1
|
Liao Y, Wang XJ, Ma GL, Candra H, Qiu En SL, Khandelwal S, Liang ZX. Biosynthesis of Octacosamicin A: Uncommon Starter/extender Units and Product Releasing via Intermolecular Amidation. Chembiochem 2024; 25:e202300590. [PMID: 37908177 DOI: 10.1002/cbic.202300590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/02/2023]
Abstract
Octacosamicin A is an antifungal metabolite featuring a linear polyene-polyol chain flanked by N-hydroxyguanidine and glycine moieties. We report here that sub-inhibitory concentrations of streptomycin elicited the production of octacosamicin A in Amycolatopsis azurea DSM 43854T . We identified the biosynthetic gene cluster (oca BGC) that encodes a modular polyketide synthase (PKS) system for assembling the polyene-polyol chain of octacosamicin A. Our analysis suggested that the N-hydroxyguanidine unit originates from a 4-guanidinobutyryl-CoA starter unit, while the PKS incorporates an α-hydroxyketone moiety using a (2R)-hydroxymalonyl-CoA extender unit. The modular PKS system contains a non-canonical terminal module that lacks thioesterase (TE) and acyl carrier protein (ACP) domains, indicating the biosynthesis is likely to employ an unconventional and cryptic off-loading mechanism that attaches glycine to the polyene-polyol chain via an intermolecular amidation reaction.
Collapse
Affiliation(s)
- Yanghui Liao
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Xue-Jiao Wang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Guang-Lei Ma
- Future Health Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, 314102, China
| | - Hartono Candra
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Sean Lee Qiu En
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Srashti Khandelwal
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| | - Zhao-Xun Liang
- School of Biological Sciences, Nanyang Technological University, Singapore, 67551, Singapore
| |
Collapse
|
2
|
Wang Q, Liu N, Deng Y, Guan Y, Xiao H, Nitka TA, Yang H, Yadav A, Vukovic L, Mathews II, Chen X, Kim CY. Triepoxide formation by a flavin-dependent monooxygenase in monensin biosynthesis. Nat Commun 2023; 14:6273. [PMID: 37805629 PMCID: PMC10560226 DOI: 10.1038/s41467-023-41889-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 09/18/2023] [Indexed: 10/09/2023] Open
Abstract
Monensin A is a prototypical natural polyether polyketide antibiotic. It acts by binding a metal cation and facilitating its transport across the cell membrane. Biosynthesis of monensin A involves construction of a polyene polyketide backbone, subsequent epoxidation of the alkenes, and, lastly, formation of cyclic ethers via epoxide-opening cyclization. MonCI, a flavin-dependent monooxygenase, is thought to transform all three alkenes in the intermediate polyketide premonensin A into epoxides. Our crystallographic study has revealed that MonCI's exquisite stereocontrol is due to the preorganization of the active site residues which allows only one specific face of the alkene to approach the reactive C(4a)-hydroperoxyflavin moiety. Furthermore, MonCI has an unusually large substrate-binding cavity that can accommodate premonensin A in an extended or folded conformation which allows any of the three alkenes to be placed next to C(4a)-hydroperoxyflavin. MonCI, with its ability to perform multiple epoxidations on the same substrate in a stereospecific manner, demonstrates the extraordinary versatility of the flavin-dependent monooxygenase family of enzymes.
Collapse
Affiliation(s)
- Qian Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Ning Liu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yaming Deng
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Yuze Guan
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Hongli Xiao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Tara A Nitka
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China
| | - Anju Yadav
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Lela Vukovic
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, 2575 Sand Hill Road, Menlo Park, CA, 95124, USA
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, 710127, Xi'an, China.
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, TX, 79968, USA.
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Geyer K, Hartmann S, Singh RR, Erb TJ. Multiple Functions of the Type II Thioesterase Associated with the Phoslactomycin Polyketide Synthase. Biochemistry 2022; 61:2662-2671. [DOI: 10.1021/acs.biochem.2c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Kyra Geyer
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D-35043 Marburg, Germany
| | - Steffen Hartmann
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D-35043 Marburg, Germany
| | - Randolph R. Singh
- Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Avenue du Swing 6, L-4367 Belvaux, Luxembourg
| | - Tobias J. Erb
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Street 10, D-35043 Marburg, Germany
- SYNMIKRO Center for Synthetic Microbiology, Karl-von-Frisch-Street 16, D-35043 Marburg, Germany
| |
Collapse
|
4
|
Studies on the Selectivity Mechanism of Wild-Type E. coli Thioesterase ‘TesA and Its Mutants for Medium- and Long-Chain Acyl Substrates. Catalysts 2022. [DOI: 10.3390/catal12091026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
E. coli thioesterase ‘TesA is an important enzyme in fatty acid production. Medium-chain fatty acids (MCFAs, C6-C10) are of great interest due to their similar physicochemical properties to petroleum-based oleo-chemicals. It has been shown that wild-type ‘TesA had better selectivity for long-chain acyl substrates (≥C16), while the two mutants ‘TesAE142D/Y145G and ‘TesAM141L/E142D/Y145G had better selectivity for medium-chain acyl substrates. However, it is difficult to obtain the selectivity mechanism of substrates for proteins by traditional experimental methods. In this study, in order to obtain more MCFAs, we analyzed the binding mode of proteins (‘TesA, ‘TesAE142D/Y145G and ‘TesAM141L/E142D/Y145G) and substrates (C16/C8-N-acetylcysteamine analogs, C16/C8-SNAC), the key residues and catalytic mechanisms through molecular docking, molecular dynamics simulations and the molecular mechanics Poisson–Boltzmann surface area (MM/PBSA). The results showed that several main residues related to catalysis, including Ser10, Asn73 and His157, had a strong hydrogen bond interaction with the substrates. The mutant region (Met141-Tyr146) and loop107–113 were mainly dominated by Van der Waals contributions to the substrates. For C16-SNAC, except for ‘TesAM141L/E142D/Y145G with large conformational changes, there were strong interactions at both head and tail ends that distorted the substrate into a more favorable high-energy conformation for the catalytic reaction. For C8-SNAC, the head and tail found it difficult to bind to the enzyme at the same time due to insufficient chain length, which made the substrate binding sites more variable, so ‘TesAM141L/E142D/Y145G with better binding sites had the strongest activity, and ‘TesA had the weakest activity, conversely. In short, the matching substrate chain and binding pocket length are the key factors affecting selectivity. This will be helpful for the further improvement of thioesterases.
Collapse
|
5
|
Little R, Trottmann F, Preissler M, Hertweck C. An intramodular thioesterase domain catalyses chain release in the biosynthesis of a cytotoxic virulence factor. RSC Chem Biol 2022; 3:1121-1128. [PMID: 36128506 PMCID: PMC9428774 DOI: 10.1039/d2cb00121g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 07/15/2022] [Indexed: 11/21/2022] Open
Abstract
The bimodular PKS-NRPS BurA has two unusual non-C-terminal thioesterase domains. We show that the intramodular TE-B is responsible for the hydrolytic release of gonyol, an intermediate for the biosynthesis of the virulence factor malleicyprol.
Collapse
Affiliation(s)
- Rory Little
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| | - Felix Trottmann
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| | - Miriam Preissler
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology HKI. Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
6
|
Little RF, Hertweck C. Chain release mechanisms in polyketide and non-ribosomal peptide biosynthesis. Nat Prod Rep 2021; 39:163-205. [PMID: 34622896 DOI: 10.1039/d1np00035g] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Review covering up to mid-2021The structure of polyketide and non-ribosomal peptide natural products is strongly influenced by how they are released from their biosynthetic enzymes. As such, Nature has evolved a diverse range of release mechanisms, leading to the formation of bioactive chemical scaffolds such as lactones, lactams, diketopiperazines, and tetronates. Here, we review the enzymes and mechanisms used for chain release in polyketide and non-ribosomal peptide biosynthesis, how these mechanisms affect natural product structure, and how they could be utilised to introduce structural diversity into the products of engineered biosynthetic pathways.
Collapse
Affiliation(s)
- Rory F Little
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| | - Christian Hertweck
- Leibniz Institute for Natural Product Research and Infection Biology, HKI, Germany.
| |
Collapse
|
7
|
Drufva EE, Hix EG, Bailey CB. Site directed mutagenesis as a precision tool to enable synthetic biology with engineered modular polyketide synthases. Synth Syst Biotechnol 2020; 5:62-80. [PMID: 32637664 PMCID: PMC7327777 DOI: 10.1016/j.synbio.2020.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/04/2022] Open
Abstract
Modular polyketide synthases (PKSs) are a multidomain megasynthase class of biosynthetic enzymes that have great promise for the development of new compounds, from new pharmaceuticals to high value commodity and specialty chemicals. Their colinear biosynthetic logic has been viewed as a promising platform for synthetic biology for decades. Due to this colinearity, domain swapping has long been used as a strategy to introduce molecular diversity. However, domain swapping often fails because it perturbs critical protein-protein interactions within the PKS. With our increased level of structural elucidation of PKSs, using judicious targeted mutations of individual residues is a more precise way to introduce molecular diversity with less potential for global disruption of the protein architecture. Here we review examples of targeted point mutagenesis to one or a few residues harbored within the PKS that alter domain specificity or selectivity, affect protein stability and interdomain communication, and promote more complex catalytic reactivity.
Collapse
Key Words
- ACP, acyl carrier protein
- AT, acyltransferase
- DEBS, 6-deoxyerthronolide B synthase
- DH, dehydratase
- EI, enoylisomerase
- ER, enoylreductase
- KR, ketoreductase
- KS, ketosynthase
- LM, loading module
- MT, methyltransferase
- Mod, module
- PKS, polyketide synthase
- PS, pyran synthase
- Polyketide synthase
- Protein engineering
- Rational design
- SNAC, N-acetyl cysteamine
- Saturation mutagenesis
- Site directed mutagenesis
- Synthetic biology
Collapse
Affiliation(s)
- Erin E. Drufva
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Elijah G. Hix
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| | - Constance B. Bailey
- Department of Chemistry, University of Tennessee-Knoxville, Knoxville, TN, 37996, USA
| |
Collapse
|
8
|
Regulatory Patterns of Crp on Monensin Biosynthesis in Streptomyces cinnamonensis. Microorganisms 2020; 8:microorganisms8020271. [PMID: 32079344 PMCID: PMC7074812 DOI: 10.3390/microorganisms8020271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/12/2020] [Accepted: 02/15/2020] [Indexed: 01/03/2023] Open
Abstract
Monensin, produced by Streptomyces cinnamonensis, is a polyether ionophore antibiotic widely used as a coccidiostat and a growth-promoting agent in agricultural industry. In this study, cyclic AMP receptor protein (Crp), the global transcription factor for regulation of monensin biosynthesis, was deciphered. The overexpression and antisense RNA silencing of crp revealed that Crp plays a positive role in monensin biosynthesis. RNA sequencing analysis indicated that Crp exhibited extensive regulatory effects on genes involved in both primary metabolic pathways and the monensin biosynthetic gene cluster (mon). The primary metabolic genes, including acs, pckA, accB, acdH, atoB, mutB, epi and ccr, which are pivotal in the biosynthesis of monensin precursors malonyl-CoA, methylmalonyl-CoA and ethylmalonyl-CoA, are transcriptionally upregulated by Crp. Furthermore, Crp upregulates the expression of most mon genes, including all PKS genes (monAI to monAVIII), tailoring genes (monBI-monBII-monCI, monD and monAX) and a pathway-specific regulatory gene (monRI). Enhanced precursor supply and the upregulated expression of mon cluser by Crp would allow the higher production of monensin in S. cinnamonensis. This study gives a more comprehensive understanding of the global regulator Crp and extends the knowledge of Crp regulatory mechanism in Streptomyces.
Collapse
|
9
|
Genomics-driven discovery of the biosynthetic gene cluster of maduramicin and its overproduction in Actinomadura sp. J1-007. ACTA ACUST UNITED AC 2020; 47:275-285. [DOI: 10.1007/s10295-019-02256-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 12/09/2019] [Indexed: 02/07/2023]
Abstract
Abstract
Maduramicin is the most efficient and possesses the largest market share of all anti-coccidiosis polyether antibiotics (ionophore); however, its biosynthetic gene cluster (BGC) has yet to been identified, and the associated strains have not been genetically engineered. Herein, we performed whole-genome sequencing of a maduramicin-producing industrial strain of Actinomadura sp. J1-007 and identified its BGC. Additionally, we analyzed the identified BGCs in silico to predict the biosynthetic pathway of maduramicin. We then developed a conjugation method for the non-spore-forming Actinomadura sp. J1-007, consisting of a site-specific integration method for gene overexpression. The maduramicin titer increased by 30% to 7.16 g/L in shake-flask fermentation following overexpression of type II thioesterase MadTE that is the highest titer at present. Our findings provide insights into the biosynthetic mechanism of polyethers and provide a platform for the metabolic engineering of maduramicin-producing microorganisms for overproduction and development of maduramicin analogs in the future.
Collapse
|
10
|
Robertsen HL, Musiol-Kroll EM. Actinomycete-Derived Polyketides as a Source of Antibiotics and Lead Structures for the Development of New Antimicrobial Drugs. Antibiotics (Basel) 2019; 8:E157. [PMID: 31547063 PMCID: PMC6963833 DOI: 10.3390/antibiotics8040157] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 01/15/2023] Open
Abstract
Actinomycetes are remarkable producers of compounds essential for human and veterinary medicine as well as for agriculture. The genomes of those microorganisms possess several sets of genes (biosynthetic gene cluster (BGC)) encoding pathways for the production of the valuable secondary metabolites. A significant proportion of the identified BGCs in actinomycetes encode pathways for the biosynthesis of polyketide compounds, nonribosomal peptides, or hybrid products resulting from the combination of both polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). The potency of these molecules, in terms of bioactivity, was recognized in the 1940s, and started the "Golden Age" of antimicrobial drug discovery. Since then, several valuable polyketide drugs, such as erythromycin A, tylosin, monensin A, rifamycin, tetracyclines, amphotericin B, and many others were isolated from actinomycetes. This review covers the most relevant actinomycetes-derived polyketide drugs with antimicrobial activity, including anti-fungal agents. We provide an overview of the source of the compounds, structure of the molecules, the biosynthetic principle, bioactivity and mechanisms of action, and the current stage of development. This review emphasizes the importance of actinomycetes-derived antimicrobial polyketides and should serve as a "lexicon", not only to scientists from the Natural Products field, but also to clinicians and others interested in this topic.
Collapse
Affiliation(s)
- Helene L Robertsen
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| | - Ewa M Musiol-Kroll
- Interfakultäres Institut für Mikrobiologie und Infektionsmedizin, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany.
| |
Collapse
|
11
|
Guo F, Zhang H, Eltahan R, Zhu G. Molecular and Biochemical Characterization of a Type II Thioesterase From the Zoonotic Protozoan Parasite Cryptosporidium parvum. Front Cell Infect Microbiol 2019; 9:199. [PMID: 31231619 PMCID: PMC6568194 DOI: 10.3389/fcimb.2019.00199] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 05/22/2019] [Indexed: 12/05/2022] Open
Abstract
Cryptosporidium parvum is a globally important zoonotic parasite capable of causing severe to deadly diarrhea in humans and animals. Its small genome (~9.1 Mb) encodes not only a highly streamlined metabolism, but also a 25-kb, 3-module fatty acid synthase (CpFAS1) and a 40-kb, 7-module polyketide synthase (CpPKS1). The two megasynthases contain a C-terminal reductase domain to release the final products with predicted chain lengths of ≥C22 for CpFAS1 or C28 to C38 for CpPKS1.The parasite genome also encodes a discrete thioesterase ortholog, suggesting its role to be an alternative tool in releasing the final products from CpFAS1 and/or CpPKS1, or as an editor to remove non-reactive residues or aberrant intermediates, or to control starter units as seen in other parasites. In this study, we have confirmed that this C. parvum thioesterase is a type II thioesterase (thus named as CpTEII). CpTEII contains motifs and a catalytic triad characteristic to the type II thioesterase family. CpTEII is expressed during the entire parasite life cycle stages with the highest levels of expression in the later developmental stages. CpTEII showed the highest hydrolytic activity toward C10:0 decanoyl-CoA, so we speculated that CpTEII may mainly act as an editor to remove non-reactive residues and/or aberrant medium acyl chain from CpFAS1 and/or CpPKS1. However, we cannot rule out the possibility that CpTEII may also participate in the release of final products from CpFAS1 because of its moderate activity on C20:0, C:22:0 and C24:0 acyl-CoA thioesters (i.e., ~20–30% activity vs. decanoyl-CoA).
Collapse
Affiliation(s)
- Fengguang Guo
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Haili Zhang
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Rana Eltahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| | - Guan Zhu
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, United States
| |
Collapse
|
12
|
Grote M, Kushnir S, Pryk N, Möller D, Erver J, Ismail-Ali A, Schulz F. Identification of crucial bottlenecks in engineered polyketide biosynthesis. Org Biomol Chem 2019; 17:6374-6385. [DOI: 10.1039/c9ob00831d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Quo vadis combinatorial biosynthesis: STOP signs through substrate scope limitations lower the yields in engineered polyketide biosynthesis using cis-AT polyketide synthases.
Collapse
Affiliation(s)
- Marius Grote
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Susanna Kushnir
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Niclas Pryk
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - David Möller
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Julian Erver
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Ahmed Ismail-Ali
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| | - Frank Schulz
- Organische Chemie 1
- AG Naturstoffchemie und –biochemie
- Fakultät für Chemie und Biochemie
- Ruhr-Universität Bochum
- 44780 Bochum
| |
Collapse
|
13
|
Ohlemacher SI, Xu Y, Kober DL, Malik M, Nix JC, Brett TJ, Henderson JP. YbtT is a low-specificity type II thioesterase that maintains production of the metallophore yersiniabactin in pathogenic enterobacteria. J Biol Chem 2018; 293:19572-19585. [PMID: 30355735 PMCID: PMC6314147 DOI: 10.1074/jbc.ra118.005752] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Clinical isolates of Yersinia, Klebsiella, and Escherichia coli frequently secrete the small molecule metallophore yersiniabactin (Ybt), which passivates and scavenges transition metals during human infections. YbtT is encoded within the Ybt biosynthetic operon and is critical for full Ybt production in bacteria. However, its biosynthetic function has been unclear because it is not essential for Ybt production by the in vitro reconstituted nonribosomal peptide synthetase/polyketide synthase (NRPS/PKS) pathway. Here, we report the structural and biochemical characterization of YbtT. YbtT structures at 1.4-1.9 Å resolution possess a serine hydrolase catalytic triad and an associated substrate chamber with features similar to those previously reported for low-specificity type II thioesterases (TEIIs). We found that YbtT interacts with the two major Ybt biosynthetic proteins, HMWP1 (high-molecular-weight protein 1) and HMWP2 (high-molecular-weight protein 2), and hydrolyzes a variety of aromatic and acyl groups from their phosphopantetheinylated carrier protein domains. In vivo YbtT titration in uropathogenic E. coli revealed a distinct optimum for Ybt production consistent with a tradeoff between clearing both stalled inhibitory intermediates and productive Ybt precursors from HMWP1 and HMWP2. These results are consistent with a model in which YbtT maintains cellular Ybt biosynthesis by removing nonproductive, inhibitory thioesters that form aberrantly at multiple sites on HMWP1 and HMWP2.
Collapse
Affiliation(s)
- Shannon I Ohlemacher
- From the Center for Women's Infectious Diseases Research
- Division of Infectious Diseases
- Department of Internal Medicine, and
| | - Yiquan Xu
- From the Center for Women's Infectious Diseases Research
- Division of Infectious Diseases
- Department of Internal Medicine, and
| | - Daniel L Kober
- Department of Internal Medicine, and
- Division of Pulmonary and Critical Care Medicine
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110 and
| | - Mahnoor Malik
- From the Center for Women's Infectious Diseases Research
- Division of Infectious Diseases
- Department of Internal Medicine, and
| | - Jay C Nix
- the Molecular Biology Consortium, Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Tom J Brett
- Department of Internal Medicine, and
- Division of Pulmonary and Critical Care Medicine
- Department of Cell Biology and Physiology, Washington University, St. Louis, Missouri 63110 and
| | - Jeffrey P Henderson
- From the Center for Women's Infectious Diseases Research,
- Division of Infectious Diseases
- Department of Internal Medicine, and
| |
Collapse
|
14
|
Recycling of Overactivated Acyls by a Type II Thioesterase during Calcimycin Biosynthesis in Streptomyces chartreusis NRRL 3882. Appl Environ Microbiol 2018; 84:AEM.00587-18. [PMID: 29654175 DOI: 10.1128/aem.00587-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 03/30/2018] [Indexed: 02/01/2023] Open
Abstract
Type II thioesterases typically function as editing enzymes, removing acyl groups that have been misconjugated to acyl carrier proteins during polyketide secondary metabolite biosynthesis as a consequence of biosynthetic errors. Streptomyces chartreusis NRRL 3882 produces the pyrrole polyether ionophoric antibiotic, and we have identified the presence of a putative type II thioesterase-like sequence, calG, within the biosynthetic gene cluster involved in the antibiotic's synthesis. However, targeted gene mutagenesis experiments in which calG was inactivated in the organism did not lead to a decrease in calcimycin production but rather reduced the strain's production of its biosynthetic precursor, cezomycin. Results from in vitro activity assays of purified, recombinant CalG protein indicated that it was involved in the hydrolysis of cezomycin coenzyme A (cezomycin-CoA), as well as other acyl CoAs, but was not active toward 3-S-N-acetylcysteamine (SNAC; the mimic of the polyketide chain-releasing precursor). Further investigation of the enzyme's activity showed that it possessed a cezomycin-CoA hydrolysis Km of 0.67 mM and a kcat of 17.77 min-1 and was significantly inhibited by the presence of Mn2+ and Fe2+ divalent cations. Interestingly, when S. chartreusis NRRL 3882 was cultured in the presence of inorganic nitrite, NaNO2, it was observed that the production of calcimycin rather than cezomycin was promoted. Also, supplementation of S. chartreusis NRRL 3882 growth medium with the divalent cations Ca2+, Mg2+, Mn2+, and Fe2+ had a similar effect. Taken together, these observations suggest that CalG is not responsible for megasynthase polyketide precursor chain release during the synthesis of calcimycin or for retaining the catalytic efficiency of the megasynthase enzyme complex as is supposed to be the function for type II thioesterases. Rather, our results suggest that CalG is a dedicated thioesterase that prevents the accumulation of cezomycin-CoA when intracellular nitrogen is limited, an apparently new and previously unreported function of type II thioesterases.IMPORTANCE Type II thioesterases (TEIIs) are generally regarded as being responsible for removing aberrant acyl groups that block polyketide production, thereby maintaining the efficiency of the megasynthase involved in this class of secondary metabolites' biosynthesis. Specifically, this class of enzyme is believed to be involved in editing misprimed precursors, controlling initial units, providing key intermediates, and releasing final synthetic products in the biosynthesis of this class of secondary metabolites. Our results indicate that the putative TEII CalG present in the calcimycin (A23187)-producing organism Streptomyces chartreusis NRRL 3882 is not important either for the retention of catalytic efficiency of, or for the release of the product compound from, the megasynthase involved in calcimycin biosynthesis. Rather, the enzyme is involved in regulating/controlling the pool size of the calcimycin biosynthetic precursor, cezomycin, by hydrolysis of its CoA derivative. This novel function of CalG suggests a possible additional activity for enzymes belonging to the TEII protein family and promotes better understanding of the overall biosynthetic mechanisms involved in the production of this class of secondary metabolites.
Collapse
|
15
|
Guntaka NS, Healy AR, Crawford JM, Herzon SB, Bruner SD. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway. ACS Chem Biol 2017; 12:2598-2608. [PMID: 28846367 PMCID: PMC5830302 DOI: 10.1021/acschembio.7b00479] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Colibactin is a genotoxic hybrid nonribosomal peptide/polyketide secondary metabolite produced by various pathogenic and probiotic bacteria residing in the human gut. The presence of colibactin metabolites has been correlated to colorectal cancer formation in several studies. The specific function of many gene products in the colibactin gene cluster can be predicted. However, the role of ClbQ, a type II editing thioesterase, has not been established. The importance of ClbQ has been demonstrated by genetic deletions that abolish colibactin cytotoxic activity, and recent studies suggest an atypical role in releasing pathway intermediates from the assembly line. Here we report the 2.0 Å crystal structure and biochemical characterization of ClbQ. Our data reveal that ClbQ exhibits greater catalytic efficiency toward acyl-thioester substrates as compared to precolibactin intermediates and does not discriminate among carrier proteins. Cyclized pyridone-containing colibactins, which are off-pathway derivatives, are not viable substrates for ClbQ, while linear precursors are, supporting a role of ClbQ in facilitating the promiscuous off-loading of premature precolibactin metabolites and novel insights into colibactin biosynthesis.
Collapse
Affiliation(s)
- Naga Sandhya Guntaka
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Alan R. Healy
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
| | - Jason M. Crawford
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Chemical Biology Institute, Yale University, West Haven, Connecticut 06516, United States
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, Connecticut 06536, United States
| | - Seth B. Herzon
- Department of Chemistry, Yale University, New Haven, Connecticut 06520, United States
- Department of Pharmacology, Yale School of Medicine, New Haven, Connecticut 06520, United States
| | - Steven D. Bruner
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Barajas JF, Blake-Hedges JM, Bailey CB, Curran S, Keasling JD. Engineered polyketides: Synergy between protein and host level engineering. Synth Syst Biotechnol 2017; 2:147-166. [PMID: 29318196 PMCID: PMC5655351 DOI: 10.1016/j.synbio.2017.08.005] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/26/2017] [Accepted: 08/26/2017] [Indexed: 01/01/2023] Open
Abstract
Metabolic engineering efforts toward rewiring metabolism of cells to produce new compounds often require the utilization of non-native enzymatic machinery that is capable of producing a broad range of chemical functionalities. Polyketides encompass one of the largest classes of chemically diverse natural products. With thousands of known polyketides, modular polyketide synthases (PKSs) share a particularly attractive biosynthetic logic for generating chemical diversity. The engineering of modular PKSs could open access to the deliberate production of both existing and novel compounds. In this review, we discuss PKS engineering efforts applied at both the protein and cellular level for the generation of a diverse range of chemical structures, and we examine future applications of PKSs in the production of medicines, fuels and other industrially relevant chemicals.
Collapse
Key Words
- ACP, Acyl carrier protein
- AT, Acyltransferase
- CoL, CoA-Ligase
- Commodity chemical
- DE, Dimerization element
- DEBS, 6-deoxyerythronolide B synthase
- DH, Dehydratase
- ER, Enoylreductase
- FAS, Fatty acid synthases
- KR, Ketoreductase
- KS, Ketosynthase
- LM, Loading module
- LTTR, LysR-type transcriptional regulator
- Metabolic engineering
- Natural products
- PCC, Propionyl-CoA carboxylase
- PDB, Precursor directed biosynthesis
- PK, Polyketide
- PKS, Polyketide synthase
- Polyketide
- Polyketide synthase
- R, Reductase domain
- SARP, Streptomyces antibiotic regulatory protein
- SNAC, N-acetylcysteamine
- Synthetic biology
- TE, Thioesterase
- TKL, Triketide lactone
Collapse
Affiliation(s)
| | | | - Constance B. Bailey
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Samuel Curran
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Comparative Biochemistry Graduate Group, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jay. D. Keasling
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- QB3 Institute, University of California, Berkeley, Emeryville, CA 94608, USA
- Department of Chemical & Biomolecular Engineering, Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University Denmark, DK2970 Horsholm, Denmark
| |
Collapse
|
17
|
Characterization of three pathway-specific regulators for high production of monensin in Streptomyces cinnamonensis. Appl Microbiol Biotechnol 2017; 101:6083-6097. [PMID: 28685195 DOI: 10.1007/s00253-017-8353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2017] [Revised: 05/12/2017] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
Monensin, a polyether ionophore antibiotic, is produced by Streptomyces cinnamonensis and worldwide used as a coccidiostat and growth-promoting agent in the field of animal feeding. The monensin biosynthetic gene cluster (mon) has been reported. In this study, the potential functions of three putatively pathway-specific regulators (MonH, MonRI, and MonRII) were clarified. The results from gene inactivation, complementation, and overexpression showed that MonH, MonRI, and MonRII positively regulate monensin production. Both MonH and MonRI are essential for monensin biosynthesis, while MonRII is non-essential and could be completely replaced by additional expression of monRI. Transcriptional analysis of the mon cluster by semi-quantitative reverse transcription polymerase chain reaction (RT-PCR) and electrophoresis mobility shift assays (EMSAs) revealed a co-regulatory cascade process. MonH upregulates the transcription of monRII, and MonRII in turn enhances the transcription of monRI. MonRII is an autorepressor, while MonRI is an autoactivator. MonH activates the transcription of monCII-monE, and upregulates the transcription of monT that is repressed by MonRII. monAX and monD are activated by MonRI, and upregulated by MonRII. Co-regulation of those post-polyketide synthase (post-PKS) genes by MonH, MonRI, and MonRII would contribute to high production of monensin. These results shed new light on the transcriptional regulatory cascades of antibiotic biosynthesis in Streptomyces.
Collapse
|
18
|
Zhang Y, Lin CY, Li XM, Tang ZK, Qiao J, Zhao GR. DasR positively controls monensin production at two-level regulation in Streptomyces cinnamonensis. J Ind Microbiol Biotechnol 2016; 43:1681-1692. [PMID: 27718094 DOI: 10.1007/s10295-016-1845-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 09/26/2016] [Indexed: 01/06/2023]
Abstract
The polyether ionophore antibiotic monensin is produced by Streptomyces cinnamonensis and is used as a coccidiostat for chickens and growth-promoting agent for cattle. Monensin biosynthetic gene cluster has been cloned and partially characterized. The GntR-family transcription factor DasR regulates antibiotic production and morphological development in Streptomyces coelicolor and Saccharopolyspora erythraea. In this study, we identified and characterized the two-level regulatory cascade of DasR to monensin production in S. cinnamonensis. Forward and reverse genetics by overexpression and antisense RNA silence of dasR revealed that DasR positively controls monensin production under nutrient-rich condition. Electrophoresis mobility shift assay (EMSA) showed that DasR protein specifically binds to the promoter regions of both pathway-specific regulatory gene monRII and biosynthetic genes monAIX, monE and monT. Semi-quantitative RT-PCR further confirmed that DasR upregulates the transcriptional levels of these genes during monensin fermentation. Subsequently, co-overexpressed dasR with pathway-specific regulatory genes monRI, monRII or monH greatly improved monensin production.
Collapse
Affiliation(s)
- Yue Zhang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Chun-Yan Lin
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Xiao-Mei Li
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Zheng-Kun Tang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| | - Guang-Rong Zhao
- Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin, 300072, China.
- Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, University, Tianjin, 300072, China.
- SynBio Research Platform, Collaborative, Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China.
| |
Collapse
|
19
|
Nakamura H, Wang JX, Balskus EP. Assembly line termination in cylindrocyclophane biosynthesis: discovery of an editing type II thioesterase domain in a type I polyketide synthase. Chem Sci 2015; 6:3816-3822. [PMID: 29218151 PMCID: PMC5707447 DOI: 10.1039/c4sc03132f] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 04/11/2015] [Indexed: 01/18/2023] Open
Abstract
Investigation of cylindrocyclophane biosynthesis reveals a C-terminal thioesterase domain involved in PKS assembly line editing, not termination.
The termination step is an important source of structural diversity in polyketide biosynthesis. Most type I polyketide synthase (PKS) assembly lines are terminated by a thioesterase (TE) domain located at the C-terminus of the final module, while other PKS assembly lines lack a terminal TE domain and are instead terminated by a separate enzyme in trans. In cylindrocyclophane biosynthesis, the type I modular PKS assembly line is terminated by a freestanding type III PKS (CylI). Unexpectedly, the final module of the type I PKS (CylH) also possesses a C-terminal TE domain. Unlike typical type I PKSs, the CylH TE domain does not influence assembly line termination by CylI in vitro. Instead, this domain phylogenetically resembles a type II TE and possesses activity consistent with an editing function. This finding may shed light on the evolution of unusual PKS termination logic. In addition, the presence of related type II TE domains in many cryptic type I PKS and nonribosomal peptide synthetase (NRPS) assembly lines has implications for pathway annotation, product prediction, and engineering.
Collapse
Affiliation(s)
- H Nakamura
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , USA .
| | - J X Wang
- Small Molecule Mass Spectrometry Facility , FAS Division of Science , Cambridge , Massachusetts 02138 , USA
| | - E P Balskus
- Department of Chemistry and Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , USA .
| |
Collapse
|
20
|
Chen X, Ji R, Jiang X, Yang R, Liu F, Xin Y. Iterative type I polyketide synthases involved in enediyne natural product biosynthesis. IUBMB Life 2014; 66:587-95. [PMID: 25278375 DOI: 10.1002/iub.1316] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/14/2014] [Indexed: 12/12/2022]
Abstract
Enediyne natural products are potent antibiotics structurally characterized by an enediyne core containing two acetylenic groups conjugated to a double bond in a 9- or 10-membered carbocycle. The biosynthetic gene clusters for enediynes encode a novel iterative type I polyketide synthase (PKSE), which is generally believed to initiate the biosynthetic process of enediyne cores. This review article will cover research efforts made since its discovery to elucidate the role of the PKSE in enediyne core biosynthesis. Topics covered include the unique domain architecture, identification, and characterization of turnover products, and interaction with partner thioesterase protein.
Collapse
Affiliation(s)
- Xiaolei Chen
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | | | | | | | | | | |
Collapse
|
21
|
Kotowska M, Pawlik K. Roles of type II thioesterases and their application for secondary metabolite yield improvement. Appl Microbiol Biotechnol 2014; 98:7735-46. [PMID: 25081554 PMCID: PMC4147253 DOI: 10.1007/s00253-014-5952-8] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022]
Abstract
A large number of antibiotics and other industrially important microbial secondary metabolites are synthesized by polyketide synthases (PKSs) and nonribosomal peptide synthetases (NRPSs). These multienzymatic complexes provide an enormous flexibility in formation of diverse chemical structures from simple substrates, such as carboxylic acids and amino acids. Modular PKSs and NRPSs, often referred to as megasynthases, have brought about a special interest due to the colinearity between enzymatic domains in the proteins working as an “assembly line” and the chain elongation and modification steps. Extensive efforts toward modified compound biosynthesis by changing organization of PKS and NRPS domains in a combinatorial manner laid good grounds for rational design of new structures and their controllable biosynthesis as proposed by the synthetic biology approach. Despite undeniable progress made in this field, the yield of such “unnatural” natural products is often not satisfactory. Here, we focus on type II thioesterases (TEIIs)—discrete hydrolytic enzymes often encoded within PKS and NRPS gene clusters which can be used to enhance product yield. We review diverse roles of TEIIs (removal of aberrant residues blocking the megasynthase, participation in substrate selection, intermediate, and product release) and discuss their application in new biosynthetic systems utilizing PKS and NRPS parts.
Collapse
Affiliation(s)
- Magdalena Kotowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, ul. Rudolfa Weigla 12, 53-114, Wroclaw, Poland,
| | | |
Collapse
|
22
|
Van Wagoner RM, Satake M, Wright JLC. Polyketide biosynthesis in dinoflagellates: what makes it different? Nat Prod Rep 2014; 31:1101-37. [DOI: 10.1039/c4np00016a] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
23
|
Hüttel W, Spencer JB, Leadlay PF. Intermediates in monensin biosynthesis: A late step in biosynthesis of the polyether ionophore monensin is crucial for the integrity of cation binding. Beilstein J Org Chem 2014; 10:361-8. [PMID: 24605157 PMCID: PMC3943991 DOI: 10.3762/bjoc.10.34] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Accepted: 12/30/2013] [Indexed: 12/20/2022] Open
Abstract
Polyether antibiotics such as monensin are biosynthesised via a cascade of directed ring expansions operating on a putative polyepoxide precursor. The resulting structures containing fused cyclic ethers and a lipophilic backbone can form strong ionophoric complexes with certain metal cations. In this work, we demonstrate for monensin biosynthesis that, as well as ether formation, a late-stage hydroxylation step is crucial for the correct formation of the sodium monensin complex. We have investigated the last two steps in monensin biosynthesis, namely hydroxylation catalysed by the P450 monooxygenase MonD and O-methylation catalysed by the methyl-transferase MonE. The corresponding genes were deleted in-frame in a monensin-overproducing strain of Streptomyces cinnamonensis. The mutants produced the expected monensin derivatives in excellent yields (ΔmonD: 1.13 g L−1 dehydroxymonensin; ΔmonE: 0.50 g L−1 demethylmonensin; and double mutant ΔmonDΔmonE: 0.34 g L−1 dehydroxydemethylmonensin). Single crystals were obtained from purified fractions of dehydroxymonensin and demethylmonensin. X-ray structure analysis revealed that the conformation of sodium dimethylmonensin is very similar to that of sodium monensin. In contrast, the coordination of the sodium ion is significantly different in the sodium dehydroxymonensin complex. This shows that the final constitution of the sodium monensin complex requires this tailoring step as well as polyether formation.
Collapse
Affiliation(s)
- Wolfgang Hüttel
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK, ; Institute for Pharmaceutical Sciences, Universität Freiburg, Albertstr. 25, 79104 Freiburg, Germany
| | - Jonathan B Spencer
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1QW, UK
| | - Peter F Leadlay
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| |
Collapse
|
24
|
Cloning and characterization of the polyether salinomycin biosynthesis gene cluster of Streptomyces albus XM211. Appl Environ Microbiol 2011; 78:994-1003. [PMID: 22156425 DOI: 10.1128/aem.06701-11] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Salinomycin is widely used in animal husbandry as a food additive due to its antibacterial and anticoccidial activities. However, its biosynthesis had only been studied by feeding experiments with isotope-labeled precursors. A strategy with degenerate primers based on the polyether-specific epoxidase sequences was successfully developed to clone the salinomycin gene cluster. Using this strategy, a putative epoxidase gene, slnC, was cloned from the salinomycin producer Streptomyces albus XM211. The targeted replacement of slnC and subsequent trans-complementation proved its involvement in salinomycin biosynthesis. A 127-kb DNA region containing slnC was sequenced, including genes for polyketide assembly and release, oxidative cyclization, modification, export, and regulation. In order to gain insight into the salinomycin biosynthesis mechanism, 13 gene replacements and deletions were conducted. Including slnC, 7 genes were identified as essential for salinomycin biosynthesis and putatively responsible for polyketide chain release, oxidative cyclization, modification, and regulation. Moreover, 6 genes were found to be relevant to salinomycin biosynthesis and possibly involved in precursor supply, removal of aberrant extender units, and regulation. Sequence analysis and a series of gene replacements suggest a proposed pathway for the biosynthesis of salinomycin. The information presented here expands the understanding of polyether biosynthesis mechanisms and paves the way for targeted engineering of salinomycin activity and productivity.
Collapse
|
25
|
Yurkovich ME, Tyrakis PA, Hong H, Sun Y, Samborskyy M, Kamiya K, Leadlay PF. A Late-Stage Intermediate in Salinomycin Biosynthesis Is Revealed by Specific Mutation in the Biosynthetic Gene Cluster. Chembiochem 2011; 13:66-71. [DOI: 10.1002/cbic.201100590] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2011] [Indexed: 12/24/2022]
|
26
|
Tosin M, Smith L, Leadlay PF. Insights into Lasalocid A Ring Formation by Chemical Chain Termination In Vivo. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201106323] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
27
|
Tosin M, Smith L, Leadlay PF. Insights into Lasalocid A Ring Formation by Chemical Chain Termination In Vivo. Angew Chem Int Ed Engl 2011; 50:11930-3. [DOI: 10.1002/anie.201106323] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Indexed: 11/07/2022]
|
28
|
Remarkable synergistic effect between MonBI and MonBII on epoxide opening reaction in ionophore polyether monensin biosynthesis. Tetrahedron Lett 2011. [DOI: 10.1016/j.tetlet.2011.07.145] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
29
|
Isolation, structural elucidation, and biosynthesis of 15-norlankamycin derivatives produced by a type-II thioesterase disruptant of Streptomyces rochei. Tetrahedron 2011. [DOI: 10.1016/j.tet.2011.05.047] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Mady ASA, Zolova OE, Millán MÁS, Villamizar G, de la Calle F, Lombó F, Garneau-Tsodikova S. Characterization of TioQ, a type II thioesterase from the thiocoraline biosynthetic cluster. MOLECULAR BIOSYSTEMS 2011; 7:1999-2011. [PMID: 21483938 DOI: 10.1039/c1mb05044c] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An antitumor agent thiocoraline is a thiodepsipeptide marine product derived from two Micromonospora sp. strains that inhibits protein synthesis by binding of its key 3-hydroxyquinaldic acid (3HQA) chromophores to duplex DNA. There are at least two potential pathways via which the 3HQA moiety could be biosynthesized from L-Trp. By biochemical characterization and by preparation of knockouts of an adenylation-thiolation enzyme, TioK, and of two type II thioesterases, TioP and TioQ, found in the thiocoraline biosynthetic gene cluster, we gained valuable insight into the pathway followed for the production of 3HQA.
Collapse
Affiliation(s)
- Ahmed S A Mady
- University of Michigan, Life Sciences Institute, 210 Washtenaw Ave, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
31
|
Buntin K, Weissman KJ, Müller R. An Unusual Thioesterase Promotes Isochromanone Ring Formation in Ajudazol Biosynthesis. Chembiochem 2010; 11:1137-46. [DOI: 10.1002/cbic.200900712] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Matsuura Y, Shichijo Y, Minami A, Migita A, Oguri H, Watanabe M, Tokiwano T, Watanabe K, Oikawa H. Intriguing Substrate Tolerance of Epoxide Hydrolase Lsd19 Involved in Biosynthesis of the Ionophore Antibiotic Lasalocid A. Org Lett 2010; 12:2226-9. [DOI: 10.1021/ol100541e] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yusuke Matsuura
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Yoshihiro Shichijo
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Atsushi Minami
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Akira Migita
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hiroki Oguri
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Mami Watanabe
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Tetsuo Tokiwano
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Kenji Watanabe
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Hideaki Oikawa
- Division of Chemistry, Graduate School of Science, Hokkaido University, Sapporo 060-0810, Japan
| |
Collapse
|
33
|
Olano C, Méndez C, Salas JA. Post-PKS tailoring steps in natural product-producing actinomycetes from the perspective of combinatorial biosynthesis. Nat Prod Rep 2010; 27:571-616. [DOI: 10.1039/b911956f] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
34
|
Abstract
This review covers the recent literature on the release mechanisms for polyketides and nonribosomal peptides produced by microorganisms. The emphasis is on the novel enzymology and mechanistic insights revealed by the biosynthetic studies of new natural products.
Collapse
Affiliation(s)
- Liangcheng Du
- Department of Chemistry, University of Nebraska-Lincoln, NE 68588, USA.
| | | |
Collapse
|
35
|
Vilotijevic I, Jamison T. Epoxidöffnungskaskaden zur Synthese polycyclischer Polyether-Naturstoffe. Angew Chem Int Ed Engl 2009. [DOI: 10.1002/ange.200900600] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
|
37
|
|
38
|
Meier JL, Burkart MD. The chemical biology of modular biosynthetic enzymes. Chem Soc Rev 2009; 38:2012-45. [DOI: 10.1039/b805115c] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Vilotijevic I, Jamison TF. Epoxide-opening cascades in the synthesis of polycyclic polyether natural products. Angew Chem Int Ed Engl 2009; 48:5250-81. [PMID: 19572302 PMCID: PMC2810545 DOI: 10.1002/anie.200900600] [Citation(s) in RCA: 171] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The structural features of polycyclic polyether natural products can, in some cases, be traced to their biosynthetic origin. However in case that are less well understood, only biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades are proposed. We summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers (see scheme) and related natural products.The group of polycyclic polyether natural products is of special interest owing to the fascinating structure and biological effects displayed by its members. The latter includes potentially therapeutic antibiotic, antifungal, and anticancer properties, and extreme lethality. The polycyclic structural features of this class of compounds can, in some cases, be traced to their biosynthetic origin, but in others that are less well understood, only to proposed biosynthetic pathways that feature dramatic, yet speculative, epoxide-opening cascades. In this review we summarize how such epoxide-opening cascade reactions have been used in the synthesis of polycyclic polyethers and related natural products.
Collapse
Affiliation(s)
- Ivan Vilotijevic
- Department of Chemistry, Massachusettes Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253, , , Homepage: http://web.mit.edu/chemistry/jamison
| | - Timothy F. Jamison
- Department of Chemistry, Massachusettes Institute of Technology, Cambridge, MA 02139 (USA), Fax: (+1) 617-324-0253, , , Homepage: http://web.mit.edu/chemistry/jamison
| |
Collapse
|
40
|
Abstract
Polyether ionophore antibiotics are a special class of polyketides widely used in veterinary medicine, and as food additives in animal husbandry. In this article, we review current knowledge about the mechanism of polyether biosynthesis, and the genetic and biochemical strategies used for its study. Several clear differences distinguish it from traditional type I modular polyketide biosynthesis: polyether backbones are assembled by modular polyketide synthases but are modified by two key enzymes, epoxidase and epoxide hydrolase, to generate the product. All double bonds involved in the oxidative cyclization in the polyketide backbone are of E geometry. Chain release in the polyether biosynthetic pathway requires a special type II thioesterase which specifically hydrolyzes the polyether thioester. All these discoveries should be very helpful for a deep understanding of the biosynthetic mechanism of this class of important natural compounds, and for the targeted engineering of polyether derivatives.
Collapse
Affiliation(s)
- Tiangang Liu
- Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | | | | |
Collapse
|
41
|
Smith L, Hong H, Spencer JB, Leadlay PF. Analysis of Specific Mutants in the Lasalocid Gene Cluster: Evidence for Enzymatic Catalysis of a Disfavoured Polyether Ring Closure. Chembiochem 2008; 9:2967-75. [DOI: 10.1002/cbic.200800585] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
42
|
Type II thioesterase ScoT, associated with Streptomyces coelicolor A3(2) modular polyketide synthase Cpk, hydrolyzes acyl residues and has a preference for propionate. Appl Environ Microbiol 2008; 75:887-96. [PMID: 19074611 DOI: 10.1128/aem.01371-08] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Type II thioesterases (TE IIs) were shown to maintain the efficiency of polyketide synthases (PKSs) by removing acyl residues blocking extension modules. However, the substrate specificity and kinetic parameters of these enzymes differ, which may have significant consequences when they are included in engineered hybrid systems for the production of novel compounds. Here we show that thioesterase ScoT associated with polyketide synthase Cpk from Streptomyces coelicolor A3(2) is able to hydrolyze acetyl, propionyl, and butyryl residues, which is consistent with its editing function. This enzyme clearly prefers propionate, in contrast to the TE IIs tested previously, and this indicates that it may have a role in control of the starter unit. We also determined activities of ScoT mutants and concluded that this enzyme is an alpha/beta hydrolase with Ser90 and His224 in its active site.
Collapse
|
43
|
Kelly WL. Intramolecular cyclizations of polyketide biosynthesis: mining for a "Diels-Alderase"? Org Biomol Chem 2008; 6:4483-93. [PMID: 19039353 DOI: 10.1039/b814552k] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Despite the large number of naturally occurring metabolites existing for which enzymatic Diels-Alder reactions have been proposed as a key biosynthetic step, the actual number of enzymes thus far identified for these transformations is incredibly low. Even for those few enzymes identified, there is currently little biochemical or mechanistic evidence to support the label of a "Diels-Alderase." For several families of polyketide metabolites, the transformation in question introduces a rigid, cross-linked scaffold, leaving the remaining peripheral modifications and polyketide processing to provide the variation among the related metabolites. A detailed understanding of these modifications--how they are introduced and the tolerance of enzymes involved for alternate substrates--will strengthen biosynthetic engineering efforts toward related designer metabolites. This review addresses intramolecular cyclizations that appear to be consistent with enzymatic Diels-Alder transformations for which either the responsible enzyme has been identified or the respective biosynthetic gene cluster for the metabolite in question has been elucidated.
Collapse
Affiliation(s)
- Wendy L Kelly
- School of Chemistry and Biochemistry and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| |
Collapse
|
44
|
Selective removal of aberrant extender units by a type II thioesterase for efficient FR-008/candicidin biosynthesis in Streptomyces sp. strain FR-008. Appl Environ Microbiol 2008; 74:7235-42. [PMID: 18836004 DOI: 10.1128/aem.01012-08] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gene fscTE, encoding a putative type II thioesterase (TEII), was associated with the FR-008/candicidin gene cluster. Deletion of fscTE reduced approximately 90% of the FR-008/candicidin production, while the production level was well restored when fscTE was added back to the mutant in trans. FscTE was unable to compensate for the release of the maturely elongated polyketide as site-directed inactivation of the type I thioesterase (TEI) totally abolished FR-008/candicidin production. Direct biochemical analysis of FscTE in parallel with its homologue TylO from the tylosin biosynthetic pathway demonstrated their remarkable preferences for acyl-thioesters (i.e., propionyl-S-N-acetylcysteamine [SNAC] over methylmalonyl-SNAC and acetyl-SNAC over malonyl-SNAC) and thus concluded that TEII could maintain effective polyketide biosynthesis by selectively removing the nonelongatable residues bound to acyl carrier proteins. Overexpression of FscTE under the strong constitutive ermE*p promoter in the wild-type strain did not suppress FR-008/candicidin formation, which confirmed its substrate specificity in vivo. Furthermore, successful complementation of the fscTE mutant was obtained with fscTE and tylO, whereas no complementation was detected with nonribosomal peptide synthetase (NRPS) TEII tycF and srfAD, reflecting substrate specificities of TEIIs distinctive from those of either polyketide synthases or NRPSs.
Collapse
|
45
|
Liu T, Lin X, Zhou X, Deng Z, Cane DE. Mechanism of thioesterase-catalyzed chain release in the biosynthesis of the polyether antibiotic nanchangmycin. ACTA ACUST UNITED AC 2008; 15:449-58. [PMID: 18482697 DOI: 10.1016/j.chembiol.2008.04.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2008] [Revised: 04/04/2008] [Accepted: 04/17/2008] [Indexed: 10/22/2022]
Abstract
The polyketide backbone of the polyether ionophore antibiotic nanchangmycin (1) is assembled by a modular polyketide synthase in Streptomyces nanchangensis NS3226. The ACP-bound polyketide is thought to undergo a cascade of oxidative cyclizations to generate the characteristic polyether. Deletion of the glycosyl transferase gene nanG5 resulted in accumulation of the corresponding nanchangmycin aglycone (6). The discrete thioesterase NanE exhibited a nearly 17-fold preference for hydrolysis of 4, the N-acetylcysteamine (SNAC) thioester of nanchangmycin, over 7, the corresponding SNAC derivative of the aglycone, consistent with NanE-catalyzed hydrolysis of ACP-bound nanchangmycin being the final step in the biosynthetic pathway. Site-directed mutagenesis established that Ser96, His261, and Asp120, the proposed components of the NanE catalytic triad, were all essential for thioesterase activity, while Trp97 was shown to influence the preference for polyether over polyketide substrates.
Collapse
Affiliation(s)
- Tiangang Liu
- Laboratory of Microbial Metabolism and School of Life Science and Biotechnology, Shanghai Jiaotong University, Shanghai, China
| | | | | | | | | |
Collapse
|
46
|
Demydchuk Y, Sun Y, Hong H, Staunton J, Spencer JB, Leadlay PF. Analysis of the tetronomycin gene cluster: insights into the biosynthesis of a polyether tetronate antibiotic. Chembiochem 2008; 9:1136-45. [PMID: 18404760 DOI: 10.1002/cbic.200700715] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The biosynthetic gene cluster for tetronomycin (TMN), a polyether ionophoric antibiotic that contains four different types of ring, including the distinctive tetronic acid moiety, has been cloned from Streptomyces sp. NRRL11266. The sequenced tmn locus (113 234 bp) contains six modular polyketide synthase (PKS) genes and a further 27 open-reading frames. Based on sequence comparison to related biosynthetic gene clusters, the majority of these can be assigned a plausible role in TMN biosynthesis. The identity of the cluster, and the requirement for a number of individual genes, especially those hypothesised to contribute a glycerate unit to the formation of the tetronate ring, were confirmed by specific gene disruption. However, two large genes that are predicted to encode together a multifunctional PKS of a highly unusual type seem not to be involved in this pathway since deletion of one of them did not alter tetronomycin production. Unlike previously characterised polyether PKS systems, oxidative cyclisation appears to take place on the modular PKS rather than after transfer to a separate carrier protein, while tetronate ring formation and concomitant chain release share common mechanistic features with spirotetronate biosynthesis.
Collapse
Affiliation(s)
- Yuliya Demydchuk
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | | | | | |
Collapse
|
47
|
Hong H, Demangel C, Pidot SJ, Leadlay PF, Stinear T. Mycolactones: immunosuppressive and cytotoxic polyketides produced by aquatic mycobacteria. Nat Prod Rep 2008; 25:447-54. [PMID: 18497894 PMCID: PMC2730631 DOI: 10.1039/b803101k] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2008] [Indexed: 11/21/2022]
Abstract
Mycolactones are a family of highly related macrocyclic polyketides that exhibit immunosuppressive and cytotoxic properties. First discovered in 1999, they are the primary virulence factors produced by the environmental human pathogen Mycobacterium ulcerans, the causative agent of Buruli ulcer, and by some closely-related aquatic mycobacteria that cause disease in fish and frogs. Mycolactones are characterized by a common 12-membered lactone core to which is appended an unsaturated fatty acyl side-chain of variable length and oxidation state. This Highlight summarizes recent progress in understanding the structural diversity of the mycolactones, their biological activity and mode of action in mammalian cells, and the genetics, evolution, and enzymology of their biosynthesis.
Collapse
Affiliation(s)
- Hui Hong
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge, CB2 1GA, UK
| | | | | | | | | |
Collapse
|
48
|
Leadlay P. Obituary: Jonathan B. Spencer (1960-2008). CHEMISTRY & BIOLOGY 2008; 15:424-426. [PMID: 18551814 DOI: 10.1016/j.chembiol.2008.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Affiliation(s)
- Peter Leadlay
- Department of Biochemistry, University of Cambridge, Cambridge, UK.
| |
Collapse
|
49
|
Meier JL, Barrows-Yano T, Foley TL, Wike CL, Burkart MD. The unusual macrocycle forming thioesterase of mycolactone. MOLECULAR BIOSYSTEMS 2008; 4:663-71. [PMID: 18493665 DOI: 10.1039/b801397g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mycolactone is a polyketide natural product secreted by Mycobacterium ulcerans, the organism responsible for the tropical skin disease Buruli ulcer. The finding that this small molecule virulence factor is sufficient to reconstitute the necrotic pathology associated with Buruli ulcer suggests that a better understanding of mycolactone biosynthesis, particularly the processes which are distinct from those in human metabolism, may provide a unique avenue for the development of selective therapeutics. In the present study we have cloned, expressed, and biochemically characterized the putative macrocycle forming thioesterase for mycolactone, MLSA2 TE. We have evaluated the enzyme both as the truncated thioesterase domain and as a carrier protein-linked didomain construct. The results of these analyses distinguish MLSA2 TE from traditional fatty acid and polyketide synthase TE-domains in terms of its sequence, kinetic parameters, and susceptibility to traditional active-site directed inhibitors. These findings suggest that MLSA2 TE utilizes a unique biochemical mechanism for macrocycle formation.
Collapse
Affiliation(s)
- Jordan L Meier
- Department of Chemistry and Biochemistry, University of California-San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358, USA
| | | | | | | | | |
Collapse
|
50
|
Harvey BM, Mironenko T, Sun Y, Hong H, Deng Z, Leadlay PF, Weissman KJ, Haydock SF. Insights into polyether biosynthesis from analysis of the nigericin biosynthetic gene cluster in Streptomyces sp. DSM4137. ACTA ACUST UNITED AC 2007; 14:703-14. [PMID: 17584617 DOI: 10.1016/j.chembiol.2007.05.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2007] [Revised: 04/05/2007] [Accepted: 05/04/2007] [Indexed: 11/18/2022]
Abstract
Nigericin was among the first polyether ionophores to be discovered, but its biosynthesis remains obscure. The biosynthetic gene cluster for nigericin has been serendipitously cloned from Streptomyces sp. DSM4137, and deletion of this gene cluster abolished the production of both nigericin and the closely related metabolite abierixin. Detailed comparison of the nigericin biosynthetic genes with their counterparts in the biosynthetic clusters for other polyketides has prompted a significant revision of the proposed common pathway for polyether biosynthesis. In particular, we present evidence that in nigericin, nanchangmycin, and monensin, an unusual ketosynthase-like protein, KSX, transfers the initially formed linear polyketide chain to a discrete acyl carrier protein, ACPX, for oxidative cyclization. Consistent with this, deletion of either monACPX or monKSX from the monensin gene cluster effectively abolished monensin A biosynthesis.
Collapse
Affiliation(s)
- Barbara M Harvey
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1GA, UK
| | | | | | | | | | | | | | | |
Collapse
|