1
|
Trindade IB, Coelho A, Cantini F, Piccioli M, Louro RO. NMR of paramagnetic metalloproteins in solution: Ubi venire, quo vadis? J Inorg Biochem 2022; 234:111871. [DOI: 10.1016/j.jinorgbio.2022.111871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/16/2022] [Accepted: 05/19/2022] [Indexed: 10/18/2022]
|
2
|
Abstract
Thanks to recent improvements in NMR spectrometer hardware and pulse sequence design, modern 13C NMR has become a useful tool for biomolecular applications. The complete assignment of a protein can be accomplished by using 13C detected multinuclear experiments and it can provide unique information relevant for the study of a variety of different biomolecules including paramagnetic proteins and intrinsically disordered proteins. A wide range of NMR observables can be measured, concurring to the structural and dynamic characterization of a protein in isolation, as part of a larger complex, or even inside a living cell. We present the different properties of 13C with respect to 1H, which provide the rationale for the experiments developed and their application, the technical aspects that need to be faced, and the many experimental variants designed to address different cases. Application areas where these experiments successfully complement proton NMR are also described.
Collapse
Affiliation(s)
- Isabella C. Felli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| | - Roberta Pierattelli
- Department of Chemistry “Ugo
Schiff” and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
3
|
Müntener T, Joss D, Häussinger D, Hiller S. Pseudocontact Shifts in Biomolecular NMR Spectroscopy. Chem Rev 2022; 122:9422-9467. [PMID: 35005884 DOI: 10.1021/acs.chemrev.1c00796] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Paramagnetic centers in biomolecules, such as specific metal ions that are bound to a protein, affect the nuclei in their surrounding in various ways. One of these effects is the pseudocontact shift (PCS), which leads to strong chemical shift perturbations of nuclear spins, with a remarkably long range of 50 Å and beyond. The PCS in solution NMR is an effect originating from the anisotropic part of the dipole-dipole interaction between the magnetic momentum of unpaired electrons and nuclear spins. The PCS contains spatial information that can be exploited in multiple ways to characterize structure, function, and dynamics of biomacromolecules. It can be used to refine structures, magnify effects of dynamics, help resonance assignments, allows for an intermolecular positioning system, and gives structural information in sensitivity-limited situations where all other methods fail. Here, we review applications of the PCS in biomolecular solution NMR spectroscopy, starting from early works on natural metalloproteins, following the development of non-natural tags to chelate and attach lanthanoid ions to any biomolecular target to advanced applications on large biomolecular complexes and inside living cells. We thus hope to not only highlight past applications but also shed light on the tremendous potential the PCS has in structural biology.
Collapse
Affiliation(s)
- Thomas Müntener
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| | - Daniel Joss
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Sebastian Hiller
- Biozentrum, University of Basel, Spitalstrasse 41, 4056 Basel, Switzerland
| |
Collapse
|
4
|
Determining the structure and binding mechanism of oxytocin-Cu 2+ complex using paramagnetic relaxation enhancement NMR analysis. J Biol Inorg Chem 2021; 26:809-815. [PMID: 34459989 DOI: 10.1007/s00775-021-01897-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/23/2021] [Indexed: 12/30/2022]
Abstract
Oxytocin is a neuropeptide that binds copper ions in nature. The structure of oxytocin in interaction with Cu2+ was determined here by NMR, showing which atoms of the peptide are involved in binding. Paramagnetic relaxation enhancement NMR analyses indicated a binding mechanism where the amino terminus was required for binding and subsequently Tyr2, Ile3 and Gln4 bound in that order. The aromatic ring of Tyr2 formed a π-cation interaction with Cu2+. Oxytocin copper complex structure revealed by paramagnetic relaxation enhancement NMR analyses.
Collapse
|
5
|
Mateos B, Konrat R, Pierattelli R, Felli IC. NMR Characterization of Long-Range Contacts in Intrinsically Disordered Proteins from Paramagnetic Relaxation Enhancement in 13 C Direct-Detection Experiments. Chembiochem 2018; 20:335-339. [PMID: 30407719 DOI: 10.1002/cbic.201800539] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Indexed: 12/31/2022]
Abstract
Intrinsically disordered proteins (IDPs) carry out many biological functions. They lack a stable 3D structure and are able to adopt many different conformations in dynamic equilibrium. The interplay between local dynamics and global rearrangements is key for their function. A widely used experimental NMR spectroscopy approach to study long-range contacts in IDPs exploits paramagnetic effects, and 1 H detection experiments are generally used to determine paramagnetic relaxation enhancement (PRE) for amide protons. However, under physiological conditions, exchange broadening hampers the detection of solvent-exposed amide protons, which reduces the content of information available. Herein, we present an experimental approach based on direct carbon detection of PRE that provides improved resolution, reduced sensitivity to exchange broadening, and complementary information derived from the use of different starting polarization sources.
Collapse
Affiliation(s)
- Borja Mateos
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Robert Konrat
- Department of Structural and Computational Biology, Max F. Perutz Laboratories, Vienna Biocenter Campus 5, 1030, Vienna, Austria
| | - Roberta Pierattelli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| | - Isabella C Felli
- CERM and Department of Chemistry "Ugo Schiff", University of Florence, Via Luigi Sacconi 6, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
6
|
Orton HW, Otting G. Accurate Electron-Nucleus Distances from Paramagnetic Relaxation Enhancements. J Am Chem Soc 2018; 140:7688-7697. [PMID: 29790335 DOI: 10.1021/jacs.8b03858] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Measurements of paramagnetic relaxation enhancements (PREs) in 1H NMR spectra are an important tool to obtain long-range distance information in proteins, but quantitative interpretation is easily compromised by nonspecific intermolecular PREs. Here we show that PREs generated by lanthanides with anisotropic magnetic susceptibilities offer a route to accurate calibration-free distance measurements. As these lanthanides change 1H chemical shifts due to pseudocontact shifts, the relaxation rates in the paramagnetic and diamagnetic state can be measured with a single sample that simultaneously contains the protein labeled with a paramagnetic and a diamagnetic lanthanide ion. Nonspecific intermolecular PREs are thus automatically subtracted when calculating the PREs as the difference in nuclear relaxation rates between paramagnetic and diamagnetic protein. Although PREs from lanthanides with anisotropic magnetic susceptibilities are complicated by additional cross-correlation effects and residual dipolar couplings (RDCs) in the paramagnetic state, these effects can be controlled by the choice of lanthanide ion and experimental conditions. Using calbindin D9k with erbium, we succeeded in measuring intramolecular PREs with unprecedented accuracy, resulting in distance predictions with a root-mean-square-deviation of <0.9 Å in the range 11-24 Å.
Collapse
Affiliation(s)
- Henry W Orton
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| | - Gottfried Otting
- Research School of Chemistry , Australian National University , Canberra , Australian Capital Territory 2601 , Australia
| |
Collapse
|
7
|
Rouster P, Pavlovic M, Szilagyi I. Immobilization of Superoxide Dismutase on Polyelectrolyte-Functionalized Titania Nanosheets. Chembiochem 2017; 19:404-410. [DOI: 10.1002/cbic.201700502] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/06/2023]
Affiliation(s)
- Paul Rouster
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Marko Pavlovic
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
| | - Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry; University of Geneva; 30 Quai Ernest-Ansermet 1205 Geneva Switzerland
- MTA-SZTE Lendület Biocolloids Research Group; Department of Physical Chemistry and Materials Science; University of Szeged; 1 Aradi vértanúk tere 6720 Szeged Hungary
| |
Collapse
|
8
|
Solution NMR Structure Determination of Polytopic α-Helical Membrane Proteins: A Guide to Spin Label Paramagnetic Relaxation Enhancement Restraints. Methods Enzymol 2015; 557:329-48. [PMID: 25950972 DOI: 10.1016/bs.mie.2014.12.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Solution nuclear magnetic resonance structures of polytopic α-helical membrane proteins require additional restraints beyond the traditional Nuclear Overhauser Effect (NOE) restraints. Several methods have been developed and this review focuses on paramagnetic relaxation enhancement (PRE). Important aspects of spin labeling, PRE measurements, structure calculations, and structural quality are discussed.
Collapse
|
9
|
Felli IC, Pierattelli R. Spin-state-selective methods in solution- and solid-state biomolecular 13C NMR. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 84-85:1-13. [PMID: 25669738 DOI: 10.1016/j.pnmrs.2014.10.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 10/26/2014] [Indexed: 06/04/2023]
Abstract
Spin-state-selective methods to achieve homonuclear decoupling in the direct acquisition dimension of (13)C detected NMR experiments have been one of the key contributors to converting (13)C detected NMR experiments into really useful tools for studying biomolecules. We discuss here in detail the various methods that have been proposed, summarize the large array of new experiments that have been developed and present applications to different kinds of proteins in different aggregation states.
Collapse
Affiliation(s)
- Isabella C Felli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| | - Roberta Pierattelli
- Magnetic Resonance Center (CERM) and Department of Chemistry "Ugo Schiff", University of Florence, Via L. Sacconi 6, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
10
|
Göbl C, Madl T, Simon B, Sattler M. NMR approaches for structural analysis of multidomain proteins and complexes in solution. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2014; 80:26-63. [PMID: 24924266 DOI: 10.1016/j.pnmrs.2014.05.003] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Accepted: 05/14/2014] [Indexed: 05/22/2023]
Abstract
NMR spectroscopy is a key method for studying the structure and dynamics of (large) multidomain proteins and complexes in solution. It plays a unique role in integrated structural biology approaches as especially information about conformational dynamics can be readily obtained at residue resolution. Here, we review NMR techniques for such studies focusing on state-of-the-art tools and practical aspects. An efficient approach for determining the quaternary structure of multidomain complexes starts from the structures of individual domains or subunits. The arrangement of the domains/subunits within the complex is then defined based on NMR measurements that provide information about the domain interfaces combined with (long-range) distance and orientational restraints. Aspects discussed include sample preparation, specific isotope labeling and spin labeling; determination of binding interfaces and domain/subunit arrangements from chemical shift perturbations (CSP), nuclear Overhauser effects (NOEs), isotope editing/filtering, cross-saturation, and differential line broadening; and based on paramagnetic relaxation enhancements (PRE) using covalent and soluble spin labels. Finally, the utility of complementary methods such as small-angle X-ray or neutron scattering (SAXS, SANS), electron paramagnetic resonance (EPR) or fluorescence spectroscopy techniques is discussed. The applications of NMR techniques are illustrated with studies of challenging (high molecular weight) protein complexes.
Collapse
Affiliation(s)
- Christoph Göbl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany
| | - Tobias Madl
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany; Institute of Molecular Biology, University of Graz, Graz, Austria.
| | - Bernd Simon
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Michael Sattler
- Biomolecular NMR and Center for Integrated Protein Science Munich at Department Chemie, Technische Universität München, Garching, Germany; Institute of Structural Biology, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
11
|
Fragai M, Luchinat C, Parigi G, Ravera E. Conformational freedom of metalloproteins revealed by paramagnetism-assisted NMR. Coord Chem Rev 2013. [DOI: 10.1016/j.ccr.2013.02.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
12
|
Abriata LA, Zaballa ME, Berry RE, Yang F, Zhang H, Walker FA, Vila AJ. Electron spin density on the axial His ligand of high-spin and low-spin nitrophorin 2 probed by heteronuclear NMR spectroscopy. Inorg Chem 2013; 52:1285-95. [PMID: 23327568 PMCID: PMC3594510 DOI: 10.1021/ic301805y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic structure of heme proteins is exquisitely tuned by the interaction of the iron center with the axial ligands. NMR studies of paramagnetic heme systems have been focused on the heme signals, but signals from the axial ligands have been rather difficult to detect and assign. We report an extensive assignment of the (1)H, (13)C and (15)N resonances of the axial His ligand in the NO-carrying protein nitrophorin 2 (NP2) in the paramagnetic high-spin and low-spin forms, as well as in the diamagnetic NO complex. We find that the high-spin protein has σ spin delocalization to all atoms in the axial His57, which decreases in size as the number of bonds between Fe(III) and the atom in question increases, except that within the His57 imidazole ring the contact shifts are a balance between positive σ and negative π contributions. In contrast, the low-spin protein has π spin delocalization to all atoms of the imidazole ring. Our strategy, adequately combined with a selective residue labeling scheme, represents a straightforward characterization of the electron spin density in heme axial ligands.
Collapse
Affiliation(s)
- Luciano A Abriata
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Ocampo y Esmeralda, Predio CONICET Rosario, Rosario 2000, Santa Fe, Argentina
| | | | | | | | | | | | | |
Collapse
|
13
|
Structure and backbone dynamics of a microcrystalline metalloprotein by solid-state NMR. Proc Natl Acad Sci U S A 2012; 109:11095-100. [PMID: 22723345 DOI: 10.1073/pnas.1204515109] [Citation(s) in RCA: 158] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
We introduce a new approach to improve structural and dynamical determination of large metalloproteins using solid-state nuclear magnetic resonance (NMR) with (1)H detection under ultrafast magic angle spinning (MAS). The approach is based on the rapid and sensitive acquisition of an extensive set of (15)N and (13)C nuclear relaxation rates. The system on which we demonstrate these methods is the enzyme Cu, Zn superoxide dismutase (SOD), which coordinates a Cu ion available either in Cu(+) (diamagnetic) or Cu(2+) (paramagnetic) form. Paramagnetic relaxation enhancements are obtained from the difference in rates measured in the two forms and are employed as structural constraints for the determination of the protein structure. When added to (1)H-(1)H distance restraints, they are shown to yield a twofold improvement of the precision of the structure. Site-specific order parameters and timescales of motion are obtained by a gaussian axial fluctuation (GAF) analysis of the relaxation rates of the diamagnetic molecule, and interpreted in relation to backbone structure and metal binding. Timescales for motion are found to be in the range of the overall correlation time in solution, where internal motions characterized here would not be observable.
Collapse
|
14
|
Madl T, Felli IC, Bertini I, Sattler M. Structural analysis of protein interfaces from 13C direct-detected paramagnetic relaxation enhancements. J Am Chem Soc 2010; 132:7285-7. [PMID: 20462243 DOI: 10.1021/ja1014508] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The measurement of (13)C directed-detected paramagnetic relaxation enhancements (PREs) on spin-labeled proteins combines the efficacy of PREs for the detection of long-range distance information with the favorable sensitivity and resolution of (13)C direct-detected experiments. The (13)C PREs provide long-range distance restraints to map binding interfaces in proteins and protein complexes and are especially useful for studies of high-molecular weight perdeuterated molecules.
Collapse
Affiliation(s)
- Tobias Madl
- Institute of Structural Biology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | | | | |
Collapse
|
15
|
Bermel W, Bertini I, Felli IC, Peruzzini R, Pierattelli R. Exclusively Heteronuclear NMR Experiments to Obtain Structural and Dynamic Information on Proteins. Chemphyschem 2010; 11:689-95. [DOI: 10.1002/cphc.200900772] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Linser R, Fink U, Reif B. Probing Surface Accessibility of Proteins Using Paramagnetic Relaxation in Solid-State NMR Spectroscopy. J Am Chem Soc 2009; 131:13703-8. [DOI: 10.1021/ja903892j] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rasmus Linser
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Uwe Fink
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany and Charité Universitätsmedizin, D-10115 Berlin, Germany
| | - Bernd Reif
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Rössle-Str. 10, D-13125 Berlin, Germany and Charité Universitätsmedizin, D-10115 Berlin, Germany
| |
Collapse
|
17
|
Abriata LA, Ledesma GN, Pierattelli R, Vila AJ. Electronic structure of the ground and excited states of the Cu(A) site by NMR spectroscopy. J Am Chem Soc 2009; 131:1939-46. [PMID: 19146411 DOI: 10.1021/ja8079669] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The electronic properties of Thermus thermophilus Cu(A) in the oxidized form were studied by (1)H and (13)C NMR spectroscopy. All of the (1)H and (13)C resonances from cysteine and imidazole ligands were observed and assigned in a sequence-specific fashion. The detection of net electron spin density on a peptide moiety is attributed to the presence of a H-bond to a coordinating sulfur atom. This hydrogen bond is conserved in all natural Cu(A) variants and plays an important role for maintaining the electronic structure of the metal site, rendering the two Cys ligands nonequivalent. The anomalous temperature dependence of the chemical shifts is explained by the presence of a low-lying excited state located about 600 cm(-1) above the ground state. The room-temperature shifts can be described as the thermal average of a sigma(u)* ground state and a pi(u) excited state. These results provide a detailed description of the electronic structure of the Cu(A) site at atomic resolution in solution at physiologically relevant temperature.
Collapse
Affiliation(s)
- Luciano A Abriata
- IBR (Instituto de Biologia Molecular y Celular de Rosario), Consejo Nacional de Investigaciones Cientificas y Tecnicas (CONICET), Facultad de Ciencias Bioquimicas y Farmaceuticas, Universidad Nacional de Rosario, Suipacha 531, Argentina
| | | | | | | |
Collapse
|
18
|
Felli IC, Pierattelli R, Glaser SJ, Luy B. Relaxation-optimised Hartmann-Hahn transfer using a specifically Tailored MOCCA-XY16 mixing sequence for carbonyl-carbonyl correlation spectroscopy in 13C direct detection NMR experiments. JOURNAL OF BIOMOLECULAR NMR 2009; 43:187-96. [PMID: 19224374 DOI: 10.1007/s10858-009-9302-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Accepted: 01/06/2009] [Indexed: 05/04/2023]
Abstract
Isotropic mixing sequences are one of the key methods to achieve efficient coherence transfer. Among them, the MOCCA-XY16, which keeps the magnetization longitudinal for a significant amount of time, is characterised by favourable relaxation properties. We show here that its adapted version is particularly suited for carbonyl-carbonyl correlations in (13)C direct detection NMR experiments.
Collapse
Affiliation(s)
- Isabella C Felli
- Department of Chemistry and Magnetic Resonance Center, University of Florence, Via Luigi Sacconi 6, 50019, Sesto Fiorentino, Florence, Italy
| | | | | | | |
Collapse
|
19
|
Bertini I, Luchinat C, Parigi G, Pierattelli R. Perspectives in paramagnetic NMR of metalloproteins. Dalton Trans 2008:3782-90. [PMID: 18629397 DOI: 10.1039/b719526e] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
NMR experiments and tools for the characterization of the structure and dynamics of paramagnetic proteins are presented here. The focus is on the importance of (13)C direct-detection NMR for the assignment of paramagnetic systems in solution, on the information contained in paramagnetic effects observed both in solution and in the solid state, and on novel paramagnetism-based tools for the investigation of conformational heterogeneity in protein-protein complexes or in multi-domain proteins.
Collapse
Affiliation(s)
- Ivano Bertini
- Magnetic Resonance Center, University of Florence, Via L. Sacconi 6, 50019, Sesto Fiorentino, (FI), Italy.
| | | | | | | |
Collapse
|