1
|
Khalifa H, ElHady AK, Liu T, Elgaher WAM, Filhol-Cochet O, Cochet C, Abadi AH, Hamed MM, Abdel-Halim M, Engel M. Discovery of a novel, selective CK2 inhibitor class with an unusual basic scaffold. Eur J Med Chem 2025; 282:117048. [PMID: 39566243 DOI: 10.1016/j.ejmech.2024.117048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
CK2 is a Ser/Thr-protein kinase playing a crucial role in promoting cell growth and survival, hence it is considered a promising target for anti-cancer drugs. However, many previously reported CK2 inhibitors lack selectivity. In search of novel scaffolds for selective CK2 inhibition, we identified a dihydropyrido-thieno[2,3-d]pyrimidine derivative displaying submicromolar inhibitory activity against CK2α. This scaffold captured our interest because of the basic secondary amine, a rather unusual motif for CK2 inhibitors. Our optimization strategy comprised the incorporation of a 4-piperazinyl moiety as a linker group and introduction of varying substituents on the pendant phenyl ring. All resulting compounds exhibited potent CK2α inhibition, with IC50 values in the nanomolar range. Compound 10b demonstrated the most balanced activity profile with a cell-free IC50 value of 36.7 nM and a notable cellular activity with a GI50 of 7.3 μM and 7.5 μM against 786-O renal cell carcinoma and U937 lymphoma cells, respectively. 10b displayed excellent selectivity when screened against a challenging kinase selectivity profiling panel. Moreover, 10b inhibited CK2 in the cells, albeit less potently than CX-4945, but induced cell death more strongly than CX-4945. Altogether, we have identified a novel CK2 inhibitory scaffold with drug-like physicochemical properties in a favorable basic pKa range.
Collapse
Affiliation(s)
- Hend Khalifa
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Ahmed K ElHady
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt; School of Life and Medical Sciences, University of Hertfordshire Hosted By Global Academic Foundation, New Administrative Capital, Cairo, Egypt
| | - Ting Liu
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany
| | - Walid A M Elgaher
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany
| | - Odile Filhol-Cochet
- University Grenoble Alpes, INSERM 1292, CEA, UMR Biosante, 38000, Grenoble, France
| | - Claude Cochet
- University Grenoble Alpes, INSERM 1292, CEA, UMR Biosante, 38000, Grenoble, France
| | - Ashraf H Abadi
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt
| | - Mostafa M Hamed
- Helmholtz Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research, Saarland University Campus, 66123, Saarbrücken, Germany
| | - Mohammad Abdel-Halim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Biotechnology, German University in Cairo, 11835, Cairo, Egypt.
| | - Matthias Engel
- Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2.3, 66123, Saarbrücken, Germany.
| |
Collapse
|
2
|
Tian Y, Zhang C, Tian X, Zhang L, Yin T, Dang Y, Liu Y, Lou H, He Q. H3T11 phosphorylation by CKII is required for heterochromatin formation in Neurospora. Nucleic Acids Res 2024; 52:9536-9550. [PMID: 39106166 PMCID: PMC11381320 DOI: 10.1093/nar/gkae664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 06/19/2024] [Accepted: 07/22/2024] [Indexed: 08/09/2024] Open
Abstract
Heterochromatin is a key feature of eukaryotic genomes and is crucial for maintaining genomic stability. In fission yeast, heterochromatin nucleation is mainly mediated by DNA-binding proteins or the RNA interference (RNAi) pathway. In the filamentous fungus Neurospora crassa, however, the mechanism that causes the initiation of heterochromatin at the relics of repeat-induced point mutation is unknown and independent of the classical RNAi pathway. Here, we show that casein kinase II (CKII) and its kinase activity are required for heterochromatin formation at the well-defined 5-kb heterochromatin of the 5H-cat-3 region and transcriptional repression of its adjacent cat-3 gene. Similarly, mutation of the histone H3 phosphorylation site T11 also impairs heterochromatin formation at the same locus. The catalytic subunit CKA colocalizes with H3T11 phosphorylation (H3pT11) within the 5H-cat-3 domain and the deletion of cka results in a significant decrease in H3T11 phosphorylation. Furthermore, the loss of kinase activity of CKII results in a significant reduction of H3pT11, H3K9me3 (histone H3 lysine 9 trimethylation) and DNA methylation levels, suggesting that CKII regulates heterochromatin formation by promoting H3T11 phosphorylation. Together, our results establish that histone H3 phosphorylation by CKII is a critical event required for heterochromatin formation.
Collapse
Affiliation(s)
- Yuan Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Chengcheng Zhang
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiang Tian
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Lu Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Tong Yin
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yunkun Dang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Center for Life Science, School of Life Sciences, Yunnan University, Kunming, Yunnan 650091, China
| | - Yi Liu
- Department of Physiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Huiqiang Lou
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qun He
- MOA Key Laboratory of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
3
|
Latosińska M, Latosińska JN. Serine/Threonine Protein Kinases as Attractive Targets for Anti-Cancer Drugs-An Innovative Approach to Ligand Tuning Using Combined Quantum Chemical Calculations, Molecular Docking, Molecular Dynamic Simulations, and Network-like Similarity Graphs. Molecules 2024; 29:3199. [PMID: 38999151 PMCID: PMC11243552 DOI: 10.3390/molecules29133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Serine/threonine protein kinases (CK2, PIM-1, RIO1) are constitutively active, highly conserved, pleiotropic, and multifunctional kinases, which control several signaling pathways and regulate many cellular functions, such as cell activity, survival, proliferation, and apoptosis. Over the past decades, they have gained increasing attention as potential therapeutic targets, ranging from various cancers and neurological, inflammation, and autoimmune disorders to viral diseases, including COVID-19. Despite the accumulation of a vast amount of experimental data, there is still no "recipe" that would facilitate the search for new effective kinase inhibitors. The aim of our study was to develop an effective screening method that would be useful for this purpose. A combination of Density Functional Theory calculations and molecular docking, supplemented with newly developed quantitative methods for the comparison of the binding modes, provided deep insight into the set of desirable properties responsible for their inhibition. The mathematical metrics helped assess the distance between the binding modes, while heatmaps revealed the locations in the ligand that should be modified according to binding site requirements. The Structure-Binding Affinity Index and Structural-Binding Affinity Landscape proposed in this paper helped to measure the extent to which binding affinity is gained or lost in response to a relatively small change in the ligand's structure. The combination of the physico-chemical profile with the aforementioned factors enabled the identification of both "dead" and "promising" search directions. Tests carried out on experimental data have validated and demonstrated the high efficiency of the proposed innovative approach. Our method for quantifying differences between the ligands and their binding capabilities holds promise for guiding future research on new anti-cancer agents.
Collapse
Affiliation(s)
- Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-814 Poznań, Poland
| | | |
Collapse
|
4
|
Winiewska-Szajewska M, Paprocki D, Marzec E, Poznański J. Effect of histidine protonation state on ligand binding at the ATP-binding site of human protein kinase CK2. Sci Rep 2024; 14:1463. [PMID: 38233478 PMCID: PMC10794401 DOI: 10.1038/s41598-024-51905-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
Histidine residues contribute to numerous molecular interactions, owing to their structure with the ionizable aromatic side chain with pKa close to the physiological pH. Herein, we studied how the two histidine residues, His115 and His160 of the catalytic subunit of human protein kinase CK2, affect the binding of the halogenated heterocyclic ligands at the ATP-binding site. Thermodynamic studies on the interaction between five variants of hCK2α (WT protein and four histidine mutants) and three ionizable bromo-benzotriazoles and their conditionally non-ionizable benzimidazole counterparts were performed with nanoDSF, MST, and ITC. The results allowed us to identify the contribution of interactions involving the particular histidine residues to ligand binding. We showed that despite the well-documented hydrogen bonding/salt bridge formation dragging the anionic ligands towards Lys68, the protonated His160 also contributes to the binding of such ligands by long-range electrostatic interactions. Simultaneously, His 115 indirectly affects ligand binding, placing the hinge region in open/closed conformations.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
- Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089, Warsaw, Poland.
| | - Daniel Paprocki
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Ewa Marzec
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106, Warsaw, Poland.
| |
Collapse
|
5
|
Patel S, Vyas VK, Sharma M, Ghate M. Structure-guided discovery of adenosine triphosphate-competitive casein kinase 2 inhibitors. Future Med Chem 2023; 15:987-1014. [PMID: 37307219 DOI: 10.4155/fmc-2023-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023] Open
Abstract
Casein kinase 2 (CK2) is a ubiquitous, highly pleiotropic serine-threonine kinase. CK2 has been identified as a potential drug target for the treatment of cancer and related disorders. Several adenosine triphosphate-competitive CK2 inhibitors have been identified and have progressed at different levels of clinical trials. This review presents details of CK2 protein, structural insights into adenosine triphosphate binding pocket, current clinical trial candidates and their analogues. Further, it includes the emerging structure-based drug design approaches, chemistry, structure-activity relationship and biological screening of potent and selective CK2 inhibitors. The authors tabulated the details of CK2 co-crystal structures because these co-crystal structures facilitated the structure-guided discovery of CK2 inhibitors. The narrow hinge pocket compared with related kinases provides useful insights into the discovery of CK2 inhibitors.
Collapse
Affiliation(s)
- Shivani Patel
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Vivek K Vyas
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manmohan Sharma
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad, Gujarat, 382481, India
| | - Manjunath Ghate
- School of Pharmacy, National Forensic Science University, Gandhinagar, Gujarat, 382007, India
| |
Collapse
|
6
|
Winiewska-Szajewska M, Czapinska H, Kaus-Drobek M, Fricke A, Mieczkowska K, Dadlez M, Bochtler M, Poznański J. Competition between electrostatic interactions and halogen bonding in the protein-ligand system: structural and thermodynamic studies of 5,6-dibromobenzotriazole-hCK2α complexes. Sci Rep 2022; 12:18964. [PMID: 36347916 PMCID: PMC9641685 DOI: 10.1038/s41598-022-23611-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/02/2022] [Indexed: 11/11/2022] Open
Abstract
CK2 is a member of the CMGC group of eukaryotic protein kinases and a cancer drug target. It can be efficiently inhibited by halogenated benzotriazoles and benzimidazoles. Depending on the scaffold, substitution pattern, and pH, these compounds are either neutral or anionic. Their binding poses are dictated by a hydrophobic effect (desolvation) and a tug of war between a salt bridge/hydrogen bond (to K68) and halogen bonding (to E114 and V116 backbone oxygens). Here, we test the idea that binding poses might be controllable by pH for ligands with near-neutral pKa, using the conditionally anionic 5,6-DBBt and constitutively anionic TBBt as our models. We characterize the binding by low-volume Differential Scanning Fluorimetry (nanoDSF), Isothermal Calorimetry (ITC), Hydrogen/Deuterium eXchange (HDX), and X-ray crystallography (MX). The data indicate that the ligand pose away from the hinge dominates for the entire tested pH range (5.5-8.5). The insensitivity of the binding mode to pH is attributed to the perturbation of ligand pKa upon binding that keeps it anionic in the ligand binding pocket at all tested pH values. However, a minor population of the ligand, detectable only by HDX, shifts towards the hinge in acidic conditions. Our findings demonstrate that electrostatic (ionic) interactions predominate over halogen bonding.
Collapse
Affiliation(s)
- Maria Winiewska-Szajewska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.12847.380000 0004 1937 1290Division of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | - Honorata Czapinska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Magdalena Kaus-Drobek
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Anna Fricke
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Kinga Mieczkowska
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Michał Dadlez
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland ,grid.419362.bInternational Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- grid.418825.20000 0001 2216 0871Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
7
|
Fabbian S, Giachin G, Bellanda M, Borgo C, Ruzzene M, Spuri G, Campofelice A, Veneziano L, Bonchio M, Carraro M, Battistutta R. Mechanism of CK2 Inhibition by a Ruthenium-Based Polyoxometalate. Front Mol Biosci 2022; 9:906390. [PMID: 35720133 PMCID: PMC9201508 DOI: 10.3389/fmolb.2022.906390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/18/2022] [Indexed: 12/03/2022] Open
Abstract
CK2 is a Ser/Thr protein kinase involved in many cellular processes such as gene expression, cell cycle progression, cell growth and differentiation, embryogenesis, and apoptosis. Aberrantly high CK2 activity is widely documented in cancer, but the enzyme is also involved in several other pathologies, such as diabetes, inflammation, neurodegeneration, and viral infections, including COVID-19. Over the last years, a large number of small-molecules able to inhibit the CK2 activity have been reported, mostly acting with an ATP-competitive mechanism. Polyoxometalates (POMs), are metal-oxide polyanionic clusters of various structures and dimensions, with unique chemical and physical properties. POMs were identified as nanomolar CK2 inhibitors, but their mechanism of inhibition and CK2 binding site remained elusive. Here, we present the biochemical and biophysical characterizing of the interaction of CK2α with a ruthenium-based polyoxometalate, [Ru4(μ-OH)2(μ-O)4(H2O)4 (γ-SiW10O36)2]10− (Ru4POM), a potent inhibitor of CK2. Using analytical Size-Exclusion Chromatography (SEC), Isothermal Titration Calorimetry (ITC), and SAXS we were able to unravel the mechanism of inhibition of Ru4POM. Ru4POM binds to the positively-charged substrate binding region of the enzyme through electrostatic interactions, triggering the dimerization of the enzyme which consequently is inactivated. Ru4POM is the first non-peptide molecule showing a substrate-competitive mechanism of inhibition for CK2. On the basis of SAXS data, a structural model of the inactivated (CK2α)2(Ru4POM)2 complex is presented.
Collapse
Affiliation(s)
- Simone Fabbian
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Gabriele Giachin
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Massimo Bellanda
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
| | - Christian Borgo
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, Padova, Italy
- CNR Institute of Neurosciences, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Giacomo Spuri
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ambra Campofelice
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Laura Veneziano
- Department of Chemical Sciences, University of Padova, Padova, Italy
| | - Marcella Bonchio
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
| | - Mauro Carraro
- Department of Chemical Sciences, University of Padova, Padova, Italy
- Institute on Membrane Technology (ITM)-CNR, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| | - Roberto Battistutta
- Department of Chemical Sciences, University of Padova, Padova, Italy
- CNR Institute of Biomolecular Chemistry, University of Padova, Padova, Italy
- *Correspondence: Maria Ruzzene, ; Mauro Carraro, ; Roberto Battistutta,
| |
Collapse
|
8
|
Winiewska-Szajewska M, Maciejewska AM, Speina E, Poznański J, Paprocki D. Synthesis of Novel Halogenated Heterocycles Based on o-Phenylenediamine and Their Interactions with the Catalytic Subunit of Protein Kinase CK2. Molecules 2021; 26:molecules26113163. [PMID: 34070615 PMCID: PMC8198750 DOI: 10.3390/molecules26113163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 01/07/2023] Open
Abstract
Protein kinase CK2 is a highly pleiotropic protein kinase capable of phosphorylating hundreds of protein substrates. It is involved in numerous cellular functions, including cell viability, apoptosis, cell proliferation and survival, angiogenesis, or ER-stress response. As CK2 activity is found perturbed in many pathological states, including cancers, it becomes an attractive target for the pharma. A large number of low-mass ATP-competitive inhibitors have already been developed, the majority of them halogenated. We tested the binding of six series of halogenated heterocyclic ligands derived from the commercially available 4,5-dihalo-benzene-1,2-diamines. These ligand series were selected to enable the separation of the scaffold effect from the hydrophobic interactions attributed directly to the presence of halogen atoms. In silico molecular docking was initially applied to test the capability of each ligand for binding at the ATP-binding site of CK2. HPLC-derived ligand hydrophobicity data are compared with the binding affinity assessed by low-volume differential scanning fluorimetry (nanoDSF). We identified three promising ligand scaffolds, two of which have not yet been described as CK2 inhibitors but may lead to potent CK2 kinase inhibitors. The inhibitory activity against CK2α and toxicity against four reference cell lines have been determined for eight compounds identified as the most promising in nanoDSF assay.
Collapse
|
9
|
Bansal Y, Minhas R, Singhal A, Arora RK, Bansal G. Benzimidazole: A Multifacted Nucelus for Anticancer Agents. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208141107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cancer is characterized by an uncontrolled proliferation of cells, dedifferentiation,
invasiveness and metastasis. Endothelial growth factor (eGF), insulin-like growth factor
(IGF), platelet-derived growth factor (PDGF), Fibroblast growth factor (FGF), Vascular endothelial
growth factor (VEGF), checkpoint kinase 1 & 2 ( Chk1 & Chk2), aurora kinases,
topoisomerases, histone deacetylators (HDAC), poly(ADP-Ribose)polymerase (PARP), farnesyl
transferases, RAS-MAPK pathway and PI3K-Akt-mTOR pathway, are some of the
prominent mediators implicated in the proliferation of tumor cells. Huge artillery of natural
and synthetic compounds as anticancer, which act by inhibiting one or more of the enzymes
and/or pathways responsible for the progression of tumor cells, is reported in the literature.
The major limitations of anticancer agents used in clinics as well as of those under development
in literature are normal cell toxicity and other side effects due to lack of specificity.
Hence, medicinal chemists across the globe have been working for decades to develop potent and safe anticancer
agents from natural sources as well as from different classes of heterocycles. Benzimidazole is one of the most important
and explored heteronucelus because of their versatility in biological actions as well as synthetic applications
in medicinal chemistry. The structural similarity of amino derivatives of benzimidazole with purines makes it a fascinating
nucleus for the development of anticancer, antimicrobial and anti-HIV agents. This review article is an attempt
to critically analyze various reports on benzimidazole derivatives acting on different targets to act as anticancer so as
to understand the structural requirements around benzimidazole nucleus for each target and enable medicinal chemists
to promote rational development of antitumor agents.
Collapse
Affiliation(s)
- Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Ankit Singhal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Radhey Krishan Arora
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala - 147002, India
| |
Collapse
|
10
|
Czapinska H, Winiewska-Szajewska M, Szymaniec-Rutkowska A, Piasecka A, Bochtler M, Poznański J. Halogen Atoms in the Protein-Ligand System. Structural and Thermodynamic Studies of the Binding of Bromobenzotriazoles by the Catalytic Subunit of Human Protein Kinase CK2. J Phys Chem B 2021; 125:2491-2503. [PMID: 33689348 PMCID: PMC8041304 DOI: 10.1021/acs.jpcb.0c10264] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
![]()
Binding of a family
of brominated benzotriazoles to the catalytic
subunit of human protein kinase CK2 (hCK2α) was used as a model
system to assess the contribution of halogen bonding to protein–ligand
interaction. CK2 is a constitutively active pleiotropic serine/threonine
protein kinase that belongs to the CMGC group of eukaryotic protein
kinases (EPKs). Due to the addiction of some cancer cells, CK2 is
an attractive and well-characterized drug target. Halogenated benzotriazoles
act as ATP-competitive inhibitors with unexpectedly good selectivity
for CK2 over other EPKs. We have characterized the interaction of
bromobenzotriazoles with hCK2α by X-ray crystallography, low-volume
differential scanning fluorimetry, and isothermal titration calorimetry.
Properties of free ligands in solution were additionally characterized
by volumetric and RT-HPLC measurements. Thermodynamic data indicate
that the affinity increases with bromo substitution, with greater
contributions from 5- and 6-substituents than 4- and 7-substituents.
Except for 4,7-disubstituted compounds, the bromobenzotriazoles adopt
a canonical pose with the triazole close to lysine 68, which precludes
halogen bonding. More highly substituted benzotriazoles adopt many
additional noncanonical poses, presumably driven by a large hydrophobic
contribution to binding. Some noncanonical ligand orientations allow
the formation of halogen bonds with the hinge region. Consistent with
a predominantly hydrophobic interaction, the isobaric heat capacity
decreases upon ligand binding, the more so the higher the substitution.
Collapse
Affiliation(s)
- Honorata Czapinska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Maria Winiewska-Szajewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,Department of Biophysics, Institute of Experimental Physics, University of Warsaw, Pasteura 5, 02-089 Warsaw, Poland
| | | | - Anna Piasecka
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Matthias Bochtler
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland.,International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
11
|
Lee S, Kim J, Jo J, Chang JW, Sim J, Yun H. Recent advances in development of hetero-bivalent kinase inhibitors. Eur J Med Chem 2021; 216:113318. [PMID: 33730624 DOI: 10.1016/j.ejmech.2021.113318] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/16/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
Abstract
Identifying a pharmacological agent that targets only one of more than 500 kinases present in humans is an important challenge. One potential solution to this problem is the development of bivalent kinase inhibitors, which consist of two connected fragments, each bind to a dissimilar binding site of the bisubstrate enzyme. The main advantage of bivalent (type V) kinase inhibitors is generating more interactions with target enzymes that can enhance the molecules' selectivity and affinity compared to single-site inhibitors. Earlier type V inhibitors were not suitable for the cellular environment and were mostly used in in vitro studies. However, recently developed bivalent compounds have high kinase affinity, high biological and chemical stability in vivo. This review summarized the hetero-bivalent kinase inhibitors described in the literature from 2014 to the present. We attempted to classify the molecules by serine/threonine and tyrosine kinase inhibitors, and then each target kinase and its hetero-bivalent inhibitor was assessed in depth. In addition, we discussed the analysis of advantages, limitations, and perspectives of bivalent kinase inhibitors compared with the monovalent kinase inhibitors.
Collapse
Affiliation(s)
- Seungbeom Lee
- College of Pharmacy, CHA University, Pocheon-si, Gyeonggi-do, 11160, Republic of Korea
| | - Jisu Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jeyun Jo
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Jae Won Chang
- Department of Pharmacology & Chemical Biology, School of Medicine, Emory University, Atlanta, GA, USA; Department of Hematology & Medical Oncology, School of Medicine, Emory University, Atlanta, GA, USA; Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Jaehoon Sim
- College of Pharmacy, Chungnam National University, Daejeon, 34134, Republic of Korea.
| | - Hwayoung Yun
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea.
| |
Collapse
|
12
|
Schnitzler A, Niefind K. Structural basis for the design of bisubstrate inhibitors of protein kinase CK2 provided by complex structures with the substrate-competitive inhibitor heparin. Eur J Med Chem 2021; 214:113223. [PMID: 33571828 DOI: 10.1016/j.ejmech.2021.113223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/20/2021] [Accepted: 01/20/2021] [Indexed: 12/27/2022]
Abstract
The Ser/Thr kinase CK2, a member of the superfamily of eukaryotic protein kinases, has an acidophilic substrate profile with the substrate recognition sequence S/T-D/E-X-D/E, and it is inhibited by polyanionic substances like heparin. The latter, a highly sulphated glucosamino glycan composed mainly of repeating 2-O-sulpho-α-l-idopyranuronic acid/N,O6-disulpho-α-d-glucosamine disaccharide units, is the longest known substrate-competitive CK2 inhibitor. The structural basis of CK2's preference for anionic substrates and substrate-competitive inhibitors is only vaguely known which limits the value of the substrate-binding region for the structure-based development of CK2 bisubstrate inhibitors. Here, a tetragonal and a monoclinic co-crystal structure of CK2α, the catalytic subunit of CK2, with a decameric heparin fragment are described. In the tetragonal structure, the heparin molecule binds to the polybasic stretch at the beginning of CK2α's helix αC, whereas in the monoclinic structure it occupies the central substrate-recognition region around the P+1 loop. Together, the structures rationalize the inhibitory efficacy of heparin fragments as a function of chain length. The monoclinic CK2α/heparin structure, in which the heparin fragment is particularly well defined, is the first CK2 structure with an anionic inhibitor of considerable size at the central part of the substrate-recognition site. The bound heparin fragment is so close to the binding site of ATP-competitive inhibitors that it can guide the design of linkers and pave the way to efficient CK2 bisubstrate inhibitors in the future.
Collapse
Affiliation(s)
- Alexander Schnitzler
- Universität zu Köln, Department für Chemie, Institut für Biochemie, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Karsten Niefind
- Universität zu Köln, Department für Chemie, Institut für Biochemie, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
13
|
Deepa P, Thirumeignanam D. Understanding the impact of anticancer halogenated inhibitors and various functional groups (X = Cl, F, CF 3, CH 3, NH 2, OH, H) of casein kinase 2 (CK2). J Biomol Struct Dyn 2020; 40:5036-5052. [PMID: 33375908 DOI: 10.1080/07391102.2020.1866075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Main focus of study is to understand potency of halogen (X = Br) atom that exists in tetrabromobenzotriazole (TBB) derivatives of crystal CK2 ligand along with hinge region amino acids (VAL45, PHE113, GLU114, VAL116, ASN118) through interaction energy analysis. In turn to attain profound insight on nature of stabilization of core CK2 ligands: 1ZOE-L1, 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 2OXY-L5, 3KXG-L6, 3KXH-L7 -L7 and 3KXM-L8, having four bromine atoms, we attempted to mutate all bromine (X = Br) atoms by various functional groups (X = Cl, F, CF3, CH3, NH2, OH, H) and binding strength along with amino acids was calculated. Most stable ligands exist in mutated NH2 functional groups: 1ZOG-L2, 1ZOH-L3, 2OXX-L4, 3KXM-L8 having interaction energy as -5.21, -14.87, -6.69 and -11.72 kcal/mol respectively, revealing strong binding strength. Second most stable mutated Cl functional group ligands also play a major role in 1ZOH-L3, 2OXX-L4 and 3KXM-L8 having interaction energy as -6.89, -5.37, and -10.48 kcal/mol respectively. Overall, this study will pave way for crystal growth and medicinal chemist to have cleared perceptive about structural properties of CK2 halogenated ligands with new insight on CK2 mutated functional group ligands. Further, it insists us to reuse existing CK2 crystal ligand with more preferable suggested binding contacts in course of new functional groups that lead to anticancer affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Palanisamy Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, India
| | - Duraisamy Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, Tamil Nadu Veterinary and Animal Sciences University, Tirunelveli, India
| |
Collapse
|
14
|
Chojnacki K, Lindenblatt D, Wińska P, Wielechowska M, Toelzer C, Niefind K, Bretner M. Synthesis, biological properties and structural study of new halogenated azolo[4,5-b]pyridines as inhibitors of CK2 kinase. Bioorg Chem 2020; 106:104502. [PMID: 33317841 DOI: 10.1016/j.bioorg.2020.104502] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/06/2020] [Accepted: 11/19/2020] [Indexed: 11/26/2022]
Abstract
The new halogenated 1H-triazolo[4,5-b]pyridines and 1H-imidazo[4,5-b]pyridines were synthesised as analogues of known CK2 inhibitors: 4,5,6,7-tetrabromo-1H-benzotriazole (TBBt) and 4,5,6,7-tetrabromo-1H-benzimidazole (TBBi). Their influence on the activity of recombinant human CK2α, CK2α' and PIM1 kinases was determined. The most active inhibitors were di- and trihalogenated 1H-triazolo[4,5-b]pyridines (4a, 5a and 10a) with IC50 values 2.56, 3.82 and 3.26 μM respectively for CK2α. Furthermore, effect on viability of cancer cell lines MCF-7 (human breast adenocarcinoma) and CCRF-CEM (T lymphoblast leukemia) of all final compounds was evaluated. Finally, three crystal structures of complexes of CK2α1-335 with inhibitors 4a, 5a and 10a were obtained. In addition, new protocol was used to obtain high-resolution crystal structures of CK2α'Cys336Ser in complex with four inhibitors (4a, 5a, 5b, 10a).
Collapse
Affiliation(s)
- K Chojnacki
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - D Lindenblatt
- Department für Chemie, Institut für Biochemie, Universtät zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - P Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - M Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - C Toelzer
- Department für Chemie, Institut für Biochemie, Universtät zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - K Niefind
- Department für Chemie, Institut für Biochemie, Universtät zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - M Bretner
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
15
|
Hayakawa D, Sawada N, Watanabe Y, Gouda H. A molecular interaction field describing nonconventional intermolecular interactions and its application to protein–ligand interaction prediction. J Mol Graph Model 2020; 96:107515. [DOI: 10.1016/j.jmgm.2019.107515] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 12/18/2019] [Accepted: 12/18/2019] [Indexed: 10/25/2022]
|
16
|
Dalle Vedove A, Zonta F, Zanforlin E, Demitri N, Ribaudo G, Cazzanelli G, Ongaro A, Sarno S, Zagotto G, Battistutta R, Ruzzene M, Lolli G. A novel class of selective CK2 inhibitors targeting its open hinge conformation. Eur J Med Chem 2020; 195:112267. [PMID: 32283296 DOI: 10.1016/j.ejmech.2020.112267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/02/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Protein kinase CK2 sustains cancer growth, especially in hematological malignancies. Its inhibitor SRPIN803, based on a 6-methylene-5-imino-1,3,4-thiadiazolopyrimidin-7-one scaffold, showed notable specificity. Our synthesis of the initially proposed SRPIN803 resulted in its constitutional isomer SRPIN803-revised, where the 2-cyano-2-propenamide group does not cyclise and fuse to the thiadiazole ring. Its crystallographic structure in complex with CK2α identifies the structural determinants of the reported specificity. SRPIN803-revised explores the CK2 open hinge conformation, extremely rare among kinases, also interacting with side chains from this region. Its optimization lead to the more potent compound 4, which inhibits endocellular CK2, significantly affects viability of tumour cells and shows remarkable selectivity on a panel of 320 kinases.
Collapse
Affiliation(s)
- Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Francesca Zonta
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Enrico Zanforlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy
| | - Nicola Demitri
- Elettra-Sincrotrone Trieste, S.S. 14 Km 163.5 in Area Science Park, 34149, Basovizza-Trieste, Italy
| | - Giovanni Ribaudo
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Giulia Cazzanelli
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Alberto Ongaro
- Department of Molecular and Translational Medicine, Division of Pharmacology, University of Brescia, Viale Europa 11, 25123, Brescia, Italy
| | - Stefania Sarno
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy
| | - Giuseppe Zagotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padua, Via F. Marzolo 5, 35131, Padua, Italy.
| | - Roberto Battistutta
- Department of Chemical Sciences and CNR Institute of Biomolecular Chemistry, University of Padua, Via F. Marzolo 1, 35131, Padua, Italy.
| | - Maria Ruzzene
- Department of Biomedical Sciences and CNR Institute of Neuroscience, University of Padua, Via U. Bassi 58/B, 35131, Padua, Italy.
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology - CIBIO, University of Trento, Via Sommarive 9, 38123, Trento, Italy.
| |
Collapse
|
17
|
Multitarget Anticancer Agents Based on Histone Deacetylase and Protein Kinase CK2 inhibitors. Molecules 2020; 25:molecules25071497. [PMID: 32218358 PMCID: PMC7180456 DOI: 10.3390/molecules25071497] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 12/21/2022] Open
Abstract
The design of multitarget drugs (MTDs) has become an innovative approach for the search of effective treatments in complex diseases such as cancer. In this work, we communicate our efforts in the design of multi-targeting histone deacetylase (HDAC) and protein kinase CK2 inhibitors as a novel therapeutic strategy against cancer. Using tetrabromobenzotriazole (TBB) and 2-dimethylamino-4,5,6,7-tetrabromo-benzimidazole (DMAT) as scaffolds for CK2 inhibition, and a hydroxamate to coordinate the zinc atom present in the active site of HDAC (zinc binding group, ZBG), new multitarget inhibitors have been designed and synthesized. According to the in vitro assays, N-Hydroxy-6-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)hexanamide (11b) is the most interesting compound, with IC50 values of 0.66; 1.46 and 3.67 µM. for HDAC6; HDAC1 and CK2; respectively. Cellular assays on different cancer cell lines rendered promising results for N-Hydroxy-8-(4,5,6,7-tetrabromo-2-(dimethylamino)-1H-benzo[d]imidazol-1-yl)octanamide (11d). This inhibitor presented the highest cytotoxic activity, proapoptotic capability, and the best mitochondria-targeting and multidrug-circumventing properties, thus being the most promising drug candidate for further in vivo studies.
Collapse
|
18
|
Kasperowicz S, Marzec E, Maciejewska AM, Trzybiński D, Bretner M, Woźniak K, Poznański J, Mieczkowska K. A competition between hydrophobic and electrostatic interactions in protein-ligand systems. Binding of heterogeneously halogenated benzotriazoles by the catalytic subunit of human protein kinase CK2. IUBMB Life 2020; 72:1211-1219. [PMID: 32162783 DOI: 10.1002/iub.2271] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Accepted: 02/29/2020] [Indexed: 01/15/2023]
Abstract
A series of chlorine-substituted benzotriazole derivatives, representing all possible substitution patterns of halogen atoms attached to the benzotriazole benzene ring, were synthetized as potential inhibitors of human protein kinase CK2. Basic ADME parameters for the free solutes (hydrophobicity, electronic properties) together with their binding affinity to the catalytic subunit of protein kinase CK2 were determined with reverse-phase HPLC, spectrophotometric titration, and Thermal Shift Assay Method, respectively. The analysis of position-dependent thermodynamic contribution of a chlorine atom attached to the benzotriazole ring confirmed the previous observation for brominated benzotriazoles, in which substitution at positions 5 and 6 with bromine was found crucial for ligand binding. In all tested halogenated benzotriazoles the replacement of Br with Cl decreases the hydrophobicity, while the electronic properties remain virtually unaffected. Supramolecular architecture identified in the just resolved crystal structures of three of the four possible dichloro-benzotriazoles shows how substitution distant from the triazole ring affects the pattern of intermolecular interactions. Summarizing, the benzotriazole benzene ring substitution pattern has been identified as the main driver of ligand binding, predominating the non-specific hydrophobic effect.
Collapse
Affiliation(s)
- Sławomir Kasperowicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.,Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Ewa Marzec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | | | - Damian Trzybiński
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Maria Bretner
- Faculty of Chemistry, Warsaw University of Technology, Warsaw, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Kinga Mieczkowska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
19
|
Marzec E, Poznański J, Paprocki D. Thermodynamic contribution of iodine atom to the binding of heterogeneously polyhalogenated benzotriazoles by the catalytic subunit of human protein kinase CK2. IUBMB Life 2020; 72:1203-1210. [PMID: 32083806 DOI: 10.1002/iub.2257] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 02/09/2020] [Indexed: 12/29/2022]
Abstract
A series of novel benzotriazole derivatives containing iodine atom(s) were synthesized. The binding of these compounds to the catalytic subunit of human protein kinase CK2 was evaluated using differential scanning fluorimetry. The obtained thermodynamic data were compared with those determined previously for the brominated and chlorinated benzotriazole analogues to get a deeper insight into the thermodynamic contribution of iodine substitution to the free energy of ligand binding. We have shown that iodine atom(s) attached to the benzene ring of benzotriazole enhance(s) its binding by the target protein. This effect is the strongest when two iodine atoms are attached at positions peripheral to the triazole ring, which according to the structures deposited in protein data bank may be indicative for the formation of the halogen bond between iodine and carbonyl groups of residues located in the hinge region of the protein. Finally, quantitative structure-activity relationship analysis pointed the solute hydrophobicity as the main factor contributing to the binding affinity.
Collapse
Affiliation(s)
- Ewa Marzec
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Daniel Paprocki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
20
|
Cozza G, Zonta F, Dalle Vedove A, Venerando A, Dall'Acqua S, Battistutta R, Ruzzene M, Lolli G. Biochemical and cellular mechanism of protein kinase CK2 inhibition by deceptive curcumin. FEBS J 2019; 287:1850-1864. [DOI: 10.1111/febs.15111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 08/01/2019] [Accepted: 10/26/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Giorgio Cozza
- Department of Molecular Medicine University of Padua Padua Italy
| | - Francesca Zonta
- Department of Biomedical Sciences CNR Institute of Neuroscience University of Padua Padua Italy
| | - Andrea Dalle Vedove
- Department of Cellular, Computational and Integrative Biology – CIBIO University of Trento Trento Italy
| | - Andrea Venerando
- Department of Comparative Biomedicine and Food Science University of Padua Legnaro Italy
| | - Stefano Dall'Acqua
- Department of Pharmaceutical and Pharmacological Sciences University of Padua Padua Italy
| | - Roberto Battistutta
- Department of Chemical Sciences University of Padua Padua Italy
- Institute of Biomolecular Chemistry National Research Council (CNR) Padua Italy
| | - Maria Ruzzene
- Department of Biomedical Sciences CNR Institute of Neuroscience University of Padua Padua Italy
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology – CIBIO University of Trento Trento Italy
| |
Collapse
|
21
|
Small molecule modulators targeting protein kinase CK1 and CK2. Eur J Med Chem 2019; 181:111581. [DOI: 10.1016/j.ejmech.2019.111581] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
|
22
|
Mukhopadhyay BP. Insights from molecular dynamics simulation of human ceruloplasmin (ferroxidase enzyme) binding with biogenic monoamines. Bioinformation 2019; 15:750-759. [PMID: 31831958 PMCID: PMC6900326 DOI: 10.6026/97320630015750] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 10/31/2019] [Accepted: 10/31/2019] [Indexed: 11/23/2022] Open
Abstract
Human ceruloplasmin (hCP) is a multi-copper oxidase with ferroxidase and amine oxidase activities. Molecular dynamics simulation (MDS) and docking analysis of biogenic monoamines with ceruloplasmin explain the role of Asp1025, Glu935, Glu272, Glu232 and Glu230 together with the binding site water molecules (referred as conserved water molecules) in the stabilization of neurotransmitter (Serotonin, Norepinephrine and Epinephrine) molecules within the binding cavity of hCP. Conserved water molecules are found at specific positions interacting with the protein structures that have sequence similarity. The ethylamine side chain nitrogen atom (N1) of neurotransmitter molecules interacts with water molecules in the binding cavity formed by Asp1025, Glu935 and Glu232 residues. These residues form an acidic triad mimicking a substrate binding cavity. The hydroxyl groups attached to the catechol ring of epinephrine and norepinephrine have been stabilized by Asp230 and Asp232 residues. Data suggests that the recognition of biogenic amines mediates through the N+(amine) ...Asp1025-His1026-CuCis-His path. The potential recognition path of biogenic monoamines to trinuclear copper cluster supported by active site water molecules (referred as conserved water molecules) is described in this report.
Collapse
|
23
|
Battistutta R, Lolli G. Inhibitory Properties of ATP-Competitive Coumestrol and Boldine Are Correlated to Different Modulations of CK2 Flexibility. JOURNAL OF NATURAL PRODUCTS 2019; 82:1014-1018. [PMID: 30840451 DOI: 10.1021/acs.jnatprod.8b00889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Casein kinase 2 (CK2) is an anti-apoptotic cancer-sustaining protein kinase. Its crystallographic structures with the natural compounds coumestrol, a phytoestrogen, and boldine, an alkaloid, are reported. Coumestrol shows different inhibitory activity against the isolated catalytic α-subunit and the α2β2 holoenzyme and is able to discriminate between two conformations of the hinge/αD region, whose intrinsic flexibility is a relevant selectivity determinant among kinases. Boldine explores a small cavity at the bottom of the ATP-binding pocket through a local deviation from planarity, a unique case among CK2 inhibitors. The two compounds have different impacts on protein flexibility, which correlate with their different properties.
Collapse
Affiliation(s)
- Roberto Battistutta
- Department of Chemical Sciences , University of Padua and Institute of Biomolecular Chemistry, National Research Council (CNR) , 35131 Padua , Italy
| | - Graziano Lolli
- Department of Cellular, Computational and Integrative Biology - CIBIO , University of Trento , Via Sommarive 9 , 38123 Povo (TN) , Italy
| |
Collapse
|
24
|
Lindenblatt D, Nickelsen A, Applegate VM, Hochscherf J, Witulski B, Bouaziz Z, Marminon C, Bretner M, Le Borgne M, Jose J, Niefind K. Diacritic Binding of an Indenoindole Inhibitor by CK2α Paralogs Explored by a Reliable Path to Atomic Resolution CK2α' Structures. ACS OMEGA 2019; 4:5471-5478. [PMID: 31559376 PMCID: PMC6756786 DOI: 10.1021/acsomega.8b03415] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/14/2019] [Indexed: 06/01/2023]
Abstract
CK2α and CK2α' are the two isoforms of the catalytic subunit of human protein kinase CK2, an important target for cancer therapy. They have similar, albeit not identical functional and structural properties, and were occasionally reported to be inhibited with distinct efficacies by certain ATP-competitive ligands. Here, we present THN27, an indeno[1,2-b]indole derivative, as a further inhibitor with basal isoform selectivity. The selectivity disappears when measured using CK2α/CK2α' complexes with CK2β, the regulatory CK2 subunit. Co-crystal structures of THN27 with CK2α and CK2α' reveal that subtle differences in the conformational variability of the interdomain hinge region are correlated with the observed effect. In the case of CK2α', a crystallographically problematic protein so far, this comparative structural analysis required the development of an experimental strategy that finally enables atomic resolution structure determinations with ab initio phasing of potentially any ATP-competitive CK2 inhibitor and possibly many non-ATP-competitive ligands as well bound to CK2α'.
Collapse
Affiliation(s)
- Dirk Lindenblatt
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Anna Nickelsen
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Violetta M. Applegate
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Jennifer Hochscherf
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Benedict Witulski
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| | - Zouhair Bouaziz
- EA 4446
Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est
CNRS UMS 3453 - INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Christelle Marminon
- EA 4446
Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est
CNRS UMS 3453 - INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Maria Bretner
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Marc Le Borgne
- EA 4446
Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est
CNRS UMS 3453 - INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 Avenue Rockefeller, F-69373 Lyon Cedex 8, France
| | - Joachim Jose
- Institut
für Pharmazeutische und Medizinische Chemie, Westfälische Wilhelms-Universität Münster, PharmaCampus, Corrensstr. 48, D-48149 Münster, Germany
| | - Karsten Niefind
- Department
für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany
| |
Collapse
|
25
|
Deepa P, Thirumeignanam D, Kolandaivel P. An overview about the impact of hinge region towards the anticancer binding affinity of the Ck2 ligands: a quantum chemical analysis. J Biomol Struct Dyn 2018; 37:3859-3876. [DOI: 10.1080/07391102.2018.1533498] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- P. Deepa
- Department of Physics, Manonmaniam Sundaranar University, Tirunelveli, Tamil Nadu, India
| | - D. Thirumeignanam
- Department of Animal Nutrition, Veterinary College and Research Institute, Tirunelveli, Tamil Nadu, India
| | | |
Collapse
|
26
|
Chu M, Chen X, Wang J, Guo L, Wang Q, Gao Z, Kang J, Zhang M, Feng J, Guo Q, Li B, Zhang C, Guo X, Chu Z, Wang Y. Polypharmacology of Berberine Based on Multi-Target Binding Motifs. Front Pharmacol 2018; 9:801. [PMID: 30087614 PMCID: PMC6066535 DOI: 10.3389/fphar.2018.00801] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 07/03/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Polypharmacology is emerging as the next paradigm in drug discovery. However, considerable challenges still exist for polypharmacology modeling. In this study, we developed a rational design to identify highly potential targets (HPTs) for polypharmacological drugs, such as berberine. Methods and Results: All the proven co-crystal structures locate berberine in the active cavities of a redundancy of aromatic, aliphatic, and acidic residues. The side chains from residues provide hydrophobic and electronic interactions to aid in neutralization for the positive charge of berberine. Accordingly, we generated multi-target binding motifs (MBM) for berberine, and established a new mathematical model to identify HPTs based on MBM. Remarkably, the berberine MBM was embodied in 13 HPTs, including beta-secretase 1 (BACE1) and amyloid-β1-42 (Aβ1-42). Further study indicated that berberine acted as a high-affinity BACE1 inhibitor and prevented Aβ1-42 aggregation to delay the pathological process of Alzheimer's disease. Conclusion: Here, we proposed a MBM-based drug-target space model to analyze the underlying mechanism of multi-target drugs against polypharmacological profiles, and demonstrated the role of berberine in Alzheimer's disease. This approach can be useful in derivation of rules, which will illuminate our understanding of drug action in diseases.
Collapse
Affiliation(s)
- Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Likai Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qianqian Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zirui Gao
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiarui Kang
- Department of Pathology, First Affiliated Hospital of Chinese PLA General Hospital, Beijing, China
| | - Mingbo Zhang
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Jinqiu Feng
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Qi Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Binghua Li
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Chengrui Zhang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Xueyuan Guo
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| | - Zhengyun Chu
- Pharmacy Departments, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China.,Key Laboratory of Medical Immunology, Ministry of Health, Peking University, Beijing, China
| |
Collapse
|
27
|
Schnitzler A, Gratz A, Bollacke A, Weyrich M, Kuckländer U, Wünsch B, Götz C, Niefind K, Jose J. A π-Halogen Bond of Dibenzofuranones with the Gatekeeper Phe113 in Human Protein Kinase CK2 Leads to Potent Tight Binding Inhibitors. Pharmaceuticals (Basel) 2018; 11:ph11010023. [PMID: 29462988 PMCID: PMC5874719 DOI: 10.3390/ph11010023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 02/13/2018] [Accepted: 02/14/2018] [Indexed: 01/05/2023] Open
Abstract
Human protein kinase CK2 is an emerging target for neoplastic diseases. Potent lead structures for human CK2 inhibitors are derived from dibenzofuranones. Two new derivatives, 7,9-dichloro-1,2-dihydro-8-hydroxy-4-[(4-methoxyphenylamino)-methylene]dibenzo[b,d]furan-3(2H)-one (4a) and (E)-1,3-dichloro-6-[(4-methoxyphenylimino)-methyl]dibenzo[b,d]furan-2,7-diol (5) were tested for inhibition of CK2 and induction of apoptosis in LNCaP cells. Both turned out to be tight binding inhibitors, with IC50 values of 7 nM (4a) and 5 nM (5) and an apparent Ki value of 0.4 nM for both. Compounds 4a and 5 reduced cellular CK2 activity, indicating cell permeability. Cell viability was substantially impaired in LNCaP cells, as well as apoptosis was induced, which was not appearing in non-neoplastic ARPE-19 cells. Co-crystallization of 4a and 5 revealed an unexpected π-halogen bond of the chloro substituent at C9 with the gatekeeper amino acid Phe113, leading to an inverted binding mode in comparison to parent compound 4b, with the Cl at C6 instead, which was co-crystallized as a control. This indicates that the position of the chloro substituent on ring A of the dibenzofuran scaffold is responsible for an inversion of the binding mode that enhances potency.
Collapse
Affiliation(s)
- Alexander Schnitzler
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Andreas Gratz
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Andre Bollacke
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Michael Weyrich
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany.
| | - Uwe Kuckländer
- Institut für Pharmazeutische und Medizinische Chemie, Heinrich-Heine-Universität Düsseldorf, Universitätsstraße 1, D-40225 Düsseldorf, Germany.
| | - Bernhard Wünsch
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Claudia Götz
- Medizinische Biochemie und Molekularbiologie, Universität des Saarlandes, Kirrberger Str., Geb. 44, D-66421 Homburg, Germany.
| | - Karsten Niefind
- Institut für Biochemie, Department für Chemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| |
Collapse
|
28
|
Cuzzolin A, Deganutti G, Salmaso V, Sturlese M, Moro S. AquaMMapS: An Alternative Tool to Monitor the Role of Water Molecules During Protein-Ligand Association. ChemMedChem 2018; 13:522-531. [DOI: 10.1002/cmdc.201700564] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/21/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Alberto Cuzzolin
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Giuseppe Deganutti
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Veronica Salmaso
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Mattia Sturlese
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| | - Stefano Moro
- Molecular Modeling Section, MMS, Department of Pharmaceutical and Pharmacological Sciences; University of Padova; via Marzolo 5 35131 Padova Italy
| |
Collapse
|
29
|
Hochscherf J, Lindenblatt D, Witulski B, Birus R, Aichele D, Marminon C, Bouaziz Z, Le Borgne M, Jose J, Niefind K. Unexpected Binding Mode of a Potent Indeno[1,2-b]indole-Type Inhibitor of Protein Kinase CK2 Revealed by Complex Structures with the Catalytic Subunit CK2α and Its Paralog CK2α'. Pharmaceuticals (Basel) 2017; 10:ph10040098. [PMID: 29236079 PMCID: PMC5748653 DOI: 10.3390/ph10040098] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Revised: 12/08/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022] Open
Abstract
Protein kinase CK2, a member of the eukaryotic protein kinase superfamily, is associated with cancer and other human pathologies and thus an attractive drug target. The indeno[1,2-b]indole scaffold is a novel lead structure to develop ATP-competitive CK2 inhibitors. Some indeno[1,2-b]indole-based CK2 inhibitors additionally obstruct ABCG2, an ABC half transporter overexpressed in breast cancer and co-responsible for drug efflux and resistance. Comprehensive derivatization studies revealed substitutions of the indeno[1,2-b]indole framework that boost either the CK2 or the ABCG2 selectivity or even support the dual inhibition potential. The best indeno[1,2-b]indole-based CK2 inhibitor described yet (IC50 = 25 nM) is 5-isopropyl-4-(3-methylbut-2-enyl-oxy)-5,6,7,8-tetrahydroindeno[1,2-b]indole-9,10-dione (4p). Herein, we demonstrate the membrane permeability of 4p and describe co-crystal structures of 4p with CK2α and CK2α′, the paralogs of human CK2 catalytic subunit. As expected, 4p occupies the narrow, hydrophobic ATP site of CK2α/CK2α′, but surprisingly with a unique orientation: its hydrophobic substituents point towards the solvent while its two oxo groups are hydrogen-bonded to a hidden water molecule. An equivalent water molecule was found in many CK2α structures, but never as a critical mediator of ligand binding. This unexpected binding mode is independent of the interdomain hinge/helix αD region conformation and of the salt content in the crystallization medium.
Collapse
Affiliation(s)
- Jennifer Hochscherf
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Dirk Lindenblatt
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Benedict Witulski
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| | - Robin Birus
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Dagmar Aichele
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Christelle Marminon
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Zouhair Bouaziz
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Marc Le Borgne
- EA4446 Bioactive Molecules and Medicinal Chemistry, SFR Santé Lyon-Est CNRS UMS3453-INSERM US7, Faculté de Pharmacie-ISPB, Université Claude Bernard Lyon 1, 8 avenue Rockefeller, F-69373 Lyon CEDEX 8, France.
| | - Joachim Jose
- Institut für Pharmazeutische und Medizinische Chemie, PharmaCampus, Westfälische Wilhelms-Universität Münster, Corrensstraße 48, D-48149 Münster, Germany.
| | - Karsten Niefind
- Department für Chemie, Institut für Biochemie, Universität zu Köln, Zülpicher Straße 47, D-50674 Köln, Germany.
| |
Collapse
|
30
|
Looking Back, Looking Forward at Halogen Bonding in Drug Discovery. Molecules 2017; 22:molecules22091397. [PMID: 28837116 PMCID: PMC6151711 DOI: 10.3390/molecules22091397] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/18/2017] [Indexed: 11/25/2022] Open
Abstract
Halogen bonding has emerged at the forefront of advances in improving ligand: receptor interactions. In particular the newfound ability of this extant non-covalent-bonding phenomena has revolutionized computational approaches to drug discovery while simultaneously reenergizing synthetic approaches to the field. Here we survey, via examples of classical applications involving halogen atoms in pharmaceutical compounds and their biological hosts, the unique advantages that halogen atoms offer as both Lewis acids and Lewis bases.
Collapse
|
31
|
Estimation of kinetic and thermodynamic ligand-binding parameters using computational strategies. Future Med Chem 2017; 9:507-523. [DOI: 10.4155/fmc-2016-0224] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Kinetic and thermodynamic ligand–protein binding parameters are gaining growing importance as key information to consider in drug discovery. The determination of the molecular structures, using particularly x-ray and NMR techniques, is crucial for understanding how a ligand recognizes its target in the final binding complex. However, for a better understanding of the recognition processes, experimental studies of ligand–protein interactions are needed. Even though several techniques can be used to investigate both thermodynamic and kinetic profiles for a ligand–protein complex, these procedures are very often laborious, time consuming and expensive. In the last 10 years, computational approaches have enormous potential in providing insights into each of the above effects and in parsing their contributions to the changes in both kinetic and thermodynamic binding parameters. The main purpose of this review is to summarize the state of the art of computational strategies for estimating the kinetic and thermodynamic parameters of a ligand–protein binding.
Collapse
|
32
|
Santos LA, da Cunha EFF, Ramalho TC. Toward the Classical Description of Halogen Bonds: A Quantum Based Generalized Empirical Potential for Fluorine, Chlorine, and Bromine. J Phys Chem A 2017; 121:2442-2451. [DOI: 10.1021/acs.jpca.6b13112] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Lucas A. Santos
- Department of Chemistry, Federal University of Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
| | - Elaine F. F. da Cunha
- Department of Chemistry, Federal University of Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
| | - Teodorico C. Ramalho
- Department of Chemistry, Federal University of Lavras, CEP 37200-000 Lavras, Minas Gerais, Brazil
- Center for Basic
and Applied Research, University Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
33
|
ITC-derived binding affinity may be biased due to titrant (nano)-aggregation. Binding of halogenated benzotriazoles to the catalytic domain of human protein kinase CK2. PLoS One 2017; 12:e0173260. [PMID: 28273138 PMCID: PMC5342230 DOI: 10.1371/journal.pone.0173260] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/17/2017] [Indexed: 12/13/2022] Open
Abstract
The binding of four bromobenzotriazoles to the catalytic subunit of human protein kinase CK2 was assessed by two complementary methods: Microscale Thermophoresis (MST) and Isothermal Titration Calorimetry (ITC). New algorithm proposed for the global analysis of MST pseudo-titration data enabled reliable determination of binding affinities for two distinct sites, a relatively strong one with the Kd of the order of 100 nM and a substantially weaker one (Kd > 1 μM). The affinities for the strong binding site determined for the same protein-ligand systems using ITC were in most cases approximately 10-fold underestimated. The discrepancy was assigned directly to the kinetics of ligand nano-aggregates decay occurring upon injection of the concentrated ligand solution to the protein sample. The binding affinities determined in the reverse ITC experiment, in which ligands were titrated with a concentrated protein solution, agreed with the MST-derived data. Our analysis suggests that some ITC-derived Kd values, routinely reported together with PDB structures of protein-ligand complexes, may be biased due to the uncontrolled ligand (nano)-aggregation, which may occur even substantially below the solubility limit.
Collapse
|
34
|
Park S, Hong E, Kwak SY, Jun KY, Lee ES, Kwon Y, Na Y. Synthesis and biological evaluation of C1-O-substituted-3-(3-butylamino-2-hydroxy-propoxy)-xanthen-9-one as topoisomerase IIα catalytic inhibitors. Eur J Med Chem 2016; 123:211-225. [PMID: 27484510 DOI: 10.1016/j.ejmech.2016.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
Topoisomerase II poison blocks the transitorily generated DNA double-strand breaks (DSBs) from religation, thereby causes severe DNA damage and gene toxicity. While topoisomerase II catalytic inhibitor does not form cleavable DNA-enzyme complex because its function attributes to inhibition of the catalytic steps of the enzyme such as before generating DNA DSBs or in the last step of the catalytic cycle after religation. It has been reported that the stabilizing effect of etoposide on transient cleavable DNA-topoisomerase IIβ complex attributes to its secondary malignancy. Therefore, topoisomerase IIα has been considered as more attractive target than topoisomerase IIβ for the development of chemotherapeutic agents. In the previous work, we reported compounds I and II as novel topoisomerase IIα catalytic inhibitors targeting for ATP binding site of human topoisomerase IIα ATP-binding domain. As a continuous work, we have designed and synthesized 43 compounds of C1-O-alkyl and arylalkyl substitiuted compounds with or without methoxy group on ring A. In the topoisomerase IIα inhibitory test, among the tested C1-O-4-chlorophenethyl substituted compounds 37 and 47 were more active than others, and compound 37 showed strongest topoisomerase IIα inhibitory activity with 94.4% and 23.0% inhibition, respectively, at 100 and 20 μM. Compounds 37 and 47 have also showed much enhanced cytotoxic activity against T47D cells; IC50 (μM): 0.63 ± 0.01 and 0.19 ± 0.02, respectively, which are stronger than reference drugs. Band depletion assay and cleavage complex assay results showed compounds 37 and 47 were potential topoisomerase IIα catalytic inhibitor with low DNA damage.
Collapse
Affiliation(s)
- Seojeong Park
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea
| | - Eunji Hong
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea
| | - Soo Yeon Kwak
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea
| | - Kyu-Yeon Jun
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea.
| |
Collapse
|
35
|
Abstract
The halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. In this fairly extensive review, after a brief history of the interaction, we will provide the reader with a snapshot of where the research on the halogen bond is now, and, perhaps, where it is going. The specific advantages brought up by a design based on the use of the halogen bond will be demonstrated in quite different fields spanning from material sciences to biomolecular recognition and drug design.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Pierangelo Metrangolo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Roberto Milani
- VTT-Technical
Research Centre of Finland, Biologinkuja 7, 02150 Espoo, Finland
| | - Tullio Pilati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Arri Priimagi
- Department
of Chemistry and Bioengineering, Tampere
University of Technology, Korkeakoulunkatu 8, FI-33101 Tampere, Finland
| | - Giuseppe Resnati
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| | - Giancarlo Terraneo
- Laboratory
of Nanostructured Fluorinated Materials (NFMLab), Department of Chemistry,
Materials and Chemical Engineering “Giulio Natta”, Politecnico di Milano, Via L. Mancinelli 7, I-20131 Milano, Italy
| |
Collapse
|
36
|
Affiliation(s)
- Michal H. Kolář
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic
- Institute
of Neuroscience and Medicine (INM-9) and Institute for Advanced Simulations
(IAS-5), Forschungszentrum Jülich GmbH, 52428 Jülich, Federal Republic of Germany
| | - Pavel Hobza
- Institute
of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Flemingovo nám. 2, 16610 Prague, Czech Republic
- Department
of Physical Chemistry, Regional Centre of Advanced Technologies and
Materials, Palacky University, 771 46 Olomouc, Czech Republic
| |
Collapse
|
37
|
Purwin M, Hernández-Toribio J, Coderch C, Panchuk R, Skorokhyd N, Filipiak K, de Pascual-Teresa B, Ramos A. Design and synthesis of novel dual-target agents for HDAC1 and CK2 inhibition. RSC Adv 2016. [DOI: 10.1039/c6ra09717k] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Drug entities able to address multiple targets can be more effective than those directed to just one biological target.
Collapse
Affiliation(s)
- M. Purwin
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - J. Hernández-Toribio
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - C. Coderch
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - R. Panchuk
- Institute of Cell Biology
- NAS of Ukraine
- 79005 Lviv
- Ukraine
| | - N. Skorokhyd
- Institute of Cell Biology
- NAS of Ukraine
- 79005 Lviv
- Ukraine
| | - K. Filipiak
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - B. de Pascual-Teresa
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| | - A. Ramos
- Departamento de Química y Bioquímica
- Facultad de Farmacia
- Universidad CEU San Pablo
- Urbanización Monteprincipe
- Madrid
| |
Collapse
|
38
|
Affiliation(s)
- Melissa Coates Ford
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, United States
| | - P. Shing Ho
- Department of Biochemistry & Molecular Biology, Colorado State University, Fort Collins, Colorado 80523-1870, United States
| |
Collapse
|
39
|
Design, validation and efficacy of bisubstrate inhibitors specifically affecting ecto-CK2 kinase activity. Biochem J 2015; 471:415-30. [PMID: 26349539 DOI: 10.1042/bj20141127] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 09/08/2015] [Indexed: 11/17/2022]
Abstract
By derivatizing the purely competitive CK2 inhibitor N1-(4,5,6,7-tetrabromo-1H-benzimidazol-2-yl)-propane-1,3-diamine (K137) at its 3-amino position with a peptidic fragment composed of three or four glutamic or aspartic acid residues, a new family of bisubstrate inhibitors has been generated whose ability to simultaneously interact with both the ATP and the phosphoacceptor substrate-binding sites has been probed by running mixed competition kinetics and by mutational mapping of the kinase residues implicated in substrate recognition. The most effective bisubstrate inhibitor, K137-E4, interacts with three functional regions of the kinase: the hydrophobic pocket close to the ATP-binding site, the basic residues of the p+1 loop that recognizes the acidic determinant at position n+1 and the basic residues of α-helixC that recognize the acidic determinant at position n+3. Compared with the parent inhibitor (K137), K137-E4 is severalfold more potent (IC50 25 compared with 130 nM) and more selective, failing to inhibit any other kinase as drastically as CK2 out of 140 enzymes, whereas 35 kinases are inhibited more potently than CK2 by K137. K137-E4 is unable to penetrate the cell and to inhibit endogenous CK2, its pro-apoptotic efficacy being negligible compared with cell-permeant inhibitors; however, it readily inhibits ecto-CK2 on the outer cell surface, reducing the phosphorylation of several external phosphoproteins. Inhibition of ecto-CK2 by K137-E4 is accompanied by a slower migration of cancer cells as judged by wound healing assays. On the basis of the cellular responses to K137-E4, we conclude that ecto-CK2 is implicated in cell motility, whereas its contribution to the pro-survival role of CK2 is negligible.
Collapse
|
40
|
Briguglio I, Piras S, Corona P, Gavini E, Nieddu M, Boatto G, Carta A. Benzotriazole: An overview on its versatile biological behavior. Eur J Med Chem 2015; 97:612-48. [PMID: 25293580 PMCID: PMC7115563 DOI: 10.1016/j.ejmech.2014.09.089] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 12/13/2022]
Abstract
Discovered in late 1960, azoles are heterocyclic compounds class which constitute the largest group of available antifungal drugs. Particularly, the imidazole ring is the chemical component that confers activity to azoles. Triazoles are obtained by a slight modification of this ring and similar or improved activities as well as less adverse effects are reported for triazole derivatives. Consequently, it is not surprising that benzimidazole/benzotriazole derivatives have been found to be biologically active. Since benzimidazole has been widely investigated, this review is focused on defining the place of benzotriazole derivatives in biomedical research, highlighting their versatile biological properties, the mode of action and Structure Activity Relationship (SAR) studies for a variety of antimicrobial, antiparasitic, and even antitumor, choleretic, cholesterol-lowering agents.
Collapse
Affiliation(s)
- I Briguglio
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - S Piras
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - P Corona
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - E Gavini
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - M Nieddu
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - G Boatto
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy
| | - A Carta
- Department of Chemistry and Pharmacy, University of Sassari, Via Muroni 23/A, 07100 Sassari, Italy.
| |
Collapse
|
41
|
Winiewska M, Kucińska K, Makowska M, Poznański J, Shugar D. Thermodynamics parameters for binding of halogenated benzotriazole inhibitors of human protein kinase CK2α. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1708-17. [PMID: 25891901 DOI: 10.1016/j.bbapap.2015.04.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 03/27/2015] [Accepted: 04/07/2015] [Indexed: 12/14/2022]
Abstract
The interaction of human CK2α (hCK2α) with nine halogenated benzotriazoles, TBBt and its analogues representing all possible patterns of halogenation on the benzene ring of benzotriazole, was studied by biophysical methods. Thermal stability of protein-ligand complexes, monitored by calorimetric (DSC) and optical (DSF) methods, showed that the increase in the mid-point temperature for unfolding of protein-ligand complexes (i.e. potency of ligand binding to hCK2α) follow the inhibitory activities determined by biochemical assays. The dissociation constant for the ATP-hCK2α complex was estimated with the aid of microscale thermophoresis (MST) as 4.3±1.8 μM, and MST-derived dissociation constants determined for halogenated benzotriazoles, when converted according to known ATP concentrations, perfectly reconstruct IC50 values determined by the biochemical assays. Ligand-dependent quenching of tyrosine fluorescence, together with molecular modeling and DSC-derived heats of unfolding, support the hypothesis that halogenated benzotriazoles bind in at least two alternative orientations, and those that are efficient hCK2α inhibitors bind in the orientation which TBBt adopts in its complex with maize CK2α. DSC-derived apparent heat for ligand binding (ΔΔHbind) is driven by intermolecular electrostatic interactions between Lys68 and the triazole ring of the ligand, as indicated by a good correlation between ΔΔHbind and ligand pKa. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly (~40 kJ/mol), relative to possible intermolecular halogen/hydrogen bonding (less than 10 kJ/mol), in binding of halogenated benzotriazoles to the ATP-binding site of hCK2α. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Katarzyna Kucińska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Małgorzata Makowska
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland
| | - Jarosław Poznański
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Pawińskiego 5a, 02-106 Warszawa, Poland.
| |
Collapse
|
42
|
Swider R, Masłyk M, Zapico JM, Coderch C, Panchuk R, Skorokhyd N, Schnitzler A, Niefind K, de Pascual-Teresa B, Ramos A. Synthesis, biological activity and structural study of new benzotriazole-based protein kinase CK2 inhibitors. RSC Adv 2015. [DOI: 10.1039/c5ra12114k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
A new series of TBB-derivatives was synthesized and characterized as CK2 inhibitors. Crystallographic analysis and docking studies were used to understand the mode of binding.
Collapse
|
43
|
Winiewska M, Makowska M, Maj P, Wielechowska M, Bretner M, Poznański J, Shugar D. Thermodynamic parameters for binding of some halogenated inhibitors of human protein kinase CK2. Biochem Biophys Res Commun 2014; 456:282-7. [PMID: 25450618 DOI: 10.1016/j.bbrc.2014.11.072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 11/19/2014] [Indexed: 01/20/2023]
Abstract
The interaction of human CK2α with a series of tetrabromobenzotriazole (TBBt) and tetrabromobenzimidazole (TBBz) analogs, in which one of the bromine atoms proximal to the triazole/imidazole ring is replaced by a methyl group, was studied by biochemical (IC50) and biophysical methods (thermal stability of protein-ligand complex monitored by DSC and fluorescence). Two newly synthesized tri-bromo derivatives display inhibitory activity comparable to that of the reference compounds, TBBt and TBBz, respectively. DSC analysis of the stability of protein-ligand complexes shows that the heat of ligand binding (Hbind) is driven by intermolecular electrostatic interactions involving the triazole/imidazole ring, as indicated by a strong correlation between Hbind and ligand pKa. Screening, based on fluorescence-monitored thermal unfolding of protein-ligand complexes, gave comparable results, clearly identifying ligands that most strongly bind to the protein. Overall results, additionally supported by molecular modeling, confirm that a balance of hydrophobic and electrostatic interactions contribute predominantly, relative to possible intermolecular halogen bonding, in binding of the ligands to the CK2α ATP-binding site.
Collapse
Affiliation(s)
- Maria Winiewska
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
| | | | - Piotr Maj
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland; Nencki Institute of Experimental Biology PAS, Warszawa, Poland
| | | | - Maria Bretner
- Warsaw University of Technology, Faculty of Chemistry, Warszawa, Poland
| | | | - David Shugar
- Institute of Biochemistry and Biophysics PAS, Warszawa, Poland
| |
Collapse
|
44
|
Leung KKK, Shilton BH. Quinone reductase 2 is an adventitious target of protein kinase CK2 inhibitors TBBz (TBI) and DMAT. Biochemistry 2014; 54:47-59. [PMID: 25379648 DOI: 10.1021/bi500959t] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Quinone reductase 2 (NQO2) exhibits off-target interactions with two protein kinase CK2 inhibitors, 4,5,6,7-1H-tetrabromobenzimidazole (TBBz) and 2-dimethylamino-4,5,6,7-tetrabromo-1H-benzimidazole (DMAT). TBBz and DMAT induce apoptosis in cells expressing an inhibitor-resistant CK2, suggesting that the interaction with NQO2 may mediate some of their pharmacological effects. In this study, we have fully characterized the binding of TBBz and DMAT to NQO2. Fluorescence titrations showed that TBBz and DMAT bind oxidized NQO2 in the low nanomolar range; in the case of TBBz, the affinity for NQO2 was 40-fold greater than its affinity for CK2. A related CK2 inhibitor, 4,5,6,7-tetrabromobenzotriazole (TBB), which failed to cause apoptosis in cells expressing inhibitor-resistant CK2, binds NQO2 with an affinity 1000-fold lower than those of TBBz and DMAT. Kinetic analysis indicated that DMAT inhibits NQO2 by binding with similar affinities to the oxidized and reduced forms. Crystal structure analysis showed that DMAT binds reduced NQO2 in a manner different from that in the oxidized state. In oxidized NQO2, TBBz and DMAT are deeply buried in the active site and make direct hydrogen and halogen bonds to the enzyme. In reduced NQO2, DMAT occupies a more peripheral region and hydrogen and halogen bonds with the enzyme are mediated through three water molecules. Therefore, although TBB, TBBz, and DMAT are all potent inhibitors of CK2, they exhibit different activity profiles toward NQO2. We conclude that the active site of NQO2 is fundamentally different from the ATP binding site of CK2 and the inhibition of NQO2 by CK2 inhibitors is adventitious.
Collapse
Affiliation(s)
- Kevin K K Leung
- Department of Biochemistry, University of Western Ontario , London, Ontario, Canada N6A 5C1
| | | |
Collapse
|
45
|
Jin CH, Jun KY, Lee E, Kim S, Kwon Y, Kim K, Na Y. Ethyl 2-(benzylidene)-7-methyl-3-oxo-2,3-dihydro-5H-thiazolo[3,2-a]pyrimidine-6-carboxylate analogues as a new scaffold for protein kinase casein kinase 2 inhibitor. Bioorg Med Chem 2014; 22:4553-65. [PMID: 25131958 DOI: 10.1016/j.bmc.2014.07.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 10/25/2022]
Abstract
Protein kinase casein kinase 2 (PKCK2) is a constitutively active, growth factor-independent serine/threonine kinase, and changes in PKCK2 expression or its activity are reported in many cancer cells. To develop a novel PKCK2 inhibitor(s), we first performed cell-based phenotypic screening using 4000 chemicals purchased from ChemDiv chemical libraries (2000: randomly selected; 2000: kinase-biased) and performed in vitro kinase assay-based screening using hits found from the first screening. We identified compound 24 (C24)[(Z)-ethyl 5-(4-chlorophenyl)-2-(3,4-dihydroxybenzylidene)-7-methyl-3-oxo-3,5-dihydro-2H-thiazolo[3,2-a] pyrimidine-6-carboxylate] as a novel inhibitor of PKCK2 that is more potent and selective than 4,5,6,7-tetrabromobenzotriazole (TBB). In particular, compound 24 [half maximal inhibitory concentration (IC50)=0.56μM] inhibited PKCK2 2.2-fold more efficiently than did TBB (IC50=1.24μM), which is quite specific toward PKCK2 with respect to ATP binding, in a panel of 31 human protein kinases. The Ki values of compound 24 and TBB for PKCK2 were 0.78μM and 2.70μM, respectively. Treatment of cells with compound 24 inhibited endogenous PKCK2 activity and showed anti-proliferative and pro-apoptotic effects against stomach and hepatocellular cancer cell lines more efficiently than did TBB. As expected, compound 24 also enabled tumor necrosis factor-related apoptosis inducing ligand (TRAIL)-resistant cancer cells to be sensitive toward TRAIL. In comparing the molecular docking of compound 24 bound to PKCK2α versus previously reported complexes of PKCK2 with other inhibitors, our findings suggest a new scaffold for specific PKCK2α inhibitors. Thus, compound 24 appears to be a selective, cell-permeable, potent, and novel PKCK2 inhibitor worthy of further characterization.
Collapse
Affiliation(s)
- Cheng-Hao Jin
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Eunjung Lee
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea
| | - Seongrak Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kunhong Kim
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-750, Republic of Korea; Integrated Genomic Research Center for Metabolic Regulation, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-752, Republic of Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| |
Collapse
|
46
|
Zhou Y, Li X, Zhang N, Zhong R. Structural Basis for Low-Affinity Binding of Non-R2 Carboxylate-Substituted Tricyclic Quinoline Analogs to CK2α: Comparative Molecular Dynamics Simulation Studies. Chem Biol Drug Des 2014; 85:189-200. [DOI: 10.1111/cbdd.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Xitao Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen 518055 China
| | - Na Zhang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Rugang Zhong
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
47
|
Latosińska JN, Latosińska M, Maurin JK, Orzeszko A, Kazimierczuk Z. Quantum-Chemical Insight into Structure–Reactivity Relationship in 4,5,6,7-Tetrahalogeno-1H-benzimidazoles: A Combined X-ray, DSC, DFT/QTAIM, Hirshfeld Surface-Based, and Molecular Docking Approach. J Phys Chem A 2014; 118:2089-106. [DOI: 10.1021/jp411547z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Jan Krzysztof Maurin
- National Medicines Institute, Chełmska 30/34, 00-750 Warsaw, Poland
- National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| |
Collapse
|
48
|
Cozza G, Zanin S, Determann R, Ruzzene M, Kunick C, Pinna LA. Synthesis and properties of a selective inhibitor of homeodomain-interacting protein kinase 2 (HIPK2). PLoS One 2014; 9:e89176. [PMID: 24586573 PMCID: PMC3933419 DOI: 10.1371/journal.pone.0089176] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Accepted: 01/16/2014] [Indexed: 02/08/2023] Open
Abstract
Homeodomain-interacting protein kinase 2 (HIPK2) is a Ser/Thr kinase controlling cell proliferation and survival, whose investigation has been hampered by the lack of specific inhibitors able to dissect its cellular functions. SB203580, a p38 MAP kinase inhibitor, has been used as a tool to inhibit HIPK2 in cells, but here we show that its efficacy as HIPK2 inhibitor is negligible (IC50>40 µM). In contrast by altering the scaffold of the promiscuous CK2 inhibitor TBI a new class of HIPK2 inhibitors has been generated. One of these, TBID, displays toward HIPK2 unprecedented efficacy (IC50 = 0.33 µM) and selectivity (Gini coefficient 0.592 out of a panel of 76 kinases). The two other members of the HIPK family, HIPK1 and HIPK3, are also inhibited by TBID albeit less efficiently than HIPK2. The mode of action of TBID is competitive with respect to ATP, consistent with modelling. We also provide evidence that TBID is cell permeable by showing that HIPK2 activity is reduced in cells treated with TBID, although with an IC50 two orders of magnitude higher (about 50 µM) than in vitro.
Collapse
Affiliation(s)
- Giorgio Cozza
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
| | - Sofia Zanin
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
| | - Renate Determann
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Braunschweig, Germany
| | - Maria Ruzzene
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
| | - Conrad Kunick
- Technische Universität Braunschweig, Institut für Medizinische und Pharmazeutische Chemie, Braunschweig, Germany
| | - Lorenzo A. Pinna
- Department of Biomedical Sciences, University of Padova, and CNR Institute of Neurosciences, Padova, Italy
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy
- * E-mail:
| |
Collapse
|
49
|
Singla P, Luxami V, Paul K. Benzimidazole-biologically attractive scaffold for protein kinase inhibitors. RSC Adv 2014. [DOI: 10.1039/c3ra46304d] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
50
|
Abstract
Halogens are atypical elements in biology, but are common as substituents in ligands, including thyroid hormones and inhibitors, which bind specifically to proteins and nucleic acids. The short-range, stabilizing interactions of halogens - now seen as relatively common in biology - conform generally to halogen bonds characterized in small molecule systems and as described by the σ-hole model. The unique properties of biomolecular halogen bonds (BXBs), particularly in their geometric and energetic relationship to classic hydrogen bonds, make them potentially powerful tools for inhibitor design and molecular engineering. This chapter reviews the current research on BXBs, focusing on experimental studies on their structure-energy relationships, how these studies inform the development of computational methods to model BXBs, and considers how BXBs can be applied to the rational design of more effective inhibitors against therapeutic targets and of new biological-based materials.
Collapse
Affiliation(s)
- P Shing Ho
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523-1870, USA,
| |
Collapse
|