1
|
Wang X, Yang C, Huang C, Wang W. Dysfunction of the carnitine cycle in tumor progression. Heliyon 2024; 10:e35961. [PMID: 39211923 PMCID: PMC11357771 DOI: 10.1016/j.heliyon.2024.e35961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
The carnitine cycle is responsible for the transport of cytoplasmic fatty acids to the mitochondria for subsequent β-oxidation to maintain intracellular energy homeostasis. Recent studies have identified abnormalities in the carnitine cycle in various types of tumors; these abnormalities include the altered expression levels of carnitine cycle-related metabolic enzymes and transport proteins. Dysfunction of the carnitine cycle has been shown to influence tumorigenesis and progression by altering intracellular oxidative and inflammatory status or regulating tumor metabolic flexibility. Many therapeutic strategies targeting the carnitine cycle are actively being explored to modify the dysfunction of the carnitine cycle in patients with malignant tumors; such approaches include carnitine cycle-related enzyme inhibitors and exogenous carnitine supplementation. Therefore, here, we review the studies of carnitine in tumors, aiming to scientifically illustrate the dysfunction of the carnitine cycle in tumor progression and provide new ideas for further research.
Collapse
Affiliation(s)
- Xiangjun Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chuanxin Yang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Chao Huang
- Department of Cell Biology, Medical School, Kunming University of Science and Technology, Kunming, 650500, China
| | - Wei Wang
- Department of Hepatobiliary and Pancreatic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| |
Collapse
|
2
|
Galluccio M, Tripicchio M, Pochini L. The Human OCTN Sub-Family: Gene and Protein Structure, Expression, and Regulation. Int J Mol Sci 2024; 25:8743. [PMID: 39201429 PMCID: PMC11354717 DOI: 10.3390/ijms25168743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/01/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
OCTN1 and OCTN2 are membrane transport proteins encoded by the SLC22A4 and SLC22A5 genes, respectively. Even though several transcripts have been predicted by bioinformatics for both genes, only one functional protein isoform has been described for each of them. Both proteins are ubiquitous, and depending on the physiopathological state of the cell, their expression is regulated by well-known transcription factors, although some aspects have been neglected. A plethora of missense variants with uncertain clinical significance are reported both in the dbSNP and the Catalogue of Somatic Mutations in Cancer (COSMIC) databases for both genes. Due to their involvement in human pathologies, such as inflammatory-based diseases (OCTN1/2), systemic primary carnitine deficiency (OCTN2), and drug disposition, it would be interesting to predict the impact of variants on human health from the perspective of precision medicine. Although the lack of a 3D structure for these two transport proteins hampers any speculation on the consequences of the polymorphisms, the already available 3D structures for other members of the SLC22 family may provide powerful tools to perform structure/function studies on WT and mutant proteins.
Collapse
Affiliation(s)
- Michele Galluccio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Martina Tripicchio
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
| | - Lorena Pochini
- Laboratory of Biochemistry, Molecular Biotechnology, and Molecular Biology, Department of Biology, Ecology and Earth Sciences (DiBEST), University of Calabria, Via P. Bucci 4c, 87036 Arcavacata di Rende, Italy;
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnology (IBIOM), National Research Council (CNR), Via Amendola 122/O, 70126 Bari, Italy
| |
Collapse
|
3
|
Yi Y, Zhang H, Chen M, Chen B, Chen Y, Li P, Zhou H, Ma Z, Jiang H. Inhibition of multiple uptake transporters in cardiomyocytes/mitochondria alleviates doxorubicin-induced cardiotoxicity. Chem Biol Interact 2023; 382:110627. [PMID: 37453608 DOI: 10.1016/j.cbi.2023.110627] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Doxorubicin (DOX) has been widely used to treat various tumors; however, DOX-induced cardiotoxicity limits its utilization. Since high accumulation of DOX in cardiomyocytes/mitochondria is the key reason, we aimed to clarify the mechanisms of DOX uptake and explore whether selectively inhibiting DOX uptake transporters would attenuate DOX accumulation and cardiotoxicity. Our results demonstrated that OCTN1/OCTN2/PMAT (organic cation/carnitine transporter 1/2 or plasma membrane monoamine transporter), especially OCTN2, played crucial roles in DOX uptake in cardiomyocytes, while OCTN2 and OCTN1 contributed to DOX transmembrane transport in mitochondria. Metformin (1-100 μM) concentration-dependently reduced DOX (5 μM for accumulation, 500 nM for cytotoxicity) concentration and toxicity in cardiomyocytes/mitochondria via inhibition of OCTN1-, OCTN2- and PMAT-mediated DOX uptake but did not affect its efflux. Furthermore, metformin (iv: 250 and 500 mg/kg or ig: 50, 100 and 200 mg/kg) could dose-dependently reduce DOX (8 mg/kg) accumulation in mouse myocardium and attenuated its cardiotoxicity. In addition, metformin (1-100 μM) did not impair DOX efficacy in breast cancer or leukemia cells. In conclusion, our study clarified the role of multiple transporters, especially OCTN2, in DOX uptake in cardiomyocytes/mitochondria; metformin alleviated DOX-induced cardiotoxicity without compromising its antitumor efficacy by selective inhibition of multiple transporters mediated DOX accumulation in myocardium/mitochondria.
Collapse
Affiliation(s)
- Yaodong Yi
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Binxin Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Yingchun Chen
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China
| | - Zhiyuan Ma
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, PR China.
| | - Huidi Jiang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China; Jinhua Institute of Zhejiang University, PR China.
| |
Collapse
|
4
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
5
|
Papierniak-Wyglądała A, Lamch W, Jurewicz E, Nałęcz KA. The activity and surface presence of organic cation/carnitine transporter OCTN2 (SLC22A5) in breast cancer cells depends on AKT kinase. Arch Biochem Biophys 2023; 742:109616. [PMID: 37187422 DOI: 10.1016/j.abb.2023.109616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
l-carnitine is indispensable for transfer of fatty acids to mitochondria for the process of β-oxidation, a process, whose significance in cancer has drawn attention in recent years. In humans majority of carnitine is delivered by diet and enters the cell due to activity of solute carriers (SLCs), mainly by ubiquitously expressed organic cation/carnitine transporter (OCTN2/SLC22A5). In control and cancer human breast epithelial cell lines the major fraction of OCTN2 is present as a not matured non-glycosylated form. Studies on overexpressed OCTN2 demonstrated an exclusive interaction with SEC24C, as the cargo-recognizing subunit of coatomer II in transporter exit from endoplasmic reticulum. Co-transfection with SEC24C dominant negative mutant completely abolished presence of the mature form of OCTN2, pointing to a possibility of trafficking regulation. SEC24C was previously shown to be phosphorylated by serine/threonine kinase AKT, known to be activated in cancer. Further studies on breast cell lines showed that inhibition of AKT with MK-2206 in control and cancer lines decreased level of OCTN2 mature form. Proximity ligation assay showed that phosphorylation of OCTN2 on threonine was significantly abolished by AKT inhibition with MK-2206. Carnitine transport was positively correlated with the level of OCTN2 phosphorylated by AKT on threonine moiety. The observed regulation of OCTN2 by AKT places this kinase in the center of metabolic control. This points to both proteins, AKT and OCTN2, as druggable targets, in particular in a combination therapy of breast cancer.
Collapse
Affiliation(s)
- Anna Papierniak-Wyglądała
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Weronika Lamch
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Ewelina Jurewicz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Katarzyna A Nałęcz
- Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| |
Collapse
|
6
|
Evaluation of the gene encoding carnitine transporter (OCTN2/SLC22A5) expression in human breast cancer and its association with clinicopathological characteristics. Mol Biol Rep 2023; 50:2061-2066. [PMID: 36539562 DOI: 10.1007/s11033-022-08152-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/23/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Fatty acid oxidation (FAO) is a major energy-generating process in the mitochondria and supports proliferation, growth, and survival of cancer cells. L-Carnitine is an essential co-factor for carrying long-chain fatty acids into the mitochondria. The entry of l-carnitine across cell membrane is regulated by OCTN2 (SLC22A5). Thus, it can plays a significant role in the mitochondrial fatty acid oxidation. This study aimed to evaluate the OCTN2 expression and its association with clinicopathological characteristics in breast cancer. METHODS In this work, OCTN2 was examined in 54 pairs of fresh samples of breast cancer (BC) and adjacent noncancerous tissue using quantitative real-time polymerase chain reaction and immunohistochemistry (IHC). The IHC approach was also used to investigate the expression of additional clinicopathological features. RESULTS The present research findings revealed that the relative expression of OCTN2 in BC tissues was substantially higher than the adjacent normal tissues. This up-regulation was correlated positively with tumor size and Ki-67 and negatively with the progesterone receptor (PR) status, providing evidence of the opposite effects of OCTN2 and PR on tumor development. CONCLUSION The study shows that the OCTN2 expression in BC patients may be used as a prognostic biomarker and a tumor oncogene. As a result, it could be considered a possible therapeutic target. Nevertheless, the significance of the findings needs to be confirmed by further studies.
Collapse
|
7
|
WANG YINGYING, ZHOU YING, WANG YU, YU LUSHAN, ZENG SU. Epigenetic Regulation of Drug Transporters in Cancer. DRUG METABOLISM HANDBOOK 2022:573-603. [DOI: 10.1002/9781119851042.ch18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
The role of branched chain amino acids metabolic disorders in tumorigenesis and progression. Biomed Pharmacother 2022; 153:113390. [DOI: 10.1016/j.biopha.2022.113390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 11/20/2022] Open
|
9
|
Zhou S, Shu Y. Transcriptional Regulation of Solute Carrier (SLC) Drug Transporters. Drug Metab Dispos 2022; 50:DMD-MR-2021-000704. [PMID: 35644529 PMCID: PMC9488976 DOI: 10.1124/dmd.121.000704] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 05/02/2022] [Accepted: 05/16/2022] [Indexed: 09/03/2023] Open
Abstract
Facilitated transport is necessitated for large size, charged, and/or hydrophilic drugs to move across the membrane. The drug transporters in the solute carrier (SLC) superfamily, mainly including organic anion-transporting polypeptides (OATPs), organic anion transporters (OATs), organic cation transporters (OCTs), organic cation/carnitine transporters (OCTNs), peptide transporters (PEPTs), and multidrug and toxin extrusion proteins (MATEs), are critical facilitators of drug transport and distribution in human body. The expression of these SLC drug transporters is found in tissues throughout the body, with high abundance in the epithelial cells of major organs for drug disposition, such as intestine, liver, and kidney. These SLC drug transporters are clinically important in drug absorption, metabolism, distribution, and excretion. The mechanisms underlying their regulation have been revealing in recent years. Epigenetic and nuclear receptor-mediated transcriptional regulation of SLC drug transporters have particularly attracted much attention. This review focuses on the transcriptional regulation of major SLC drug transporter genes. Revealing the mechanisms underlying the transcription of those critical drug transporters will help us understand pharmacokinetics and pharmacodynamics, ultimately improving drug therapeutic effectiveness while minimizing drug toxicity. Significance Statement It has become increasingly recognized that solute carrier (SLC) drug transporters play a crucial, and sometimes determinative, role in drug disposition and response, which is reflected in decision-making during not only clinical drug therapy but also drug development. Understanding the mechanisms accounting for the transcription of these transporters is critical to interpret their abundance in various tissues under different conditions, which is necessary to clarify the pharmacological response, adverse effects, and drug-drug interactions for clinically used drugs.
Collapse
Affiliation(s)
- Shiwei Zhou
- Pharmaceutical Sciences, University of Maryland, United States
| | - Yan Shu
- Pharmaceutical Sciences, University of Maryland, United States
| |
Collapse
|
10
|
Yi Y, Li L, Song F, Li P, Chen M, Ni S, Zhang H, Zhou H, Zeng S, Jiang H. L-tetrahydropalmatine reduces oxaliplatin accumulation in the dorsal root ganglion and mitochondria through selectively inhibiting the transporter-mediated uptake thereby attenuates peripheral neurotoxicity. Toxicology 2021; 459:152853. [PMID: 34252480 DOI: 10.1016/j.tox.2021.152853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/02/2021] [Accepted: 07/08/2021] [Indexed: 12/26/2022]
Abstract
Oxaliplatin (OXA) is a third-generation platinum drug; however, its application is greatly limited due to the severe peripheral neurotoxicity. This study aims to confirm the transport mechanism of OXA and to explore whether L-tetrahydropalmatine (L-THP) would alleviate OXA-induced peripheral neurotoxicity by selectively inhibiting these uptake transporters in vitro and in vivo. Our results revealed that organic cation transporter 2 (OCT2), organic cation/carnitine transporter 1 (OCTN1) and organic cation/carnitine transporter 2 (OCTN2) were involved in the uptake of OXA in dorsal root ganglion (DRG) neurons and mitochondria, respectively. L-THP (1-100 μM) reduced OXA (40 μM) induced cytotoxicity in MDCK-hOCT2 (Madin-Darby canine kidney, MDCK), MDCK-hOCTN1, MDCK-hOCTN2, and rat primary DRG cells, and decreased the accumulation of OXA in above cells and rat DRG mitochondria, but did not affect its efflux from MDCK-hMRP2 cells. Furthermore, Co-administration of L-THP (5-20 mg/kg for mice, 10-40 mg/kg for rats; twice a week, iv or ig) attenuated OXA (8 mg/kg for mice, 4 mg/kg for rats; twice a week, iv) induced peripheral neurotoxicity and reduced the platinum concentration in the DRG. Whereas, L-THP (1-100 μM for cells; 10-20 mg/kg for mice) did not impair the antitumour efficacy of OXA (40 μM for cells; 8 mg/kg for mice) in HT29 tumour-bearing nude mice nor in tumour cells (HT29 and SW620 cells). In conclusion, OCT2, OCTN1 and OCTN2 contribute to OXA uptake in the DRG and mitochondria. L-THP attenuates OXA-induced peripheral neurotoxicity via inhibiting OXA uptake but without impairing the antitumour efficacy of OXA. L-THP is a potential candidate drug to attenuate OXA-induced peripheral neurotoxicity.
Collapse
Affiliation(s)
- Yaodong Yi
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Liping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Feifeng Song
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Ping Li
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Mingyang Chen
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Shixin Ni
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hengbin Zhang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Hui Zhou
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Su Zeng
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China
| | - Huidi Jiang
- Laboratory of Drug Metabolism and Pharmaceutical Analysis, Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang, PR China.
| |
Collapse
|
11
|
Pizzagalli MD, Bensimon A, Superti‐Furga G. A guide to plasma membrane solute carrier proteins. FEBS J 2021; 288:2784-2835. [PMID: 32810346 PMCID: PMC8246967 DOI: 10.1111/febs.15531] [Citation(s) in RCA: 186] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/07/2020] [Accepted: 08/17/2020] [Indexed: 12/13/2022]
Abstract
This review aims to serve as an introduction to the solute carrier proteins (SLC) superfamily of transporter proteins and their roles in human cells. The SLC superfamily currently includes 458 transport proteins in 65 families that carry a wide variety of substances across cellular membranes. While members of this superfamily are found throughout cellular organelles, this review focuses on transporters expressed at the plasma membrane. At the cell surface, SLC proteins may be viewed as gatekeepers of the cellular milieu, dynamically responding to different metabolic states. With altered metabolism being one of the hallmarks of cancer, we also briefly review the roles that surface SLC proteins play in the development and progression of cancer through their influence on regulating metabolism and environmental conditions.
Collapse
Affiliation(s)
- Mattia D. Pizzagalli
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Ariel Bensimon
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
| | - Giulio Superti‐Furga
- CeMM, Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Center for Physiology and PharmacologyMedical University of ViennaAustria
| |
Collapse
|
12
|
Tonazzi A, Giangregorio N, Console L, Palmieri F, Indiveri C. The Mitochondrial Carnitine Acyl-carnitine Carrier (SLC25A20): Molecular Mechanisms of Transport, Role in Redox Sensing and Interaction with Drugs. Biomolecules 2021; 11:biom11040521. [PMID: 33807231 PMCID: PMC8066319 DOI: 10.3390/biom11040521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 03/23/2021] [Accepted: 03/26/2021] [Indexed: 12/22/2022] Open
Abstract
The SLC25A20 transporter, also known as carnitine acyl-carnitine carrier (CAC), catalyzes the transport of short, medium and long carbon chain acyl-carnitines across the mitochondrial inner membrane in exchange for carnitine. The 30-year story of the protein responsible for this function started with its purification from rat liver mitochondria. Even though its 3D structure is not yet available, CAC is one of the most deeply characterized transport proteins of the inner mitochondrial membrane. Other than functional, kinetic and mechanistic data, post-translational modifications regulating the transport activity of CAC have been revealed. CAC interactions with drugs or xenobiotics relevant to human health and toxicology and the response of the carrier function to dietary compounds have been discovered. Exploiting combined approaches of site-directed mutagenesis with chemical targeting and bioinformatics, a large set of data on structure/function relationships have been obtained, giving novel information on the molecular mechanism of the transport catalyzed by this protein.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
| | - Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
| | - Ferdinando Palmieri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| | - Cesare Indiveri
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Via Orabona 4, 70126 Bari, Italy; (A.T.); (N.G.)
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Via P. Bucci 4C, 87036 Arcavacata di Rende, Italy;
- Correspondence: (F.P.); (C.I.); Tel.: +39-080-544-3323 (F.P.); Tel.: +39-0984-492939 (C.I.)
| |
Collapse
|
13
|
Sutherland R, Meeson A, Lowes S. Solute transporters and malignancy: establishing the role of uptake transporters in breast cancer and breast cancer metastasis. Cancer Metastasis Rev 2021; 39:919-932. [PMID: 32388639 PMCID: PMC7497311 DOI: 10.1007/s10555-020-09879-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The solute carrier (SLC) superfamily encompasses a large variety of membrane-bound transporters required to transport a diverse array of substrates over biological membranes. Physiologically, they are essential for nutrient uptake, ion transport and waste removal. However, accumulating evidence suggest that up- and/or downregulation of SLCs may play a pivotal role in the pathogenesis of human malignancy. Endogenous substrates of SLCs include oestrogen and its conjugates, the handling of which may be of importance in hormone-dependent cancers. The SLCs play a significant role in the handling of therapeutic agents including anticancer drugs. Differential SLC expression in cancers may, therefore, impact on the efficacy of treatments. However, there is also a small body of evidence to suggest the dysregulated expression of some of these transporters may be linked to cancer metastasis. This review draws on the current knowledge of the roles of SLC transporters in human cancers in order to highlight the potential significance of these solute carriers in breast cancer pathogenesis and treatment. Graphical abstract ![]()
Collapse
Affiliation(s)
- Rachel Sutherland
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK. .,Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.
| | - Annette Meeson
- Biosciences Institute, Newcastle University, International Centre for Life, Central Parkway, Newcastle Upon Tyne, UK
| | - Simon Lowes
- Translational and Clinical Research Institute, Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK.,Breast Screening and Assessment Unit, Queen Elizabeth Hospital, Gateshead Health NHS Foundation Trust, Gateshead, Sheriff Hill, UK
| |
Collapse
|
14
|
Console L, Scalise M, Mazza T, Pochini L, Galluccio M, Giangregorio N, Tonazzi A, Indiveri C. Carnitine Traffic in Cells. Link With Cancer. Front Cell Dev Biol 2020; 8:583850. [PMID: 33072764 PMCID: PMC7530336 DOI: 10.3389/fcell.2020.583850] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/31/2020] [Indexed: 12/16/2022] Open
Abstract
Metabolic flexibility is a peculiar hallmark of cancer cells. A growing number of observations reveal that tumors can utilize a wide range of substrates to sustain cell survival and proliferation. The diversity of carbon sources is indicative of metabolic heterogeneity not only across different types of cancer but also within those sharing a common origin. Apart from the well-assessed alteration in glucose and amino acid metabolisms, there are pieces of evidence that cancer cells display alterations of lipid metabolism as well; indeed, some tumors use fatty acid oxidation (FAO) as the main source of energy and express high levels of FAO enzymes. In this metabolic pathway, the cofactor carnitine is crucial since it serves as a “shuttle-molecule” to allow fatty acid acyl moieties entering the mitochondrial matrix where these molecules are oxidized via the β-oxidation pathway. This role, together with others played by carnitine in cell metabolism, underlies the fine regulation of carnitine traffic among different tissues and, within a cell, among different subcellular compartments. Specific membrane transporters mediate carnitine and carnitine derivatives flux across the cell membranes. Among the SLCs, the plasma membrane transporters OCTN2 (Organic cation transport novel 2 or SLC22A5), CT2 (Carnitine transporter 2 or SLC22A16), MCT9 (Monocarboxylate transporter 9 or SLC16A9) and ATB0, + [Sodium- and chloride-dependent neutral and basic amino acid transporter B(0+) or SLC6A14] together with the mitochondrial membrane transporter CAC (Mitochondrial carnitine/acylcarnitine carrier or SLC25A20) are the most acknowledged to mediate the flux of carnitine. The concerted action of these proteins creates a carnitine network that becomes relevant in the context of cancer metabolic rewiring. Therefore, molecular mechanisms underlying modulation of function and expression of carnitine transporters are dealt with furnishing some perspective for cancer treatment.
Collapse
Affiliation(s)
- Lara Console
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Tiziano Mazza
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Lorena Pochini
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy
| | - Nicola Giangregorio
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Annamaria Tonazzi
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| | - Cesare Indiveri
- Unit of Biochemistry and Molecular Biotechnology, Department DiBEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Arcavacata di Rende, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), National Research Council, Bari, Italy
| |
Collapse
|
15
|
Juraszek B, Nałęcz KA. SLC22A5 (OCTN2) Carnitine Transporter-Indispensable for Cell Metabolism, a Jekyll and Hyde of Human Cancer. Molecules 2019; 25:molecules25010014. [PMID: 31861504 PMCID: PMC6982704 DOI: 10.3390/molecules25010014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 12/26/2022] Open
Abstract
Oxidation of fatty acids uses l-carnitine to transport acyl moieties to mitochondria in a so-called carnitine shuttle. The process of β-oxidation also takes place in cancer cells. The majority of carnitine comes from the diet and is transported to the cell by ubiquitously expressed organic cation transporter novel family member 2 (OCTN2)/solute carrier family 22 member 5 (SLC22A5). The expression of SLC22A5 is regulated by transcription factors peroxisome proliferator-activated receptors (PPARs) and estrogen receptor. Transporter delivery to the cell surface, as well as transport activity are controlled by OCTN2 interaction with other proteins, such as PDZ-domain containing proteins, protein phosphatase PP2A, caveolin-1, protein kinase C. SLC22A5 expression is altered in many types of cancer, giving an advantage to some of them by supplying carnitine for β-oxidation, thus providing an alternative to glucose source of energy for growth and proliferation. On the other hand, SLC22A5 can also transport several chemotherapeutics used in clinics, leading to cancer cell death.
Collapse
|
16
|
Snyder-Talkington BN, Dong C, Singh S, Raese R, Qian Y, Porter DW, Wolfarth MG, Guo NL. Multi-Walled Carbon Nanotube-Induced Gene Expression Biomarkers for Medical and Occupational Surveillance. Int J Mol Sci 2019; 20:E2635. [PMID: 31146342 PMCID: PMC6600433 DOI: 10.3390/ijms20112635] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 12/19/2022] Open
Abstract
As the demand for multi-walled carbon nanotube (MWCNT) incorporation into industrial and biomedical applications increases, so does the potential for unintentional pulmonary MWCNT exposure, particularly among workers during manufacturing. Pulmonary exposure to MWCNTs raises the potential for development of lung inflammation, fibrosis, and cancer among those exposed; however, there are currently no effective biomarkers for detecting lung fibrosis or predicting the risk of lung cancer resulting from MWCNT exposure. To uncover potential mRNAs and miRNAs that could be used as markers of exposure, this study compared in vivo mRNA and miRNA expression in lung tissue and blood of mice exposed to MWCNTs with in vitro mRNA and miRNA expression from a co-culture model of human lung epithelial and microvascular cells, a system previously shown to have a higher overall genome-scale correlation with mRNA expression in mouse lungs than either cell type grown separately. Concordant mRNAs and miRNAs identified by this study could be used to drive future studies confirming human biomarkers of MWCNT exposure. These potential biomarkers could be used to assess overall worker health and predict the occurrence of MWCNT-induced diseases.
Collapse
Affiliation(s)
| | - Chunlin Dong
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - Salvi Singh
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - Rebecca Raese
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.
| | - Yong Qian
- National Institute for Occupational and Environmental Safety and Health, 1095 Willowdale Rd., Morgantown, WV 26505, USA.
| | - Dale W Porter
- National Institute for Occupational and Environmental Safety and Health, 1095 Willowdale Rd., Morgantown, WV 26505, USA.
| | - Michael G Wolfarth
- National Institute for Occupational and Environmental Safety and Health, 1095 Willowdale Rd., Morgantown, WV 26505, USA.
| | - Nancy L Guo
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV 26506, USA.
- Department of Occupational and Environmental Health Sciences, School of Public Health, West Virginia University, Morgantown, WV 26506, USA.
| |
Collapse
|
17
|
Fink MA, Paland H, Herzog S, Grube M, Vogelgesang S, Weitmann K, Bialke A, Hoffmann W, Rauch BH, Schroeder HWS, Bien-Möller S. L-Carnitine-Mediated Tumor Cell Protection and Poor Patient Survival Associated with OCTN2 Overexpression in Glioblastoma Multiforme. Clin Cancer Res 2019; 25:2874-2886. [PMID: 30670496 DOI: 10.1158/1078-0432.ccr-18-2380] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 12/04/2018] [Accepted: 01/10/2019] [Indexed: 11/16/2022]
Abstract
PURPOSE Apoptotic dysregulation, redox adaptive mechanisms, and resilience to hypoxia are major causes of glioblastoma (GBM) resistance to therapy. Commonly known as crucial factors in energy metabolism, OCTN2 (SLC22A5) and its substrate L-carnitine (LC) are increasingly recognized as actors in cytoprotection. This study provides a comprehensive expression and survival analysis of the OCTN2/LC system in GBM and clarifies the system's impact on GBM progression. EXPERIMENTAL DESIGN OCTN2 expression and LC content were measured in 121 resected human GBM specimens and 10 healthy brain samples and analyzed for prognostic significance. Depending on LC administration, the effects of hypoxic, metabolic, and cytotoxic stress on survival and migration of LN18 GBM cells were further studied in vitro. Finally, an orthotopic mouse model was employed to investigate inhibition of the OCTN2/LC system on in vivo GBM growth. RESULTS Compared with healthy brain, OCTN2 expression was increased in primary and even more so in recurrent GBM on mRNA and protein level. High OCTN2 expression was associated with a poor overall patient survival; the unadjusted HR for death was 2.7 (95% CI, 1.47-4.91; P < 0.001). LC administration to GBM cells increased their tolerance toward cytotoxicity, whereas siRNA-mediated OCTN2 silencing led to a loss of tumor cell viability. In line herewith, OCTN2/LC inhibition by meldonium resulted in reduced tumor growth in an orthotopic GBM mouse model. CONCLUSIONS Our data indicate a potential role of the OCTN2/LC system in GBM progression and resistance to therapy, and suggests OCTN2 as a prognostic marker in patients with primary GBM.
Collapse
Affiliation(s)
- Matthias A Fink
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany.,Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Heiko Paland
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany.,Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Susann Herzog
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Markus Grube
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Silke Vogelgesang
- Institute of Pathology, Department of Neuropathology, University Medicine Greifswald, Greifswald, Germany
| | - Kerstin Weitmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Angela Bialke
- Independent Trusted Third Party, University Medicine Greifswald, Greifswald, Germany
| | - Wolfgang Hoffmann
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Bernhard H Rauch
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany
| | - Henry W S Schroeder
- Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Bien-Möller
- Department of Pharmacology/C_DAT, University Medicine Greifswald, Greifswald, Germany. .,Department of Neurosurgery, University Medicine Greifswald, Greifswald, Germany
| |
Collapse
|
18
|
Pochini L, Galluccio M, Scalise M, Console L, Indiveri C. OCTN: A Small Transporter Subfamily with Great Relevance to Human Pathophysiology, Drug Discovery, and Diagnostics. SLAS DISCOVERY 2018; 24:89-110. [PMID: 30523710 DOI: 10.1177/2472555218812821] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OCTN is a small subfamily of membrane transport proteins that belongs to the larger SLC22 family. Two of the three members of the subfamily, namely, OCTN2 and OCTN1, are present in humans. OCTN2 plays a crucial role in the absorption of carnitine from diet and in its distribution to tissues, as demonstrated by the occurrence of severe pathologies caused by malfunctioning or altered expression of this transporter. These findings suggest avoiding a strict vegetarian diet during pregnancy and in childhood. Other roles of OCTN2 are related to the traffic of carnitine derivatives in many tissues. The role of OCTN1 is still unclear, despite the identification of some substrates such as ergothioneine, acetylcholine, and choline. Plausibly, the transporter acts on the control of inflammation and oxidative stress, even though knockout mice do not display phenotypes. A clear role of both transporters has been revealed in drug interaction and delivery. The polyspecificity of the OCTNs is at the base of the interactions with drugs. Interestingly, OCTN2 has been recently exploited in the prodrug approach and in diagnostics. A promising application derives from the localization of OCTN2 in exosomes that represent a noninvasive diagnostic tool.
Collapse
Affiliation(s)
- Lorena Pochini
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Michele Galluccio
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Lara Console
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy
| | - Cesare Indiveri
- 1 Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Arcavacata di Rende, Italy.,2 CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, Bari, Italy
| |
Collapse
|
19
|
Kou L, Sun R, Ganapathy V, Yao Q, Chen R. Recent advances in drug delivery via the organic cation/carnitine transporter 2 (OCTN2/SLC22A5). Expert Opin Ther Targets 2018; 22:715-726. [PMID: 30016594 DOI: 10.1080/14728222.2018.1502273] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
INTRODUCTION Transporters in the plasma membrane have been exploited successfully for the delivery of drugs in the form of prodrugs and nanoparticles. Organic cation/carnitine transporter 2 (OCTN2, SLC22A5) has emerged as a viable target for drug delivery. OCTN2 is a Na+-dependent high-affinity transporter for L-carnitine and a Na+-independent transporter for organic cations. OCTN2 is expressed in the blood-brain barrier, heart, liver, kidney, intestinal tract and placenta and plays an essential role in L-carnitine homeostasis in the body. Areas covered: In recent years, several studies have been reported in the literature describing the utility of OCTN2 to enhance the delivery of drugs, prodrugs and nanoparticles. Here we summarize the salient features of OCTN2 in terms of its role in the cellular uptake of its physiological substrate L-carnitine in physiological and pathological context; the structural requirements for recognition and the recent advances in OCTN2-targeted drug delivery systems, including prodrugs and nanoparticles, are discussed. Expert opinion: This transporter has great potential to be utilized as a target for drug delivery to improve oral absorption of drugs in the intestinal tract. It also has potential to facilitate the transfer of drugs across the biological barriers such as the blood-brain barrier, blood-retinal barrier, and maternal-fetal barrier.
Collapse
Affiliation(s)
- Longfa Kou
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Rui Sun
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| | - Vadivel Ganapathy
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China.,b Department of Cell Biology and Biochemistry , School of Medicine, Texas Tech University Health Sciences Center , Lubbock , TX , USA
| | - Qing Yao
- c School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou , China
| | - Ruijie Chen
- a Department of Pharmacy , The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou , China
| |
Collapse
|
20
|
Console L, Scalise M, Tonazzi A, Giangregorio N, Indiveri C. Characterization of Exosomal SLC22A5 (OCTN2) carnitine transporter. Sci Rep 2018; 8:3758. [PMID: 29491466 PMCID: PMC5830701 DOI: 10.1038/s41598-018-22170-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/19/2018] [Indexed: 12/18/2022] Open
Abstract
Exosomes are extracellular vesicles involved in cell-to-cell communication. Previous large scale proteomics revealed that they contain SLC proteins. However, no data on the function of exosomal SLCs is available, so far. An SLC localized in exosomes was here characterized for the first time: the carnitine transporter OCTN2 (SLC22A5). The protein was detected by Western Blot analysis in HEK293 exosomes. To investigate the functional properties of the exosomal OCTN2, the proteins extracted from vesicles were reconstituted into proteolipsomes and the transport function was measured as uptake of 3H-carnitine. Transport was stimulated by sodium and was dependent on pH. 3H-carnitine uptake was inhibited by Acetyl-carnitine, but not by Asn, Gln and Arg thus excluding interference by ATB0,+, an amino acid transporter which also recognizes carnitine. Cardiolipin failed to stimulate transport, excluding the activity of the mitochondrial Carnitine/acylcarnitine transporter. Increased level of exosomal OCTN2 was induced by treatment of HEK293 with the pro-inflammatory cytokine INFγ. All data concurred to demonstrate that OCTN2 present in exosomes is fully functional and is in its native conformation. Functional OCTN2 was detected also in human urinary exosomes, thus suggesting the OCTN2 exosomal protein as a candidate biomarker for inflammation related pathologies.
Collapse
Affiliation(s)
- Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Mariafrancesca Scalise
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy
| | - Annamaria Tonazzi
- CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126, Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126, Bari, Italy
| | - Cesare Indiveri
- Department DiBEST (Biologia, Ecologia, Scienze della Terra) Unit of Biochemistry and Molecular Biotechnology, University of Calabria, Via Bucci 4C, 87036, Arcavacata di Rende, Italy. .,CNR Institute of Biomembranes and Bioenergetics, via Amendola 165/A, 70126, Bari, Italy.
| |
Collapse
|
21
|
Kou L, Yao Q, Sivaprakasam S, Luo Q, Sun Y, Fu Q, He Z, Sun J, Ganapathy V. Dual targeting of l-carnitine-conjugated nanoparticles to OCTN2 and ATB 0,+ to deliver chemotherapeutic agents for colon cancer therapy. Drug Deliv 2017; 24:1338-1349. [PMID: 28911246 PMCID: PMC8241000 DOI: 10.1080/10717544.2017.1377316] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 09/03/2017] [Accepted: 09/05/2017] [Indexed: 12/21/2022] Open
Abstract
l-Carnitine, obligatory for oxidation of fatty acids, is transported into cells by the Na+-coupled transporter OCTN2 and the Na+/Cl--coupled transporter ATB0,+. Here we investigated the potential of L-carnitine-conjugated poly(lactic-co-glycolic acid) (PLGA) nanoparticles (LC-PLGA NPs) to deliver chemotherapeutic drugs into cancer cells by targeting the nanoparticles to both OCTN2 and ATB0,+. The cellular uptake of LC-PLGA NPs in the breast cancer cell line MCF7 and the colon cancer cell line Caco-2 was increased compared to unmodified nanoparticles, but decreased in the absence of co-transporting ions (Na+ and/or Cl-) or in the presence of competitive substrates for the two transporters. Studies with fluorescently labeled nanoparticles showed their colocalization with both OCTN2 and ATB0,+, confirming the involvement of both transporters in the cellular uptake of LC-PLGA NPs. As the expression levels of OCTN2 and ATB0,+ are higher in colon cancer cells than in normal colon cells, LC-PLGA NPs can be used to deliver chemotherapeutic drugs selectively into cancer cells for colon cancer therapy. With 5-fluorouracil-loaded LC-PLGA NPs, we were able to demonstrate significant increases in the uptake efficiency and cytotoxicity in colon cancer cells that were positive for OCTN2 and ATB0,+. In a 3D spheroid model of tumor growth, LC-PLGA NPs showed increased uptake and enhanced antitumor efficacy. These findings indicate that dual-targeting LC-PLGA NPs to OCTN2 and ATB0,+ has great potential to deliver chemotherapeutic drugs for colon cancer therapy. Dual targeting LC-PLGA NPs to OCTN2 and ATB0,+ can selectively deliver chemotherapeutics to colon cancer cells where both transporters are overexpressed, preventing targeting to normal cells and thus avoiding off-target side effects.
Collapse
Affiliation(s)
- Longfa Kou
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qing Yao
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Sathish Sivaprakasam
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Qiuhua Luo
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Yinghua Sun
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Qiang Fu
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Jin Sun
- Municipal Key Laboratory of Biopharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Vadivel Ganapathy
- Department of Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
22
|
Tonazzi A, Giangregorio N, Console L, De Palma A, Indiveri C. Nitric oxide inhibits the mitochondrial carnitine/acylcarnitine carrier through reversible S-nitrosylation of cysteine 136. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2017; 1858:475-482. [PMID: 28438511 DOI: 10.1016/j.bbabio.2017.04.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/29/2017] [Accepted: 04/20/2017] [Indexed: 12/30/2022]
Abstract
S-nitrosylation of the mitochondrial carnitine/acylcarnitine transporter (CACT) has been investigated on the native and the recombinant proteins reconstituted in proteoliposomes, and on intact mitochondria. The widely-used NO-releasing compound, GSNO, strongly inhibited the antiport measured in proteoliposomes reconstituted with the native CACT from rat liver mitochondria or the recombinant rat CACT over-expressed in E. coli. Inhibition was reversed by the reducing agent dithioerythritol, indicating a reaction mechanism based on nitrosylation of Cys residues of the CACT. The half inhibition constant (IC50) was very similar for the native and recombinant proteins, i.e., 74 and 71μM, respectively. The inhibition resulted to be competitive with respect the substrate, carnitine. NO competed also with NEM, correlating well with previous data showing interference of NEM with the substrate transport path. Using a site-directed mutagenesis approach on Cys residues of the recombinant CACT, the target of NO was identified. C136 plays a major role in the reaction mechanism. The occurrence of S-nitrosylation was demonstrated in intact mitochondria after treatment with GSNO, immunoprecipitation and immunostaining of CACT with a specific anti NO-Cys antibody. In parallel samples, transport activity of CACT measured in intact mitochondria, was strongly inhibited after GSNO treatment. The possible physiological and pathological implications of the post-translational modification of CACT are discussed.
Collapse
Affiliation(s)
- Annamaria Tonazzi
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Nicola Giangregorio
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy
| | - Lara Console
- Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy
| | - Annalisa De Palma
- Department of Bioscience, Biotechnology and Biopharmaceutics, University of Bari, Italy
| | - Cesare Indiveri
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnology, via Amendola 165/A, 70126 Bari, Italy; Department DiBEST (Biologia, Ecologia, Scienze della Terra), Unit of Biochemistry and Molecular Biotechnology, Via Bucci 4C, University of Calabria, 87036 Arcavacata di Rende, Italy.
| |
Collapse
|
23
|
Han A, Bennett N, MacDonald A, Johnstone M, Whelan J, Donohoe DR. Cellular Metabolism and Dose Reveal Carnitine-Dependent and -Independent Mechanisms of Butyrate Oxidation in Colorectal Cancer Cells. J Cell Physiol 2015; 231:1804-13. [DOI: 10.1002/jcp.25287] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Accepted: 12/09/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Anna Han
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Natalie Bennett
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Amber MacDonald
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Megan Johnstone
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Jay Whelan
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| | - Dallas R. Donohoe
- Department of Nutrition; University of Tennessee; Knoxville Tennessee
| |
Collapse
|
24
|
Sahoo S, Aurich MK, Jonsson JJ, Thiele I. Membrane transporters in a human genome-scale metabolic knowledgebase and their implications for disease. Front Physiol 2014; 5:91. [PMID: 24653705 PMCID: PMC3949408 DOI: 10.3389/fphys.2014.00091] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 02/17/2014] [Indexed: 01/18/2023] Open
Abstract
Membrane transporters enable efficient cellular metabolism, aid in nutrient sensing, and have been associated with various diseases, such as obesity and cancer. Genome-scale metabolic network reconstructions capture genomic, physiological, and biochemical knowledge of a target organism, along with a detailed representation of the cellular metabolite transport mechanisms. Since the first reconstruction of human metabolism, Recon 1, published in 2007, progress has been made in the field of metabolite transport. Recently, we published an updated reconstruction, Recon 2, which significantly improved the metabolic coverage and functionality. Human metabolic reconstructions have been used to investigate the role of metabolism in disease and to predict biomarkers and drug targets. Given the importance of cellular transport systems in understanding human metabolism in health and disease, we analyzed the coverage of transport systems for various metabolite classes in Recon 2. We will review the current knowledge on transporters (i.e., their preferred substrates, transport mechanisms, metabolic relevance, and disease association for each metabolite class). We will assess missing coverage and propose modifications and additions through a transport module that is functional when combined with Recon 2. This information will be valuable for further refinements. These data will also provide starting points for further experiments by highlighting areas of incomplete knowledge. This review represents the first comprehensive overview of the transporters involved in central metabolism and their transport mechanisms, thus serving as a compendium of metabolite transporters specific for human metabolic reconstructions.
Collapse
Affiliation(s)
- Swagatika Sahoo
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Maike K Aurich
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| | - Jon J Jonsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Iceland Reykjavik, Iceland ; Department of Genetics and Molecular Medicine, Landspitali, National University Hospital of Iceland Reykjavik, Iceland
| | - Ines Thiele
- Center for Systems Biology, University of Iceland Reykjavik, Iceland ; Molecular Systems Physiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg Belval, Luxembourg
| |
Collapse
|
25
|
Indiveri C, Galluccio M, Scalise M, Pochini L. Strategies of bacterial over expression of membrane transporters relevant in human health: the successful case of the three members of OCTN subfamily. Mol Biotechnol 2013; 54:724-36. [PMID: 22843325 PMCID: PMC3636443 DOI: 10.1007/s12033-012-9586-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The OCTN subfamily includes OCTN1, 2, and 3 which are structurally and functionally related. These transporters are involved in maintenance of the carnitine homeostasis, which is essential in mammals for fatty acid β-oxidation, VLDL assembly, post-translational modifications, and other essential functions. Indeed, defects of these transporters lead to severe pathologies. OCTN1 and OCTN2 are expressed in many human tissues, while OCTN3 gene has been identified only in mouse and rat. The transporters mediate transport of carnitine and other substrates with different efficiencies and mechanisms. In order to over express the three proteins, a screening of many combinations of E. coli strains with plasmid constructs has been conducted. Only Rosetta(DE3) or Rosettagami2(DE3) gave significant expression. Higher protein amounts were firstly obtained with pET-41a(+) or pGEX-4T1 carrying fusion protein tags which required additional purification passages. Vectors carrying only a 6His tag, suitable for single passage purification, were preferred even though they lead to lower initial expression levels. Expressions were then increased optimizing several critical parameters. hOCTN1 was obtained with pH6EX3 in RosettaGami2(DE3)pLysS. hOCTN2 and mOCTN3 were obtained using pET-21a(+) in Rosetta(DE3). In particular, hOCTN2 was expressed only after codon bias, substituting the second triplet CGG with AAA (R2K mutant). The best growth conditions for hOCTN1 and mOCTN3 were 28 °C and 6 h of induction, while 4 h of induction for hOCTN2R2K. The proteins collected in the insoluble fraction of cell lysates, solubilized with sarkosyl, were purified by Ni-chelating chromatography. Final yield was 2.0, 3.0, or 3.5 mg/l of cell culture for mOCTN3, hOCTN1, or hOCTN2R2K. The data indicated that, in spite of the close evolutionary relations, several factors play different critical roles in bacterial expression of the three proteins, thus general criteria cannot be underlined. However, the strategy of dealing with related proteins revealed to be finally successful for over expressing all the three subfamily members.
Collapse
Affiliation(s)
- Cesare Indiveri
- Department of Cell Biology, University of Calabria, Arcavacata di Rende, Italy.
| | | | | | | |
Collapse
|
26
|
Qu Q, Qu J, Zhan M, Wu LX, Zhang YW, Lou XY, Fu LJ, Zhou HH. Different involvement of promoter methylation in the expression of organic cation/carnitine transporter 2 (OCTN2) in cancer cell lines. PLoS One 2013; 8:e76474. [PMID: 24146874 PMCID: PMC3797819 DOI: 10.1371/journal.pone.0076474] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 08/29/2013] [Indexed: 01/12/2023] Open
Abstract
Organic cation/carnitine transporter 2 (OCTN2) is responsible for the cellular uptake of the antineoplastic agent, oxaliplatin. Epigenetic modification is a possible mechanism of altered drug-transporter expression in cancers, leading to altered efficacy of chemotherapeutic drugs. However, the mechanisms governing OCTN2 regulation are not completely understood. In this study, the low levels of OCTN2 in HepG2 and LS174T cells were elevated by the demethylating reagent, decitabine (DCA). To further reveal the epigenetic mechanism of down-regulation of OCTN2, we found that Region-1 within the OCTN2 promoter (spanning −354 to +85) was a determinant of OCTN2 expression in a luciferase reporter assay. Moreover, methylation-specific PCR (MSP) and bisulfite genomic sequencing showed that the degree of individual methylated CpG sites within this region was inversely correlated with the levels of OCTN2 in different cancer cells. Application of DCA to HepG2 and LS174T cells reversed the hypermethylation status of the OCTN2 promoter and increased OCTN2 expression, enhancing cellular uptake of oxaliplatin. Thus, we identified that promoter methylation is responsible for epigenetic down-regulation of OCTN2 in HepG2 and LS174T cells. Given the essential role of OCTN2 in cancer cell uptake of chemotherapeutics, and thus treatment efficacy, pretreatment with a demethylating reagent is a possible strategy for optimizing pharmacotherapies against cancers.
Collapse
Affiliation(s)
- Qiang Qu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jian Qu
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Min Zhan
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Lan-Xiang Wu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Yi-Wen Zhang
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Xiao-Ya Lou
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Li-Juan Fu
- Institute of Life Sciences, Chongqing Medical University, Chongqing, China
| | - Hong-Hao Zhou
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- * E-mail:
| |
Collapse
|
27
|
Pochini L, Scalise M, Galluccio M, Indiveri C. OCTN cation transporters in health and disease: role as drug targets and assay development. ACTA ACUST UNITED AC 2013; 18:851-67. [PMID: 23771822 DOI: 10.1177/1087057113493006] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The three members of the organic cation transporter novel subfamily are known to be involved in interactions with xenobiotic compounds. These proteins are characterized by 12 transmembrane segments connected by nine short loops and two large hydrophilic loops. It has been recently pointed out that acetylcholine is a physiological substrate of OCTN1. Its transport could be involved in nonneuronal cholinergic functions. OCTN2 maintains the carnitine homeostasis, resulting from intestinal absorption, distribution to tissues, and renal excretion/reabsorption. OCTN3, identified only in mouse, mediates also carnitine transport. OCTN1 and OCTN2 are associated with several pathologies, such as inflammatory bowel disease, primary carnitine deficiency, diabetes, neurological disorders, and cancer, thus representing useful pharmacological targets. The function and interaction with drugs of OCTNs have been studied in intact cell systems and in proteoliposomes. The latter experimental model enables reduced interference from other transporters or enzyme pathways. Using proteoliposomes, the molecular bases of toxicity of some drugs have recently been revealed. Therefore, proteoliposomes represent a promising experimental tool suitable for large-scale molecular screening of interactions of OCTNs with chemicals regarding human health.
Collapse
Affiliation(s)
- Lorena Pochini
- Laboratory of Biochemistry and Molecular Biotechnology, Department BEST (Biologia, Ecologia, Scienze della Terra), University of Calabria, Italy
| | | | | | | |
Collapse
|
28
|
Tonazzi A, Console L, Indiveri C. Inhibition of mitochondrial carnitine/acylcarnitine transporter by H2O2: Molecular mechanism and possible implication in pathophysiology. Chem Biol Interact 2013; 203:423-9. [DOI: 10.1016/j.cbi.2013.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Revised: 01/14/2013] [Accepted: 01/31/2013] [Indexed: 12/29/2022]
|
29
|
Inactivation of the glutamine/amino acid transporter ASCT2 by 1,2,3-dithiazoles: proteoliposomes as a tool to gain insights in the molecular mechanism of action and of antitumor activity. Toxicol Appl Pharmacol 2012; 265:93-102. [PMID: 23010140 DOI: 10.1016/j.taap.2012.09.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/12/2012] [Accepted: 09/14/2012] [Indexed: 11/21/2022]
Abstract
The ASCT2 transport system catalyses a sodium-dependent antiport of glutamine and other neutral amino acids which is involved in amino acid metabolism. A library of 1,2,3-dithiazoles was designed, synthesized and evaluated as inhibitors of the glutamine/amino acid ASCT2 transporter in the model system of proteoliposomes reconstituted with the rat liver transporter. Fifteen of the tested compounds at concentration of 20μM or below, inhibited more than 50% the glutamine/glutamine antiport catalysed by the reconstituted transporter. These good inhibitors bear a phenyl ring with electron withdrawing substituents. The inhibition was reversed by 1,4-dithioerythritol indicating that the effect was likely owed to the formation of mixed sulfides with the protein's Cys residue(s). A dose-response analysis of the most active compounds gave IC(50) values in the range of 3-30μM. Kinetic inhibition studies indicated a non-competitive inhibition, presumably because of a potential covalent interaction of the dithiazoles with cysteine thiol groups that are not located at the substrate binding site. Indeed, computational studies using a homology structural model of ASCT2 transporter, suggested as possible binding targets, Cys-207 or Cys-210, that belong to the CXXC motif of the protein.
Collapse
|