1
|
Tilden JAR, Doud EA, Montgomery HR, Maynard HD, Spokoyny AM. Organometallic Chemistry Tools for Building Biologically Relevant Nanoscale Systems. J Am Chem Soc 2024; 146:29989-30003. [PMID: 39468851 DOI: 10.1021/jacs.4c07110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The recent emergence of organometallic chemistry for modification of biomolecular nanostructures has begun to rewrite the long-standing assumption among practitioners that small-molecule organometallics are fundamentally incompatible with biological systems. This Perspective sets out to clarify some of the existing misconceptions by focusing on the growing organometallic toolbox for biomolecular modification. Specifically, we highlight key organometallic transformations in constructing complex biologically relevant systems on the nanomolecular scale, and the organometallic synthesis of hybrid nanomaterials composed of classical nanomaterial components combined with biologically relevant species. As research progresses, many of the challenges associated with applying organometallic chemistry in this context are rapidly being reassessed. Looking to the future, the growing utility of organometallic transformations will likely make them more ubiquitous in the construction and modification of biomolecular nanostructures.
Collapse
Affiliation(s)
- James A R Tilden
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Evan A Doud
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Hayden R Montgomery
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| | - Alexander M Spokoyny
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095, United States
- California NanoSystems Institute (CNSI), University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095, United States
| |
Collapse
|
2
|
Ingram AA, Wang D, Schwaneberg U, Okuda J. Grubbs-Hoveyda catalysts conjugated to a β-barrel protein: Effect of halide substitution on aqueous olefin metathesis activity. J Inorg Biochem 2024; 258:112616. [PMID: 38833874 DOI: 10.1016/j.jinorgbio.2024.112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/06/2024]
Abstract
The effect of halide substitution in Grubbs-Hoveyda II catalysts (GHII catalysts) embedded in the engineered β-barrel protein nitrobindin (NB4exp) on metathesis activity in aqueous media was studied. Maleimide tagged dibromido and diiodido derivates of the GHII catalyst were synthesized and covalently conjugated to NB4exp. The biohybrid catalysts were characterized spectroscopically confirming the structural integrity. When the two chloride substituents at ruthenium center were exchanged against bromide and iodide, the diiodo derivative was found to show significantly higher catalytic activity in ring-closing metathesis of α,ω-diolefins, whereas the dibromido derivative was less efficient when compared with the parent dichlorido catalyst. Using the diiodido catalyst, high turnover numbers of up to 75 were observed for ring-closing metathesis (RCM) yielding unsaturated six- and seven-membered N-heterocycles.
Collapse
Affiliation(s)
- Aaron A Ingram
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Dong Wang
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany; Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany.
| |
Collapse
|
3
|
He J, Ghosh P, Nitsche C. Biocompatible strategies for peptide macrocyclisation. Chem Sci 2024; 15:2300-2322. [PMID: 38362412 PMCID: PMC10866349 DOI: 10.1039/d3sc05738k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 02/17/2024] Open
Abstract
Peptides are increasingly important drug candidates, offering numerous advantages over conventional small molecules. However, they face significant challenges related to stability, cellular uptake and overall bioavailability. While individual modifications may not address all these challenges, macrocyclisation stands out as a single modification capable of enhancing affinity, selectivity, proteolytic stability and membrane permeability. The recent successes of in situ peptide modifications during screening in combination with genetically encoded peptide libraries have increased the demand for peptide macrocyclisation reactions that can occur under biocompatible conditions. In this perspective, we aim to distinguish biocompatible conditions from those well-known examples that are fully bioorthogonal. We introduce key strategies for biocompatible peptide macrocyclisation and contextualise them within contemporary screening methods, providing an overview of available transformations.
Collapse
Affiliation(s)
- Junming He
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Pritha Ghosh
- Research School of Chemistry, Australian National University Canberra ACT Australia
| | - Christoph Nitsche
- Research School of Chemistry, Australian National University Canberra ACT Australia
| |
Collapse
|
4
|
James CC, de Bruin B, Reek JNH. Transition Metal Catalysis in Living Cells: Progress, Challenges, and Novel Supramolecular Solutions. Angew Chem Int Ed Engl 2023; 62:e202306645. [PMID: 37339103 DOI: 10.1002/anie.202306645] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/22/2023]
Abstract
The importance of transition metal catalysis is exemplified by its wide range of applications, for example in the synthesis of chemicals, natural products, and pharmaceuticals. However, one relatively new application is for carrying out new-to-nature reactions inside living cells. The complex environment of a living cell is not welcoming to transition metal catalysts, as a diverse range of biological components have the potential to inhibit or deactivate the catalyst. Here we review the current progress in the field of transition metal catalysis, and evaluation of catalysis efficiency in living cells and under biological (relevant) conditions. Catalyst poisoning is a ubiquitous problem in this field, and we propose that future research into the development of physical and kinetic protection strategies may provide a route to improve the reactivity of catalysts in cells.
Collapse
Affiliation(s)
- Catriona C James
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Bas de Bruin
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Joost N H Reek
- van't Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| |
Collapse
|
5
|
You Y, Liu H, Zhu Y, Zheng H. Rational design of stapled antimicrobial peptides. Amino Acids 2023; 55:421-442. [PMID: 36781451 DOI: 10.1007/s00726-023-03245-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023]
Abstract
The global increase in antimicrobial drug resistance has dramatically reduced the effectiveness of traditional antibiotics. Structurally diverse antibiotics are urgently needed to combat multiple-resistant bacterial infections. As part of innate immunity, antimicrobial peptides have been recognized as the most promising candidates because they comprise diverse sequences and mechanisms of action and have a relatively low induction rate of resistance. However, because of their low chemical stability, susceptibility to proteases, and high hemolytic effect, their usage is subject to many restrictions. Chemical modifications such as D-amino acid substitution, cyclization, and unnatural amino acid modification have been used to improve the stability of antimicrobial peptides for decades. Among them, a side-chain covalent bridge modification, the so-called stapled peptide, has attracted much attention. The stapled side-chain bridge stabilizes the secondary structure, induces protease resistance, and increases cell penetration and biological activity. Recent progress in computer-aided drug design and artificial intelligence methods has also been used in the design of stapled antimicrobial peptides and has led to the successful discovery of many prospective peptides. This article reviews the possible structure-activity relationships of stapled antimicrobial peptides, the physicochemical properties that influence their activity (such as net charge, hydrophobicity, helicity, and dipole moment), and computer-aided methods of stapled peptide design. Antimicrobial peptides under clinical trial: Pexiganan (NCT01594762, 2012-05-07). Omiganan (NCT02576847, 2015-10-13).
Collapse
Affiliation(s)
- YuHao You
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - HongYu Liu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - YouZhuo Zhu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China
| | - Heng Zheng
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, 210009, People's Republic of China.
| |
Collapse
|
6
|
Chheda PR, Simmons N, Schuman DP, Shi Z. Palladium-Mediated C–N Coupling of DNA-Conjugated (Hetero)aryl Halides with Aliphatic and (Hetero)aromatic Amines. Org Lett 2022; 24:3401-3406. [DOI: 10.1021/acs.orglett.2c01175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Pratik R. Chheda
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Nicholas Simmons
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - David P. Schuman
- Discovery Chemistry, Janssen Research & Development, LLC, San Diego, California 92121, United States
| | - Zhicai Shi
- Discovery Chemistry, Janssen Research & Development, LLC, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
7
|
Sornay C, Vaur V, Wagner A, Chaubet G. An overview of chemo- and site-selectivity aspects in the chemical conjugation of proteins. ROYAL SOCIETY OPEN SCIENCE 2022; 9:211563. [PMID: 35116160 PMCID: PMC8790347 DOI: 10.1098/rsos.211563] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 12/20/2021] [Indexed: 05/03/2023]
Abstract
The bioconjugation of proteins-that is, the creation of a covalent link between a protein and any other molecule-has been studied for decades, partly because of the numerous applications of protein conjugates, but also due to the technical challenge it represents. Indeed, proteins possess inner physico-chemical properties-they are sensitive and polynucleophilic macromolecules-that make them complex substrates in conjugation reactions. This complexity arises from the mild conditions imposed by their sensitivity but also from selectivity issues, viz the precise control of the conjugation site on the protein. After decades of research, strategies and reagents have been developed to address two aspects of this selectivity: chemoselectivity-harnessing the reacting chemical functionality-and site-selectivity-controlling the reacting amino acid residue-most notably thanks to the participation of synthetic chemistry in this effort. This review offers an overview of these chemical bioconjugation strategies, insisting on those employing native proteins as substrates, and shows that the field is active and exciting, especially for synthetic chemists seeking new challenges.
Collapse
Affiliation(s)
- Charlotte Sornay
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Valentine Vaur
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Alain Wagner
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| | - Guilhem Chaubet
- Bio-Functional Chemistry (UMR 7199), LabEx Medalis, University of Strasbourg, 74 Route du Rhin, Illkirch-Graffenstaden 67400, France
| |
Collapse
|
8
|
Venugopal N, Moser J, Vojtíčková M, Císařová I, König B, Jahn U. Single Electron Transfer‐Induced Selective α‐Oxygenation of Glycine Derivatives. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Navyasree Venugopal
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Johannes Moser
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
- Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstr. 31 93040 Regensburg Germany
| | - Margaréta Vojtíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| | - Ivana Císařová
- Department of Inorganic Chemistry Faculty of Science Charles University Hlavova 8 12843 Prague 2 Czech Republic
| | - Burkhard König
- Faculty of Chemistry and Pharmacy University of Regensburg Universitätsstr. 31 93040 Regensburg Germany
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences Flemingovo nam. 2 16610 Prague 6 Czech Republic
| |
Collapse
|
9
|
Gramani SG, Sriramula RK, Sekar K, Yang EG, Battu P, Kopecky A, Lear MJ. Cis Selective RCM Study to the 14-Membered Cyclic Subunit of Bielschowskysin. J Org Chem 2021; 86:6160-6168. [PMID: 33908786 DOI: 10.1021/acs.joc.0c02984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A concise, (Z)-selective ring-closing metathesis (RCM) route to the 14-membered carbocycle of bielschowskysin is detailed using naturally occurring chiral starting materials. Unproductive RCM substrates were attributed to alkyne chelation of the ruthenium catalyst and steric disadvantages within the cembranoid precursors, which was eventually circumvented by using cyclic diol benzylidene protection involving a C8-quaternary carbinol center.
Collapse
Affiliation(s)
- Subramanian G Gramani
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.,Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Ravi K Sriramula
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Karthik Sekar
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Eugene G Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Praveena Battu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Aïcha Kopecky
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Martin J Lear
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.,School of Chemistry, University of Lincoln, Brayford Pool, Lincoln LN6 7TS, U.K
| |
Collapse
|
10
|
Functionalization of Ruthenium Olefin-Metathesis Catalysts for Interdisciplinary Studies in Chemistry and Biology. Catalysts 2021. [DOI: 10.3390/catal11030359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hoveyda–Grubbs-type complexes, ruthenium catalysts for olefin metathesis, have gained increased interest as a research target in the interdisciplinary research fields of chemistry and biology because of their high functional group selectivity in olefin metathesis reactions and stabilities in aqueous media. This review article introduces the application of designed Hoveyda–Grubbs-type complexes for bio-relevant studies including the construction of hybrid olefin metathesis biocatalysts and the development of in-vivo olefin metathesis reactions. As a noticeable issue in the employment of Hoveyda–Grubbs-type complexes in aqueous media, the influence of water on the catalytic activities of the complexes and strategies to overcome the problems resulting from the water effects are also discussed. In connection to the structural effects of protein structures on the reactivities of Hoveyda–Grubbs-type complexes included in the protein, the regulation of metathesis activities through second-coordination sphere effect is presented, demonstrating that the reactivities of Hoveyda–Grubbs-type complexes are controllable by the structural modification of the complexes at outer-sphere parts. Finally, as a new-type reaction based on the ruthenium-olefin specific interaction, a recent finding on the ruthenium complex transfer reaction between Hoveyda–Grubbs-type complexes and biomolecules is introduced.
Collapse
|
11
|
Davison RT, Parker PD, Hou X, Chung CP, Augustine SA, Dong VM. Enantioselective Addition of α-Nitroesters to Alkynes. Angew Chem Int Ed Engl 2021; 60:4599-4603. [PMID: 33411337 DOI: 10.1002/anie.202014015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/16/2020] [Indexed: 11/11/2022]
Abstract
By using Rh-H catalysis, we couple α-nitroesters and alkynes to prepare α-amino-acid precursors. This atom-economical strategy generates two contiguous stereocenters, with high enantio- and diastereocontrol. In this transformation, the alkyne undergoes isomerization to generate a RhIII -π-allyl electrophile, which is trapped by an α-nitroester nucleophile. A subsequent reduction with In powder transforms the allylic α-nitroesters to the corresponding α,α-disubstituted α-amino esters.
Collapse
Affiliation(s)
- Ryan T Davison
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Patrick D Parker
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Xintong Hou
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Crystal P Chung
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Sara A Augustine
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| | - Vy M Dong
- Department of Chemistry, University of California, Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
12
|
Destito P, Vidal C, López F, Mascareñas JL. Transition Metal‐Promoted Reactions in Aqueous Media and Biological Settings. Chemistry 2021; 27:4789-4816. [DOI: 10.1002/chem.202003927] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/27/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Paolo Destito
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Cristian Vidal
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| | - Fernando López
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
- Instituto de Química Orgánica General (CSIC) Juan de la Cierva 3 28006 Madrid Spain
| | - José L. Mascareñas
- Centro Singular de Investigación en Química Biolóxica e Materiais, Moleculares (CIQUS) and Departamento de Química Orgánica Universidade de Santiago de Compostela 15782 Santiago de Compostela Spain
| |
Collapse
|
13
|
Hernández D, Carro C, Boto A. "Doubly Customizable" Unit for the Generation of Structural Diversity: From Pure Enantiomeric Amines to Peptide Derivatives. J Org Chem 2021; 86:2796-2809. [PMID: 33433228 DOI: 10.1021/acs.joc.0c02751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Readily available, low-cost 4R-hydroxy-l-proline (Hyp) is introduced as a "doubly customizable" unit for the generation of libraries of structurally diverse compounds. Hyp can be cleaved at two points, followed by the introduction of new functionalities. In the first cycle, the removal and replacement of the carboxylic group are carried out, followed (second cycle) by the scission of the 4,5-position and manipulation of the resulting chains. In this way, three new chains are generated and can be transformed independently to afford a diversity of products with tailored substituents, such as β-amino aldehydes, diamines, β-amino acid derivatives, including N-alkylated ones, or modified peptides. Many of these products are high-profit compounds but, in spite of their commercial value, are still scarce. Moreover, the process takes place with stereochemical control, and either pure R or S isomers can be obtained with small variations of the synthetic route.
Collapse
Affiliation(s)
- Dacil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| | - Carmen Carro
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain.,BIOSIGMA, Antonio Domínguez Alfonso 16, 38003 Santa Cruz de Tenerife, Tenerife, Spain
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3, 38206 La Laguna, Tenerife, Spain
| |
Collapse
|
14
|
Davison RT, Parker PD, Hou X, Chung CP, Augustine SA, Dong VM. Enantioselective Addition of α‐Nitroesters to Alkynes. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ryan T. Davison
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Patrick D. Parker
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Xintong Hou
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Crystal P. Chung
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Sara A. Augustine
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| | - Vy M. Dong
- Department of Chemistry University of California, Irvine Irvine CA 92697 USA
| |
Collapse
|
15
|
Boto A, González CC, Hernández D, Romero-Estudillo I, Saavedra CJ. Site-selective modification of peptide backbones. Org Chem Front 2021. [DOI: 10.1039/d1qo00892g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Exciting developments in the site-selective modification of peptide backbones are allowing an outstanding fine-tuning of peptide conformation, folding ability, and physico-chemical and biological properties.
Collapse
Affiliation(s)
- Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Concepción C. González
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Dácil Hernández
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
| | - Iván Romero-Estudillo
- Centro de Investigaciones Químicas-IICBA, Universidad Autónoma del Estado de Morelos. Av. Universidad 1001, Cuernavaca, Morelos 62209, Mexico
- Catedrático CONACYT-CIQ-UAEM, Mexico
| | - Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Francisco Sánchez 3, 38206-La Laguna, Tenerife, Spain
- Programa Agustín de Betancourt, Universidad de la Laguna, 38200 Tenerife, Spain
| |
Collapse
|
16
|
Timmer BJJ, Kravchenko O, Ramström O. Selective Cross‐Metathesis of Highly Chelating Substrates in Aqueous Media. ChemistrySelect 2020. [DOI: 10.1002/slct.202002220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Oleksandr Kravchenko
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
| | - Olof Ramström
- Department of ChemistryKTH - Royal Institute of Technology Teknikringen 36 S-10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts LowellOne University Ave. Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University SE 39182 Kalmar Sweden
| |
Collapse
|
17
|
Saavedra CJ, Cuevas F, Romero‐Estudillo I, Boto A. Synthesis of Diketopiperazine Scaffolds with Tailored
N
‐ and α‐Chains by Selective Modification of Customizable Units. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000470] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Carlos J. Saavedra
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3 38206-La Laguna Tenerife SPAIN
- BIOSIGMA SL, c/Antonio Dominguez Afonso, 16 38003-S/C Tenerife SPAIN
| | - Fernando Cuevas
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3 38206-La Laguna Tenerife SPAIN
- Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosCatedrático CONACyT CIQ-UAEMAv. Universidad, 1001 62209 Cuernavaca MEXICO
| | - Ivan Romero‐Estudillo
- Centro de Investigaciones Químicas-IICBAUniversidad Autónoma del Estado de MorelosCatedrático CONACyT CIQ-UAEMAv. Universidad, 1001 62209 Cuernavaca MEXICO
| | - Alicia Boto
- Instituto de Productos Naturales y Agrobiología del CSIC, Avda. Astrofísico Fco. Sánchez, 3 38206-La Laguna Tenerife SPAIN
| |
Collapse
|
18
|
Dhanjee HH, Saebi A, Buslov I, Loftis AR, Buchwald SL, Pentelute BL. Protein-Protein Cross-Coupling via Palladium-Protein Oxidative Addition Complexes from Cysteine Residues. J Am Chem Soc 2020; 142:9124-9129. [PMID: 32364380 DOI: 10.1021/jacs.0c03143] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Few chemical methods exist for the covalent conjugation of two proteins. We report the preparation of site-specific protein-protein conjugates that arise from the sequential cross-coupling of cysteine residues on two different proteins. The method involves the synthesis of stable palladium-protein oxidative addition complexes (Pd-protein OACs), a process that converts nucleophilic cysteine residues into an electrophilic S-aryl-Pd-X unit by taking advantage of an intramolecular oxidative addition strategy. This process is demonstrated on proteins up to 83 kDa in size and can be conveniently carried out in water and open to air. The resulting Pd-protein OACs can cross-couple with other thiol-containing proteins to arrive at homogeneous protein-protein bioconjugates.
Collapse
Affiliation(s)
- Heemal H Dhanjee
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Azin Saebi
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ivan Buslov
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Alexander R Loftis
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Bradley L Pentelute
- Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
19
|
Messina MS, Maynard HD. Modification of Proteins Using Olefin Metathesis. MATERIALS CHEMISTRY FRONTIERS 2020; 4:1040-1051. [PMID: 34457313 PMCID: PMC8388616 DOI: 10.1039/c9qm00494g] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Olefin metathesis has revolutionized synthetic approaches to carbon-carbon bond formation. With a rich history beginning in industrial settings through its advancement in academic laboratories leading to new and highly active metathesis catalysts, olefin metathesis has found use in the generation of complex natural products, the cyclization of bioactive materials, and in the polymerization of new and unique polymer architectures. Throughout this review, we will trace the deployment of olefin metathesis-based strategies for the modification of proteins, a process which has been facilitated by the extensive development of stable, isolable, and highly active transition-metal-based metathesis catalysts. We first begin by summarizing early works which detail peptide modification strategies that played a vital role in identifying stable metathesis catalysts. We then delve into protein modification using cross metathesis and finish with recent work on the generation of protein-polymer conjugates through ring-opening metathesis polymerization.
Collapse
Affiliation(s)
- Marco S Messina
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| | - Heather D Maynard
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E. Young Drive East, Los Angeles, California 90095-1569, USA
- California NanoSystems Institute, University of California, Los Angeles, 570 Westwood Plaza, Los Angeles, California 90095-1569, USA
| |
Collapse
|
20
|
Monty OBC, Nyshadham P, Bohren KM, Palaniappan M, Matzuk MM, Young DW, Simmons N. Homogeneous and Functional Group Tolerant Ring-Closing Metathesis for DNA-Encoded Chemical Libraries. ACS COMBINATORIAL SCIENCE 2020; 22:80-88. [PMID: 31913011 PMCID: PMC7014401 DOI: 10.1021/acscombsci.9b00199] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Reaction heterogeneity, poor pH control, and catalyst decomposition in the ring-closing metathesis (RCM) of DNA-chemical conjugates lead to poor yields of the cyclized products. Herein we address these issues with a RCM reaction system that includes a novel aqueous solvent combination to enable reaction homogeneity, an acidic buffer system which masks traditionally problematic functional groups, and a decomposition-resistant catalyst which maximizes conversion to the cyclized product. Additionally, we provide a systematic study of the substrate scope of the on-DNA RCM reaction, a demonstration of its applicability to a single-substrate DNA-encoded chemical library that includes sequencing analysis, and the first successful stapling of an unprotected on-DNA [i, i+4] peptide.
Collapse
Affiliation(s)
- Olivier B. C. Monty
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
- Department of Chemistry, Rice University, 6100 Main Street, Houston, Texas 77005, United States
| | - Pranavanand Nyshadham
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Kurt M. Bohren
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Murugesan Palaniappan
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Martin M. Matzuk
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Damian W. Young
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| | - Nicholas Simmons
- Center for Drug Discovery and Department of Pathology and Immunology, Baylor College of Medicine, One Baylor Plaza, Houston, Texas 77030, United States
| |
Collapse
|
21
|
Liang Y, Zeng FR, Li ZL. Precision Aliphatic Polyesters via Cross-Metathesis Polymerization. Curr Org Synth 2020; 16:188-204. [PMID: 31975672 DOI: 10.2174/1570179416666181206095131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 10/23/2018] [Accepted: 11/24/2018] [Indexed: 11/22/2022]
Abstract
Cross-metathesis (CM), a carbon-carbon bond transformation that features exceptional selectivity, reactivity and tolerance to functionalities, has been extensively investigated in organic chemistry. On the other hand, the use of CM in polymer synthesis is also growing in both scope and breadth, thus offering a wealth of opportunities for introducing a vast range of functionalities into polymer backbone so as to manipulate properties and expand applications. In this review, we propose the concept of "cross-metathesis polymerization" (CMP) referring to polymer synthesis via repetitive CM reaction and summarize emerging strategies for the precision synthesis of aliphatic polyesters via CMP based on the high CM tendency between acrylates and α- olefins. Due to the carbon-carbon bond-forming step-growth polymerization nature, CMP brings a new concept to polyester synthesis. This remarkable polymerization method possesses unique advantages such as mild condition, full conversion, fast kinetics, almost quantitative yield and extraordinary tolerance to functionalities. In particular, CMP provides the ability to regulate macromolecular architectures including linear, block, cyclic, star, graft, dendron, hyperbranched and dendrimer topologies. Ultimately, advanced polymeric materials with outstanding performances can be facially constructed based on these sophisticated macromolecular architectures.
Collapse
Affiliation(s)
- Yang Liang
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Fu-Rong Zeng
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Zi-Long Li
- Department of Chemistry, College of Science, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| |
Collapse
|
22
|
Jatmika C, Goshima K, Wakabayashi K, Akiyama N, Hirota S, Matsuo T. Second-coordination sphere effects on the reactivities of Hoveyda–Grubbs-type catalysts: a ligand exchange study using phenolic moiety-functionalized ligands. Dalton Trans 2020; 49:11618-11627. [DOI: 10.1039/d0dt02353a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reactivities of Hoveyda–Grubbs-type complexes are tunable through second-coordination sphere effects caused by a functional group in the ligand.
Collapse
Affiliation(s)
- Catur Jatmika
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- Japan
| | - Kenta Goshima
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- Japan
| | - Kazumo Wakabayashi
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- Japan
| | - Naoki Akiyama
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- Japan
| | - Shun Hirota
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- Japan
| | - Takashi Matsuo
- Division of Materials Science
- Graduate School of Science and Technology
- Nara Institute of Science and Technology (NAIST)
- Japan
| |
Collapse
|
23
|
Pye SJ, Chalker JM, Raston CL. Vortex Fluidic Ethenolysis, Integrating a Rapid Quench of Ruthenium Olefin Metathesis Catalysts. Aust J Chem 2020. [DOI: 10.1071/ch20005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Ruthenium-catalysed ethenolysis occurs in a vortex fluidic device (VFD) – a scalable, thin-film microfluidic continuous flow process. This process takes advantage of the efficient mass transfer of gaseous reagents into the dynamic thin film of liquid. Also reported is the rapid quenching of the ruthenium-based olefin metathesis catalyst by the addition of a saturated solution of N-acetyl-l-cysteine in MeCN, as a convenient alternative to previously reported quenching methods.
Collapse
|
24
|
Timmer BJJ, Ramström O. Acid‐Assisted Direct Olefin Metathesis of Unprotected Carbohydrates in Water. Chemistry 2019; 25:14408-14413. [PMID: 31390489 DOI: 10.1002/chem.201903155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Indexed: 01/30/2023]
Affiliation(s)
- Brian J. J. Timmer
- Department of ChemistryKTH Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
| | - Olof Ramström
- Department of ChemistryKTH Royal Institute of Technology Teknikringen 36 10044 Stockholm Sweden
- Department of ChemistryUniversity of Massachusetts Lowell 1 University Avenue Lowell MA 01854 USA
- Department of Chemistry and Biomedical SciencesLinnaeus University 39182 Kalmar Sweden
| |
Collapse
|
25
|
Schlatzer T, Kriegesmann J, Schröder H, Trobe M, Lembacher-Fadum C, Santner S, Kravchuk AV, Becker CFW, Breinbauer R. Labeling and Natural Post-Translational Modification of Peptides and Proteins via Chemoselective Pd-Catalyzed Prenylation of Cysteine. J Am Chem Soc 2019; 141:14931-14937. [PMID: 31469558 PMCID: PMC6776382 DOI: 10.1021/jacs.9b08279] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Indexed: 02/06/2023]
Abstract
The prenylation of peptides and proteins is an important post-translational modification observed in vivo. We report that the Pd-catalyzed Tsuji-Trost allylation with a Pd/BIPHEPHOS catalyst system allows the allylation of Cys-containing peptides and proteins with complete chemoselectivity and high n/i regioselectivity. In contrast to recently established methods, which use non-native connections, the Pd-catalyzed prenylation produces the natural n-prenylthioether bond. In addition, a variety of biophysical probes such as affinity handles and fluorescent tags can be introduced into Cys-containing peptides and proteins. Furthermore, peptides containing two cysteine residues can be stapled or cyclized using homobifunctional allylic carbonate reagents.
Collapse
Affiliation(s)
- Thomas Schlatzer
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Julia Kriegesmann
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Hilmar Schröder
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Melanie Trobe
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Christian Lembacher-Fadum
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Simone Santner
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| | - Alexander V. Kravchuk
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Christian F. W. Becker
- Institute
of Biological Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 38, A-1090 Vienna, Austria
| | - Rolf Breinbauer
- Institute
of Organic Chemistry, Graz University of
Technology, Stremayrgasse 9, A-8010 Graz, Austria
| |
Collapse
|
26
|
Bendelsmith AJ, Kim SC, Wasa M, Roche SP, Jacobsen EN. Enantioselective Synthesis of α-Allyl Amino Esters via Hydrogen-Bond-Donor Catalysis. J Am Chem Soc 2019; 141:11414-11419. [PMID: 31280564 PMCID: PMC7293823 DOI: 10.1021/jacs.9b05556] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We report a chiral-squaramide-catalyzed enantio- and diastereoselective synthesis of α-allyl amino esters. The optimized protocol provides access to N-carbamoyl-protected amino esters via nucleophilic allylation of readily accessible α-chloro glycinates. A variety of useful α-allyl amino esters were prepared, including crotylated products bearing vicinal stereocenters that are inaccessible through enolate alkylation, with high enantioselectivity (up to 97% ee) and diastereoselectivity (>10:1). The reactions display first-order kinetic dependence on both the α-chloro glycinate and the nucleophile, consistent with rate-limiting C-C bond formation. Computational analysis of the uncatalyzed reaction predicts an energetically inaccessible iminium intermediate, and a lower energy concerted SN2 mechanism.
Collapse
Affiliation(s)
- Andrew J Bendelsmith
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Seohyun Chris Kim
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Masayuki Wasa
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| | - Stéphane P Roche
- Department of Chemistry & Biochemistry , Florida Atlantic University , Boca Raton , Florida 33431 , United States
| | - Eric N Jacobsen
- Department of Chemistry & Chemical Biology , Harvard University , Cambridge , Massachusetts 02138 , United States
| |
Collapse
|
27
|
Recent Developments in Metal‐Catalyzed Bio‐orthogonal Reactions for Biomolecule Tagging. Chembiochem 2019; 20:1498-1507. [DOI: 10.1002/cbic.201900052] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Indexed: 01/05/2023]
|
28
|
Szczepaniak G, Nogaś W, Piątkowski J, Ruszczyńska A, Bulska E, Grela K. Semiheterogeneous Purification Protocol for the Removal of Ruthenium Impurities from Olefin Metathesis Reaction Products Using an Isocyanide Scavenger. Org Process Res Dev 2019. [DOI: 10.1021/acs.oprd.8b00392] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Grzegorz Szczepaniak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Wojciech Nogaś
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Jakub Piątkowski
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Anna Ruszczyńska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Ewa Bulska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| | - Karol Grela
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
| |
Collapse
|
29
|
Ohata J, Martin SC, Ball ZT. Metallvermittelte Funktionalisierung natürlicher Peptide und Proteine: Biokonjugation mit Übergangsmetallen. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201807536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
30
|
Ohata J, Martin SC, Ball ZT. Metal‐Mediated Functionalization of Natural Peptides and Proteins: Panning for Bioconjugation Gold. Angew Chem Int Ed Engl 2019; 58:6176-6199. [DOI: 10.1002/anie.201807536] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jun Ohata
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Samuel C. Martin
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| | - Zachary T. Ball
- Department of Chemistry Rice University 6100 Main Houston TX 77005 USA
| |
Collapse
|
31
|
Gułajski Ł, Tracz A, Urbaniak K, Czarnocki SJ, Bieniek M, Olszewski TK. Ammonium-tagged ruthenium-based catalysts for olefin metathesis in aqueous media under ultrasound and microwave irradiation. Beilstein J Org Chem 2019; 15:160-166. [PMID: 30745991 PMCID: PMC6350890 DOI: 10.3762/bjoc.15.16] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/22/2018] [Indexed: 12/28/2022] Open
Abstract
The influence of microwave and ultrasonic irradiation on the performance of ammonium-tagged Ru-based catalysts in olefin metathesis transformations in aqueous media was studied. Differences in the catalytic activity in correlation with the nature of the present counter ion and the size of the N-heterocyclic carbene (NHC) ligand were revealed. The presented methodology allows for preparation of a variety of polar and non-polar metathesis products under environmentally friendly conditions.
Collapse
Affiliation(s)
| | - Andrzej Tracz
- Apeiron Synthesis SA, Duńska 9, 54-427 Wrocław, Poland
| | | | | | | | - Tomasz K Olszewski
- Wrocław University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 29, 50-370 Wrocław, Poland
| |
Collapse
|
32
|
Affiliation(s)
- Seiji SAKAMOTO
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
| | - Itaru HAMACHI
- Graduate School of Engineering, Department of Synthetic Chemistry and Biological Chemistry, Kyoto University
- ERATO Innovative Molecular Technology for Neuroscience Project, Japan Science and Technology Agency (JST)
| |
Collapse
|
33
|
Zhang SL, Dong JJ. Mechanism and chemoselectivity origins of bioconjugation of cysteine with Au(iii)-aryl reagents. Org Biomol Chem 2019; 17:1245-1253. [DOI: 10.1039/c8ob03143f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A detailed computational study is presented on the reaction mechanism of selective cysteine S-arylation by cationic Au(iii)-aryl reagents. The chemoselectivity origins have been elucidated through comparison with potential N- and O-arylation, showing that the acidity and nucleophilicity of the residue are two inherent controlling factors.
Collapse
Affiliation(s)
- Song-Lin Zhang
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| | - Jia-Jia Dong
- Key Laboratory of Synthetic and Biological Colloids
- Ministry of Education
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi 214122
| |
Collapse
|
34
|
Affiliation(s)
- Bo Yang
- Department of Chemistry, Inorganometallic Catalyst Design Center, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Donald G. Truhlar
- Department of Chemistry, Inorganometallic Catalyst Design Center, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
35
|
Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Late-Stage Peptide Diversification by Position-Selective C−H Activation. Angew Chem Int Ed Engl 2018; 57:14700-14717. [DOI: 10.1002/anie.201806250] [Citation(s) in RCA: 212] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/28/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
| | - Jagrut Shah
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 India
| | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 India
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Germany
- Department of Chemistry; University of Pavia; Viale Taramelli, 10 27100 Pavia Italy
- DZHK (German Centre for Cardiovascular Research); Germany
| |
Collapse
|
36
|
Wang W, Lorion MM, Shah J, Kapdi AR, Ackermann L. Peptid-Diversifizierung durch positionsselektive C-H-Aktivierung im späten Synthesestadium. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201806250] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Wei Wang
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
| | - Mélanie M. Lorion
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
| | - Jagrut Shah
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 Indien
| | - Anant R. Kapdi
- Department of Chemistry; Institute of Chemical Technology; Nathalal Parekh Road, Matunga Mumbai- 400019 Indien
| | - Lutz Ackermann
- Institut für Organische und Biomolekulare Chemie; Georg-August-Universität; Tammannstraße 2 37077 Göttingen Deutschland
- Department of Chemistry; University of Pavia; Viale Taramelli, 10 27100 Pavia Italien
- DZHK (Deutsches Zentrum für Herz-Kreislauf-Forschung); Deutschland
| |
Collapse
|
37
|
Suzuki JI, Kodera Y, Miki S, Ushijima M, Takashima M, Matsutomo T, Morihara N. Anti-inflammatory action of cysteine derivative S-1-propenylcysteine by inducing MyD88 degradation. Sci Rep 2018; 8:14148. [PMID: 30237533 PMCID: PMC6148218 DOI: 10.1038/s41598-018-32431-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 09/03/2018] [Indexed: 12/12/2022] Open
Abstract
The degradation of target proteins by small molecules utilizing the cellular proteolytic system is featured as a treatment strategy of several diseases. We found that S-1-propenylcysteine (S1PC) among several cysteine derivatives in aged garlic extract inhibited TLR-mediated IL-6 production by inducing the degradation of adaptor protein MyD88. We showed that S1PC directly denatured MyD88 and induced the formation of protein aggregates. Consequently, MyD88 was degraded by aggresome-autophagy pathway. On the other hand, S-allylcysteine, a structural analog of S1PC, failed to induce the degradation of MyD88 because of its inability to denature MyD88 although it also activated autophagy. Our findings suggest that S1PC induces MyD88 degradation through the denaturation of MyD88 and the activation of autophagy. Thus, S1PC may serve as the base to develop a therapeutic means for immune diseases associated with aberrant TLR signaling pathways.
Collapse
Affiliation(s)
- Jun-Ichiro Suzuki
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan.
| | - Yukihiro Kodera
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | - Satomi Miki
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | - Mitsuyasu Ushijima
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | - Miyuki Takashima
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | - Toshiaki Matsutomo
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| | - Naoaki Morihara
- Central research laboratory, Wakunaga Pharmaceutical Co., Ltd., Hiroshima, Japan
| |
Collapse
|
38
|
Antonatou E, Verleysen Y, Madder A. Singlet oxygen-mediated one-pot chemoselective peptide-peptide ligation. Org Biomol Chem 2018; 15:8140-8144. [PMID: 28914947 DOI: 10.1039/c7ob02245j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We here describe a furan oxidation based site-specific chemical ligation approach using unprotected peptide segments. This approach involves two steps: after photooxidation of a furan-containing peptide, ligation is achieved by reaction of the unmasked keto-enal with C- or N-terminal α-nucleophilic moieties of the second peptide such as hydrazine or hydrazide to form a pyridazinium or pyrrolidinone linkage respectively.
Collapse
Affiliation(s)
- Eirini Antonatou
- Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Gent, Belgium.
| | | | | |
Collapse
|
39
|
Abstract
Antimicrobial peptides are promising candidates for anti-infective pharmaceuticals. Unfortunately, because of their low proteolytic and chemical stability, their usage is generally narrowed down to topical formulations. Until now, numerous approaches to increase peptide stability have been proposed. One of them, peptide hydrocarbon stapling, a modification based on stabilizing peptide secondary structure with a side-chain covalent hydrocarbon bridge, have been successfully applied to many peptides. Moreover, constraining secondary structure of peptides have also been proven to increase their biological activity. This review article describes studies on hydrocarbon stapled antimicrobial peptides with respect to improved drug-like properties.
Collapse
Affiliation(s)
- Dorian Migoń
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland.
- Polpharma Biologics, Gdańsk, Poland.
| | - Damian Neubauer
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| | - Wojciech Kamysz
- Department of Inorganic Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416, Gdańsk, Poland
| |
Collapse
|
40
|
Cheng WM, Lu X, Shi J, Liu L. Selective modification of natural nucleophilic residues in peptides and proteins using arylpalladium complexes. Org Chem Front 2018. [DOI: 10.1039/c8qo00765a] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The present review outlines the recent methodologies for selective arylation of natural nucleophilic residues within unprotected peptides and proteins promoted by arylpalladium complexes, which demonstrate the advantages and potential of organometallic palladium complexes in bioconjugation.
Collapse
Affiliation(s)
- Wan-Min Cheng
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Xi Lu
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Jing Shi
- Hefei National Laboratory for Physical Sciences at the Microscale
- CAS Key Laboratory of Urban Pollutant Conversion
- Anhui Province Key Laboratory of Biomass Clean Energy
- iChEM
- University of Science and Technology of China
| | - Lei Liu
- Tsinghua-Peking Center for Life Sciences
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology
- Department of Chemistry
- Tsinghua University
- Beijing 100084
| |
Collapse
|
41
|
Vinogradova EV. Organometallic chemical biology: an organometallic approach to bioconjugation. PURE APPL CHEM 2017. [DOI: 10.1515/pac-2017-0207] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
AbstractThis review summarizes the history and recent developments of the field of organometallic chemical biology with a particular emphasis on the development of novel bioconjugation approaches. Over the years, numerous transformations have emerged for biomolecule modification with the use of organometallic reagents; these include [3+2] cycloadditions, C–C, C–S, C–N, and C–O bond forming processes, as well as metal-mediated deprotection (“decaging”) reactions. These conceptually new additions to the chemical biology toolkit highlight the potential of organometallic chemistry to make a significant impact in the field of chemical biology by providing further opportunities for the development of chemoselective, site-specific and spatially resolved methods for biomolecule structure and function manipulation. Examples of these transformations, as well as existing challenges and future prospects of this rapidly developing field are highlighted in this review.
Collapse
|
42
|
Gori A, Gagni P, Rinaldi S. Disulfide Bond Mimetics: Strategies and Challenges. Chemistry 2017; 23:14987-14995. [PMID: 28749012 DOI: 10.1002/chem.201703199] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Indexed: 12/25/2022]
Abstract
The activity profile of many biologically relevant proteins and peptides often relies on a precise 3D structural organization. In this context, disulfide bonds are natural covalent constraints that play a key role in driving and stabilizing the folding pattern of these molecules. Despite its prominent significance as structural motif, the disulfide bond itself is inherently unstable under physiological conditions, posing a major limit to the use and development of disulfide-rich peptides and proteins as molecular tools and drug lead compounds. To tackle this restriction, disulfide engineering with stable functional analogues has arisen a considerable interest. Here, the most popular approaches to disulfide replacement are reviewed and discussed with particular emphasis on advantages and limitations under both functional and synthetic perspectives.
Collapse
Affiliation(s)
- Alessandro Gori
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| | - Paola Gagni
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| | - Silvia Rinaldi
- Istituto di Chimica del Riconoscimento Molecolare (ICRM), National Research Council of, Italy) (CNR, via Mario Bianco 9, 20131, Milano, Italy
| |
Collapse
|
43
|
Silvestri AP, Cistrone PA, Dawson PE. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angew Chem Int Ed Engl 2017; 56:10438-10442. [PMID: 28685936 PMCID: PMC5708120 DOI: 10.1002/anie.201705065] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Indexed: 12/26/2022]
Abstract
Copper-mediated coupling between alkynes to generate a structurally rigid, linear 1,3-diyne linkage has been known for over a century. However, the mechanistic requirement to simultaneously maintain CuI and an oxidant has limited its practical utility, especially for complex functional molecules in aqueous solution. We find that addition of a specific bpy-diol ligand protects unprotected peptides from CuII -mediated oxidative damage through the formation of an insoluble CuII gel which solves the critical challenge of applying Glaser coupling to substrates that are degraded by CuII . The generality of this method is illustrated through the conjugation of a series of polar and nonpolar labels onto a fully unprotected GLP-1R agonist through a linear 7 Å diynyl linker.
Collapse
Affiliation(s)
- Anthony P Silvestri
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip A Cistrone
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA, 92037, USA
| |
Collapse
|
44
|
Silvestri AP, Cistrone PA, Dawson PE. Adapting the Glaser Reaction for Bioconjugation: Robust Access to Structurally Simple, Rigid Linkers. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705065] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Anthony P. Silvestri
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Philip A. Cistrone
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Philip E. Dawson
- Department of Chemistry; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| |
Collapse
|
45
|
Reversible Covalent and Supramolecular Functionalization of Water-Soluble Gold(I) Complexes. Chemistry 2017; 23:6048-6055. [DOI: 10.1002/chem.201700588] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Indexed: 11/07/2022]
|
46
|
The Suzuki–Miyaura Cross-Coupling as a Versatile Tool for Peptide Diversification and Cyclization. Catalysts 2017. [DOI: 10.3390/catal7030074] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
47
|
Exner MP, Kuenzl T, To TMT, Ouyang Z, Schwagerus S, Hoesl MG, Hackenberger CPR, Lensen MC, Panke S, Budisa N. Design ofS-Allylcysteine in Situ Production and Incorporation Based on a Novel Pyrrolysyl-tRNA Synthetase Variant. Chembiochem 2016; 18:85-90. [DOI: 10.1002/cbic.201600537] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Matthias P. Exner
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Tilmann Kuenzl
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| | - Tuyet Mai T. To
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Zhaofei Ouyang
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Sergej Schwagerus
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 BerlinBuch Germany
- Humboldt Universität zu Berlin; Department Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Michael G. Hoesl
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| | - Christian P. R. Hackenberger
- Leibniz-Institut für Molekulare Pharmakologie (FMP); Robert-Roessle-Strasse 10 13125 BerlinBuch Germany
- Humboldt Universität zu Berlin; Department Chemie; Brook-Taylor-Strasse 2 12489 Berlin Germany
| | - Marga C. Lensen
- Institut für Chemie; Technische Universität Berlin; Strasse des 17. Juni 124 10623 Berlin Germany
| | - Sven Panke
- Department of Biosystems Science and Engineering; ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| | - Nediljko Budisa
- Institut für Chemie; Technische Universität Berlin; Müller-Breslau-Strasse 10 10623 Berlin Germany
| |
Collapse
|
48
|
Kitamura Y, Sakamoto R, Shiraishi T, Oguri H, Ohno S, Kitade Y. Practical modification of peptides using ligand-free copper-catalyzed azide–alkyne cycloaddition. Tetrahedron 2016. [DOI: 10.1016/j.tet.2016.05.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Smit W, Koudriavtsev V, Occhipinti G, Törnroos KW, Jensen VR. Phosphine-Based Z-Selective Ruthenium Olefin Metathesis Catalysts. Organometallics 2016. [DOI: 10.1021/acs.organomet.6b00214] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Wietse Smit
- Department of Chemistry, University of Bergen, Allégaten
41, N-5007 Bergen, Norway
| | - Vitali Koudriavtsev
- Department of Chemistry, University of Bergen, Allégaten
41, N-5007 Bergen, Norway
| | - Giovanni Occhipinti
- Department of Chemistry, University of Bergen, Allégaten
41, N-5007 Bergen, Norway
| | - Karl W. Törnroos
- Department of Chemistry, University of Bergen, Allégaten
41, N-5007 Bergen, Norway
| | - Vidar R. Jensen
- Department of Chemistry, University of Bergen, Allégaten
41, N-5007 Bergen, Norway
| |
Collapse
|
50
|
Cabral WF, Machado AH, Santos GM. Exogenous nucleosome-binding molecules: a potential new class of therapeutic drugs. Drug Discov Today 2016; 21:707-11. [DOI: 10.1016/j.drudis.2016.01.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/22/2016] [Accepted: 01/29/2016] [Indexed: 12/15/2022]
|