1
|
Canzler S, Schubert K, Rolle-Kampczyk UE, Wang Z, Schreiber S, Seitz H, Mockly S, Kamp H, Haake V, Huisinga M, Bergen MV, Buesen R, Hackermüller J. Evaluating the performance of multi-omics integration: a thyroid toxicity case study. Arch Toxicol 2025; 99:309-332. [PMID: 39441382 PMCID: PMC11742338 DOI: 10.1007/s00204-024-03876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 09/19/2024] [Indexed: 10/25/2024]
Abstract
Multi-omics data integration has been repeatedly discussed as the way forward to more comprehensively cover the molecular responses of cells or organisms to chemical exposure in systems toxicology and regulatory risk assessment. In Canzler et al. (Arch Toxicol 94(2):371-388. https://doi.org/10.1007/s00204-020-02656-y ), we reviewed the state of the art in applying multi-omics approaches in toxicological research and chemical risk assessment. We developed best practices for the experimental design of multi-omics studies, omics data acquisition, and subsequent omics data integration. We found that multi-omics data sets for toxicological research questions were generally rare, with no data sets comprising more than two omics layers adhering to these best practices. Due to these limitations, we could not fully assess the benefits of different data integration approaches or quantitatively evaluate the contribution of various omics layers for toxicological research questions. Here, we report on a multi-omics study on thyroid toxicity that we conducted in compliance with these best practices. We induced direct and indirect thyroid toxicity through Propylthiouracil (PTU) and Phenytoin, respectively, in a 28-day plus 14-day recovery oral rat toxicity study. We collected clinical and histopathological data and six omics layers, including the long and short transcriptome, proteome, phosphoproteome, and metabolome from plasma, thyroid, and liver. We demonstrate that the multi-omics approach is superior to single-omics in detecting responses at the regulatory pathway level. We also show how combining omics data with clinical and histopathological parameters facilitates the interpretation of the data. Furthermore, we illustrate how multi-omics integration can hint at the involvement of non-coding RNAs in post-transcriptional regulation. Also, we show that multi-omics facilitates grouping, and we assess how much information individual and combinations of omics layers contribute to this approach.
Collapse
Affiliation(s)
- Sebastian Canzler
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| | - Kristin Schubert
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | | | - Zhipeng Wang
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Stephan Schreiber
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Hervé Seitz
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Sophie Mockly
- Institut de Génétique Humaine UMR 9002 CNRS-Université de Montpellier, 34396, Montpellier Cedex 5, France
| | - Hennicke Kamp
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Volker Haake
- BASF Metabolome Solutions GmbH, 10589, Berlin, Germany
| | - Maike Huisinga
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Martin von Bergen
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany
| | - Roland Buesen
- Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Jörg Hackermüller
- Helmholtz Centre for Environmental Research, UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
2
|
Łukasiewicz Mierzejewska M, Kotuszewska M, Puppel K, Madras Majewska B. Effects of In Ovo Taurine Injection on Embryo Development, Antioxidant Status, and Bioactive Peptide Content in Chicken Embryos ( Gallus gallus domesticus). Int J Mol Sci 2024; 25:11783. [PMID: 39519333 PMCID: PMC11546265 DOI: 10.3390/ijms252111783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Stress in birds disrupts the homeostasis of the organism, leading to an inability to neutralize reactive oxygen species. Taurine, an effective antioxidant, affects various cellular mechanisms, including cation modulation, protein phosphorylation, and cell proliferation. The aim of the study was to evaluate the effect of colloid with taurine applied in ovo to Albumin on embryonic development, oxidative stress indicators and the content of bioactive peptides-carnosine and anserine-in the pectoral muscle. The research materials were eggs of the parent flock (Ross 308) divided into four groups (K (without injection), T50-concentration of taurine hydrocolloid 50 ppm (mg/L); T100-colloid concentration 100 ppm (mg/L) taurine; T500-colloid concentration of 500 ppm (mg/L) taurine). The experimental solutions were injected in an amount of 0.3 mL into egg white. Eggs were incubated under standard incubation conditions. The addition of 100 and 500 ppm taurine had a highly significant (p = 0.001) effect on the plasma antioxidant potential in chicks. The level of anserine increased with increasing concentrations of taurine. These changes were highly significant (p = 0.007). The level of anserine in the T2 and T3 groups was determined to be 2.5 times higher than in the pectoral muscles of embryos not treated with taurine colloid. An analysis of the results showed that the administration of an increased dose of hydrocolloid with taurine increased the content of carnosine and anserine in the pectoral muscle. Colloid with taurine applied in ovo to chicken white egg reduces oxidative stress and increases homeostasis of the organism.
Collapse
Affiliation(s)
- Monika Łukasiewicz Mierzejewska
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland; (K.P.); (B.M.M.)
| | - Marta Kotuszewska
- Scientific Circle “Aves”, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland;
| | - Kamila Puppel
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland; (K.P.); (B.M.M.)
| | - Beata Madras Majewska
- Institute of Animal Science, Warsaw University of Life Sciences, Ciszewskiego 8 Street, 02-786 Warsaw, Poland; (K.P.); (B.M.M.)
| |
Collapse
|
3
|
Baghcheghi Y, Beheshti F, Hosseini M, Gowhari-Shabgah A, Ali-Hassanzadeh M, Hedayati-Moghadam M. Cardiovascular protective effects of PPARγ agonists in hypothyroid rats: protection against oxidative stress. Clin Exp Hypertens 2022; 44:539-547. [PMID: 35722928 DOI: 10.1080/10641963.2022.2079669] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hypothyroidism disturbs redox homeostasis and takes part in cardiovascular system dysfunction. Considering antioxidant and cardio-protective effects of PPAR-γ agonists including pioglitazone (POG) and rosiglitazone (RSG), the present study was aimed to determine the effect of POG or RSG on oxidants and antioxidants indexes in the heart and aorta tissues of Propylthiouracil (PTU)-induced hypothyroid rats. MATERIALS AND METHODS The animals were divided into six groups: (1) Control; (2) propylthiouracil (PTU), (3) PTU-POG 10, (4) PTU-POG 20, (5) PTU-RSG 2, and (6) PTU-RSG 4. Hypothyroidism was induced in rats by giving 0.05% propylthiouracil (PTU) in drinking water for 42 days. The rats of PTU-POG 10 and PTU-POG 20 groups received 10 and 20 mg/kg POG, respectively, besides PTU, and the rats of PTU-RSG 2 and PTU-RSG 4 groups received 2 and 4 mg/kg RSG, respectively, besides PTU. The animals were sacrificed, and the serum of the rats was collected to measure thyroxine level. The heart and aorta tissues were also removed for the measurement of biochemical oxidative stress markers. RESULTS Hypothyroidism was induced by PTU administration, which was indicated by lower serum thyroxine levels. Hypothyroidism also was accompanied by a decrease of catalase (CAT), superoxide dismutase (SOD) activities, and thiol concentration in the heart and aorta tissues while increased level of malondialdehyde (MDA). Interestingly, administration of POG or RSG dramatically reduced oxidative damage in the heart and aorta, as reflected by a decrease in MDA and increased activities of SOD, CAT, and thiol content. CONCLUSION The results of this study showed that administration of POG or RSG decreased oxidative damage in the heart and aorta tissues induced by hypothyroidism in rats.
Collapse
Affiliation(s)
- Yousef Baghcheghi
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran
| | - Farimah Beheshti
- Neuroscience Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran.,Department of Physiology, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Mahmoud Hosseini
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Mahdiyeh Hedayati-Moghadam
- Student Research Committee Jiroft University of Medical Sciences, Jiroft, Iran.,Department of Physiology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| |
Collapse
|
4
|
Das D, Banerjee A, Jena AB, Duttaroy AK, Pathak S. Essentiality, relevance, and efficacy of adjuvant/combinational therapy in the management of thyroid dysfunctions. Biomed Pharmacother 2022; 146:112613. [PMID: 35062076 DOI: 10.1016/j.biopha.2022.112613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/14/2021] [Accepted: 01/02/2022] [Indexed: 11/02/2022] Open
Abstract
Thyroid dysfunction is the most prevalent endocrine disorder worldwide having an epidemiology of 11% in Indians, 4.6% in the United Kingdom, and 2% in the United States of America among the overall population. The common thyroid disorders include hypothyroidism, hyperthyroidism, Hashimoto's thyroiditis, and thyroid cancer. This review briefly elaborates the molecular regulation and mechanism of thyroid hormone, and its associated thyroid disorders. The thyroid hormones regulate critical biochemical functions in brain development and function. Hypothyroidism is mainly associated with dysregulation of cytokines, increased ROS production, and altered signal transduction in major regions of the brain. In addition, it is associated with reduced antioxidant capacity and increased oxidative stress in humans. Though 70% of thyroid disorders are caused by heredity, environmental factors have a significant influence in developing autoimmune thyroid disorders in people who are predisposed to them. This drives us to understand the relationship between environmental factors and thyroid dysregulated disorders. The treatment option for the thyroid disorder includes antithyroid medications, receiving radioactive iodine therapy, or surgery at a critical stage. However, antithyroid drugs are not typically used long-term in thyroid disease due to the high recurrence rate. Adjuvant treatment of antioxidants can produce better outcomes with anti-thyroid drug treatment. Thus, Adjuvant therapy has been proven as an effective strategy for managing thyroid dysfunction, herbal remedies can be used to treat thyroid dysfunction in the future, which in turn can reduce the prevalence of thyroid disorders.
Collapse
Affiliation(s)
- Diptimayee Das
- Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai 603103, India
| | - Antara Banerjee
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India
| | | | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Surajit Pathak
- Department of Medical Biotechnology, Faculty of Allied Health Sciences, Chettinad Academy of Research and Education (CARE), Chettinad Hospital and Research Institute (CHRI), Chennai, India.
| |
Collapse
|
5
|
Baki AM, Aydın AF, Vural P, Olgaç V, Doğru Abbasoğlu S, Uysal M. α-Lipoic Acid Ameliorates The Changes in Prooxidant-Antioxidant Balance in Liver and Brain Tissues of Propylthiouracil-Induced Hypothyroid Rats. CELL JOURNAL 2020; 22:117-124. [PMID: 32779441 PMCID: PMC7481904 DOI: 10.22074/cellj.2020.7049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Accepted: 08/27/2019] [Indexed: 12/04/2022]
Abstract
Objective There are controversial data about the prooxidant-antioxidant balance in hypothyroidism. We aimed to
investigate the effect of α-lipoic acid (ALA) on oxidative stress parameters in the liver and brain of propylthiouracil
(PTU)-induced hypothyroid rats.
Materials and Methods In this experimental study, PTU (500 mg/L) was given to rats in drinking water for 10 weeks.
ALA (0.2% in diet) alone and together with thyroxine (T4, 20 µg/kg body weight, s.c) were given to hypothyroid rats in
the last 5 weeks of the experimental period. The levels of reactive oxygen species, malondialdehyde, protein carbonyl,
ferric reducing antioxidant power (FRAP) and glutathione (GSH) levels, superoxide dismutase, and GSH peroxidase
activities were determined in the liver and brain of rats. Histopathological examinations were also performed.
Results Prooxidant parameters were increased in the brain but not liver in hypothyroid rats. ALA treatment alone
lowered enhanced brain oxidative stress in hypothyroid rats. Also, ALA was found to ameliorate the changes as a result
of oxidative stress arising from T4 replacement therapy.
Conclusion Our results indicate that ALA alone and together with T4 may be useful in reducing oxidative stress in
thyroid dysfunctions.
Collapse
Affiliation(s)
- Adile Merve Baki
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Abdurrahman Fatih Aydın
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Pervin Vural
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey. Electronic Address:
| | - Vakur Olgaç
- Institute of Oncology, Department of Pathology, Istanbul University, Istanbul,Turkey
| | - Semra Doğru Abbasoğlu
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Müjdat Uysal
- Department of Biochemistry, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
6
|
Gould RL, Pazdro R. Impact of Supplementary Amino Acids, Micronutrients, and Overall Diet on Glutathione Homeostasis. Nutrients 2019; 11:E1056. [PMID: 31083508 PMCID: PMC6566166 DOI: 10.3390/nu11051056] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 05/06/2019] [Accepted: 05/08/2019] [Indexed: 12/22/2022] Open
Abstract
Glutathione (GSH) is a critical endogenous antioxidant found in all eukaryotic cells. Higher GSH concentrations protect against cellular damage, tissue degeneration, and disease progression in various models, so there is considerable interest in developing interventions that augment GSH biosynthesis. Oral GSH supplementation is not the most efficient option due to the enzymatic degradation of ingested GSH within the intestine by γ-glutamyltransferase, but supplementation of its component amino acids-cysteine, glycine, and glutamate-enhances tissue GSH synthesis. Furthermore, supplementation with some non-precursor amino acids and micronutrients appears to influence the redox status of GSH and related antioxidants, such as vitamins C and E, lowering systemic oxidative stress and slowing the rate of tissue deterioration. In this review, the effects of oral supplementation of amino acids and micronutrients on GSH metabolism are evaluated. And since specific dietary patterns and diets are being prescribed as first-line therapeutics for conditions such as hypertension and diabetes, the impact of overall diets on GSH homeostasis is also assessed.
Collapse
Affiliation(s)
- Rebecca L Gould
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA.
| | - Robert Pazdro
- Department of Foods and Nutrition, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
7
|
Tang N, Cai Z, Chen H, Cao L, Chen B, Lin B. Involvement of gap junctions in propylthiouracil-induced cytotoxicity in BRL-3A cells. Exp Ther Med 2019; 17:2799-2806. [PMID: 30906468 DOI: 10.3892/etm.2019.7244] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 01/14/2019] [Indexed: 12/27/2022] Open
Abstract
Gap junctions (GJs), which are important plasma membrane channels for the transfer of signaling molecules between adjacent cells, have been implicated in drug-induced liver injury. However, the influence and the underlying mechanisms of GJs in propylthiouracil (PTU)-induced hepatotoxicity are unclear. In the present study, distinct manipulations were performed to regulate GJ function in the BRL-3A rat liver cell line. The results indicated that the toxic effect of PTU in BRL-3A cells was mediated by GJ intercellular communication, as cell death was significantly attenuated in the absence of functional GJ channels. Furthermore, the specific knockdown of connexin-32 (Cx32; a major GJ component protein in hepatocytes) using small interfering RNA was observed to decrease necrosis, intracellular PTU content and the level of reactive oxygen species (ROS) following PTU exposure. These observations demonstrated that suppressing GJ Cx32 could confer protection against PTU-induced cytotoxicity through decreasing the accumulation of PTU and ROS. To the best of our knowledge, the present study is the first to demonstrate the role and possible underlying mechanisms of GJs in the regulation of PTU-induced toxicity in BRL-3A rat liver cells.
Collapse
Affiliation(s)
- Nan Tang
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Ziqing Cai
- School of Pharmacy, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Hongpeng Chen
- School of Information Engineering, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Longbin Cao
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bo Chen
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| | - Bihua Lin
- School of Basic Medical Sciences, Guangdong Medical University, Dongguan, Guangdong 523808, P.R. China
| |
Collapse
|
8
|
Ye J, Zhong X, Du Y, Cai C, Pan T. Role of levothyroxine and vitamin E supplementation in the treatment of oxidative stress-induced injury and apoptosis of myocardial cells in hypothyroid rats. J Endocrinol Invest 2017; 40:713-719. [PMID: 28213641 DOI: 10.1007/s40618-017-0624-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
Abstract
OBJECTIVE To explore the underlying mechanism and treatment of myocardial injury caused by hypothyroidism, we evaluated oxidative stress in serum and myocardial tissue of hypothyroid rats. The effect of levothyroxine (LT4) replacement therapy and vitamin E (VitE) supplementation on oxidative stress-induced injury and apoptosis of myocardial tissue is examined. METHODS Male Sprague-Dawley rats were divided into five groups: normal control group, propylthiouracil group (PTU group), LT4 treatment group (PTU + LT4 group), vitamin E treatment group (PTU + VitE group), and combined treatment group (PTU + LT4 + VitE group). Superoxide dismutase (SOD) activity and malondialdehyde (MDA) expression in serum and myocardium were determined. Myocardial apoptosis index (AI) in each group was determined by TUNEL assay. RESULTS SOD levels in serum were significantly increased in PTU + VitE and PTU + LT4 + Vit E groups, as compared to that in PTU and PTU + LT4 groups (P < 0.05). MDA levels in serum and myocardial tissue were significantly lower in PTU + LT4, PTU + VitE, and PTU + LT4 + VitE groups, as compared to that in the PTU group (P < 0.05). Myocardial apoptosis was significantly increased in PTU and PTU + VitE groups as compared to that in the normal control group (P < 0.05), while it was significantly lower in PTU + LT4 and PTU + LT4 + VitE groups, as compared to that in the PTU group (P < 0.05). CONCLUSION In this study, levothyroxine replacement therapy and vitamin E supplementation appeared to ameliorate myocardial apoptosis in hypothyroid rats, the mechanism of which appears to be related to improved thyroid function and reduced oxidative stress.
Collapse
Affiliation(s)
- J Ye
- Department of Endorinology and Metabolism, The Second Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, 230601, China.
| | - X Zhong
- Department of Endorinology and Metabolism, The Second Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, 230601, China
| | - Y Du
- Department of Endorinology and Metabolism, The Second Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, 230601, China
| | - C Cai
- Department of Endorinology and Metabolism, The Second Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, 230601, China
| | - T Pan
- Department of Endorinology and Metabolism, The Second Hospital of Anhui Medical University, 678, Furong Road, Hefei, Anhui, 230601, China
| |
Collapse
|
9
|
Beheshti F, Karimi S, Vafaee F, Shafei MN, Sadeghnia HR, Hadjzadeh MAR, Hosseini M. The effects of vitamin C on hypothyroidism-associated learning and memory impairment in juvenile rats. Metab Brain Dis 2017; 32:703-715. [PMID: 28127705 DOI: 10.1007/s11011-017-9954-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 01/18/2017] [Indexed: 01/06/2023]
Abstract
In this study the effects of Vitamin C (Vit C) on hypothyroidism-associated learning and memory impairment in juvenile rats was investigated. The pregnant rats were kept in separate cages. After delivery, they were randomly divided into six groups and treated: (1) Control; (2) Propylthiouracil (PTU) which 0.005% PTU in their drinking; (3-5) Propylthiouracil- Vit C groups; besides PTU, dams in these groups received 10, 100 and 500 mg/kg Vit C respectively, (6) one group as a positive control; the intact rats received an effective dose, 100 mg/kg Vit. C. After delivery, the pups were continued to receive the experimental treatments in their drinking water up to 56th day of their life. Ten male offspring of each group were randomly selected and tested in the Morris water maze (MWM) and passive avoidance (PA) which were started at 63th day (one week after stopping of the treatments). Brains were then removed for biochemical measurements. PTU increased time latency and traveled distance during 5 days in MWM while, reduced the spent time in target quadrant in MWM and step-trough latency (STL) in PA. PTU decreased thiol content, superoxide dismutase (SOD) and catalase (CAT) activities in the brain while, increased molondialdehyde (MDA). In MWM test, 10, 100 and 500 mg/kg Vit C reduced time latency and traveled distance without affecting the traveling speed during 5 days. All doses of Vit C increased the spent time in target quadrant in probe trail of MWM and also increased STL in PA test. Vit C increased thiol, SOD and CAT in the brain tissues while, reduced MDA. Results of present study confirmed the beneficial effects of Vit C on learning and memory. It also demonstrated that Vit C has protective effects on hypothyroidism-associated learning and memory impairment in juvenile rats which might be elucidated by the antioxidative effects.
Collapse
Affiliation(s)
- Farimah Beheshti
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sareh Karimi
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzaneh Vafaee
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Naser Shafei
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad, University of Medical Sciences, Mashhad, Iran
| | - Mosa Al Reza Hadjzadeh
- Neurocognitive Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Hosseini
- Neurogenic Inflammation Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
10
|
Taurine ameliorated thyroid function in rats co-administered with chlorpyrifos and lead. Vet Res Commun 2016; 40:123-129. [DOI: 10.1007/s11259-016-9662-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 08/16/2016] [Indexed: 11/25/2022]
|
11
|
Supplementation of T3 recovers hypothyroid rat liver cells from oxidatively damaged inner mitochondrial membrane leading to apoptosis. BIOMED RESEARCH INTERNATIONAL 2014; 2014:590897. [PMID: 24987693 PMCID: PMC4058501 DOI: 10.1155/2014/590897] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/09/2014] [Indexed: 01/08/2023]
Abstract
Hypothyroidism is a growing medical concern. There are conflicting reports regarding the mechanism of oxidative stress in hypothyroidism. Mitochondrial oxidative stress is pivotal to thyroid dysfunction. The present study aimed to delineate the effects of hepatic inner mitochondrial membrane dysfunction as a consequence of 6-n-propyl-2-thiouracil-induced hypothyroidism in rats. Increased oxidative stress predominance in the submitochondrial particles (SMP) and altered antioxidant defenses in the mitochondrial matrix fraction correlated with hepatocyte apoptosis. In order to check whether the effects caused by hypothyroidism are reversed by T3, the above parameters were evaluated in a subset of T3-treated hypothyroid rats. Complex I activity was inhibited in hypothyroid SMP, whereas T3 supplementation upregulated electron transport chain complexes. Higher mitochondrial H2O2 levels in hypothyroidism due to reduced matrix GPx activity culminated in severe oxidative damage to membrane lipids. SMP and matrix proteins were stabilised in hypothyroidism but exhibited increased carbonylation after T3 administration. Glutathione content was higher in both. Hepatocyte apoptosis was evident in hypothyroid liver sections; T3 administration, on the other hand, exerted antiapoptotic and proproliferative effects. Hence, thyroid hormone level critically regulates functional integrity of hepatic mitochondria; hypothyroidism injures mitochondrial membrane lipids leading to hepatocyte apoptosis, which is substantially recovered upon T3 supplementation.
Collapse
|
12
|
Celikler S, Tas S, Ziyanok-Ayvalik S, Vatan O, Yildiz G, Ozel M. Protective and antigenotoxic effect of Ulva rigida C. Agardh in experimental hypothyroid. ACTA BIOLOGICA HUNGARICA 2014; 65:13-26. [PMID: 24561891 DOI: 10.1556/abiol.65.2014.1.2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The presence of chromosomal damage in bone marrow cells affected by several diseases such as thyroid, cancer etc., was detected by the micronucleus (MN) assay. The present study was designed to evaluate: i) volatile components of Ulva rigida, ii) effects of hypothyroidism on bone marrow MN frequency, iii) effects of oral administration of Ulva rigida ethanolic extract (URE) on MN frequency produced by hypothyroidism, and iv) thyroid hormone levels in normal and 6-n-Propylthiouracil (PTU)-induced hypothyroid rats. The volatile components of Ulva rigida was studied using a direct thermal desorption (DTD) technique with comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry (GCxGC-TOF/MS). URE administration was of no significant impact on thyroid hormone levels in control group, while PTU administration decreased thyroid hormone levels compared to control group (p < 0.001). Moreover, URE supplementation resulted in a significant decrease in MN frequency in each thyroid group (p < 0.0001). This is the first in vivo study that shows the strong antigenotoxic and protective effect of URE against the genotoxicity produced by hypothyroidism.
Collapse
Affiliation(s)
- Serap Celikler
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - Sibel Tas
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - Sedef Ziyanok-Ayvalik
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - O Vatan
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - Gamze Yildiz
- Uludag University Department of Biology, Faculty of Science and Arts 16059 Bursa Turkey
| | - M Ozel
- The University of York Department of Chemistry Heslington York UK YO10 5DD
| |
Collapse
|
13
|
Wu S, Tan G, Dong X, Zhu Z, Li W, Lou Z, Chai Y. Metabolic profiling provides a system understanding of hypothyroidism in rats and its application. PLoS One 2013; 8:e55599. [PMID: 23409005 PMCID: PMC3567130 DOI: 10.1371/journal.pone.0055599] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2012] [Accepted: 12/27/2012] [Indexed: 12/11/2022] Open
Abstract
Background Hypothyroidism is a chronic condition of endocrine disorder and its precise molecular mechanism remains obscure. In spite of certain efficacy of thyroid hormone replacement therapy in treating hypothyroidism, it often results in other side effects because of its over-replacement, so it is still urgent to discover new modes of treatment for hypothyroidism. Sini decoction (SND) is a well-known formula of Traditional Chinese Medicine (TCM) and is considered as efficient agents against hypothyroidism. However, its holistic effect assessment and mechanistic understanding are still lacking due to its complex components. Methodology/Principal Findings A urinary metabonomic method based on ultra performance liquid chromatography coupled to mass spectrometry was employed to explore global metabolic characters of hypothyroidism. Three typical hypothyroidism models (methimazole-, propylthiouracil- and thyroidectomy-induced hypothyroidism) were applied to elucidate the molecular mechanism of hypothyroidism. 17, 21, 19 potential biomarkers were identified with these three hypothyroidism models respectively, primarily involved in energy metabolism, amino acid metabolism, sphingolipid metabolism and purine metabolism. In order to avert the interference of drug interaction between the antithyroid drugs and SND, the thyroidectomy-induced hypothyroidism model was further used to systematically assess the therapeutic efficacy of SND on hypothyroidism. A time-dependent recovery tendency was observed in SND-treated group from the beginning of model to the end of treatment, suggesting that SND exerted a recovery effect on hypothyroidism in a time-dependent manner through partially regulating the perturbed metabolic pathways. Conclusions/Significance Our results showed that the metabonomic approach is instrumental to understand the pathophysiology of hypothyroidism and offers a valuable tool for systematically studying the therapeutic effects of SND on hypothyroidism.
Collapse
Affiliation(s)
- Si Wu
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
14
|
Jena S, Chainy GBN, Dandapat J. Hypothyroidism modulates renal antioxidant gene expression during postnatal development and maturation in rat. Gen Comp Endocrinol 2012; 178:8-18. [PMID: 22522343 DOI: 10.1016/j.ygcen.2012.03.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 02/07/2012] [Accepted: 03/31/2012] [Indexed: 11/19/2022]
Abstract
In the present study effects of 6-n-propyl thiouracil (PTU)-induced hypothyroidism on renal antioxidant defence system during postnatal development (from birth to 7, 15 and 30days old) and on adult rats were reported. Hypothyroidism in rats was induced by feeding the lactating mothers (from the day of parturition till weaning, 25days old) or directly to the pups with 0.05% PTU in drinking water. The activities of Cu/Zn-superoxide dismutase (SOD1) and glutathione peroxidase (GPx) were increased in 30days old hypothyroid rats with respect to their respective controls, on the other hand, levels of translated products and activities of Mn-superoxide dismutase (SOD2) and catalase (CAT) were decreased in hypothyroid rats of all age groups as compared to their respective control rats. SOD1 activity remained unchanged in persistent (PTU-treatment from birth to 90days old) hypothyroid rats as compared to euthyroid. However, a decreased activity of SOD1 was recorded in transient (PTU-treatment from birth to 30days then withdrawal till 90days old) hypothyroid rats with respect to control rats. The mRNA level, protein expression and activity of SOD2 and CAT were significantly decreased in persistent hypothyroid rats as compared to euthyroid rats. The activity of GPx was significantly increased in both persistent and transient hypothyroid rats with respect to euthyroid rats. The present study indicates modulation of antioxidant defence status of rat kidney during postnatal development and maturation by hypothyroidism.
Collapse
Affiliation(s)
- Srikanta Jena
- Department of Biotechnology, Utkal University, Bhubaneswar, India
| | | | | |
Collapse
|
15
|
Cavallo A, Gnoni A, Conte E, Siculella L, Zanotti F, Papa S, Gnoni GV. 3,5-diiodo-L-thyronine increases FoF1-ATP synthase activity and cardiolipin level in liver mitochondria of hypothyroid rats. J Bioenerg Biomembr 2011; 43:349-57. [PMID: 21739248 DOI: 10.1007/s10863-011-9366-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 05/17/2011] [Indexed: 01/19/2023]
Abstract
Short-term effects of 3,5-L-diiodothyronine (T(2)) administration to hypothyroid rats on F(o)F(1)-ATP synthase activity were investigated in liver mitochondria. One hour after T(2) injection, state 4 and state 3 respiration rates were noticeably stimulated in mitochondria subsequently isolated. F(o)F(1)-ATP synthase activity, which was reduced in mitochondria from hypothyroid rats as compared to mitochondria from euthyroid rats, was significantly increased by T(2) administration in both the ATP-synthesis and hydrolysis direction. No change in β-subunit mRNA accumulation and protein amount of the α-β subunit of F(o)F(1)-ATP synthase was found, ruling out a T(2) genomic effect. In T(2)-treated rats, changes in the composition of mitochondrial phospholipids were observed, cardiolipin (CL) showing the greatest alteration. In mitochondria isolated from hypothyroid rats the decrease in the amount of CL was accompanied by an increase in the level of peroxidised CL. T(2) administration to hypothyroid rats enhanced the level of CL and decreased the amount of peroxidised CL in subsequently isolated mitochondria, tending to restore the CL value to the euthyroid level. Minor T(2)-induced changes in mitochondrial fatty acid composition were detected. Overall, the enhanced F(o)F(1)-ATP synthase activity observed following injection of T(2) to hypothyroid rats may be ascribed, at least in part, to an increased level of mitochondrial CL associated with decreased peroxidation of CL.
Collapse
Affiliation(s)
- Alessandro Cavallo
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Lecce, Italy
| | | | | | | | | | | | | |
Collapse
|
16
|
Jena S, Chainy GBN, Dandapat J. Expression of antioxidant genes in renal cortex of PTU-induced hypothyroid rats: effect of vitamin E and curcumin. Mol Biol Rep 2011; 39:1193-203. [PMID: 21607622 DOI: 10.1007/s11033-011-0849-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Accepted: 05/12/2011] [Indexed: 10/18/2022]
Abstract
The present study was undertaken to investigate the effect of vitamin E and curcumin on the expression of antioxidant genes in 6-propyl-2-thiouracil (PTU)-induced hypothyroid rat renal cortex. The levels of lipid peroxidation and protein carbonylation were increased in hypothyroid rat kidney. Co-administration of vitamin E and curcumin to hypothyroid rats resulted in amelioration of lipid peroxidation level, whereas curcumin alone alleviated the protein carbonylation level. The mRNA levels of SOD1 and SOD2 were decreased in hypothyroid rats. Decreased level of SOD1 transcripts was observed in hypothyroid rats supplemented with curcumin alone or co-administrated with vitamin E. Translated products of SOD1 and SOD2 in hypothyroid rats was elevated in response to supplementation of both the antioxidants. Decreased SOD1 and SOD2 activities in hypothyroid rats compared to control were either unaltered or further decreased in response to the antioxidants. Expressions of CAT at transcript and translate level along with its activity were down regulated in hypothyroid rats. Administration of vitamin E to hypothyroid rats resulted in elevated CAT mRNA level. In contrast, expression of CAT protein was elevated in response to both the antioxidants. However, CAT activity was unaltered in response to vitamin E and curcumin. GPx1 and GR mRNA level and the activity of glutathione peroxidase (GPx) were not affected in response to induced hypothyroidism. The activity of GPx was increased in response to vitamin E treatment, whereas decreased GR activity in hypothyroid rats was further declined by the administration of antioxidants. The over all results suggest that vitamin E and curcumin differentially modulate the altered antioxidant defence mechanism of rat kidney cortex under experimental hypothyroidism.
Collapse
Affiliation(s)
- Srikanta Jena
- Department of Biotechnology, Utkal University, Bhubaneswar 751004, India.
| | | | | |
Collapse
|
17
|
Chattopadhyay S, Choudhury S, Roy A, Chainy GBN, Samanta L. T3 fails to restore mitochondrial thiol redox status altered by experimental hypothyroidism in rat testis. Gen Comp Endocrinol 2010; 169:39-47. [PMID: 20678500 DOI: 10.1016/j.ygcen.2010.07.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/07/2010] [Accepted: 07/21/2010] [Indexed: 12/30/2022]
Abstract
Oxidative stress impaired sperm function might lead to infertility. The objective of this study was to evaluate the effects of altered thyroid hormone levels on regulation of mitochondrial glutathione redox status and its dependent antioxidant defense system in adult rat testis and their correlation with testicular function. Adult male Wistar rats were rendered hypothyroid by administration of 6-n-propyl-2-thiouracil in drinking water for six weeks. At the end of the treatment period, a subset of the hypothyroid rats was treated with T(3) (20 μg/100g body weight/day for 3 days). Mitochondria were isolated from euthyroid, hypothyroid and hypothyroid+T(3)-treated rat testes, and sub-fractionated into sub-mitochondrial particles and matrix fractions. Mitochondrial respiration, oxidative stress indices and antioxidant defenses were assayed. The results were correlated with daily testicular sperm production and epididymal sperm viability. Increased pro-oxidant level and reduced antioxidant capacity rendered the hypothyroid mitochondria susceptible to oxidative injury. The extent of damage was more evident in the membrane fraction. This was reflected in higher degree of oxidative damages inflicted upon membrane lipids and proteins. While membrane proteins were more susceptible to carbonylation, thiol residue damage was evident in matrix fraction. Reduced levels of glutathione and ascorbate further weakened the antioxidant defenses and impaired testicular function. Hypothyroid condition disturbed intra-mitochondrial thiol redox status leading to testicular dysfunction. Hypothyroidism-induced oxidative stress condition could not be reversed with T(3) treatment.
Collapse
|
18
|
The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin Chem Lab Med 2008; 46:1004-10. [DOI: 10.1515/cclm.2008.183] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
19
|
Nanda N, Bobby Z, Hamide A, Koner BC, Sridhar MG. Association between oxidative stress and coronary lipid risk factors in hypothyroid women is independent of body mass index. Metabolism 2007; 56:1350-5. [PMID: 17884444 DOI: 10.1016/j.metabol.2007.05.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Accepted: 05/25/2007] [Indexed: 10/22/2022]
Abstract
Hypothyroidism enhances the progression of atherogenesis. Furthermore, dyslipidemia, hypertension, and obesity are known risk factors for atherosclerosis. Oxidative stress is implicated in the pathogenesis of cardiovascular diseases. However, there are contradicting reports on the existence of oxidative stress in hypothyroidism. Thus, the aim of the study is to evaluate the presence of oxidative stress in hypothyroidism and, if so, its possible association with various coronary lipid risk factors. The present study was carried out in a group of 27 freshly diagnosed normotensive primary hypothyroid female patients in comparison with healthy subjects. Their body mass index (BMI), serum thyroid profile, lipid profile, glucose, protein carbonylation, thiobarbituric acid reactive substances (TBARS), and blood antioxidant enzyme levels were estimated. The TBARS and protein carbonylation were significantly higher in cases compared with those in controls. Reduced glutathione was lower and glutathione peroxidase was higher in the test group compared with those in controls. Various lipid risk factors for coronary artery disease were significantly higher among the hypothyroid women in comparison with those in controls. The level of TBARS correlated significantly with various lipid risk factors among the hypothyroid women even after correcting the effect of BMI. However, no significant associations were observed between BMI and these risk factors when the effect of TBARS was nullified. In hypothyroidism, the coronary lipid risk factors seem to be more associated with lipid peroxidation than BMI. In conclusion, the present study indicates the presence of oxidative stress in hypothyroid patients and its association with atherogenic dyslipidemia, which is independent of BMI.
Collapse
Affiliation(s)
- Nivedita Nanda
- Department of Biochemistry, Jawaharlal Institute of Post-graduate Medical Education and Research, Pondicherry-605 006, India
| | | | | | | | | |
Collapse
|
20
|
Dirican M, Taş S, Sarandöl E. High-dose taurine supplementation increases serum paraoxonase and arylesterase activities in experimental hypothyroidism. Clin Exp Pharmacol Physiol 2007; 34:833-7. [PMID: 17645625 DOI: 10.1111/j.1440-1681.2007.04615.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
1. Hypothyroidism is accompanied by hyperlipidaemia and oxidative stress and is associated with several complications, such as atherosclerosis. Paraoxonase activity has been reported to decrease in several situations associated with atherosclerosis and oxidative stress. In the present study, the effects of different doses of taurine on serum paraoxonase and arylesterase activities, as well as on the serum lipid profile, were investigated in hypothyroid rats. 2. Forty male Sprague-Dawley rats were randomly divided into five groups as follows: Group 1, rats received normal rat chow and tap water; Group 2, rats received standard rat chow + 0.05% propylthiouracil (PTU) in the drinking water; and Groups 3-5, taurine-supplemented PTU groups (standard rat chow + 0.5, 2 or 3% taurine in the drinking water, respectively, in addition to PTU). Paraoxon or phenylacetate were used as substrates to measure paraoxonase and arylesterase activity, respectively. Plasma and tissue malondialdehyde (MDA) levels, indicators of lipid peroxidation, were determined using the thiobarbituric-acid reactive substances method. Serum triglyceride, total cholesterol and high-density lipoprotein-cholesterol (following precipitation with dextran sulphate-magnesium chloride) were determined using enzymatic methods. 3. Serum paraoxonase and arylesterase activities were increased and plasma and tissue MDA levels and serum triglyceride levels were reduced in a dose-dependent manner in taurine-treated hypothyroid rats. Taurine concentrations were positively correlated with enzyme activities and negatively correlated with MDA and triglyceride levels. 4. Further studies are needed to investigate the role of taurine supplementation in hypothyroidism in human subjects.
Collapse
Affiliation(s)
- Melahat Dirican
- Department of Biochemistry, Medical Faculty, Uludag University, Bursa, Turkey.
| | | | | |
Collapse
|
21
|
Tas S, Sarandol E, Ayvalik SZ, Serdar Z, Dirican M. Vanadyl Sulfate, Taurine, and Combined Vanadyl Sulfate and Taurine Treatments in Diabetic Rats: Effects on the Oxidative and Antioxidative Systems. Arch Med Res 2007; 38:276-83. [PMID: 17350476 DOI: 10.1016/j.arcmed.2006.09.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Accepted: 09/18/2006] [Indexed: 10/23/2022]
Abstract
BACKGROUND Vanadyl sulfate (VS) and taurine are two promising agents in the treatment of diabetes related to their antihyperglycemic, antihyperlipidemic, and hyperinsulinemic effects. Data about the effects of VS on the oxidant-antioxidant system is limited and controversial. However, taurine is a well-documented antioxidant agent and our aim was to investigate the effects of VS, taurine and VS and taurine combination on the oxidative-antioxidative systems in streptozotocin-nicotinamide (STZ-NA) diabetic rats. METHODS Nicotinamide (230 mg/kg, i.p.) and streptozotocin (65 mg/kg, i.p.) were administered. VS (0.75 mg/mL) and taurine (1%) were added to drinking water for 5 weeks. Rats were divided as control (C), diabetes (D), diabetes+VS (D+VS), diabetes+taurine (D+T), diabetes+VS and taurine (D+VST). Plasma and tissue malondialdehyde (MDA) levels were measured by high-performance liquid chromatography and spectrophotometry, respectively. Paraoxonase and arylesterase activities were measured by spectrophotometric methods and superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) activities were determined using commercial kits. RESULTS VS, taurine and VS and taurine combination treatments reduced the enhanced blood glucose, serum total cholesterol and triglyceride, tissue MDA and plasma MDA (except in the D+VS group) levels and increased the reduced serum insulin level, serum paraoxonase and arylesterase activities, GSH-Px activity and SOD activity (except in the D+VS group). CONCLUSIONS The findings of the present study suggest that VS and taurine exert beneficial effects on the blood glucose and lipid levels in STZ-NA diabetic rats. However, VS might exert prooxidative or antioxidative effects in various components of the body and taurine and VS combination might be an alternative for sole VS administration.
Collapse
Affiliation(s)
- Sibel Tas
- Department of Biology, Science and Literature Faculty, Uludag University, Bursa, Turkey.
| | | | | | | | | |
Collapse
|
22
|
Deger Y, Yur F, Ertekin A, Mert N, Dede S, Mert H. Protective effect of α-tocopherol on oxidative stress in experimental pulmonary fibrosis in rats. Cell Biochem Funct 2007; 25:633-7. [PMID: 16981217 DOI: 10.1002/cbf.1362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The study was undertaken to investigate the influence of alpha-tocopherol (vitamin E) on malondialdehyde (MDA) and glutathione (GSH) levels and catalase (CAT) activity in lung of rats with bleomycin-induced pulmonary fibrosis (PF). Fourteen Wistar-albino rats were randomly divided into two groups of seven animals each. The first group was treated intra-tracheally with bleomycin hydrochloride (BM group); the second group was also instilled with BM but received injections of alpha-tocopherol twice a week (BM + E group). The third group was treated in the same manner with saline solution only, acting as controls (C). There were decreases in GSH level and CAT activity while an increase in MDA level in BM group was found compared to the control group (p < 0.05). Vitamin E had a regulator effect on these parameters. After administration of alpha-tocopherol, the increase in GSH level and CAT activity and the decrease in MDA level were seen in BM + E group compared to BM group (p < 0.05). Distinct histopathological changes were found in the BM group compared to the untreated rats. Less severe fibrotic lesions were also observed in the BM + E group. The results show that vitamin E is effective on the prevention of BM-induced PF, as indicated by differences in the lung levels of oxidants and antioxidants.
Collapse
Affiliation(s)
- Yeter Deger
- Department of Biochemistry, Faculty of Veterinary Medicine, Yüzüncü Yil University, Van, Turkey.
| | | | | | | | | | | |
Collapse
|
23
|
Tenorio-Velázquez VM, Barrera D, Franco M, Tapia E, Hernández-Pando R, Medina-Campos ON, Pedraza-Chaverri J. Hypothyroidism attenuates protein tyrosine nitration, oxidative stress and renal damage induced by ischemia and reperfusion: effect unrelated to antioxidant enzymes activities. BMC Nephrol 2005; 6:12. [PMID: 16274486 PMCID: PMC1291371 DOI: 10.1186/1471-2369-6-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2005] [Accepted: 11/07/2005] [Indexed: 11/10/2022] Open
Abstract
Background It has been established that hypothyroidism protects rats against renal ischemia and reperfusion (IR) oxidative damage. However, it is not clear if hypothyroidism is able to prevent protein tyrosine nitration, an index of nitrosative stress, induced by IR or if antioxidant enzymes have involved in this protective effect. In this work it was explored if hypothyroidism is able to prevent the increase in nitrosative and oxidative stress induced by IR. In addition the activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was studied. Control and thyroidectomized (HTX) rats were studied 24 h of reperfusion after 60 min ischemia. Methods Male Wistar rats weighing 380 ± 22 g were subjected to surgical thyroidectomy. Rats were studied 15 days after surgery. Euthyroid sham-operated rats were used as controls (CT). Both groups of rats underwent a right kidney nephrectomy and suffered a 60 min left renal ischemia with 24 h of reperfusion. Rats were divided in four groups: CT, HTX, IR and HTX+IR. Rats were sacrificed and samples of plasma and kidney were obtained. Blood urea nitrogen (BUN) and creatinine were measured in blood plasma. Kidney damage was evaluated by histological analysis. Oxidative stress was measured by immunohistochemical localization of protein carbonyls and 4-hydroxy-2-nonenal modified proteins. The protein carbonyl content was measured using antibodies against dinitrophenol (DNP)-modified proteins. Nitrosative stress was measured by immunohistochemical analysis of 3-nitrotyrosine modified proteins. The activity of the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase was measured by spectrophotometric methods. Multiple comparisons were performed with ANOVA followed by Bonferroni t test. Results The histological damage and the rise in plasma creatinine and BUN induced by IR were significantly lower in HTX+IR group. The increase in protein carbonyls and in 3-nitrotyrosine and 4-hydroxy-2-nonenal modified proteins was prevented in HTX+IR group. IR-induced decrease in renal antioxidant enzymes was essentially not prevented by HTX in HTX+IR group. Conclusion Hypothyroidism was able to prevent not only oxidative but also nitrosative stress induced by IR. In addition, the antioxidant enzymes catalase, glutathione peroxidase, and superoxide dismutase seem not to play a protective role in this experimental model.
Collapse
Affiliation(s)
- Verónica M Tenorio-Velázquez
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
- Departamento de Nefrología, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano #1, Col. Sección XVI, 14080, Tlalpan, México, D.F., México
| | - Diana Barrera
- Facultad de Medicina, Departamento de Farmacología, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - Martha Franco
- Departamento de Nefrología, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano #1, Col. Sección XVI, 14080, Tlalpan, México, D.F., México
| | - Edilia Tapia
- Departamento de Nefrología, Instituto Nacional de Cardiología "Ignacio Chávez", Juan Badiano #1, Col. Sección XVI, 14080, Tlalpan, México, D.F., México
| | - Rogelio Hernández-Pando
- Instituto Nacional de Ciencias Médicas y Nutrición "Salvador Zubirán", Departamento de Patología, 14000, México, D.F., México
| | - Omar Noel Medina-Campos
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| | - José Pedraza-Chaverri
- Facultad de Química, Departamento de Biología, Edificio B, Segundo Piso, Laboratorio 209, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, 04510, México, D.F., México
| |
Collapse
|