Friedrich Schiller University, Neugasse 25, 07743 Jena, Germany
| | - Ulf Thrane
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Andreas Vilcinskas
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Bioresources Project Group, Winchesterstraße 2, 35394 Gießen, Germany
- Institute of Phytopathology and Applied Zoology, Department of Applied Entomology, IFZ, Justus-Liebig University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| | - Kristian Fog Nielsen
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
| | - Hans Von Döhren
- Biochemistry and Molecular Biology, Institute of Chemistry, Technical University of Berlin, Franklinstraße 29, 10587 Berlin, Germany
| | - Hans Brückner
- Department of Food Sciences, IFZ, Justus-Liebig University Gießen, 35392 Gießen, Germany
- Department of Food Sciences and Nutrition, College of Food Sciences and Agriculture, King Saud University, Riyadh 11451, Saudi Arabia
| | - Thomas Degenkolb
- Department of Systems Biology, Center for Microbial Biotechnology, Technical University of Denmark, Søltofts Plads, Building 221, 2800 Kgs. Lyngby, Denmark
- Institute of Phytopathology and Applied Zoology, Department of Applied Entomology, IFZ, Justus-Liebig University Gießen, Heinrich-Buff-Ring 26-32, 35392 Gießen, Germany
| |
Collapse
|
28
|
Jaklitsch WM, Stadler M, Voglmayr H. Blue pigment in Hypocrea caerulescens sp. nov. and two additional new species in sect. Trichoderma. Mycologia 2012; 104:925-41. [PMID: 22453122 PMCID: PMC3432493 DOI: 10.3852/11-327] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Three new species of Hypocrea/Trichoderma sect. Trichoderma (Hypocreaceae, Hypocreales, Ascomycota, Fungi) are described from recent collections in southern Europe and the Canary Islands. They have been characterized by morphological and molecular methods, including microscopic examination of the teleomorph in thin sections, the anamorph, growth rate experiments and phylogenetic analyses based on a part of the translation elongation factor 1-alpha encoding gene (tef1) containing the two last introns and a part of the rpb2 gene, encoding the second largest RNA polymerase subunit. Analyses involving tef1 did not unequivocally resolve the sister clade relationship of Hypocrea caerulescens relative to the Koningii and Viride clades, while analyses based on rpb2 clearly suggest a close relationship with the former, although the phenotype of H. caerulescens is similar to H. viridescens, particularly by its warted conidia and a coconut-like odor in CMD culture. Hypocrea hispanica and T. samuelsii however are clearly related to the Viride clade by both phylogenetic markers, despite their morphological similarity to H. koningii and its relatives. An apparently specific blue pigment is formed in CMD cultures by Hypocrea caerulescens but could not be obtained by extraction with organic solvents.
Collapse
Affiliation(s)
- Walter M Jaklitsch
- Department of Systematic and Evolutionary Botany, University of Vienna, Vienna, Austria.
| | | | | |
Collapse
|
29
|
Degenkolb T, Karimi Aghcheh R, Dieckmann R, Neuhof T, Baker SE, Druzhinina IS, Kubicek CP, Brückner H, von Döhren H. The Production of Multiple Small Peptaibol Families by Single 14-Module Peptide Synthetases in Trichoderma/Hypocrea. Chem Biodivers 2012; 9:499-535. [DOI: 10.1002/cbdv.201100212] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Błaszczyk L, Popiel D, Chełkowski J, Koczyk G, Samuels GJ, Sobieralski K, Siwulski M. Species diversity of Trichoderma in Poland. J Appl Genet 2011; 52:233-43. [PMID: 21465156 PMCID: PMC3088803 DOI: 10.1007/s13353-011-0039-z] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Revised: 03/02/2011] [Accepted: 03/07/2011] [Indexed: 11/27/2022]
Abstract
In the present study, we reinvestigate the diversity of Trichoderma in Poland utilizing a combination of morphological and molecular/phylogenetic methods. A total of 170 isolates were collected from six different substrata at 49 sites in Poland. These were divided among 14 taxa as follows: 110 of 170 Trichoderma isolates were identified to the species level by the analysis of their ITS1, ITS2 rDNA sequences as: T. harzianum (43 isolates), T. aggressivum (35), T. citrinoviride (11), T. hamatum (9), T. virens (6), T. longibrachiatum (4), T. polysporum (1), and T. tomentosum (1); 60 isolates belonging to the Viride clade were identified based on a fragment of the translation-elongation factor 1-alpha (tef1) gene as: T. atroviride (20 isolates), T. gamsii (2), T. koningii (17), T. viridescens (13), T. viride (7), and T. koningiopsis (1). Identifications were made using the BLAST interface in TrichOKEY and TrichoBLAST ( http://www.isth.info ). The most diverse substrata were soil (nine species per 22 isolates) and decaying wood (nine species per 75 isolates). The most abundant species (25%) isolated from all substrata was T. harzianum.
Collapse
Affiliation(s)
- Lidia Błaszczyk
- Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479, Poznań, Poland.
| | | | | | | | | | | | | |
Collapse
|
31
|
Nosir W, McDonald J, Woodward S. Impact of biological control agents on fusaric acid secreted from Fusarium oxysporum f. sp. gladioli (Massey) Snyder and Hansen in Gladiolus grandiflorus corms. J Ind Microbiol Biotechnol 2010; 38:21-7. [DOI: 10.1007/s10295-010-0842-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Accepted: 07/26/2010] [Indexed: 11/30/2022]
|
32
|
Harman GE, Obregón MA, Samuels GJ, Lorito M. Changing Models for Commercialization and Implementation of Biocontrol in the Developing and the Developed World. PLANT DISEASE 2010; 94:928-939. [PMID: 30743493 DOI: 10.1094/pdis-94-8-0928] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Affiliation(s)
| | - Miguel A Obregón
- Asesoramiento Fitosanitario Laboratorio Doctor Obregón, La Aurora de Herdia, Costa Rica
| | - Gary J Samuels
- U.S. Department of Agriculture, Agricultural Research Service, Beltsville, MD
| | | |
Collapse
|
33
|
De Respinis S, Vogel G, Benagli C, Tonolla M, Petrini O, Samuels GJ. MALDI-TOF MS of Trichoderma: a model system for the identification of microfungi. Mycol Prog 2009. [DOI: 10.1007/s11557-009-0621-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
34
|
Abstract
At present 75 species of Hypocrea have been identified in temperate Europe. Nineteen green-spored species and their Trichoderma asexual states are here described in detail. Extensive searches for Hypocrea teleomorphs in 14 European countries, with emphasis on Central Europe, yielded more than 620 specimens within five years. The morphology of fresh and dry stromata was studied. In addition, available types of species described from Europe were examined. Cultures were prepared from ascospores and used to study the morphology of cultures and anamorphs, to determine growth rates, and to extract DNA that was used for amplification and sequencing of three genetic markers. ITS was used for identification, while RNA polymerase II subunit b (rpb2) and translation elongation factor 1 alpha (tef1) were analyzed for phylogenetic reconstruction of the genus.SEVERAL UNEXPECTED FINDINGS RESULTED FROM THIS PROJECT: 1) The previous view that only a small number of Trichoderma species form a teleomorph is erroneous. 2) All expectations concerning the number of species in Europe are by far exceeded. Seventy-five species of Hypocrea, two species of Protocrea, and Arachnocrea stipata, are herein identified in temperate Europe, based on the ITS identification routine using fresh material, on species described earlier without molecular data and on species recently described but not collected during this project. 3) Current data suggest that the biodiversity of Hypocrea / Trichoderma above soil exceeds the number of species isolated from soil. 4) The number of Trichoderma species forming hyaline conidia has been considered a small fraction. In Europe, 26 species of those forming teleomorphs produce hyaline conidia, while 42 green-conidial species are known. Three of the detected Hypocrea species do not form an anamorph in culture, while the anamorph is unknown in four species, because they have never been cultured.This work is a preliminary account of Hypocrea and their Trichoderma anamorphs in Europe. Of the hyaline-spored species, H. minutispora is by far the most common species in Europe, while of the green-spored species this is H. strictipilosa.General ecology of Hypocrea is discussed. Specific associations, either with host fungi or trees have been found, but the majority of species seems to be necrotrophic on diverse fungi on wood and bark.The taxonomy of the genus will be treated in two parts. In this first part 19 species of Hypocrea with green ascospores, including six new teleomorph and five new anamorph species, are described in detail. All green-spored species belong to previously recognised clades, except H. spinulosa, which forms the new Spinulosa Clade with two additional new species, and H. fomiticola, which belongs to the Semiorbis Clade and forms effuse to large subpulvinate stromata on Fomes fomentarius, a trait new for species with green ascospores. Anamorph names are established prospectively in order to provide a basis for possible policy alterations towards their use for holomorphs.
Collapse
Affiliation(s)
- Walter M Jaklitsch
- Faculty Centre of Biodiversity, University of Vienna, Rennweg 14, A-1030 Vienna, Austria
| |
Collapse
|
35
|
Kubicek CP, Komon-Zelazowska M, Druzhinina IS. Fungal genus Hypocrea/Trichoderma: from barcodes to biodiversity. J Zhejiang Univ Sci B 2008; 9:753-63. [PMID: 18837102 DOI: 10.1631/jzus.b0860015] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hypocrea/Trichoderma is a genus of soil-borne or wood-decaying fungi containing members important to mankind as producers of industrial enzymes and biocontrol agents against plant pathogens, but also as opportunistic pathogens of immunocompromised humans and animals, while others can cause damage to cultivated mushroom. With the recent advent of a reliable, BarCode-aided identification system for all known taxa of Trichoderma and Hypocrea, it became now possible to study some of the biological fundamentals of the diversity in this fungal genus in more detail. In this article, we will therefore review recent progress in (1) the understanding of the geographic distribution of individual taxa; (2) mechanisms of speciation leading to development of mushroom diseases and facultative human mycoses; and (3) the possible correlation of specific traits of secondary metabolism and molecular phylogeny.
Collapse
Affiliation(s)
- Christian P Kubicek
- Institute of Chemical Engineering, Research Area Gene Technology and Applied Biochemistry, Vienna University of Technology, Getreidemarkt 9/E1665, A-1060 Vienna, Austria.
| | | | | |
Collapse
|
36
|
Degenkolb T, Brückner H. Peptaibiomics: Towards a Myriad of Bioactive Peptides Containing Cα-Dialkylamino Acids? Chem Biodivers 2008; 5:1817-43. [DOI: 10.1002/cbdv.200890171] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
37
|
Degenkolb T, Gams W, Brückner H. Natural cyclopeptaibiotics and related cyclic tetrapeptides: structural diversity and future prospects. Chem Biodivers 2008; 5:693-706. [PMID: 18493956 DOI: 10.1002/cbdv.200890066] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Linearity is not considered a prerequisite anymore, and extension of the current definition of 'peptaibiotics' to cyclic, Aib-containing peptides is proposed. Sequences and bioactivities, together with ecophysiological importance of cyclopeptaibiotics and related cyclic tetrapeptides, and their fungal-taxonomic relationships, are discussed.
Collapse
Affiliation(s)
- Thomas Degenkolb
- Interdisciplinary Research Centre (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Giessen, Germany.
| | | | | |
Collapse
|
38
|
The Trichoderma brevicompactum clade: a separate lineage with new species, new peptaibiotics, and mycotoxins. Mycol Prog 2008. [DOI: 10.1007/s11557-008-0563-3] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
39
|
Aravinda S, Shamala N, Balaram P. Aib Residues in Peptaibiotics and Synthetic Sequences: Analysis of Nonhelical Conformations. Chem Biodivers 2008; 5:1238-62. [PMID: 18649312 DOI: 10.1002/cbdv.200890112] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
40
|
Degenkolb T, von Döhren H, Fog Nielsen K, Samuels G, Brückner H. Recent Advances and Future Prospects in Peptaibiotics, Hydrophobin, and Mycotoxin Research, and Their Importance for Chemotaxonomy ofTrichoderma andHypocrea. Chem Biodivers 2008; 5:671-80. [DOI: 10.1002/cbdv.200890064] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
41
|
Neuhof T, Dieckmann R, Druzhinina IS, Kubicek CP, von Döhren H. Intact-cell MALDI-TOF mass spectrometry analysis of peptaibol formation by the genus Trichoderma/Hypocrea: can molecular phylogeny of species predict peptaibol structures? Microbiology (Reading) 2007; 153:3417-3437. [PMID: 17906141 DOI: 10.1099/mic.0.2007/006692-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Peptaibols are characteristic linear alpha-aminoisobutyrate-containing peptides produced by certain Ascomycetes, especially of the genus Hypocrea/Trichoderma [Hypocrea and Trichoderma are the names for the teleo- and anamorph forms of the same taxon; where known to occur in nature, the teleomorph is used to name the species. To aid the inexperienced reader, both names (the less well known one in parentheses) are given at the first mention of each species.] Here we have investigated whether phylogenetic relationships within Trichoderma permit a prediction of the peptaibol production profiles. To this end, representative strains from a third (28) of the known species of Trichoderma, identified by the sequences of diagnostic genes and covering most clades of the established multilocus phylogeny of Trichoderma/Hypocrea, were investigated by intact-cell MALDI-TOF mass spectrometry. Peptaibols were detected in all strains, and some strains were found to produce up to five peptide families of different sizes. Comparison of the data with phylogenies derived from rRNA spacer regions (ITS1 and 2) and RNA polymerase subunit B (rpb2) gene sequences did not show a strict correlation with the types and sequences of the peptaibols produced, but the production of some groups of peptaibols appears to be found only in some clades or sections of the genus, which could be used for more targeted screening of novel compounds of this type. In an analysis of peptaibol structures, we have defined conserved key positions and have further identified and compared sequences of the corresponding adenylate domains within non-ribosomal peptide synthetases producing trichovirins, paracelsins and atroviridins. These phylogenies are not concordant with those of their producers Hypocrea virens, Hypocrea jecorina and Hypocrea atroviridis as obtained from ITS1 and 2, and rpb2, respectively, and therefore hint at a complex history of peptaibol diversity.
Collapse
Affiliation(s)
- Torsten Neuhof
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| | - Ralf Dieckmann
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| | - Irina S Druzhinina
- Forschungsbereich Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Wien, Austria
| | - Christian P Kubicek
- Forschungsbereich Gentechnik und Angewandte Biochemie, Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften, TU Wien, Getreidemarkt 9-166, 1060 Wien, Austria
| | - Hans von Döhren
- TU Berlin, Institut für Chemie, FG Biochemie und Molekulare Biologie, Franklinstr. 29, 10587 Berlin, Germany
| |
Collapse
|
42
|
Poirier L, Quiniou F, Ruiz N, Montagu M, Amiard JC, Pouchus YF. Toxicity assessment of peptaibols and contaminated sediments on Crassostrea gigas embryos. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2007; 83:254-62. [PMID: 17582518 DOI: 10.1016/j.aquatox.2007.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2007] [Accepted: 04/30/2007] [Indexed: 05/15/2023]
Abstract
Peptaibols are known membrane-modifying peptides that were recently detected in marine sediments and mussels collected from a shellfish farming area (Fier d'Ars, Atlantic coast, France). In this investigation, embryotoxicity bioassays with oysters (Crassostrea gigas) were performed to assess acute toxicity of alamethicin and different groups of peptaibols produced by a Trichoderma longibrachiatum strain isolated from marine environment. C. gigas embryos appeared very sensitive to all the metabolites examined with higher toxic effects for long-sequence peptides (EC50 ranging from 10 to 64 nM). D-shaped larvae with mantle abnormality were particularly noticed when peptaibol concentrations increased. Disturbances of embryogenesis were also observed following exposure to organic and aqueous extract of sediments from Fier d'Ars (EC50=42.4 and 6.6 g L(-1) dry weight, respectively). Although peptaibol concentrations measured in these sediments could explain only a part of the toxic effects observed, this study suggests that these mycotoxins can induce larval abnormalities in a population of exposed animals at environmentally realistic concentrations. Their detection in coastal areas devoted to bivalve culture should be taken into account.
Collapse
Affiliation(s)
- Laurence Poirier
- Université de Nantes, Nantes Atlantique Universités, SMAB EA2160, Faculté de pharmacie, 1 rue Gaston Veil-BP 53508, Nantes F-44000, France.
| | | | | | | | | | | |
Collapse
|
43
|
Krause C, Kirschbaum J, Brückner H. Peptaibiomics: microheterogeneity, dynamics, and sequences of trichobrachins, peptaibiotics from Trichoderma parceramosum Bissett (T. longibrachiatum Rifai). Chem Biodivers 2007; 4:1083-102. [PMID: 17589878 DOI: 10.1002/cbdv.200790098] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
From the culture broth of the filamentous fungus Trichoderma parceramosum, strain CBS 936.69, a mixture of polypeptide antibiotics (pepaibiotics), named trichobrachin (TB), was isolated. Three major groups designated TB I, TB II, and TB III could be separated and isolated by preparative TLC on silica gel. Individual peptides of these three groups were sequenced by on-line LC/ESI-MS(n). The mixture of N-acetylated peptides comprises ten 19-residue peptides with a free C-terminal Gln residue (TB I peptides), two 18-residue peptides with a free C-terminal Gln residue (TB II 1 and 2), seven 20-residue peptides with a C-terminal amide-bound phenylalaninol (TB II 3-10), and 34 eleven-residue peptides with either a C-terminal leucinol or isoleucinol or valinol (TB III 1-34). Monitoring production and degradation of peptaibiotics in a pilot experiment revealed that the biosynthesis of TB II and TB III peptides starts two days after the beginning of fermentation. After five days of fermentation, the concentration of TB II decreased, whereas the amount of TB I increased. This observation unequivocally demonstrates that those two 18-residue TB I and TB II peptides with the free carboxy terminus result from enzymatic C-terminal degradation of the 20-residue TB II peptides. In analogy to the technical terms proteome and proteomics, the terms peptaibiome and peptaibiomics have recently been proposed for the entirety and dynamics of the Aib-containing peptides (comprehensively named peptaibiotics). Consequently, the entire peptaibiome of T. parceramosum grown under submerse conditions in shake-flasks for five days comprises at least 54 peptides differing in main-chain length and microheterogeneity, i.e., exchange of amino acids and the C-terminal 1,2-amino alcohol.
Collapse
Affiliation(s)
- Corina Krause
- Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Sciences, University of Giessen, Giessen, Germany
| | | | | |
Collapse
|
44
|
Poirier L, Montagu M, Landreau A, Mohamed-Benkada M, Grovel O, Sallenave-Namont C, Biard JF, Amiard-Triquet C, Amiard JC, Pouchus YF. Peptaibols: stable markers of fungal development in the marine environment. Chem Biodivers 2007; 4:1116-28. [PMID: 17589880 DOI: 10.1002/cbdv.200790100] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Different peptaibols were observed in both fresh and frozen marine sediments collected from a marine area devoted to bivalve culture (Fier d'Ars, Atlantic coast, France). The identification of the peptaibols was based on a three-step mass-spectrometric analysis: observation of doubly charged ions with a characteristic isotopic profile, cleavage and observation of C- and N-terminal fragments, and partial sequencing of the N-terminal segments. The MS characteristics indicated numerous similarities between the peptaibols detected and those produced by different strains of Trichoderma species isolated from fresh sediments. Peptaibols were also detected in mussel samples collected at the same site. This constitutes the first observation of contamination of the marine human-food chain by fungal metabolites. Since peptaibols were readily observed both in fresh sediments and in samples kept frozen for several years, these compounds can be considered as stable markers of the development of Trichoderma in the marine environment.
Collapse
Affiliation(s)
- Laurence Poirier
- Université de Nantes, Nantes Atlantique Universités, SMAB, EA2160, Faculté de pharmacie, Nantes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Leitgeb B, Szekeres A, Manczinger L, Vágvölgyi C, Kredics L. The history of alamethicin: a review of the most extensively studied peptaibol. Chem Biodivers 2007; 4:1027-51. [PMID: 17589875 DOI: 10.1002/cbdv.200790095] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Balázs Leitgeb
- Institute of Biophysics, Biological Research Center of the Hungarian Academy of Sciences, Temesvári krt. 62, Szeged, Hungary
| | | | | | | | | |
Collapse
|
46
|
Degenkolb T, Kirschbaum J, Brückner H. New Sequences, Constituents, and Producers of Peptaibiotics: An Updated Review. Chem Biodivers 2007; 4:1052-67. [PMID: 17589876 DOI: 10.1002/cbdv.200790096] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
To date, 18 genera of imperfect and ascomycetous fungi have been recognized to produce ca. 700 individual sequences of peptaibiotics. These are linear polypeptide antibiotics which i) have a molecular weight between 500 and 2,200 Dalton, thus containing 5-21 residues; ii) show a high content of alpha-aminoisobutyric acid; iii) are characterized by the presence of other nonproteinogenic amino acids and/or lipoamino acids; iv) possess an acylated N-terminus, and v) have a C-terminal residue that, in most of them, consists of a free or acetylated amide-bonded 1,2-amino alcohol, but might also be an amine, amide, free amino acid, 2,5-dioxopiperazine, or sugar alcohol. From April 2003 until present, ca. 300 new individual sequences of peptaibiotics have been published in the literature, but most of them have not yet been included in databases. To summarize these new sequences and novel constituents, as well as to introduce fungal species hitherto unknown as producers of peptaibiotics, the relevant literature is reviewed. Furthermore, ecophysiological and taxonomic aspects of the producing fungi are discussed.
Collapse
Affiliation(s)
- Thomas Degenkolb
- Interdisciplinary Research Centre for Biosystems, Land Use and Nutrition (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Heinrich-Buff-Ring 26-32, Giessen, Germany
| | | | | |
Collapse
|
47
|
Kubicek CP, Komoń-Zelazowska M, Sándor E, Druzhinina IS. Facts and Challenges in the Understanding of the Biosynthesis of Peptaibols byTrichoderma. Chem Biodivers 2007; 4:1068-82. [PMID: 17589877 DOI: 10.1002/cbdv.200790097] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Species of the mitosporic filamentous fungal genus Trichoderma are prominent producers of both short (7-11 residues) and long (18-20 residues) peptaibols and peptaibiotics, which are thought to be involved in their interaction with other living systems. Numerous reviews are available regarding biodiversity, structure, and mode of action of these peptide derivatives, but little emphasis has been paid to the physiology and genetics of their formation. In this review article, we used the recent knowledge on biosynthesis and production of these components to speculate on some of the unknown points. We also highlight areas where further research is most urgently needed.
Collapse
Affiliation(s)
- Christian P Kubicek
- Division of Gene Technology and Applied Biochemistry (DGTAB), Institute of Chemical Engineering, Vienna University of Technology, Getreidemarkt 9/1665, Vienna, Austria
| | | | | | | |
Collapse
|
48
|
Abstract
The fungal genus Trichoderma has various applications in industry and in medicine, and several species have economic importance as sources of enzymes, antibiotics, plant growth promoters, decomposers of xenobiotics, and as commercial biofungicides. Peptaibiotics and peptaibols are a class of linear peptides synthesized by such fungi, and more than 300 have been described to date. Of this class, those compounds exhibiting antimicrobial activity are referred to as antibiotic peptides. In this review, the biosynthesis, fermentation, structure elucidation (by MS and NMR techniques in particular) and biological activity of antibiotic peptides from Trichoderma species are described.
Collapse
Affiliation(s)
- Juliana F de S Daniel
- Departamento de Química, Universidade Federal de São Carlos, CP 676, cep 13.565-905, São Carlos-SP, Brazil.
| | | |
Collapse
|
49
|
Degenkolb T, Gräfenhan T, Nirenberg HI, Gams W, Brückner H. Trichoderma brevicompactum complex: Rich source of novel and recurrent plant-protective polypeptide antibiotics (peptaibiotics). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2006; 54:7047-61. [PMID: 16968062 DOI: 10.1021/jf060788q] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Three strains of Trichoderma brevicompactum and another four that are closely related to that species (Trichoderma cf. brevicompactum) were analyzed for the formation of polypeptide antibiotics (peptaibiotics) by LC/ESI-MS(n). These isolates were selected because of an antagonistic potential against Eutypa dieback and Esca disease of grapevine and have not yet been investigated for the production of peptide antibiotics. Fully grown cultures on potato dextrose agar were extracted with CH2Cl2/MeOH, and this extract was subjected to SPE using C18 cartridges. The methanolic eluates were analyzed by LC/ESI-MS(n). All strains were found to produce membrane-active alamethicins F30. In addition to that, novel peptaibiotics were detected, namely, 14 12-residue trichocryptins B, 12 11-residue trichocryptins A, 19 11-residue trichobrevins A and B, 6 10-residue trichoferins, and 17 8-residue trichocompactins. These compounds may partially be responsible for the plant-protective action of the producers. Chemotaxonomic considerations also indicated the necessity to introduce another new species that is closely related to T. brevicompactum.
Collapse
Affiliation(s)
- Thomas Degenkolb
- Interdisciplinary Research Center (IFZ), Department of Food Sciences, Institute of Nutritional Science, University of Giessen, Germany
| | | | | | | | | |
Collapse
|