1
|
Majumder A, Gu Y, Chen YC, An X, Reinhard BM, Straub JE. Probing the Origins of the Disorder-to-Order Transition of a Modified Cholesterol in Ternary Lipid Bilayers. J Am Chem Soc 2024; 146:27725-27735. [PMID: 39315765 DOI: 10.1021/jacs.4c09495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
In a recent study, spectroscopic observations of modified cholesterol in both lipid-coated nanoparticles and liposomes provided evidence for a disorder-to-order orientational transition with increasing temperature. Below a critical temperature, in a membrane composed of modified cholesterol, saturated (DPPC) lipid, and anionic (DOPS) lipid, a roughly equal population of head-out and head-in conformations was observed. Surprisingly, as temperature was increased the modified cholesterol presented an abrupt transition to a population of all head-in orientations. Additionally, when saturated DPPC lipids were replaced by unsaturated DOPC the disorder-to-order transition was eliminated. To gain insight into this curious transition, we use all-atom molecular dynamics simulations to characterize the structure and fluctuations of lipid bilayers composed of saturated and unsaturated lipids, in the presence of normal and modified cholesterol. Free energy differences between head-out and head-in conformations are computed as a function of varying lipid membrane composition for normal and modified cholesterol. In bilayers primarily composed of DPPC, the orientation of modified cholesterol is observed to depend sensitively on the orientation of the surrounding normal or modified cholesterol molecules, suggesting cooperative Ising-like interactions favoring an ordered state. In bilayers primarily composed of DOPC, spontaneous flip-flop of modified cholesterol is observed, consistent with the measured small free energy barrier separating the head-in and head-out orientations. This combined experimental and computational study effectively characterizes the orientational dimorphism and provides novel insight into the fundamental nature of cholesterol interactions in membrane.
Collapse
Affiliation(s)
- Ayan Majumder
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Yuanqing Gu
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, United States
| | - Yi-Chen Chen
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| | - Xingda An
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, United States
| | - Björn M Reinhard
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
- The Photonics Center, Boston University, 8 Saint Mary's Street, Boston, Massachusetts 02215, United States
| | - John E Straub
- Department of Chemistry, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215, United States
| |
Collapse
|
2
|
Schaefer KG, Russell CM, Pyron RJ, Conley EA, Barrera FN, King GM. Polymerization mechanism of the Candida albicans virulence factor candidalysin. J Biol Chem 2024; 300:107370. [PMID: 38750794 PMCID: PMC11193009 DOI: 10.1016/j.jbc.2024.107370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/16/2024] [Accepted: 05/06/2024] [Indexed: 06/11/2024] Open
Abstract
Candida albicans is a commensal fungus that can cause epithelial infections and life-threatening invasive candidiasis. The fungus secretes candidalysin (CL), a peptide that causes cell damage and immune activation by permeation of epithelial membranes. The mechanism of CL action involves strong peptide assembly into polymers in solution. The free ends of linear CL polymers can join, forming loops that become pores upon binding to membranes. CL polymers constitute a therapeutic target for candidiasis, but little is known about CL self-assembly in solution. Here, we examine the assembly mechanism of CL in the absence of membranes using complementary biophysical tools, including a new fluorescence polymerization assay, mass photometry, and atomic force microscopy. We observed that CL assembly is slow, as tracked with the fluorescent marker C-laurdan. Single-molecule methods showed that CL polymerization involves a convolution of four processes. Self-assembly begins with the formation of a basic subunit, thought to be a CL octamer that is the polymer seed. Polymerization proceeds via the addition of octamers, and as polymers grow they can curve and form loops. Alternatively, secondary polymerization can occur and cause branching. Interplay between the different rates determines the distribution of CL particle types, indicating a kinetic control mechanism. This work elucidates key physical attributes underlying CL self-assembly which may eventually evoke pharmaceutical development.
Collapse
Affiliation(s)
| | - Charles M Russell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee
| | - Robert J Pyron
- Genome Science and Technology, University of Tennessee, Knoxville, Tennessee
| | - Elizabeth A Conley
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri
| | - Francisco N Barrera
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, Tennessee.
| | - Gavin M King
- Department of Physics and Astronomy, University of Missouri, Columbia, Missouri; Department of Biochemistry, University of Missouri, Columbia, Missouri.
| |
Collapse
|
3
|
Gu Y, Reinhard BM. Membrane fluidity properties of lipid-coated polylactic acid nanoparticles. NANOSCALE 2024; 16:8533-8545. [PMID: 38595322 PMCID: PMC11064779 DOI: 10.1039/d3nr06464f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 03/31/2024] [Indexed: 04/11/2024]
Abstract
Lipid coating is considered a versatile strategy to equip nanoparticles (NPs) with a biomimetic surface coating, but the membrane properties of these nanoassemblies remain in many cases insufficiently understood. In this work, we apply C-Laurdan generalized polarization (GP) measurements to probe the temperature-dependent polarity of hybrid membranes consisting of a lipid monolayer adsorbed onto a polylactic acid (PLA) polymer core as function of lipid composition and compare the behavior of the lipid coated NPs (LNPs) with that of liposomes assembled from identical lipid mixtures. The LNPs were generated by nanoprecipitation of the polymer in aqueous solutions containing two types of lipid mixtures: (i) cholesterol, dipalmitoylphosphatidylcholine (DPPC), and the ganglioside GM3, as well as (ii) dioleoylphosphatidylcholine (DOPC), DPPC and GM3. LNPs were found to exhibit more distinct and narrower phase transitions than corresponding liposomes and to retain detectable phase transitions even for cholesterol or DOPC concentrations that yielded no detectable transitions in liposomes. These findings together with higher GP values in the case of the LNPs for temperatures above the phase transition temperature indicate a stabilization of the membrane through the polymer core. LNP binding studies to GM3-recognizing cells indicate that differences in the membrane fluidity affect binding avidity in the investigated model system.
Collapse
Affiliation(s)
- Yuanqing Gu
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| | - Björn M Reinhard
- Department of Chemistry and The Photonics Center, Boston University, Boston, MA 02215, USA.
| |
Collapse
|
4
|
Erazo-Oliveras A, Muñoz-Vega M, Salinas ML, Wang X, Chapkin RS. Dysregulation of cellular membrane homeostasis as a crucial modulator of cancer risk. FEBS J 2024; 291:1299-1352. [PMID: 36282100 PMCID: PMC10126207 DOI: 10.1111/febs.16665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/09/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2022]
Abstract
Cellular membranes serve as an epicentre combining extracellular and cytosolic components with membranous effectors, which together support numerous fundamental cellular signalling pathways that mediate biological responses. To execute their functions, membrane proteins, lipids and carbohydrates arrange, in a highly coordinated manner, into well-defined assemblies displaying diverse biological and biophysical characteristics that modulate several signalling events. The loss of membrane homeostasis can trigger oncogenic signalling. More recently, it has been documented that select membrane active dietaries (MADs) can reshape biological membranes and subsequently decrease cancer risk. In this review, we emphasize the significance of membrane domain structure, organization and their signalling functionalities as well as how loss of membrane homeostasis can steer aberrant signalling. Moreover, we describe in detail the complexities associated with the examination of these membrane domains and their association with cancer. Finally, we summarize the current literature on MADs and their effects on cellular membranes, including various mechanisms of dietary chemoprevention/interception and the functional links between nutritional bioactives, membrane homeostasis and cancer biology.
Collapse
Affiliation(s)
- Alfredo Erazo-Oliveras
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Mónica Muñoz-Vega
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Michael L. Salinas
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Xiaoli Wang
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
| | - Robert S. Chapkin
- Program in Integrative Nutrition and Complex Diseases; Texas A&M University; College Station, Texas, 77843; USA
- Department of Nutrition; Texas A&M University; College Station, Texas, 77843; USA
- Center for Environmental Health Research; Texas A&M University; College Station, Texas, 77843; USA
| |
Collapse
|
5
|
Reinhard J, Starke L, Klose C, Haberkant P, Hammarén H, Stein F, Klein O, Berhorst C, Stumpf H, Sáenz JP, Hub J, Schuldiner M, Ernst R. MemPrep, a new technology for isolating organellar membranes provides fingerprints of lipid bilayer stress. EMBO J 2024; 43:1653-1685. [PMID: 38491296 PMCID: PMC11021466 DOI: 10.1038/s44318-024-00063-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Biological membranes have a stunning ability to adapt their composition in response to physiological stress and metabolic challenges. Little is known how such perturbations affect individual organelles in eukaryotic cells. Pioneering work has provided insights into the subcellular distribution of lipids in the yeast Saccharomyces cerevisiae, but the composition of the endoplasmic reticulum (ER) membrane, which also crucially regulates lipid metabolism and the unfolded protein response, remains insufficiently characterized. Here, we describe a method for purifying organelle membranes from yeast, MemPrep. We demonstrate the purity of our ER membrane preparations by proteomics, and document the general utility of MemPrep by isolating vacuolar membranes. Quantitative lipidomics establishes the lipid composition of the ER and the vacuolar membrane. Our findings provide a baseline for studying membrane protein biogenesis and have important implications for understanding the role of lipids in regulating the unfolded protein response (UPR). The combined preparative and analytical MemPrep approach uncovers dynamic remodeling of ER membranes in stressed cells and establishes distinct molecular fingerprints of lipid bilayer stress.
Collapse
Affiliation(s)
- John Reinhard
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Leonhard Starke
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | | | - Per Haberkant
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | | | - Frank Stein
- EMBL Heidelberg, Proteomics Core Facility, Heidelberg, Germany
| | - Ofir Klein
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Charlotte Berhorst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - Heike Stumpf
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany
| | - James P Sáenz
- Technische Universität Dresden, B CUBE, Dresden, Germany
| | - Jochen Hub
- Saarland University, Theoretical Physics and Center for Biophysics, Saarbrücken, Germany
| | - Maya Schuldiner
- Weizmann Institute of Science, Department of Molecular Genetics, Rehovot, Israel
| | - Robert Ernst
- Saarland University, Medical Biochemistry and Molecular Biology, Homburg, Germany.
- Saarland University, Preclinical Center for Molecular Signaling (PZMS), Homburg, Germany.
| |
Collapse
|
6
|
Neukam M, Sala P, Brunner AD, Ganß K, Palladini A, Grzybek M, Topcheva O, Vasiljević J, Broichhagen J, Johnsson K, Kurth T, Mann M, Coskun Ü, Solimena M. Purification of time-resolved insulin granules reveals proteomic and lipidomic changes during granule aging. Cell Rep 2024; 43:113836. [PMID: 38421874 DOI: 10.1016/j.celrep.2024.113836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 12/29/2023] [Accepted: 02/05/2024] [Indexed: 03/02/2024] Open
Abstract
Endocrine cells employ regulated exocytosis of secretory granules to secrete hormones and neurotransmitters. Secretory granule exocytosis depends on spatiotemporal variables such as proximity to the plasma membrane and age, with newly generated granules being preferentially released. Despite recent advances, we lack a comprehensive view of the molecular composition of insulin granules and associated changes over their lifetime. Here, we report a strategy for the purification of insulin secretory granules of distinct age from insulinoma INS-1 cells. Tagging the granule-resident protein phogrin with a cleavable CLIP tag, we obtain intact fractions of age-distinct granules for proteomic and lipidomic analyses. We find that the lipid composition changes over time, along with the physical properties of the membrane, and that kinesin-1 heavy chain (KIF5b) as well as Ras-related protein 3a (RAB3a) associate preferentially with younger granules. Further, we identify the Rho GTPase-activating protein (ARHGAP1) as a cytosolic factor associated with insulin granules.
Collapse
Affiliation(s)
- Martin Neukam
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| | - Pia Sala
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | | | - Katharina Ganß
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michal Grzybek
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Oleksandra Topcheva
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Jovana Vasiljević
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Johannes Broichhagen
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research, 69120 Heidelberg, Germany
| | - Thomas Kurth
- TU Dresden, Center for Molecular and Cellular Bioengineering (CMCB), Technology Platform, Electron Microscopy and Histology Facility, 01307 Dresden, Saxony, Germany
| | - Matthias Mann
- Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; Center of Membrane Biochemistry and Lipid Research, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany
| | - Michele Solimena
- Molecular Diabetology, University Hospital and Faculty of Medicine Carl Gustav Carus, TU Dresden, 01307 Dresden, Germany; Paul Langerhans Institute Dresden (PLID) of the Helmholtz Center Munich at the University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden, 01307 Dresden, Germany; German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany.
| |
Collapse
|
7
|
Birtles D, Abbas W, Lee J. Bis(Monoacylglycero)Phosphate Promotes Membrane Fusion Facilitated by the SARS-CoV-2 Fusion Domain. J Phys Chem B 2024; 128:2675-2683. [PMID: 38466655 DOI: 10.1021/acs.jpcb.3c07863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Membrane fusion is a critical component of the viral lifecycle. For SARS-CoV-2, fusion is facilitated by the spike glycoprotein and can take place via either the plasma membrane or the endocytic pathway. The fusion domain (FD), which is found within the spike glycoprotein, is primarily responsible for the initiation of fusion as it embeds itself within the target cell's membrane. A preference for SARS-CoV-2 to fuse at low pH akin to the environment of the endocytic pathway has already been established; however, the impact of the target cell's lipid composition on the FD has yet to be explored. Here, we have shown that the SARS-CoV-2 FD preferentially initiates fusion at the late endosomal membrane over the plasma membrane, on the basis of lipid composition alone. A positive, fusogenic relationship with anionic lipids from the plasma membrane (POPS: 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-l-serine) and endosomal membrane (BMP: bis(monoacylglycero)phosphate) was established, with a large preference demonstrated for the latter. When comparing the binding affinity and secondary structure of the FD in the presence of different anionic lipids, little deviation was evident while the charge was maintained. However, it was discovered that BMP had a subtle, negative impact on lipid packing in comparison to that of POPS. Furthermore, an inverse relationship between lipid packing and the fusogenecity of the SARS-CoV-2 FD was witnessed. In conclusion, the SARS-CoV-2 FD preferentially initiates fusion at a membrane resembling that of the late endosomal compartment, predominately due to the presence of BMP and its impact on lipid packing.
Collapse
Affiliation(s)
- Daniel Birtles
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Wafa Abbas
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| | - Jinwoo Lee
- Department of Chemistry and Biochemistry, University of Maryland, College Park 20742, Maryland, United States
| |
Collapse
|
8
|
Mangiarotti A, Dimova R. The spectral phasor approach to resolving membrane order with environmentally sensitive dyes. Methods Enzymol 2024; 700:105-126. [PMID: 38971597 DOI: 10.1016/bs.mie.2024.01.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Hyperspectral imaging is a technique that captures a three-dimensional array of spectral information at each spatial location within a sample, enabling precise characterization and discrimination of biological structures, materials, and chemicals, based on their unique spectral features. Nowadays most commercially available confocal microscopes allow hyperspectral imaging measurements, providing a valuable source of spatially resolved spectroscopic data. Spectral phasor analysis quantitatively and graphically transforms the fluorescence spectra at each pixel of a hyperspectral image into points in a polar plot, offering a visual representation of the spectral characteristics of fluorophores within the sample. Combining the use of environmentally sensitive dyes with phasor analysis of hyperspectral images provides a powerful tool for measuring small changes in lateral membrane heterogeneity. Here, we focus on applications of spectral phasor analysis for the probe LAURDAN on model membranes to resolve packing and hydration. The method is broadly applicable to other dyes and to complex systems such as cell membranes.
Collapse
Affiliation(s)
- Agustín Mangiarotti
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, Potsdam, Germany.
| |
Collapse
|
9
|
Chen X, Yang Q, Kong W, Ge Y, He J, Yan A, Li D. High spatial-resolved heat manipulating membrane heterogeneity alters cellular migration and signaling. Proc Natl Acad Sci U S A 2023; 120:e2312603120. [PMID: 37983503 PMCID: PMC10691225 DOI: 10.1073/pnas.2312603120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 10/23/2023] [Indexed: 11/22/2023] Open
Abstract
Plasma membrane heterogeneity is a key biophysical regulatory principle of membrane protein dynamics, which further influences downstream signal transduction. Although extensive biophysical and cell biology studies have proven membrane heterogeneity is essential to cell fate, the direct link between membrane heterogeneity regulation to cellular function remains unclear. Heterogeneous structures on plasma membranes, such as lipid rafts, are transiently assembled, thus hard to study via regular techniques. Indeed, it is nearly impossible to perturb membrane heterogeneity without changing plasma membrane compositions. In this study, we developed a high-spatial resolved DNA-origami-based nanoheater system with specific lipid heterogeneity targeting to manipulate the local lipid environmental temperature under near-infrared (NIR) laser illumination. Our results showed that the targeted heating of the local lipid environment influences the membrane thermodynamic properties, which further triggers an integrin-associated cell migration change. Therefore, the nanoheater system was further applied as an optimized therapeutic agent for wound healing. Our strategy provides a powerful tool to dynamically manipulate membrane heterogeneity and has the potential to explore cellular function through changes in plasma membrane biophysical properties.
Collapse
Affiliation(s)
- Xiaoqing Chen
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Qianyun Yang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Wenyan Kong
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Yifan Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai201210, China
| | - Jie He
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - An Yan
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| | - Di Li
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai200241, China
| |
Collapse
|
10
|
Meehan SD, Neag E, Bhattacharya SK. Glycerophospholipid Analysis of Optic Nerve Regeneration Models Indicate Potential Membrane Order Changes Associated with the Lipidomic Shifts. J Ocul Pharmacol Ther 2023; 39:519-529. [PMID: 37192491 PMCID: PMC10616943 DOI: 10.1089/jop.2023.0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/19/2023] [Indexed: 05/18/2023] Open
Abstract
Purpose: Optic nerve (ON) injury causes irreversible degeneration, leading to vision loss that cannot be restored with available therapeutics. Current therapies slow further degeneration but do not promote regeneration. New regenerative factors have been discovered that are successful in vivo. However, the mechanisms of efficient long-distance regeneration are still unknown. Membrane expansion by lipid insertion is an essential regenerative process, so lipid profiles for regenerating axons can provide insight into growth mechanisms. This article's analysis aims to add to the increasingly available ON regeneration lipid profiles and relate it to membrane order/properties. Methods: In this study, we present an analysis of glycerophospholipids, one of the largest axonal lipid groups, from three mammalian ON regeneration lipid profiles: Wnt3a, Zymosan + CPT-cAMP, and Phosphatase/Tensin homolog knockout (PTENKO) at 7 and 14 days post crush (dpc). Significant lipid classes, species, and ontological properties were crossreferenced between treatments and analyzed using Metaboanalyst 5.0 and Lipid Ontology (LION). Membrane order changes associated with significant lipid classes were evaluated by C-Laurdan dye and exogenous lipids provided to a neuroblastoma cell line. Results and Conclusions: At 7 dpc, ONs show increased lysoglycerophospholipids and decreased phosphatidylethanolamines (PEs)/negative intrinsic curvature lipids. At 14 dpc, regenerative treatments show divergence: Wnt3a displays higher lysoglycerophospholipid content, while Zymosan and PTENKO decrease lysoglycerophospholipids and increase phosphatidylcholine (PC)-related species. Membrane order imaging indicates lysoglycerophospholipids decreases membrane order while PE and PC had no significant membrane order effects. Understanding these changes will allow therapeutic development targeting lipid metabolic pathways that can be used for vision loss treatments.
Collapse
Affiliation(s)
- Sean D. Meehan
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
| | - Emily Neag
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
- College of Osteopathic Medicine, Michigan State University, East Lansing, Michigan, USA
| | - Sanjoy K. Bhattacharya
- Bascom Palmer Eye Institute, Miller School of Medicine at University of Miami, Miami, Florida, USA
- Miami Integrative Metabolomics Research Center, Miller School of Medicine at University of Miami, Miami, Florida, USA
| |
Collapse
|
11
|
Bertolini M, Wong MS, Mendive-Tapia L, Vendrell M. Smart probes for optical imaging of T cells and screening of anti-cancer immunotherapies. Chem Soc Rev 2023; 52:5352-5372. [PMID: 37376918 PMCID: PMC10424634 DOI: 10.1039/d2cs00928e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Indexed: 06/29/2023]
Abstract
T cells are an essential part of the immune system with crucial roles in adaptive response and the maintenance of tissue homeostasis. Depending on their microenvironment, T cells can be differentiated into multiple states with distinct functions. This myriad of cellular activities have prompted the development of numerous smart probes, ranging from small molecule fluorophores to nanoconstructs with variable molecular architectures and fluorescence emission mechanisms. In this Tutorial Review, we summarize recent efforts in the design, synthesis and application of smart probes for imaging T cells in tumors and inflammation sites by targeting metabolic and enzymatic biomarkers as well as specific surface receptors. Finally, we briefly review current strategies for how smart probes are employed to monitor the response of T cells to anti-cancer immunotherapies. We hope that this Review may help chemists, biologists and immunologists to design the next generation of molecular imaging probes for T cells and anti-cancer immunotherapies.
Collapse
Affiliation(s)
- Marco Bertolini
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Man Sing Wong
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Lorena Mendive-Tapia
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| | - Marc Vendrell
- Centre for Inflammation Research, The University of Edinburgh, EH16 4UU, Edinburgh, UK.
- IRR Chemistry Hub, Institute for Regeneration and Repair, The University of Edinburgh, EH16 4UU, Edinburgh, UK
| |
Collapse
|
12
|
Mitchison-Field LM, Belin BJ. Bacterial lipid biophysics and membrane organization. Curr Opin Microbiol 2023; 74:102315. [PMID: 37058914 PMCID: PMC10523990 DOI: 10.1016/j.mib.2023.102315] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 04/16/2023]
Abstract
The formation of lateral microdomains is emerging as a central organizing principle in bacterial membranes. These microdomains are targets of antibiotic development and have the potential to enhance natural product synthesis, but the rules governing their assembly are unclear. Previous studies have suggested that microdomain formation is promoted by lipid phase separation, particularly by cardiolipin (CL) and isoprenoid lipids, and there is strong evidence that CL biosynthesis is required for recruitment of membrane proteins to cell poles and division sites. New work demonstrates that additional bacterial lipids may mediate membrane protein localization and function, opening the field for mechanistic evaluation of lipid-driven membrane organization in vivo.
Collapse
Affiliation(s)
- Lorna My Mitchison-Field
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | - Brittany J Belin
- Department of Embryology, Carnegie Institution for Science, Baltimore, MD, USA; Department of Biology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
13
|
Real Hernandez LM, Levental I. Lipid packing is disrupted in copolymeric nanodiscs compared with intact membranes. Biophys J 2023; 122:2256-2266. [PMID: 36641625 PMCID: PMC10257115 DOI: 10.1016/j.bpj.2023.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 12/02/2022] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Discoidal lipid-protein nanoparticles known as nanodiscs are widely used tools in structural and membrane biology. Amphipathic, synthetic copolymers have recently become an attractive alternative to membrane scaffold proteins for the formation of nanodiscs. Such copolymers can directly intercalate into, and form nanodiscs from, intact membranes without detergents. Although these copolymer nanodiscs can extract native membrane lipids, it remains unclear whether native membrane properties are also retained. To determine the extent to which bilayer lipid packing is retained in nanodiscs, we measured the behavior of packing-sensitive fluorescent dyes in various nanodisc preparations compared with intact lipid bilayers. We analyzed styrene-maleic acid (SMA), diisobutylene-maleic acid (DIBMA), and polymethacrylate (PMA) as nanodisc scaffolds at various copolymer-to-lipid ratios and temperatures. Measurements of Laurdan spectral shifts revealed that dimyristoyl-phosphatidylcholine (DMPC) nanodiscs had increased lipid headgroup packing compared with large unilamellar vesicles (LUVs) above the lipid melting temperature for all three copolymers. Similar effects were observed for DMPC nanodiscs stabilized by membrane scaffolding protein MSP1E1. Increased lipid headgroup packing was also observed when comparing nanodiscs with intact membranes composed of binary mixtures of 1-palmitoyl-2-oleoyl-phosphocholine (POPC) and di-palmitoyl-phosphocholine (DPPC), which show fluid-gel-phase coexistence. Similarly, Laurdan reported increased headgroup packing in nanodiscs for biomimetic mixtures containing cholesterol, most notable for relatively disordered membranes. The magnitudes of these ordering effects were not identical for the various copolymers, with SMA being the most and DIBMA being the least perturbing. Finally, nanodiscs derived from mammalian cell membranes showed similarly increased lipid headgroup packing. We conclude that nanodiscs generally do not completely retain the physical properties of intact membranes.
Collapse
Affiliation(s)
- Luis M Real Hernandez
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia
| | - Ilya Levental
- Department of Molecular Physiology and Biological Physics, Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, Virginia.
| |
Collapse
|
14
|
Huang A, Adler J, Parmryd I. Optimised generalized polarisation analysis of C-laurdan reveals clear order differences between T cell membrane compartments. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2023; 1865:184094. [PMID: 36379264 DOI: 10.1016/j.bbamem.2022.184094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/15/2022]
Abstract
Heterogenous packing of plasma membrane lipids is important for cellular processes like signalling, adhesion and sorting of membrane components. Solvatochromic membrane fluorophores that respond to changes from liquid-ordered (lo) phase to liquid-disordered (ld) by red shifts in their emission spectra are often used to assess lipid packing. Their response can be quantified using generalized polarisation (GP) using fluorescence microscopy images from two emission ranges, preferably from a region of interest (ROI) limited to a specific membrane compartment. However, image quality is limited by Poisson noise and convolution by the point spread function of the imaging system. Examining GP-analysis of C-laurdan labelled T cells using the image restoration procedure deconvolution, we demonstrate that deconvolution substantially improves the image resolution by making the plasma membrane clearly discernible and facilitating plasma membrane ROI selection. We conclude that automatic ROI selection has advantages over manual ROI selection when it comes to reproducibility and speed, but reliable GP-measurements can also be obtained by manually demarcated ROIs. We find that deconvolution enhances the difference in GP-values between the plasma and intracellular membranes and demonstrate that moving an intensity defined plasma membrane ROI outwards from the cell further improves this differentiation. By systematically changing the key deconvolution regularization parameter signal to noise, we establish a protocol for deconvolution optimisation applicable to any solvatochromic dye and imaging system. The image processing and ROI selection protocol presented improves both the resolution and precision of GP-measurement and will enable detection of smaller changes in membrane order than is currently achievable.
Collapse
Affiliation(s)
- Ainsley Huang
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jeremy Adler
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ingela Parmryd
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
15
|
C-Laurdan: Membrane Order Visualization of HEK293t Cells by Confocal Microscopy. Methods Mol Biol 2023; 2625:353-364. [PMID: 36653657 DOI: 10.1007/978-1-0716-2966-6_30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Membrane order is a biophysical characteristic dependent on cellular lipid makeup. Cells regulate the membrane structure as it affects membrane-bound protein activity levels and membrane stability. Spatial organization of membrane lipids, such as lipid rafts, is a proposed theory that has been indirectly measured through polarity-sensitive fluorescent dyes. C-Laurdan is one such dye that penetrates plasma and internal membranes. C-Laurdan is excited by a single 405 nm photon and emits in two distinct ranges depending on membrane order. Herein, we present a protocol for staining HEK293t cells with C-Laurdan and acquiring ratiometric images using a revised ImageJ macro and confocal microscopy. An example figure is provided depicting the effects of methyl-β-cyclodextrin, known to remove lipid rafts through cholesterol sequestration, on HEK293t cells. Further image analysis can be performed through region of interest (ROI) selection tools.
Collapse
|
16
|
A new AMPK isoform mediates glucose-restriction induced longevity non-cell autonomously by promoting membrane fluidity. Nat Commun 2023; 14:288. [PMID: 36653384 PMCID: PMC9849402 DOI: 10.1038/s41467-023-35952-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Dietary restriction (DR) delays aging and the onset of age-associated diseases. However, it is yet to be determined whether and how restriction of specific nutrients promote longevity. Previous genome-wide screens isolated several Escherichia coli mutants that extended lifespan of Caenorhabditis elegans. Here, using 1H-NMR metabolite analyses and inter-species genetics, we demonstrate that E. coli mutants depleted of intracellular glucose extend C. elegans lifespans, serving as bona fide glucose-restricted (GR) diets. Unlike general DR, GR diets don't reduce the fecundity of animals, while still improving stress resistance and ameliorating neuro-degenerative pathologies of Aβ42. Interestingly, AAK-2a, a new AMPK isoform, is necessary and sufficient for GR-induced longevity. AAK-2a functions exclusively in neurons to modulate GR-mediated longevity via neuropeptide signaling. Last, we find that GR/AAK-2a prolongs longevity through PAQR-2/NHR-49/Δ9 desaturases by promoting membrane fluidity in peripheral tissues. Together, our studies identify the molecular mechanisms underlying prolonged longevity by glucose specific restriction in the context of whole animals.
Collapse
|
17
|
Yasuda T, Watanabe H, Hirosawa KM, Suzuki KGN, Suga K, Hanashima S. Fluorescence Spectroscopic Analysis of Lateral and Transbilayer Fluidity of Exosome Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14695-14703. [PMID: 36421004 PMCID: PMC9731264 DOI: 10.1021/acs.langmuir.2c02258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/10/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are small extracellular vesicles (sEVs) involved in distal cell-cell communication and cancer migration by transferring functional cargo molecules. Membrane domains similar to lipid rafts are assumed to occur in exosome membranes and are involved in interactions with target cells. However, the bilayer membrane properties of these small vesicles have not been fully investigated. Therefore, we examined the fluidity, lateral domain separation, and transbilayer asymmetry of exosome membranes using fluorescence spectroscopy. Although there were some differences between the exosomes, TMA-DPH anisotropy showing moderate lipid chain order indicated that ordered phases comprised a significant proportion of exosome membranes. Selective TEMPO quenching of the TMA-DPH fluorescence in the liquid-disordered phase indicated that 40-50% of the exosome membrane area belonged to the ordered phase based on a phase-separated model. Furthermore, NBD-PC in the outer leaflet showed longer fluorescence lifetimes than those in the inner leaflets. Therefore, the exosome membranes maintained transbilayer asymmetry with a topology similar to that of the plasma membranes. In addition, the lateral and transbilayer orders of exosome membranes obtained from different cell lines varied, probably depending on the different membrane lipid components and compositions partially derived from donor cells. As these higher membrane orders and asymmetric topologies are similar to those of cell membranes with lipid rafts, raft-like functional domains are possibly enriched on exosome membranes. These domains likely play key roles in the biological functions and cellular uptake of exosomes by facilitating selective membrane interactions with target organs.
Collapse
Affiliation(s)
- Tomokazu Yasuda
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Hirofumi Watanabe
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| | - Koichiro M. Hirosawa
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu501-1193, Japan
| | - Kenichi G. N. Suzuki
- Institute
for Glyco-core Research (iGCORE), Gifu University, 1-1 Yanagido, Gifu501-1193, Japan
| | - Keishi Suga
- Department
of Chemical Engineering, Tohoku University, 6-6-07, Aoba, Aramaki-aza, Aoba-ku, Sendai, Miyagi980-8579, Japan
| | - Shinya Hanashima
- Graduate
School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
18
|
Lee HW, Pati TK, Lee IJ, Lee JM, Kim BR, Kwak SY, Kim HM. In Vivo Simultaneous Imaging of Plasma Membrane and Lipid Droplets in Hepatic Steatosis using Red-Emissive Two-Photon Probes. Anal Chem 2022; 94:15100-15107. [PMID: 36265084 DOI: 10.1021/acs.analchem.2c03285] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The plasma membrane, which is a phosphoglyceride bilayer at the outer edge of the cell, plays diverse and important roles in biological systems. Visualization of the plasma membrane in live samples is important for various applications in biological functions. We developed an amphiphilic two-photon (TP) fluorescent probe (THQ-Mem) to selectively monitor the plasma membrane in live samples. This probe exhibited red emission (620-700 nm), large TP absorption cross sections (δmax > 790 GM), and high selectivity to the plasma membrane. In cultured cells and in vivo hepatic tissue imaging, THQ-Mem showed bright TP-excited fluorescence (TPEF) and remarkable selectivity for the plasma membrane. Furthermore, simultaneous in vivo imaging with THQ-Mem and a TP lipid droplet probe could serve as an efficient tool to monitor morphological and physiological changes in the plasma membrane and lipid droplets.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Tanmay Kumar Pati
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - In-Jeong Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Jeong-Mi Lee
- Three-Dimensional Immune System Imaging Core Facility, Ajou University, Suwon 16499, Korea
| | - Bo Ra Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Sun Young Kwak
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
19
|
Yadav SB, Sekar N. Linear, nonlinear optical properties and structure-property relationships in ESIPT-rhodols. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Otaiza-González S, Cabadas M, Robert G, Stock R, Malacrida L, Lascano R, Bagatolli L. The innards of the cell: studies of water dipolar relaxation using the ACDAN fluorescent probe. Methods Appl Fluoresc 2022; 10. [PMID: 36027875 DOI: 10.1088/2050-6120/ac8d4c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/26/2022] [Indexed: 11/12/2022]
Abstract
This article reviews the use of the 6-acetyl-2-(dimethylamino)naphthalene (ACDAN) fluorophore to study dipolar relaxation in cells, tissues, and biomimetic systems. As the most hydrophilic member of the 6-acyl-2-(dimethylamino)naphthalene series, ACDAN markedly partitions to aqueous environments. In contrast to 6-lauroyl-2-(dimethylamino)naphthalene (LAURDAN), the hydrophobic and best-known member of the series used to explore relaxation phenomena in biological (or biomimetic) membranes, ACDAN allows mapping of spatial and temporal water dipolar relaxation in cytosolic and intra-organelle environments of the cell. This is also true for the 6-propionyl-2-(dimethylamino)naphthalene (PRODAN) derivative which, unlike LAURDAN, partitions to both hydrophobic and aqueous environments. We will i) summarize the mechanism which underlies the solvatochromic properties of the DAN probes, ii) expound on the importance of water relaxation to understand the intracellular environment, iii) discuss technical aspects of the use of ACDAN in eukaryotic cells and some specialized structures, including liquid condensates arising from processes leading to liquid immiscibility and, iv) present some novel studies in plant cells and tissues which demonstrate the kinds of information that can be uncovered using this approach to study dipolar relaxation in living systems.
Collapse
Affiliation(s)
- Santiago Otaiza-González
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, Córdoba, 5016, ARGENTINA
| | - Manuel Cabadas
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, 5016, ARGENTINA
| | - Germán Robert
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre 4755, Córdoba, X5020ICA, ARGENTINA
| | - Roberto Stock
- MEMPHYS - International and Interdisciplinary research network, Friuli 2434, Córdoba, 5016, ARGENTINA
| | - Leonel Malacrida
- Fisiopatología, Hospital del Clinicas, Av Italia sn, Piso 15, sala 1, Montevideo, Select One, 10400, URUGUAY
| | - Ramiro Lascano
- Plant Stress Biology Group, Unidad de Doble Dependencia INTA-CONICET (UDEA), Av. 11 de Septiembre 4755, Córdoba, X5020ICA, ARGENTINA
| | - Luis Bagatolli
- CONICET- Universidad Nacional de Córdoba- Instituto de Investigación Médica Mercedes y Martín Ferreyra, Friuli 2434, Cordoba, 5016, ARGENTINA
| |
Collapse
|
21
|
Wang SF, Hung YH, Tsao CH, Chiang CY, Teoh PG, Chiang ML, Lin WH, Hsu DK, Jan HM, Lin HC, Lin CH, Liu FT, Chen HY. Galectin-3 facilitates cell-to-cell HIV-1 transmission by altering the composition of membrane lipid rafts in CD4 T cells. Glycobiology 2022; 32:760-777. [PMID: 35789267 DOI: 10.1093/glycob/cwac040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 05/28/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Galectin-3 (GAL3) is a β-galactoside-binding lectin expressed in CD4 T cells infected with human immunodeficiency virus-1 (HIV-1). GAL3 promotes HIV-1 budding by associating with ALIX and Gag p6. GAL3 has been shown to localize in membrane lipid rafts in dendritic cells and positively regulate cell migration. HIV-1 spreads between T cells by forming supramolecular structures (virological synapses [VSs]), whose integrity depends on lipid rafts. Here, we addressed the potential role of GAL3 in cell-to-cell transmission of HIV-1 in CD4 T cells. GAL3 expressed in donor cells was more important for facilitating HIV-1 cell-to-cell transfer than GAL3 expressed in target cells. GAL3 was found to be co-transferred with Gag from HIV-1-positive donor to HIV-1-negative target T cells. HIV-1 infection induced translocation of GAL3 together with Gag to the cell-cell interfaces and colocalize with GM1, where GAL3 facilitated VS formation. GAL3 regulated the coordinated transfer of Gag and flotillin-1 into plasma membrane fractions. Finally, depletion of GAL3 reduced the cholesterol levels in membrane lipid rafts in CD4 T cells. These findings provide evidence that endogenous GAL3 stimulates lipid raft components and facilitates intercellular HIV-1 transfer among CD4 T cells, offering another pathway by which GAL3 regulates HIV-1 infection. These findings may inform the treatment of HIV-1 infection based on targeting GAL3 to modulate lipid rafts.
Collapse
Affiliation(s)
- Sheng-Fan Wang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Yu-Hsien Hung
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Ching-Han Tsao
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Ph.D. Program in Translational Medicine, Kaohsiung Medical University and Academia Sinica, Taiwan
| | - Cho-Ying Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Pak-Guan Teoh
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Meng-Lin Chiang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Wei-Han Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Daniel K Hsu
- Department of Dermatology, University of California Davis, California, USA
| | - Hau-Ming Jan
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Hsiu-Chu Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Chun-Hung Lin
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Fu-Tong Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| | - Huan-Yuan Chen
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.,Department of Dermatology, University of California Davis, California, USA
| |
Collapse
|
22
|
Hong ST, Kim MS, Kim BR, Lee EJ, Yoon YU, Paik KC, Han MS, Kim ES, Cho BR. Organelle-specific blue-emitting two-photon probes for calcium ions: Combination with green-emitting two-photon probe for simultaneous detection of proton ions. Talanta 2022; 244:123408. [DOI: 10.1016/j.talanta.2022.123408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/22/2022] [Accepted: 03/24/2022] [Indexed: 10/18/2022]
|
23
|
Pérez-Martí A, Ramakrishnan S, Li J, Dugourd A, Molenaar MR, De La Motte LR, Grand K, Mansouri A, Parisot M, Lienkamp SS, Saez-Rodriguez J, Simons M. Reducing lipid bilayer stress by monounsaturated fatty acids protects renal proximal tubules in diabetes. eLife 2022; 11:74391. [PMID: 35550039 PMCID: PMC9154741 DOI: 10.7554/elife.74391] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
In diabetic patients, dyslipidemia frequently contributes to organ damage such as diabetic kidney disease (DKD). Dyslipidemia is associated with both excessive deposition of triacylglycerol (TAG) in lipid droplets (LD) and lipotoxicity. Yet, it is unclear how these two effects correlate with each other in the kidney and how they are influenced by dietary patterns. By using a diabetes mouse model, we find here that high fat diet enriched in the monounsaturated oleic acid (OA) caused more lipid storage in LDs in renal proximal tubular cells (PTC) but less tubular damage than a corresponding butter diet with the saturated palmitic acid (PA). This effect was particularly evident S2/S3 but not S1 segments of the proximal tubule. Combining transcriptomics, lipidomics and functional studies, we identify endoplasmic reticulum (ER) stress as the main cause of PA-induced PTC injury. Mechanistically, ER stress is caused by elevated levels of saturated TAG precursors, reduced LD formation and, consequently, higher membrane order in the ER. Simultaneous addition of OA rescues the cytotoxic effects by normalizing membrane order and by increasing both TAG and LD formation. Our study thus emphasizes the importance of monounsaturated fatty acids for the dietary management of DKD by preventing lipid bilayer stress in the ER and promoting TAG and LD formation in PTCs.
Collapse
Affiliation(s)
- Albert Pérez-Martí
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Suresh Ramakrishnan
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Jiayi Li
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | | | - Martijn R Molenaar
- Structural and Computational Biology Unit, European Molecular Biology Laboratorium (EMBL), Heidelberg, Germany
| | - Luigi R De La Motte
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| | - Kelli Grand
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | - Anis Mansouri
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Mélanie Parisot
- Genomics Core Facility, Institut Imagine-Structure Fédérative de Recherche Necker, INSERM U1163, INSERM US24/CNRS UMS3633, Paris Descartes Sorbonne Paris Cite University, Paris, France
| | | | | | - Matias Simons
- Division of Nephrogenetics, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
24
|
Levitan I. Evaluating membrane structure by Laurdan imaging: Disruption of lipid packing by oxidized lipids. CURRENT TOPICS IN MEMBRANES 2021; 88:235-256. [PMID: 34862028 DOI: 10.1016/bs.ctm.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Impact of different lipids on membrane structure/lipid order is critical for multiple biological processes. Laurdan microscopy provides a unique tool to assess this property in heterogeneous biological membranes. This review describes the general principles of the approach and its application in model membranes and cells. It also provides an in-depth discussion of the insights obtained using Laurdan microscopy to evaluate the differential effects of cholesterol, oxysterols and oxidized phospholipids on lipid packing of ordered and disordered domains in vascular endothelial cells.
Collapse
Affiliation(s)
- Irena Levitan
- Division of Pulmonary and Critical Care, Department of Medicine, University of Illinois at Chicago, Chicago, IL, United States.
| |
Collapse
|
25
|
Lee HW, Juvekar V, Lee DJ, Kim SM, Kim HM. Highly Stable Red-Emissive Ratiometric Probe for Monitoring β-Galactosidase Activity Using Fluorescence Microscopy and Flow Cytometry. Anal Chem 2021; 93:14778-14783. [PMID: 34705435 DOI: 10.1021/acs.analchem.1c03453] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
β-Galactosidase (β-gal), well known as a useful reporter enzyme, is a potent biomarker for various diseases such as colorectal and ovarian cancers. We have developed a highly stable red-emissive ratiometric fluorescent probe (CCGal1) for quantitatively monitoring the β-gal enzyme activity in live cells and tissues. This ratiometric probe showed a fast emission color change (620-662 nm) in response to β-gal selectively, which was accompanied by high enzyme reaction efficacy, cell-staining ability, and outstanding stability with minimized cytotoxicity. Confocal fluorescence microscopy ratiometric images, combined with fluorescence-activated cell sorting flow cytometry, demonstrated that CCGal1 could provide useful information for the diagnosis, prognosis, and treatment of β-gal enzyme activity-related diseases such as colorectal and ovarian cancers. Further, it may yield meaningful strategies for designing and modifying multifunctional bioprobes with different biomedical applications.
Collapse
Affiliation(s)
- Hyo Won Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Vinayak Juvekar
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Dong Joon Lee
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Sun Mi Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| | - Hwan Myung Kim
- Department of Energy Systems Research and Department of Chemistry, Ajou University, Suwon 16499, Korea
| |
Collapse
|
26
|
Niko Y, Klymchenko AS. Emerging Solvatochromic Push-Pull Dyes for Monitoring the Lipid Order of Biomembranes in Live Cells. J Biochem 2021; 170:163-174. [PMID: 34213537 DOI: 10.1093/jb/mvab078] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 06/21/2021] [Indexed: 11/13/2022] Open
Abstract
Solvatochromic dyes have emerged as a new class of fluorescent probes in the field of lipid membranes due to their ability to identify the lipid organization of biomembranes in live cells by changing the color of their fluorescence. This type of solvatochromic function is useful for studying the heterogeneous features of biomembranes caused by the uneven distribution of lipids and cholesterols in live cells and related cellular processes. Therefore, a variety of advanced solvatochromic dyes have been rapidly developed over the last decade. To provide an overview of the works recently developed solvatochromic dyes have enabled, we herein present some solvatochromic dyes, with a particular focus on those based on pyrene and Nile red. As these dyes exhibit preferable photophysical properties in terms of fluorescence microscopy applications and unique distribution/localization in cellular compartments, some have already found applications in cell biological and biophysical studies. The goal of this review is to provide information to researchers who have never used solvatochromic dyes or who have not discovered applications of such dyes in biological studies.
Collapse
Affiliation(s)
- Yosuke Niko
- Research and Education Faculty, Multidisciplinary Science Cluster, Interdisciplinary Science Unit, Kochi University, 2-5-1, Akebono-cho, Kochi-shi, Kochi, 780-8520, Japan
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401, Illkirch, France
| |
Collapse
|
27
|
Chwastek G, Surma MA, Rizk S, Grosser D, Lavrynenko O, Rucińska M, Jambor H, Sáenz J. Principles of Membrane Adaptation Revealed through Environmentally Induced Bacterial Lipidome Remodeling. Cell Rep 2021; 32:108165. [PMID: 32966790 DOI: 10.1016/j.celrep.2020.108165] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/20/2020] [Accepted: 08/27/2020] [Indexed: 12/17/2022] Open
Abstract
Cells, from microbes to mammals, adapt their membrane lipid composition in response to environmental changes to maintain optimal properties. Global patterns of lipidome remodeling are poorly understood, particularly in organisms with simple lipid compositions that can provide insight into fundamental principles of membrane adaptation. Using shotgun lipidomics, we examine the simple yet, as we show here, adaptive lipidome of the plant-associated Gram-negative bacterium Methylobacterium extorquens. We observe that minimally 11 lipids account for 90% of total variability, thus constraining the upper limit of variable lipids required for an adaptive living membrane. Through lipid features analysis, we reveal that acyl chain remodeling is not evenly distributed across lipid classes, resulting in headgroup-specific effects of acyl chain variability on membrane properties. Results herein implicate headgroup-specific acyl chain remodeling as a mechanism for fine-tuning the membrane's physical state and provide a resource for using M. extorquens to explore the design principles of living membranes.
Collapse
Affiliation(s)
- Grzegorz Chwastek
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany
| | | | - Sandra Rizk
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany
| | - Daniel Grosser
- DZD-Paul Langerhans Institute Dresden, Fetscherstraße 74, Dresden, Germany
| | - Oksana Lavrynenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, Dresden, Germany
| | | | - Helena Jambor
- Technische Universität Dresden, Medizinische Fakultät, Fetscherstraße 74, Dresden, Germany
| | - James Sáenz
- Technische Universität Dresden, B CUBE, Tatzberg 41, Dresden, Germany.
| |
Collapse
|
28
|
Sych T, Gurdap CO, Wedemann L, Sezgin E. How Does Liquid-Liquid Phase Separation in Model Membranes Reflect Cell Membrane Heterogeneity? MEMBRANES 2021; 11:323. [PMID: 33925240 PMCID: PMC8146956 DOI: 10.3390/membranes11050323] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 04/22/2021] [Accepted: 04/26/2021] [Indexed: 11/22/2022]
Abstract
Although liquid-liquid phase separation of cytoplasmic or nuclear components in cells has been a major focus in cell biology, it is only recently that the principle of phase separation has been a long-standing concept and extensively studied in biomembranes. Membrane phase separation has been reconstituted in simplified model systems, and its detailed physicochemical principles, including essential phase diagrams, have been extensively explored. These model membrane systems have proven very useful to study the heterogeneity in cellular membranes, however, concerns have been raised about how reliably they can represent native membranes. In this review, we will discuss how phase-separated membrane systems can mimic cellular membranes and where they fail to reflect the native cell membrane heterogeneity. We also include a few humble suggestions on which phase-separated systems should be used for certain applications, and which interpretations should be avoided to prevent unreliable conclusions.
Collapse
Affiliation(s)
| | | | | | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women’s and Children’s Health, Karolinska Institutet, 17165 Solna, Sweden; (T.S.); (C.O.G.); (L.W.)
| |
Collapse
|
29
|
Kusumi A, Fujiwara TK, Tsunoyama TA, Kasai RS, Liu AA, Hirosawa KM, Kinoshita M, Matsumori N, Komura N, Ando H, Suzuki KGN. Defining raft domains in the plasma membrane. Traffic 2021; 21:106-137. [PMID: 31760668 DOI: 10.1111/tra.12718] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/19/2019] [Accepted: 11/20/2019] [Indexed: 01/03/2023]
Abstract
Many plasma membrane (PM) functions depend on the cholesterol concentration in the PM in strikingly nonlinear, cooperative ways: fully functional in the presence of physiological cholesterol levels (35~45 mol%), and nonfunctional below 25 mol% cholesterol; namely, still in the presence of high concentrations of cholesterol. This suggests the involvement of cholesterol-based complexes/domains formed cooperatively. In this review, by examining the results obtained by using fluorescent lipid analogs and avoiding the trap of circular logic, often found in the raft literature, we point out the fundamental similarities of liquid-ordered (Lo)-phase domains in giant unilamellar vesicles, Lo-phase-like domains formed at lower temperatures in giant PM vesicles, and detergent-resistant membranes: these domains are formed by cooperative interactions of cholesterol, saturated acyl chains, and unsaturated acyl chains, in the presence of >25 mol% cholesterol. The literature contains evidence, indicating that the domains formed by the same basic cooperative molecular interactions exist and play essential roles in signal transduction in the PM. Therefore, as a working definition, we propose that raft domains in the PM are liquid-like molecular complexes/domains formed by cooperative interactions of cholesterol with saturated acyl chains as well as unsaturated acyl chains, due to saturated acyl chains' weak multiple accommodating interactions with cholesterol and cholesterol's low miscibility with unsaturated acyl chains and TM proteins. Molecules move within raft domains and exchange with those in the bulk PM. We provide a logically established collection of fluorescent lipid probes that preferentially partition into raft and non-raft domains, as defined here, in the PM.
Collapse
Affiliation(s)
- Akihiro Kusumi
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan.,Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Takahiro K Fujiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto, Japan
| | - Taka A Tsunoyama
- Membrane Cooperativity Unit, Okinawa Institute of Science and Technology Graduate University (OIST), Okinawa, Japan
| | - Rinshi S Kasai
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan
| | - An-An Liu
- Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin, P. R. China
| | - Koichiro M Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Masanao Kinoshita
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Nobuaki Matsumori
- Department of Chemistry, Faculty of Science, Kyushu University, Fukuoka, Japan
| | - Naoko Komura
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Hiromune Ando
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| | - Kenichi G N Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Gifu, Japan
| |
Collapse
|
30
|
Danylchuk DI, Jouard PH, Klymchenko AS. Targeted Solvatochromic Fluorescent Probes for Imaging Lipid Order in Organelles under Oxidative and Mechanical Stress. J Am Chem Soc 2021; 143:912-924. [DOI: 10.1021/jacs.0c10972] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Dmytro I. Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Pierre-Henri Jouard
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| | - Andrey S. Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 Route du Rhin, 67401 Illkirch, France
| |
Collapse
|
31
|
Soteriou C, Kalli AC, Connell SD, Tyler AII, Thorne JL. Advances in understanding and in multi-disciplinary methodology used to assess lipid regulation of signalling cascades from the cancer cell plasma membrane. Prog Lipid Res 2020; 81:101080. [PMID: 33359620 DOI: 10.1016/j.plipres.2020.101080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 12/18/2020] [Indexed: 12/31/2022]
Abstract
The lipid bilayer is a functional component of cells, forming a stable platform for the initiation of key biological processes, including cell signalling. There are distinct changes in the lipid composition of cell membranes during oncogenic transformation resulting in aberrant activation and inactivation of signalling transduction pathways. Studying the role of the cell membrane in cell signalling is challenging, since techniques are often limited to by timescale, resolution, sensitivity, and averaging. To overcome these limitations, combining 'computational', 'wet-lab' and 'semi-dry' approaches offers the best opportunity to resolving complex biological processes involved in membrane organisation. In this review, we highlight analytical tools that have been applied for the study of cell signalling initiation from the cancer cell membranes through computational microscopy, biological assays, and membrane biophysics. The cancer therapeutic potential of extracellular membrane-modulating agents, such as cholesterol-reducing agents is also discussed, as is the need for future collaborative inter-disciplinary research for studying the role of the cell membrane and its components in cancer therapy.
Collapse
Affiliation(s)
- C Soteriou
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK; Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK; Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A C Kalli
- Leeds Institute of Cardiovascular and Metabolic Medicine and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, UK
| | - S D Connell
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK
| | - A I I Tyler
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK
| | - J L Thorne
- School of Food Science and Nutrition, University of Leeds, Leeds LS29JT, UK.
| |
Collapse
|
32
|
Liu C, Gao X, Yuan J, Zhang R. Advances in the development of fluorescence probes for cell plasma membrane imaging. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2020.116092] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
33
|
Plochberger B, Sych T, Weber F, Novacek J, Axmann M, Stangl H, Sezgin E. Lipoprotein Particles Interact with Membranes and Transfer Their Cargo without Receptors. Biochemistry 2020; 59:4421-4428. [PMID: 33147967 PMCID: PMC7677925 DOI: 10.1021/acs.biochem.0c00748] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipid transfer from lipoprotein particles to cells is essential for lipid homeostasis. High-density lipoprotein (HDL) particles are mainly captured by cell membrane-associated scavenger receptor class B type 1 (SR-B1) from the bloodstream, while low-density and very-low-density lipoprotein (LDL and VLDL, respectively) particles are mostly taken up by receptor-mediated endocytosis. However, the role of the target lipid membrane itself in the transfer process has been largely neglected so far. Here, we study how lipoprotein particles (HDL, LDL, and VLDL) interact with synthetic lipid bilayers and cell-derived membranes and transfer their cargo subsequently. Employing cryo-electron microscopy, spectral imaging, and fluorescence (cross) correlation spectroscopy allowed us to observe integration of all major types of lipoprotein particles into the membrane and delivery of their cargo in a receptor-independent manner. Importantly, the biophysical properties of the target cell membranes change upon delivery of cargo. The concept of receptor-independent interaction of lipoprotein particles with membranes helps us to better understand lipoprotein particle biology and can be exploited for novel treatments of dyslipidemia diseases.
Collapse
Affiliation(s)
- Birgit Plochberger
- TU Wien, Institute of Applied Physics, Vienna 1040, Austria.,Johannes Kepler University Linz, Institute of Biophysics, Linz 4020, Austria.,Upper Austria University of Applied Sciences, Campus Linz, Linz 4020, Austria
| | - Taras Sych
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Florian Weber
- Upper Austria University of Applied Sciences, Campus Linz, Linz 4020, Austria.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden
| | - Jiri Novacek
- CEITEC, Masaryk University, University Campus Bohunice, Brno 62500, Czech Republic
| | - Markus Axmann
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna 1090, Austria
| | - Herbert Stangl
- Medical University of Vienna, Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Vienna 1090, Austria
| | - Erdinc Sezgin
- Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17165 Solna, Sweden.,MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford OX3 9DS, U.K
| |
Collapse
|
34
|
Osella S, Knippenberg S. The influence of lipid membranes on fluorescent probes' optical properties. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183494. [PMID: 33129783 DOI: 10.1016/j.bbamem.2020.183494] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/13/2020] [Accepted: 10/15/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Organic fluorophores embedded in lipid bilayers can nowadays be described by a multiscale computational approach. Combining different length and time scales, a full characterization of the probe localization and optical properties led to novel insight into the effect of the environments. SCOPE OF REVIEW Following an introduction on computational advancements, three relevant probes are reviewed that delineate how a multiscale approach can lead to novel insight into the probes' (non) linear optical properties. Attention is paid to the quality of the theoretical description of the optical techniques. MAJOR CONCLUSIONS Computation can assess a priori novel probes' optical properties and guide the analysis and interpretation of experimental data in novel studies. The properties can be used to gain information on the phase and condition of the surrounding biological environment. GENERAL SIGNIFICANCE Computation showed that a canonical view on some of the probes should be revisited and adapted.
Collapse
Affiliation(s)
- Silvio Osella
- Biological Systems Simulation Lab, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | - Stefan Knippenberg
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacký University Olomouc, 17. listopadu 12, 771 46 Olomouc, Czech Republic; Department of Theoretical Chemistry and Biology, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden; Theoretical Physics, Hasselt University, Agoralaan Building D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
35
|
Danylchuk DI, Sezgin E, Chabert P, Klymchenko AS. Redesigning Solvatochromic Probe Laurdan for Imaging Lipid Order Selectively in Cell Plasma Membranes. Anal Chem 2020; 92:14798-14805. [PMID: 33044816 DOI: 10.1021/acs.analchem.0c03559] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Imaging of biological membranes by environmentally sensitive solvatochromic probes, such as Laurdan, provides information about the organization of lipids, their ordering, and their uneven distribution. To address a key drawback of Laurdan linked to its rapid internalization and subsequent labeling of internal membranes, we redesigned it by introducing a membrane anchor group based on negatively charged sulfonate and dodecyl chain. The obtained probe, Pro12A, stains exclusively the outer leaflet of lipid bilayers of liposomes, as evidenced by leaflet-specific fluorescence quenching with a viologen derivative, and shows higher fluorescence brightness than Laurdan. Pro12A also exhibits stronger spectral change between liquid-ordered and liquid-disordered phases in model membranes and distinguishes better lipid domains in giant plasma membrane vesicles (GPMVs) than Laurdan. In live cells, it stains exclusively the cell plasma membranes, in contrast to Laurdan and its carboxylate analogue C-Laurdan. Owing to its outer leaflet binding, Pro12A is much more sensitive to cholesterol extraction than Laurdan, which is redistributed within both plasma membrane leaflets and intracellular membranes. Finally, its operating range in the blue spectral region ensures the absence of crosstalk with a number of orange/red fluorescent proteins and dyes. Thus, Pro12A will enable accurate multicolor imaging of lipid organization of cell plasma membranes in the presence of fluorescently tagged proteins of interest, which will open new opportunities in biomembrane research.
Collapse
Affiliation(s)
- Dmytro I Danylchuk
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford OX3 9DS, U.K.,Science for Life Laboratory, Department of Women's and Children's Health, Karolinska Institutet, 17177 Stockholm, Sweden
| | - Philippe Chabert
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| | - Andrey S Klymchenko
- Laboratoire de Bioimagerie et Pathologies, UMR 7021 CNRS, Université de Strasbourg, 74 route du Rhin, 67401 Illkirch, France
| |
Collapse
|
36
|
Vitkova V, Mitkova D, Yordanova V, Pohl P, Bakowsky U, Staneva G, Batishchev O. Elasticity and phase behaviour of biomimetic membrane systems containing tetraether archaeal lipids. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124974] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
37
|
Choi JW, Ju YH, Choi Y, Hyeon SJ, Gadhe CG, Park JH, Kim MS, Baek S, Kim Y, Park KD, Pae AN, Ryu H, Lee CJ, Cho BR. PyrPeg, a Blood-Brain-Barrier-Penetrating Two-Photon Imaging Probe, Selectively Detects Neuritic Plaques, Not Tau Aggregates. ACS Chem Neurosci 2020; 11:1801-1810. [PMID: 32421307 DOI: 10.1021/acschemneuro.0c00211] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Amyloid-β (Aβ) tracers have made a significant contribution to the treatment of Alzheimer's disease (AD) by allowing a definitive diagnosis in living patients. Unfortunately, they also detect tau and other protein aggregates that compromise test accuracy. In AD research, there has been a growing need for in vivo Aβ imaging by two-photon microscopy, which enables deep-brain-fluorescence imaging. There is no suitable neuritic Aβ probe for two-photon microscopy. Here we report PyrPeg, a novel two-photon fluorescent probe that can selectively target insoluble Aβ rather than tau and α-synuclein aggregates in the AD model brain and postmortem brain. When injected intravenously, PyrPeg detects the neuritic plaques in the brain and olfactory bulb of the AD model. PyrPeg may serve as a useful blood-brain-barrier-penetrating diagnostic tool for optical and functional monitoring of insoluble forms of Aβ aggregates in the living AD brain.
Collapse
Affiliation(s)
- Ji-Woo Choi
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Yeon Ha Ju
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- IBS School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Yunsook Choi
- Center for Functional Connectomics, Korea Institute of Science and Technology (KIST), 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, Connecticut 06511, United States
| | - Seung Jae Hyeon
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, KIST, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Changdev G. Gadhe
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Jong-Hyun Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Mun Seok Kim
- Department of Chemistry, Daejin University, 1007 Hoguk-ro, Pocheon-si, Gyeonggi-do 11159, Republic of Korea
| | - Seungyeop Baek
- Integrated Science and Engineering Division, Department of Pharmacy and Department of Biotechnology, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - YoungSoo Kim
- Integrated Science and Engineering Division, Department of Pharmacy and Department of Biotechnology, and Yonsei Institute of Pharmaceutical Sciences, Yonsei University, 85 Songdogwahak-ro, Yeonsu-gu, Incheon 21983, Republic of Korea
| | - Ki Duk Park
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ae Nim Pae
- Convergence Research Center for Diagnosis, Treatment and Care System of Dementia, KIST, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hoon Ryu
- Centers for Neuromedicine and Neuroscience, Brain Science Institute, KIST, 5 Hwarangro 14-gil, Seongbuk-gu, Seoul 02792, Republic of Korea
- Boston University Alzheimer’s Disease Center (BU ADC) and Department of Neurology, Boston University School of Medicine, Boston, Massachusetts 02118, United States
| | - C. Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), 55 Expo-ro, Yuseong-gu, Daejeon 34126, Republic of Korea
- IBS School, University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Bong Rae Cho
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
- Department of Chemistry, Daejin University, 1007 Hoguk-ro, Pocheon-si, Gyeonggi-do 11159, Republic of Korea
- Department of Chemistry, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| |
Collapse
|
38
|
Levental KR, Malmberg E, Symons JL, Fan YY, Chapkin RS, Ernst R, Levental I. Lipidomic and biophysical homeostasis of mammalian membranes counteracts dietary lipid perturbations to maintain cellular fitness. Nat Commun 2020; 11:1339. [PMID: 32165635 PMCID: PMC7067841 DOI: 10.1038/s41467-020-15203-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 02/21/2020] [Indexed: 11/29/2022] Open
Abstract
Proper membrane physiology requires maintenance of biophysical properties, which must be buffered from external perturbations. While homeostatic adaptation of membrane fluidity to temperature variation is a ubiquitous feature of ectothermic organisms, such responsive membrane adaptation to external inputs has not been directly observed in mammals. Here, we report that challenging mammalian membranes by dietary lipids leads to robust lipidomic remodeling to preserve membrane physical properties. Specifically, exogenous polyunsaturated fatty acids are rapidly incorporated into membrane lipids, inducing a reduction in membrane packing. These effects are rapidly compensated both in culture and in vivo by lipidome-wide remodeling, most notably upregulation of saturated lipids and cholesterol, resulting in recovery of membrane packing and permeability. Abrogation of this response results in cytotoxicity when membrane homeostasis is challenged by dietary lipids. These results reveal an essential mammalian mechanism for membrane homeostasis wherein lipidome remodeling in response to dietary lipid inputs preserves functional membrane phenotypes. Proper membrane physiology requires maintenance of a narrow range of physicochemical properties, which must be buffered from external perturbations. Here, authors report lipidomic remodeling to preserve membrane physical properties upon exogenous polyunsaturated fatty acids exposure.
Collapse
Affiliation(s)
- Kandice R Levental
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Eric Malmberg
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jessica L Symons
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Yang-Yi Fan
- Program in Integrative Nutrition & Complex Diseases and Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Robert S Chapkin
- Program in Integrative Nutrition & Complex Diseases and Department of Nutrition, Texas A&M University, College Station, TX, USA
| | - Robert Ernst
- Department of Medical Biochemistry & Molecular Biology, Medical Faculty, Saarland University, Homburg, Germany
| | - Ilya Levental
- Department of Integrative Biology & Pharmacology, University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
39
|
Salinas ML, Fuentes NR, Choate R, Wright RC, McMurray DN, Chapkin RS. AdipoRon Attenuates Wnt Signaling by Reducing Cholesterol-Dependent Plasma Membrane Rigidity. Biophys J 2020; 118:885-897. [PMID: 31630812 PMCID: PMC7036725 DOI: 10.1016/j.bpj.2019.09.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/28/2019] [Accepted: 09/09/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing prevalence of adult and adolescent obesity and its associated risk of colorectal cancer reinforces the urgent need to elucidate the underlying mechanisms contributing to the promotion of colon cancer in obese individuals. Adiponectin is an adipose tissue-derived adipokine, whose levels are reduced during obesity. Both epidemiological and preclinical data indicate that adiponectin suppresses colon tumorigenesis. We have previously demonstrated that both adiponectin and AdipoRon, a small-molecule adiponectin receptor agonist, suppress colon cancer risk in part by reducing the number of Lgr5+ stem cells in mouse colonic organoids. However, the mechanism by which the adiponectin signaling pathway attenuates colon cancer risk remains to be addressed. Here, we have hypothesized that adiponectin signaling supports colonic stem cell maintenance through modulation of the biophysical properties of the plasma membrane (PM). Specifically, we investigated the effects of adiponectin receptor activation by AdipoRon on the biophysical perturbations linked to the attenuation of Wnt-driven signaling and cell proliferation as determined by LEF luciferase reporter assay and colonic organoid proliferation, respectively. Using physicochemical sensitive dyes, Di-4-ANEPPDHQ and C-laurdan, we demonstrated that AdipoRon decreased the rigidity of the colonic cell PM. The decrease in membrane rigidity was associated with a reduction in PM free cholesterol levels and the intracellular accumulation of free cholesterol in lysosomes. These results suggest that adiponectin signaling plays a role in modulating cellular cholesterol homeostasis, PM biophysical properties, and Wnt-driven signaling. These findings are noteworthy because they may in part explain how obesity drives colon cancer progression.
Collapse
Affiliation(s)
- Michael L Salinas
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - Natividad R Fuentes
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas
| | - Rachel Choate
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas
| | - Rachel C Wright
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas
| | - David N McMurray
- Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas
| | - Robert S Chapkin
- Program in Integrative Nutrition and Complex Diseases, Texas A&M University, College Station, Texas; Department of Nutrition and Food Science, Texas A&M University, College Station, Texas; Interdisciplinary Faculty of Toxicology Program, Texas A&M University, College Station, Texas; Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas; Department of Microbial Pathogenesis and Immunology, Texas A&M University, College Station, Texas; Center for Environmental Health Research, Texas A&M University, College Station, Texas.
| |
Collapse
|
40
|
Beckers D, Urbancic D, Sezgin E. Impact of Nanoscale Hindrances on the Relationship between Lipid Packing and Diffusion in Model Membranes. J Phys Chem B 2020; 124:1487-1494. [PMID: 32026676 PMCID: PMC7050011 DOI: 10.1021/acs.jpcb.0c00445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
![]()
Membrane
models have allowed for precise study of the plasma membrane’s
biophysical properties, helping to unravel both structural and dynamic
motifs within cell biology. Freestanding and supported bilayer systems
are popular models to reconstitute membrane-related processes. Although
it is well-known that each have their advantages and limitations,
comprehensive comparison of their biophysical properties is still
lacking. Here, we compare the diffusion and lipid packing in giant
unilamellar vesicles, planar and spherical supported membranes, and
cell-derived giant plasma membrane vesicles. We apply florescence
correlation spectroscopy (FCS), spectral imaging, and super-resolution
stimulated emission depletion FCS to study the diffusivity, lipid
packing, and nanoscale architecture of these membrane systems, respectively.
Our data show that lipid packing and diffusivity is tightly correlated
in freestanding bilayers. However, nanoscale interactions in the supported
bilayers cause deviation from this correlation. These data are essential
to develop accurate theoretical models of the plasma membrane and
will serve as a guideline for suitable model selection in future studies
to reconstitute biological processes.
Collapse
Affiliation(s)
- Daniel Beckers
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K
| | - Dunja Urbancic
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Faculty of Pharmacy , University of Ljubljana , Askerceva cesta 7 , 1000 Ljubljana , Slovenia
| | - Erdinc Sezgin
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine , University of Oxford , Oxford OX3 9DS , U.K.,Science for Life Laboratory, Department of Women's and Children's Health , Karolinska Institutet , Solna , Sweden
| |
Collapse
|
41
|
ESIPT-rhodol derivatives with enhanced Stokes shift: Synthesis, photophysical properties, viscosity sensitivity and DFT studies. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.111626] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
42
|
Steinkühler J, Sezgin E, Urbančič I, Eggeling C, Dimova R. Mechanical properties of plasma membrane vesicles correlate with lipid order, viscosity and cell density. Commun Biol 2019; 2:337. [PMID: 31531398 PMCID: PMC6744421 DOI: 10.1038/s42003-019-0583-3] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 08/15/2019] [Indexed: 11/08/2022] Open
Abstract
Regulation of plasma membrane curvature and composition governs essential cellular processes. The material property of bending rigidity describes the energetic cost of membrane deformations and depends on the plasma membrane molecular composition. Because of compositional fluctuations and active processes, it is challenging to measure it in intact cells. Here, we study the plasma membrane using giant plasma membrane vesicles (GPMVs), which largely preserve the plasma membrane lipidome and proteome. We show that the bending rigidity of plasma membranes under varied conditions is correlated to readout from environment-sensitive dyes, which are indicative of membrane order and microviscosity. This correlation holds across different cell lines, upon cholesterol depletion or enrichment of the plasma membrane, and variations in cell density. Thus, polarity- and viscosity-sensitive probes represent a promising indicator of membrane mechanical properties. Additionally, our results allow for identifying synthetic membranes with a few well defined lipids as optimal plasma membrane mimetics.
Collapse
Affiliation(s)
- Jan Steinkühler
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| | - Erdinc Sezgin
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
| | - Iztok Urbančič
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Condensed Matter Physics Department, “Jožef Stefan” Institute, Ljubljana, Slovenia
| | - Christian Eggeling
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Headley Way, Oxford, OX3 9DS UK
- Institute of Applied Optics Friedrich‐Schiller‐University Jena, Max-Wien Platz 4, 07743 Jena, Germany
- Leibniz Institute of Photonic Technology e.V., Albert-Einstein-Straße 9, 07745 Jena, Germany
| | - Rumiana Dimova
- Theory and Bio-Systems, Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14424 Potsdam, Germany
| |
Collapse
|
43
|
Osella S, Smisdom N, Ameloot M, Knippenberg S. Conformational Changes as Driving Force for Phase Recognition: The Case of Laurdan. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11471-11481. [PMID: 31403301 DOI: 10.1021/acs.langmuir.9b01840] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of a universal probe to assess the phase of a lipid membrane is one of the most ambitious goals for fluorescence spectroscopy. The ability of a well-known molecule as Laurdan to reach this aim is here exploited as the behavior of the probe is fully characterized in a dipalmitoylphosphatidylcholine (DPPC) solid gel (So) phase by means of molecular dynamics simulations. Laurdan can take two conformations, depending on whether the carbonyl oxygen points toward the β-position of the naphthalene core (Conf-I) or to the α-position (Conf-II). We observe that Conf-I has an elongated form in this environment, whereas Conf-II takes an L-shape. Interestingly, our theoretical calculations show that these two conformations behave in an opposite way from what is reported in the literature for a DPPC membrane in a liquid disordered (Ld) phase, where Conf-I assumes an L-shape and Conf-II is elongated. Moreover, our results show that in DPPC (So) no intermixing between the conformations is present, whereas it has been seen in a fluid environment such as DOPC (Ld). Through a careful analysis of angle distributions and by means of the rotational autocorrelation function, we predict that the two conformers of Laurdan behave differently in different membrane environments.
Collapse
Affiliation(s)
- Silvio Osella
- Chemical and Biological Systems Simulation Lab, Centre of New Technologies , University of Warsaw , Banacha 2C , 02-097 Warsaw , Poland
| | - Nick Smisdom
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - Marcel Ameloot
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
| | - Stefan Knippenberg
- Biomedical Research Institute , Hasselt University , Agoralaan Building C , 3590 Diepenbeek , Belgium
- Department of Theoretical Chemistry and Biology, School of Biotechnology , Royal Institute of Technology , SE-10691 Stockholm , Sweden
- RCPTM, Department of Physical Chemistry, Fac. Sciences , Palacký University , 771 46 Olomouc , Czech Republic
| |
Collapse
|
44
|
Enoki TA, Feigenson GW. Asymmetric Bilayers by Hemifusion: Method and Leaflet Behaviors. Biophys J 2019; 117:1037-1050. [PMID: 31493862 DOI: 10.1016/j.bpj.2019.07.054] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/13/2019] [Accepted: 07/08/2019] [Indexed: 01/03/2023] Open
Abstract
We describe a new method to prepare asymmetric giant unilamellar vesicles (aGUVs) via hemifusion. Hemifusion of giant unilamellar vesicles and a supported lipid bilayer, triggered by calcium, promotes the lipid exchange of the fused outer leaflets mediated by lipid diffusion. We used different fluorescent dyes to monitor the inner and the outer leaflets of the unsupported aGUVs. We confirmed that almost all newly exchanged lipids in the aGUVs are found in the outer leaflet of these asymmetric vesicles. In addition, we test the stability of the aGUVs formed by hemifusion in preserving their contents during the procedure. For aGUVs prepared from the hemifusion of giant unilamellar vesicles composed of 1,2-distearoyl-sn-glycero-3-phosphocholine/1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.39/0.39/0.22 and a supported lipid bilayer of 1,2-dioleoyl-sn-glycero-3-phosphocholine/cholesterol = 0.8/0.2, we observed the exchanged lipids to alter the bilayer properties. To access the physical and chemical properties of the asymmetric bilayer, we monitored the dye partition coefficients of individual leaflets and the generalized polarization of the fluorescence probe 6-dodecanoyl-2-[ N-methyl-N-(carboxymethyl)amino] naphthalene, a sensor for the lipid packing/order of its surroundings. For a high percentage of lipid exchange (>70%), the dye partition indicates induced-disordered and induced-ordered domains. The induced domains have distinct lipid packing/order compared to the symmetric liquid-disordered and liquid-ordered domains.
Collapse
Affiliation(s)
- Thais A Enoki
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York.
| | - Gerald W Feigenson
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York
| |
Collapse
|
45
|
DelBove CE, Strothman CE, Lazarenko RM, Huang H, Sanders CR, Zhang Q. Reciprocal modulation between amyloid precursor protein and synaptic membrane cholesterol revealed by live cell imaging. Neurobiol Dis 2019; 127:449-461. [PMID: 30885793 PMCID: PMC6588454 DOI: 10.1016/j.nbd.2019.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 02/03/2019] [Accepted: 03/12/2019] [Indexed: 12/20/2022] Open
Abstract
The amyloid precursor protein (APP) has been extensively studied because of its association with Alzheimer's disease (AD). However, APP distribution across different subcellular membrane compartments and its function in neurons remains unclear. We generated an APP fusion protein with a pH-sensitive green fluorescent protein at its ectodomain and a pH-insensitive blue fluorescent protein at its cytosolic domain and used it to measure APP's distribution, subcellular trafficking, and cleavage in live neurons. This reporter, closely resembling endogenous APP, revealed only a limited correlation between synaptic activities and APP trafficking. However, the synaptic surface fraction of APP was increased by a reduction in membrane cholesterol levels, a phenomenon that involves APP's cholesterol-binding motif. Mutations at or near binding sites not only reduced both the surface fraction of APP and membrane cholesterol levels in a dominant negative manner, but also increased synaptic vulnerability to moderate membrane cholesterol reduction. Our results reveal reciprocal modulation of APP and membrane cholesterol levels at synaptic boutons.
Collapse
Affiliation(s)
- Claire E DelBove
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Claire E Strothman
- Department of Cell and Developmental Biology, Vanderbilt University, United States of America
| | - Roman M Lazarenko
- Department of Pharmacology, Vanderbilt University, United States of America
| | - Hui Huang
- Department of Biochemistry, Vanderbilt University, United States of America
| | - Charles R Sanders
- Department of Biochemistry, Vanderbilt University, United States of America; Department of Medicine, Vanderbilt University Medical Center, United States of America
| | - Qi Zhang
- Department of Pharmacology, Vanderbilt University, United States of America; Brain Institute, Florida Atlantic University, United States of America.
| |
Collapse
|
46
|
Choi JW, Hong ST, Kim MS, Paik KC, Han MS, Cho BR. Two-Photon Probes for Golgi Apparatus: Detection of Golgi Apparatus in Live Tissue by Two-Photon Microscopy. Anal Chem 2019; 91:6669-6674. [PMID: 30919620 DOI: 10.1021/acs.analchem.9b00607] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have developed blue- and yellow-emitting two-photon probes (BGolgi-blue and PGolgi-yellow) from 6-(benzo[ d]oxazol-2-yl)-2-naphthalylamine and 2,5-bis(benzo[ d]oxazol-2-yl)pyrazine derivatives as the fluorophores and trans-Golgi-network peptide (SDYQRL) as the Golgi-apparatus-targeting moiety. HeLa cells labeled with BGolgi-blue and PGolgi-yellow emitted two-photon-excited fluorescence at 462 and 560 nm, respectively, with effective two-photon-action cross-section values of 1860 and 1600 × 10-50 cm4·s/photon, respectively. The probes can detect the Golgi apparatus in live cells and deep inside live tissue via two-photon microscopy at widely separated wavelength regions with high selectivity and minimal pH interference, and they are photostable and have low cytotoxicity.
Collapse
Affiliation(s)
- Ji-Woo Choi
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Seung Taek Hong
- KU-KIST Graduate School of Converging Science and Technology , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| | - Mun Seok Kim
- Department of Chemistry , Daejin University , 1007 Hoguk-ro , Pocheon-si , Gyeonggi-do 11159 , Republic of Korea
| | - Kyu Cheol Paik
- Department of Chemistry , Daejin University , 1007 Hoguk-ro , Pocheon-si , Gyeonggi-do 11159 , Republic of Korea
| | - Man So Han
- Department of Chemistry , Daejin University , 1007 Hoguk-ro , Pocheon-si , Gyeonggi-do 11159 , Republic of Korea
| | - Bong Rae Cho
- Department of Chemistry , Daejin University , 1007 Hoguk-ro , Pocheon-si , Gyeonggi-do 11159 , Republic of Korea.,Department of Chemistry , Korea University , 145 Anam-ro , Seongbuk-gu, Seoul 02841 , Republic of Korea
| |
Collapse
|
47
|
Li A, Hall G, Chen D, Liang W, Ning B, Guan H, Li X. A biopsy-needle compatible varifocal multiphoton rigid probe for depth-resolved optical biopsy. JOURNAL OF BIOPHOTONICS 2019; 12:e201800229. [PMID: 30117286 PMCID: PMC6325015 DOI: 10.1002/jbio.201800229] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/09/2018] [Indexed: 05/19/2023]
Abstract
In this work, we report a biopsy-needle compatible rigid probe, capable of performing three-dimensional (3D) two-photon optical biopsy. The probe has a small outer diameter of 1.75 mm and fits inside a gauge-14 biopsy needle to reach internal organs. A carefully designed focus scanning mechanism has been implemented in the rigid probe, which, along with a rapid two-dimensional MEMS scanner, enables 3D imaging. Fast image acquisition up to 10 frames per second is possible, dramatically reducing motion artifacts during in vivo imaging. Equipped with a high-numerical aperture micro-objective, the miniature rigid probe offers a high two-photon resolution (0.833 × 6.11 μm, lateral × axial), a lateral field of view of 120 μm, and an axial focus tuning range of 200 μm. In addition to imaging of mouse internal organs and subcutaneous tumor in vivo, first-of-its-kind depth-resolved two-photon optical biopsy of an internal organ has been successfully demonstrated on mouse kidney in vivo and in situ.
Collapse
Affiliation(s)
- Ang Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Gunnsteinn Hall
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Defu Chen
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wenxuan Liang
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Bo Ning
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Honghua Guan
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Xingde Li
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
48
|
Pseudomonas aeruginosa quorum-sensing metabolite induces host immune cell death through cell surface lipid domain dissolution. Nat Microbiol 2018; 4:97-111. [PMID: 30510173 DOI: 10.1038/s41564-018-0290-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/10/2018] [Indexed: 01/02/2023]
Abstract
Bacterial quorum-sensing autoinducers are small chemicals released to control microbial community behaviours. N-(3-oxo-dodecanoyl) homoserine lactone, the autoinducer of the Pseudomonas aeruginosa LasI-LasR circuitry, triggers significant cell death in lymphocytes. We found that this molecule is incorporated into the mammalian plasma membrane and induces dissolution of eukaryotic lipid domains. This event expels tumour necrosis factor receptor 1 into the disordered lipid phase for its spontaneous trimerization without its ligand and drives caspase 3-caspase 8-mediated apoptosis. In vivo, P. aeruginosa releases N-(3-oxo-dodecanoyl) homoserine lactone to suppress host immunity for its own better survival; conversely, blockage of caspases strongly reduces the severity of the infection. This work reveals an unknown communication method between microorganisms and the mammalian host and suggests interventions of bacterial infections by intercepting quorum-sensing signalling.
Collapse
|
49
|
Gianotti AR, Ferreyra RG, Ermácora MR. Binding properties of sterol carrier protein 2 (SCP2) characterized using Laurdan. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2018; 1866:1143-1152. [DOI: 10.1016/j.bbapap.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/14/2018] [Accepted: 08/20/2018] [Indexed: 12/23/2022]
|
50
|
Mu L, Tu Z, Miao L, Ruan H, Kang N, Hei Y, Chen J, Wei W, Gong F, Wang B, Du Y, Ma G, Amerein MW, Xia T, Shi Y. A phosphatidylinositol 4,5-bisphosphate redistribution-based sensing mechanism initiates a phagocytosis programing. Nat Commun 2018; 9:4259. [PMID: 30323235 PMCID: PMC6189171 DOI: 10.1038/s41467-018-06744-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/20/2018] [Indexed: 12/30/2022] Open
Abstract
Phagocytosis is one of the earliest cellular functions, developing approximately 2 billion years ago. Although FcR-based phagocytic signaling is well-studied, how it originated from ancient phagocytosis is unknown. Lipid redistribution upregulates a phagocytic program recapitulating FcR-based phagocytosis with complete dependence on Src family kinases, Syk, and phosphoinositide 3-kinases (PI3K). Here we show that in phagocytes, an atypical ITAM sequence in the ancient membrane anchor protein Moesin transduces signal without receptor activation. Plasma membrane deformation created by solid structure binding generates phosphatidylinositol 4,5-bisphosphate (PIP2) accumulation at the contact site, which binds the Moesin FERM domain and relocalizes Syk to the membrane via the ITAM motif. Phylogenic analysis traces this signaling using PI3K and Syk to 0.8 billion years ago, earlier than immune receptor signaling. The proposed general model of solid structure phagocytosis implies a preexisting lipid redistribution-based activation platform collecting intracellular signaling components for the emergence of immune receptors.
Collapse
Affiliation(s)
- Libing Mu
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Zhongyuan Tu
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Lin Miao
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Hefei Ruan
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Ning Kang
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Yongzhen Hei
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Jiahuan Chen
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Wei Wei
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fangling Gong
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Bingjie Wang
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Yanan Du
- Department of Biomedical Engineering, School of Medicine, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing, 100084, China
| | - Guanghui Ma
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Matthias W Amerein
- Department of Cell Biology and Anatomy, University of Calgary, Calgary, T2N 4N1, AB, Canada
- Snyder Institute of Chronic Diseases, University of Calgary, Calgary, T2N 4N1, AB, Canada
| | - Tie Xia
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
| | - Yan Shi
- School of Life Sciences, Tsinghua University, Beijing, 100084, China.
- Institute for Immunology and Department of Basic Medical Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, School of Medicine; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, 100084, China.
- Department of Microbiology, Immunology & Infectious Diseases and Snyder Institute, University of Calgary, Calgary, T2N 4N1, AB, Canada.
| |
Collapse
|