1
|
Yang YL. Mushroom-Mediated Redox Reactions. Chemistry 2024:e202403010. [PMID: 39632266 DOI: 10.1002/chem.202403010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/19/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
The application of biocatalysts in organic synthesis has grown significantly in recent years, and both academia and industry are continuously searching for novel biocatalysts capable of performing challenging chemical reactions. Mushrooms are a rich source of ligninolytic and secondary metabolite biosynthetic enzymes, and therefore were considered promising biocatalysts for organic synthesis. This review focuses on the broad utilization potential of mushroom-based biocatalysts and highlights key advances in mushroom-mediated redox reactions. It mainly includes the reduction of ketones and carboxylic acids, hydroxylation of aromatic and aliphatic compounds, epoxidation of olefins, oxidative cleavage of alkenes, and other uncommon reactions catalyzed by the whole cells or purified enzymes of mushroom origin. Overall, a comprehensive overview of the applications of mushrooms as biocatalysts in organic synthesis is provided, which puts this versatile microorganism in the spotlight of further research.
Collapse
Affiliation(s)
- Yan-Long Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
2
|
Schober L, Schiefer A, Winkler M, Rudroff F. Harnessing nature's catalysts: Advances in enzymatic alkene cleavage. J Biotechnol 2024; 395:189-204. [PMID: 39362499 DOI: 10.1016/j.jbiotec.2024.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Double bonds are prevalent in various substrates and renewable feedstocks, and their cleavage typically necessitates harsh reaction conditions involving high temperatures, organic solvents, and hazardous catalysts such as heavy metals or ozone. This review explores the sustainable enzymatic alternatives developed by nature for alkene cleavage. It provides a comprehensive overview of alkene-cleaving enzymes, detailing their mechanisms, substrate specificities, and applications. The enzymes discussed include those acting on aliphatic, cyclic, and activated aromatic systems. Emphasizing the significance of these biocatalysts in green chemistry and biocatalysis, this review highlights their potential to replace traditional chemical oxidants with safer, cost-effective, and environmentally friendly options. Future research directions include expanding enzyme substrate scopes, enhancing their operational stability and activity, and integrating them into scalable processes for broader application in the pharmaceutical, flavor, and fragrance industries.
Collapse
Affiliation(s)
- Lukas Schober
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, Graz, Austria
| | - Astrid Schiefer
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 163-OC, Vienna 1060, Austria
| | - Margit Winkler
- Institute of Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, Graz, Austria; Austrian Center of Industrial Biotechnology, Krenngasse 37, Graz, Austria.
| | - Florian Rudroff
- TU Wien, Institute of Applied Synthetic Chemistry, Getreidemarkt 9, 163-OC, Vienna 1060, Austria.
| |
Collapse
|
3
|
Hernik D, Szczepańska E, Brenna E, Patejuk K, Olejniczak T, Strzała T, Boratyński F. Trametes hirsuta as an Attractive Biocatalyst for the Preparative Scale Biotransformation of Isosafrole into Piperonal. Molecules 2023; 28:molecules28083643. [PMID: 37110877 PMCID: PMC10142777 DOI: 10.3390/molecules28083643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/05/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023] Open
Abstract
Piperonal is a compound of key industrial importance due to its attractive olfactory and biological properties. It has been shown that among the fifty-six various fungal strains tested, the ability to cleave the toxic isosafrole into piperonal through alkene cleavage is mainly found in strains of the genus Trametes. Further studies involving strains isolated directly from different environments (decaying wood, fungal fruiting bodies, and healthy plant tissues) allowed the selection of two Trametes strains, T. hirsuta Th2_2 and T. hirsuta d28, as the most effective biocatalysts for the oxidation of isosafrole. The preparative scale of biotransformation with these strains provided 124 mg (conv. 82%, isolated yield 62%) and 101 mg (conv. 69%, isolated yield 50.5%) of piperonal, respectively. Due to the toxic impact of isosafrole on cells, preparative scale processes with Trametes strains have not yet been successfully performed and described in the literature.
Collapse
Affiliation(s)
- Dawid Hernik
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Ewa Szczepańska
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Elisabetta Brenna
- Dipartimento di Chimica, Materiali ed Ingegneria Chimica "Giulio Natta" Politecnico di Milano, Via Mancinelli 7, I-20131 Milan, Italy
| | - Katarzyna Patejuk
- Department of Plant Protection, Wroclaw University of Environmental and Life Sciences, Grunwald Square 24A, 50-363 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Tomasz Strzała
- Department of Genetics, Wroclaw University of Environmental and Life Sciences, ul. Kozuchowska 7, 51-631 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
4
|
Grill B, Pavkov-Keller T, Grininger C, Darnhofer B, Gruber K, Hall M, Schwab H, Steiner K. Engineering TM1459 for Stabilisation against Inactivation by Amino Acid Oxidation. CHEM-ING-TECH 2023. [DOI: 10.1002/cite.202200176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Birgit Grill
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| | - Tea Pavkov-Keller
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Christoph Grininger
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Barbara Darnhofer
- Medical University of Graz Core Facility Mass Spectrometry Stiftingtalstraße 24 8010 Graz Austria
| | - Karl Gruber
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- University of Graz Institute of Molecular Biosciences Humboldtstraße 50 8010 Graz Austria
| | - Mélanie Hall
- University of Graz Institute of Chemistry Heinrichstraße 28 8010 Graz Austria
| | - Helmut Schwab
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
- Graz University of Technology Institute of Molecular Biotechnology Petersgasse 14 8010 Graz Austria
| | - Kerstin Steiner
- Austrian Centre of Industrial Biotechnology Petersgasse 14 8010 Graz Austria
| |
Collapse
|
5
|
Kar S, Sanderson H, Roy K, Benfenati E, Leszczynski J. Green Chemistry in the Synthesis of Pharmaceuticals. Chem Rev 2021; 122:3637-3710. [PMID: 34910451 DOI: 10.1021/acs.chemrev.1c00631] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The principles of green chemistry (GC) can be comprehensively implemented in green synthesis of pharmaceuticals by choosing no solvents or green solvents (preferably water), alternative reaction media, and consideration of one-pot synthesis, multicomponent reactions (MCRs), continuous processing, and process intensification approaches for atom economy and final waste reduction. The GC's execution in green synthesis can be performed using a holistic design of the active pharmaceutical ingredient's (API) life cycle, minimizing hazards and pollution, and capitalizing the resource efficiency in the synthesis technique. Thus, the presented review accounts for the comprehensive exploration of GC's principles and metrics, an appropriate implication of those ideas in each step of the reaction schemes, from raw material to an intermediate to the final product's synthesis, and the final execution of the synthesis into scalable industry-based production. For real-life examples, we have discussed the synthesis of a series of established generic pharmaceuticals, starting with the raw materials, and the intermediates of the corresponding pharmaceuticals. Researchers and industries have thoughtfully instigated a green synthesis process to control the atom economy and waste reduction to protect the environment. We have extensively discussed significant reactions relevant for green synthesis, one-pot cascade synthesis, MCRs, continuous processing, and process intensification, which may contribute to the future of green and sustainable synthesis of APIs.
Collapse
Affiliation(s)
- Supratik Kar
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| | - Hans Sanderson
- Department of Environmental Science, Section for Toxicology and Chemistry, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Kunal Roy
- Drug Theoretics and Cheminformatics Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.,Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Emilio Benfenati
- Department of Environmental Health Sciences, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Via Mario Negri 2, 19, 20156 Milano, Italy
| | - Jerzy Leszczynski
- Interdisciplinary Center for Nanotoxicity, Department of Chemistry, Physics and Atmospheric Sciences, Jackson State University, Jackson, Mississippi 39217, United States
| |
Collapse
|
6
|
Krahe N, Berger RG, Kahlert L, Ersoy F. Co-Oxidative Transformation of Piperine to Piperonal and 3,4-Methylenedioxycinnamaldehyde by a Lipoxygenase from Pleurotus sapidus. Chembiochem 2021; 22:2857-2861. [PMID: 34033194 PMCID: PMC8518924 DOI: 10.1002/cbic.202100183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Indexed: 11/08/2022]
Abstract
The valuable aroma compound piperonal with its vanilla-like olfactory properties is of high interest for the fragrance and flavor industry. A lipoxygenase (LOXPsa 1) of the basidiomycete Pleurotus sapidus was identified to convert piperine, the abundant pungent principle of black pepper (Piper nigrum), to piperonal and a second volatile product, 3,4-methylenedioxycinnamaldehyde, with a vanilla-like odor through an alkene cleavage. The reaction principle was co-oxidation, as proven by its dependence on the presence of linoleic or α-linolenic acid, common substrates of lipoxygenases. Optimization of the reaction conditions (substrate concentrations, reaction temperature and time) led to a 24-fold and 15-fold increase of the piperonal and 3,4-methylenedioxycinnamaldehyde concentration using the recombinant enzyme. Monokaryotic strains showed different concentrations of and ratios between the two reaction products.
Collapse
Affiliation(s)
- Nina‐Katharina Krahe
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| | - Ralf G. Berger
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| | - Lukas Kahlert
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
- Present address: Institut für Organische Chemie undBiomolekulares WirkstoffzentrumGottfried Wilhelm Leibniz Universität HannoverSchneiderberg 3830167HannoverGermany
| | - Franziska Ersoy
- Institut für LebensmittelchemieGottfried Wilhelm Leibniz Universität HannoverCallinstr. 530167HannoverGermany
| |
Collapse
|
7
|
A DyP-Type Peroxidase of Pleurotus sapidus with Alkene Cleaving Activity. Molecules 2020; 25:molecules25071536. [PMID: 32230972 PMCID: PMC7181223 DOI: 10.3390/molecules25071536] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 11/17/2022] Open
Abstract
Alkene cleavage is a possibility to generate aldehydes with olfactory properties for the fragrance and flavor industry. A dye-decolorizing peroxidase (DyP) of the basidiomycete Pleurotus sapidus (PsaPOX) cleaved the aryl alkene trans-anethole. The PsaPOX was semi-purified from the mycelium via FPLC, and the corresponding gene was identified. The amino acid sequence as well as the predicted tertiary structure showed typical characteristics of DyPs as well as a non-canonical Mn2+-oxidation site on its surface. The gene was expressed in Komagataella pfaffii GS115 yielding activities up to 142 U/L using 2,2′-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) as substrate. PsaPOX exhibited optima at pH 3.5 and 40 °C and showed highest peroxidase activity in the presence of 100 µM H2O2 and 25 mM Mn2+. PsaPOX lacked the typical activity of DyPs towards anthraquinone dyes, but oxidized Mn2+ to Mn3+. In addition, bleaching of β-carotene and annatto was observed. Biotransformation experiments verified the alkene cleavage activity towards the aryl alkenes (E)-methyl isoeugenol, α-methylstyrene, and trans-anethole, which was increased almost twofold in the presence of Mn2+. The resultant aldehydes are olfactants used in the fragrance and flavor industry. PsaPOX is the first described DyP with alkene cleavage activity towards aryl alkenes and showed potential as biocatalyst for flavor production.
Collapse
|
8
|
Dong J, Fernández‐Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biocatalytic Oxidation Reactions: A Chemist's Perspective. Angew Chem Int Ed Engl 2018; 57:9238-9261. [PMID: 29573076 PMCID: PMC6099261 DOI: 10.1002/anie.201800343] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Indexed: 01/25/2023]
Abstract
Oxidation chemistry using enzymes is approaching maturity and practical applicability in organic synthesis. Oxidoreductases (enzymes catalysing redox reactions) enable chemists to perform highly selective and efficient transformations ranging from simple alcohol oxidations to stereoselective halogenations of non-activated C-H bonds. For many of these reactions, no "classical" chemical counterpart is known. Hence oxidoreductases open up shorter synthesis routes based on a more direct access to the target products. The generally very mild reaction conditions may also reduce the environmental impact of biocatalytic reactions compared to classical counterparts. In this Review, we critically summarise the most important recent developments in the field of biocatalytic oxidation chemistry and identify the most pressing bottlenecks as well as promising solutions.
Collapse
Affiliation(s)
- JiaJia Dong
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Elena Fernández‐Fueyo
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Caroline E. Paul
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Milja Pesic
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Sandy Schmidt
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Yonghua Wang
- School of Food Science and EngineeringSouth China University of TechnologyGuangzhou510640P. R. China
| | - Sabry Younes
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| | - Wuyuan Zhang
- Department of BiotechnologyDelft University of Technologyvan der Maasweg 92629HZDelftThe Netherlands
| |
Collapse
|
9
|
Dong J, Fernández-Fueyo E, Hollmann F, Paul CE, Pesic M, Schmidt S, Wang Y, Younes S, Zhang W. Biokatalytische Oxidationsreaktionen - aus der Sicht eines Chemikers. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201800343] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- JiaJia Dong
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Elena Fernández-Fueyo
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Frank Hollmann
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Caroline E. Paul
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Milja Pesic
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Sandy Schmidt
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Yonghua Wang
- School of Food Science and Engineering; South China University of Technology; Guangzhou 510640 P. R. China
| | - Sabry Younes
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| | - Wuyuan Zhang
- Department of Biotechnology; Delft University of Technology; van der Maasweg 9 2629HZ Delft Niederlande
| |
Collapse
|
10
|
Corrado ML, Knaus T, Mutti FG. A Chimeric Styrene Monooxygenase with Increased Efficiency in Asymmetric Biocatalytic Epoxidation. Chembiochem 2018; 19:679-686. [PMID: 29378090 PMCID: PMC5900736 DOI: 10.1002/cbic.201700653] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Indexed: 11/23/2022]
Abstract
The styrene monooxygenase (SMO) system from Pseudomonas sp. consists of two enzymes (StyA and StyB). StyB catalyses the reduction of FAD at the expense of NADH. After the transfer of FADH2 from StyB to StyA, reaction with O2 generates FAD-OOH, which is the epoxidising agent. The wastage of redox equivalents due to partial diffusive transfer of FADH2 , the insolubility of recombinant StyB and the impossibility of expressing StyA and StyB in a 1:1 molar ratio reduce the catalytic efficiency of the natural system. Herein we present a chimeric SMO (Fus-SMO) that was obtained by genetic fusion of StyA and StyB through a flexible linker. Thanks to a combination of: 1) balanced and improved expression levels of reductase and epoxidase units, and 2) intrinsically higher specific epoxidation activity of Fus-SMO in some cases, Escherichia coli cells expressing Fus-SMO possess about 50 % higher activity for the epoxidation of styrene derivatives than E. coli cells coexpressing StyA and StyB as discrete enzymes. The epoxidation activity of purified Fus-SMO was up to three times higher than that of the two-component StyA/StyB (1:1, molar ratio) system and up to 110 times higher than that of the natural fused SMO. Determination of coupling efficiency and study of the influence of O2 pressure were also performed. Finally, Fus-SMO and formate dehydrogenase were coexpressed in E. coli and applied as a self-sufficient biocatalytic system for epoxidation on greater than 500 mg scale.
Collapse
Affiliation(s)
- Maria L. Corrado
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Tanja Knaus
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Francesco G. Mutti
- Van't Hoff Institute for Molecular SciencesHIMS-BiocatUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
11
|
Fink M, Trunk S, Hall M, Schwab H, Steiner K. Engineering of TM1459 from Thermotoga maritima for Increased Oxidative Alkene Cleavage Activity. Front Microbiol 2016; 7:1511. [PMID: 27713741 PMCID: PMC5031596 DOI: 10.3389/fmicb.2016.01511] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/09/2016] [Indexed: 11/26/2022] Open
Abstract
Oxidative cleavage of alkenes is a widely employed process allowing oxyfunctionalization to corresponding carbonyl compounds. Recently, a novel biocatalytic oxidative alkene cleavage activity on styrene derivatives was identified in TM1459 from Thermotoga maritima. In this work we engineered the enzyme by site-saturation mutagenesis of active site amino acids to increase its activity and to broaden its substrate scope. A high-throughput assay for the detection of the ketone products was successfully developed. Several variants with up to twofold improved conversion level of styrene derivatives were successfully identified. Especially, changes in or removal of the C-terminus of TM1459 increased the activity most significantly. These best variants also displayed a slightly enlarged substrate scope.
Collapse
Affiliation(s)
- Matthias Fink
- Austrian Centre of Industrial BiotechnologyGraz, Austria
| | - Sarah Trunk
- Austrian Centre of Industrial BiotechnologyGraz, Austria
| | - Mélanie Hall
- Department of Chemistry, University of GrazGraz, Austria
| | - Helmut Schwab
- Austrian Centre of Industrial BiotechnologyGraz, Austria
- Institute of Molecular Biotechnology, Graz University of TechnologyGraz, Austria
| | | |
Collapse
|
12
|
Lee R, Coote ML. Theoretical Investigation of Oxidative Cleavage of Cholesterol by Dual O2 Activation and Sulfide Reduction. Aust J Chem 2016. [DOI: 10.1071/ch16093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Theoretical calculations are used to explore a plausible mechanism for oxidative cleavage of cholesterol mediated by two ground-state O2 molecules. It is shown that cholesterol can form a stable pre-complex with the two triplet dioxygen molecules, which could be further stabilized in an enzyme environment by methionine (modelled here as Me2S). Triplet O2 can then react to form a metastable biradical species that is then further stabilized by reaction with a second triplet O2, resulting in an intermediate that undergoes an intersystem crossing to form a diperoxy intermediate. This in turn is reduced to the final cholesterol secosterol aldehyde product by the same methionine, which may provide an explanation for the presence of methionine sulfoxide fractions in Aβ amyloid peptide. The mechanistic theozyme model predicts an energetically viable pathway that is unusual in that triplet oxygen is normally considered to be unreactive in this context unless first excited to the singlet state. Although we show that the same reaction can also proceed via photosensitization of the complex if an appropriate cofactor is available, the energetics for the triplet oxygen reaction are competitive. Reactivity studies revealed that the reaction can also occur with other unsaturated substrates, with the lowest barriers occurring with more nucleophilic alkenes, or by rendering the 3O2 more electrophilic via non-covalent interactions with Me2S.
Collapse
|
13
|
Hajnal I, Faber K, Schwab H, Hall M, Steiner K. Oxidative Alkene Cleavage Catalysed by Manganese-Dependent Cupin TM1459 fromThermotoga maritima. Adv Synth Catal 2015. [DOI: 10.1002/adsc.201500608] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
14
|
Affiliation(s)
- Andreas S. Bommarius
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30318;
| |
Collapse
|