1
|
A Abdelhakim I, Futamura Y, Asami Y, Hanaki H, Kito N, Masuda S, Shibata A, Muranaka A, Koshino H, Shirasu K, Osada H, Ishikawa J, Takahashi S. Expression of Syo_1.56 SARP Regulator Unveils Potent Elasnin Derivatives with Antibacterial Activity. JOURNAL OF NATURAL PRODUCTS 2024; 87:1459-1470. [PMID: 38652684 DOI: 10.1021/acs.jnatprod.4c00259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Actinomycetes are prolific producers of natural products, particularly antibiotics. However, a significant proportion of its biosynthetic gene clusters (BGCs) remain silent under typical laboratory conditions. This limits the effectiveness of conventional isolation methods for the discovery of novel natural products. Genetic interventions targeting the activation of silent gene clusters are necessary to address this challenge. Streptomyces antibiotic regulatory proteins (SARPs) act as cluster-specific activators and can be used to target silent BGCs for the discovery of new antibiotics. In this study, the expression of a previously uncharacterized SARP protein, Syo_1.56, in Streptomyces sp. RK18-A0406 significantly enhanced the production of known antimycins and led to the discovery of 12 elasnins (1-12), 10 of which were novel. The absolute stereochemistry of elasnin A1 was assigned for the first time to be 6S. Unexpectedly, Syo_1.56 seems to function as a pleiotropic rather than cluster-specific SARP regulator, with the capability of co-regulating two distinct biosynthetic pathways, simultaneously. All isolated elasnins were active against wild-type and methicillin-resistant Staphylococcus aureus with IC50 values of 0.5-20 μg/mL, some of which (elasnins A1, B2, and C1 and proelasnins A1, and C1) demonstrated moderate to strong antimalarial activities against Plasmodium falciparum 3D7. Elasnins A1, B3, and C1 also showed in vitro inhibition of the metallo-β-lactamase responsible for the development of highly antibiotic-resistant bacterial strains.
Collapse
Affiliation(s)
- Islam A Abdelhakim
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
- Department of Pharmacognosy, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt
| | - Yushi Futamura
- Chemical Resource Development Research Unit and Drug Discovery Chemical Bank Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Yukihiro Asami
- O̅mura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Hideaki Hanaki
- O̅mura Satoshi Memorial Institute, Kitasato University, Tokyo 108-8641, Japan
| | - Naoko Kito
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Sachiko Masuda
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Arisa Shibata
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Atsuya Muranaka
- Molecular Structure Characterization Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Hiroyuki Koshino
- Molecular Structure Characterization Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Ken Shirasu
- Plant Immunity Research Group, RIKEN CSRS, Yokohama 230-0045, Japan
| | - Hiroyuki Osada
- Chemical Resource Development Research Unit and Drug Discovery Chemical Bank Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| | - Jun Ishikawa
- National Institute of Infectious Diseases, Tokyo, 162-8640, Japan
| | - Shunji Takahashi
- Natural Product Biosynthesis Research Unit, RIKEN CSRS, Wako, Saitama 351-0198, Japan
| |
Collapse
|
2
|
Zhao J, Li Q, Zeeshan M, Zhang G, Wang C, Han X, Yang D. Integrative Genomics and Bioactivity-Guided Isolation of Novel Antimicrobial Compounds from Streptomyces sp. KN37 in Agricultural Applications. Molecules 2024; 29:2040. [PMID: 38731531 PMCID: PMC11085741 DOI: 10.3390/molecules29092040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/22/2024] [Accepted: 04/27/2024] [Indexed: 05/13/2024] Open
Abstract
Actinomycetes have long been recognized as an important source of antibacterial natural products. In recent years, actinomycetes in extreme environments have become one of the main research directions. Streptomyces sp. KN37 was isolated from the cold region of Kanas in Xinjiang. It demonstrated potent antimicrobial activity, but the primary active compounds remained unclear. Therefore, we aimed to combine genomics with traditional isolation methods to obtain bioactive compounds from the strain KN37. Whole-genome sequencing and KEGG enrichment analysis indicated that KN37 possesses the potential for synthesizing secondary metabolites, and 41 biosynthetic gene clusters were predicted, some of which showed high similarity to known gene clusters responsible for the biosynthesis of antimicrobial antibiotics. The traditional isolation methods and activity-guided fractionation were employed to isolate and purify seven compounds with strong bioactivity from the fermentation broth of the strain KN37. These compounds were identified as 4-(Diethylamino)salicylaldehyde (1), 4-Nitrosodiphenylamine (2), N-(2,4-Dimethylphenyl)formamide (3), 4-Nitrocatechol (4), Methylsuccinic acid (5), Phenyllactic acid (6) and 5,6-Dimethylbenzimidazole (7). Moreover, 4-(Diethylamino)salicylaldehyde exhibited the most potent inhibitory effect against Rhizoctonia solani, with an EC50 value of 14.487 mg/L, while 4-Nitrosodiphenylamine showed great antibacterial activity against Erwinia amylovora, with an EC50 value of 5.715 mg/L. This study successfully isolated several highly active antimicrobial compounds from the metabolites of the strain KN37, which could contribute as scaffolds for subsequent chemical synthesis. On the other hand, the newly predicted antibiotic-like substances have not yet been isolated, but they still hold significant research value. They are instructive in the study of active natural product biosynthetic pathways, activation of silent gene clusters, and engineering bacteria construction.
Collapse
Affiliation(s)
| | | | | | - Guoqiang Zhang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (J.Z.); (Q.L.); (M.Z.); (X.H.); (D.Y.)
| | - Chunjuan Wang
- The Key Laboratory of Oasis Agricultural Pest Management and Plant Protection Utilization, College of Agriculture, Shihezi University, Shihezi 832003, China; (J.Z.); (Q.L.); (M.Z.); (X.H.); (D.Y.)
| | | | | |
Collapse
|
3
|
Saito S, Arai MA. Methodology for awakening the potential secondary metabolic capacity in actinomycetes. Beilstein J Org Chem 2024; 20:753-766. [PMID: 38633912 PMCID: PMC11022428 DOI: 10.3762/bjoc.20.69] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Secondary metabolites produced by actinomycete strains undoubtedly have great potential for use in applied research areas such as drug discovery. However, it is becoming difficult to obtain novel compounds because of repeated isolation around the world. Therefore, a new strategy for discovering novel secondary metabolites is needed. Many researchers believe that actinomycetes have as yet unanalyzed secondary metabolic activities, and the associated undiscovered secondary metabolite biosynthesis genes are called "silent" genes. This review outlines several approaches to further activate the metabolic potential of actinomycetes.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| | - Midori A Arai
- Department of Biosciences and Informatics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan
| |
Collapse
|
4
|
Magar RT, Pham VTT, Poudel PB, Nguyen HT, Bridget AF, Sohng JK. Biosynthetic pathway of peucemycin and identification of its derivative from Streptomyces peucetius. Appl Microbiol Biotechnol 2023; 107:1217-1231. [PMID: 36680588 DOI: 10.1007/s00253-023-12385-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/08/2023] [Accepted: 01/10/2023] [Indexed: 01/22/2023]
Abstract
Streptomyces peucetius ATCC 27952 is a well-known producer of important anticancer compounds, daunorubicin and doxorubicin. In this study, we successfully identified a new macrolide, 25-hydroxy peucemycin, that exhibited an antibacterial effect on some pathogens. Based on the structure of a newly identified compound and through the inactivation of a polyketide synthase gene, we successfully identified its biosynthetic gene cluster which was considered to be the cryptic biosynthetic gene cluster. The biosynthetic gene cluster spans 51 kb with 16 open reading frames. Five type I polyketide synthase (PKS) genes encode eight modules that synthesize the polyketide chain of peucemycin before undergoing post-PKS tailoring steps. In addition to the regular starter and extender units, some modules have specificity towards ethylmalonyl-CoA and unusual butylmalonyl-CoA. A credible explanation for the specificity of the unusual extender unit has been searched for. Moreover, the enzyme responsible for the final tailoring pathway was also identified. Based on all findings, a plausible biosynthetic pathway is here proposed. KEY POINTS: • Identification of a new macrolide, 25-hydroxy peucemycin. • An FMN-dependent monooxygenase is responsible for the hydroxylation of peucemycin. • The module encoded by peuC is unique to accept the butylmalonyl-CoA as an unusual extender unit.
Collapse
Affiliation(s)
- Rubin Thapa Magar
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Purna Bahadur Poudel
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Adzemye Fovennso Bridget
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea.
- Department of Pharmaceutical Engineering and Biotechnology, Sun Moon University, 70 Sun Moon-Ro 221, Tangjeong-Myeon, Asan-Si, Chungnam, 31460, South Korea.
| |
Collapse
|
5
|
Characterization of the Biosynthetic Gene Cluster and Shunt Products Yields Insights into the Biosynthesis of Balmoralmycin. Appl Environ Microbiol 2022; 88:e0120822. [PMID: 36350133 PMCID: PMC9746310 DOI: 10.1128/aem.01208-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Angucyclines are a family of structurally diverse, aromatic polyketides with some members that exhibit potent bioactivity. Angucyclines have also attracted considerable attention due to the intriguing biosynthetic origins that underlie their structural complexity and diversity. Balmoralmycin (compound 1) represents a unique group of angucyclines that contain an angular benz[α]anthracene tetracyclic system, a characteristic C-glycosidic bond-linked deoxy-sugar (d-olivose), and an unsaturated fatty acid chain. In this study, we identified a Streptomyces strain that produces balmoralmycin and seven biosynthetically related coproducts (compounds 2-8). Four of the coproducts (compounds 5-8) are novel compounds that feature a highly oxygenated or fragmented lactone ring, and three of them (compounds 3-5) exhibited cytotoxicity against the human pancreatic cancer cell line MIA PaCa-2 with IC50 values ranging from 0.9 to 1.2 μg/mL. Genome sequencing and CRISPR/dCas9-assisted gene knockdown led to the identification of the ~43 kb balmoralmycin biosynthetic gene cluster (bal BGC). The bal BGC encodes a type II polyketide synthase (PKS) system for assembling the angucycline aglycone, six enzymes for generating the deoxysugar d-olivose, and a hybrid type II/III PKS system for synthesizing the 2,4-decadienoic acid chain. Based on the genetic and chemical information, we propose a mechanism for the biosynthesis of balmoralmycin and the shunt products. The chemical and genetic studies yielded insights into the biosynthetic origin of the structural diversity of angucyclines. IMPORTANCE Angucyclines are structurally diverse aromatic polyketides that have attracted considerable attention due to their potent bioactivity and intriguing biosynthetic origin. Balmoralmycin is a representative of a small family of angucyclines with unique structural features and an unknown biosynthetic origin. We report a newly isolated Streptomyces strain that produces balmoralmycin in a high fermentation titer as well as several structurally related shunt products. Based on the chemical and genetic information, a biosynthetic pathway that involves a type II polyketide synthase (PKS) system, cyclases/aromatases, oxidoreductases, and other ancillary enzymes was established. The elucidation of the balmoralmycin pathway enriches our understanding of how structural diversity is generated in angucyclines and opens the door for the production of balmoralmycin derivatives via pathway engineering.
Collapse
|
6
|
Saito S, Funayama K, Kato W, Okuda M, Kawamoto M, Matsubara T, Sato T, Sato A, Otsuguro S, Sasaki M, Orba Y, Sawa H, Maenaka K, Shindo K, Imoto M, Arai MA. Dihydromaniwamycin E, a Heat-Shock Metabolite from Thermotolerant Streptomyces sp. JA74, Exhibiting Antiviral Activity against Influenza and SARS-CoV-2 Viruses. JOURNAL OF NATURAL PRODUCTS 2022; 85:2583-2591. [PMID: 36223390 PMCID: PMC9578650 DOI: 10.1021/acs.jnatprod.2c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Indexed: 06/16/2023]
Abstract
Dihydromaniwamycin E (1), a new maniwamycin derivative featuring an azoxy moiety, has been isolated from the culture extract of thermotolerant Streptomyces sp. JA74 along with the known analogue maniwamycin E (2). Compound 1 is produced only by cultivation of strain JA74 at 45 °C, and this type of compound has been previously designated a "heat shock metabolite (HSM)" by our research group. Compound 2 is detected as a production-enhanced metabolite at high temperature. Structures of 1 and 2 are elucidated by NMR and MS spectroscopic analyses. The absolute structure of 1 is determined after the total synthesis of four stereoisomers. Though the absolute structure of 2 has been proposed to be the same as the structure of maniwamycin D, the NMR and the optical rotation value of 2 are in agreement with those of maniwamycin E. Therefore, this study proposes a structural revision of maniwamycins D and E. Compounds 1 and 2 show inhibitory activity against the influenza (H1N1) virus infection of MDCK cells, demonstrating IC50 values of 25.7 and 63.2 μM, respectively. Notably, 1 and 2 display antiviral activity against SARS-CoV-2, the causative agent of COVID-19, when used to infect 293TA and VeroE6T cells, with 1 and 2 showing IC50 values (for infection of 293TA cells) of 19.7 and 9.7 μM, respectively. The two compounds do not exhibit cytotoxicity in these cell lines at those IC50 concentrations.
Collapse
Affiliation(s)
- Shun Saito
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Kayo Funayama
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Wataru Kato
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Mayu Okuda
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Meiko Kawamoto
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Teruhiko Matsubara
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Toshinori Sato
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| | - Akihiko Sato
- Drug Discovery and Disease Research Laboratory,
Shionogi & Co., Ltd., Osaka541-0045,
Japan
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
| | - Satoko Otsuguro
- Laboratory of Biomolecular Science, Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812,
Japan
| | - Michihito Sasaki
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
| | - Yasuko Orba
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for
Zoonosis Control, Hokkaido University, Sapporo001-0020,
Japan
| | - Hirofumi Sawa
- Division of Molecular Pathobiology, International
Institute for Zoonosis Control, Hokkaido University,
Sapporo001-0020, Japan
- International Collaboration Unit, International Institute for
Zoonosis Control, Hokkaido University, Sapporo001-0020,
Japan
- One Health Research Center, Hokkaido
University, Sapporo060-0818, Japan
- Global Virus Network,
Baltimore, Maryland21201, United States
| | - Katsumi Maenaka
- Laboratory of Biomolecular Science, Faculty of
Pharmaceutical Sciences, Hokkaido University, Sapporo060-0812,
Japan
| | - Kazutoshi Shindo
- Department of Food and Nutrition, Japan
Women’s University, Tokyo112-8681, Japan
| | - Masaya Imoto
- Department of Neurology, Juntendo
University School of Medicine, Tokyo113-8431,
Japan
| | - Midori A. Arai
- Department of Biosciences and Informatics, Faculty of
Science and Technology, Keio University, Yokohama223-8522,
Japan
| |
Collapse
|
7
|
Lin Z, Qu X. Emerging diversity in polyketide synthase. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
Kaewkla O, Sukpanoa S, Suriyachadkun C, Chamroensaksi N, Chumroenphat T, Franco CMM. Streptomyces spinosus sp. nov. and Streptomyces shenzhenensis subsp. oryzicola subsp. nov. endophytic actinobacteria isolated from Jasmine rice and their genome mining for potential as antibiotic producers and plant growth promoters. Antonie van Leeuwenhoek 2022; 115:871-888. [PMID: 35597859 DOI: 10.1007/s10482-022-01741-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/15/2022] [Indexed: 11/25/2022]
Abstract
Two endophytic actinobacteria, strains SBTS01T and W18L9T, were isolated from leaf sheath and leaf tissue, respectively, of Jasmine rice (Oryza sativa KDML 105) grown in a rice paddy field in Roi Et Province, Thailand. A polyphasic taxonomic study showed that both strains belong to the genus Streptomyces; they are aerobic, forming well-developed substrate mycelia and aerial mycelia with long chains of spores. Strain SBTS01T shares high 16S rRNA gene sequence similarity with Streptomyces rochei NRRL B-2410 T (99.0%) and Streptomyces naganishii NRRL ISP-5282 T (99.0%). Strain W18L9T shares high 16S rRNA gene sequence similarity with Streptomyces shenzhenensis DSM 42034 T (99.7%). The genotypic and phenotypic properties of strains SBTS01T and W18L9T distinguish these two strains from the closely related species with validly published names. The genome analysis showed the dDDH, ANIb and ANIm values of the draft genome between strain SBTS01T and its close neighbour in the phylogenomic tree, Streptomyces corchorusii DSM 40340T to be 54.1, 92.6, and 94.3%, respectively; similarly for strain W18L9T and the closely related species S. shenzhenensis DSM 42034 T values were 72.5, 95.1 and 97.0%. The name proposed for the new species represented by the type strain SBTS01T is Streptomyces spinosus (= NRRL B-65636 T = TBRC 15052T). The name proposed for the novel subspecies of strain W18L9T is Streptomyces shenzhenensis subsp. oryzicola (= NRRL B-65635 T = TBRC 15051T). Recognition of this subspecies also permits the description of Streptomyces shenzhenensis subsp. shenzhenensis. Strains SBTS01T and W18L9T can produce antibiotic against rice and human pathogens and showed plant growth promoting properties such as production of indole acetic acid, cytokinin, 1-aminocyclopropane-1-carboxylate (ACC) deaminase, siderophores and cellulase. Genomic data mining of these two strains confirmed their potential as antibiotic producers and plant growth promoters. Their genomes contain multiple biosynthetic gene clusters including those for terpene, type 1, 2 and 3 polyketide synthase, Non-ribosomal peptide synthetase and lanthipeptides. Genes encoding plant growth promoting traits such; nitrogen fixation, ACC deaminase, siderophore production and stress-related adaption may have ecological significance.
Collapse
Affiliation(s)
- Onuma Kaewkla
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, 44150, Thailand.
- Department of Medical Biotechnology, College of Medicine and Public Health, Flinders University, Adelaide 5042, Australia.
| | - Sudarat Sukpanoa
- Department of Biology, Faculty of Science, Mahasarakham University, Maha Sarakham Province, 44150, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Science and Technology Development Agency, Klong Luang, Pathumthani, 12120, Thailand
| | - Nitcha Chamroensaksi
- National Biobank of Thailand (NBT), National Science and Technology Development Agency, Klong Luang, Pathumthani, 12120, Thailand
| | - Theeraphan Chumroenphat
- Laboratory Equipment Center, Mahasarakham University, Maha Sarakham Province, 44150, Thailand
| | | |
Collapse
|
9
|
Shi J, Shi Y, Li JC, Wei W, Chen Y, Cheng P, Liu CL, Zhang H, Wu R, Zhang B, Jiao RH, Yu S, Liang Y, Tan RX, Ge HM. In Vitro Reconstitution of Cinnamoyl Moiety Reveals Two Distinct Cyclases for Benzene Ring Formation. J Am Chem Soc 2022; 144:7939-7948. [PMID: 35470672 DOI: 10.1021/jacs.2c02855] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cinnamoyl-containing natural products (CCNPs) are a small class of bacterial metabolites with notable bioactivities. The biosynthesis of cinnamoyl moiety has been proposed to be assembled by an unusual highly reducing (HR) type II polyketide synthases (PKS). However, the biosynthetic route, especially the cyclization step for the benzene ring formation, remains unclear. In this work, we successfully reconstituted the pathway of cinnamoyl moiety in kitacinnamycin biosynthesis through a step-wise approach in vitro and demonstrated that a three-protein complex, Kcn17-Kcn18-Kcn19, can catalyze 6π-electrocyclization followed by dehydrogenation to form the benzene ring. We found that the three-protein homologues were widely distributed among 207 HR type II PKS biosynthetic gene clusters including five known CCNPs. In contrast, in the biosynthesis of youssoufene, a cinnamoyl-containing polyene, we identified that the benzene ring formation was accomplished by a distinct orphan protein. Thus, our work resolved the long-standing mystery in cinnamoyl biosynthesis and revealed two distinct enzymes that can synthesize benzene rings via polyene precursors.
Collapse
Affiliation(s)
- Jing Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Yang Shi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Jian Cheng Li
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wanqing Wei
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yu Chen
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ping Cheng
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Cheng Li Liu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hao Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Rui Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Bo Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Rui Hua Jiao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yong Liang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Ren Xiang Tan
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Hui Ming Ge
- State Key Laboratory of Pharmaceutical Biotechnology, Institute of Functional Biomolecules, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Life Sciences, Nanjing University, Nanjing 210023, China
| |
Collapse
|
10
|
Chen A, Jiang Z, Burkart MD. Enzymology of standalone elongating ketosynthases. Chem Sci 2022; 13:4225-4238. [PMID: 35509474 PMCID: PMC9006962 DOI: 10.1039/d1sc07256k] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/09/2022] [Indexed: 12/16/2022] Open
Abstract
The β-ketoacyl-acyl carrier protein synthase, or ketosynthase (KS), catalyses carbon-carbon bond formation in fatty acid and polyketide biosynthesis via a decarboxylative Claisen-like condensation. In prokaryotes, standalone elongating KSs interact with the acyl carrier protein (ACP) which shuttles substrates to each partner enzyme in the elongation cycle for catalysis. Despite ongoing research for more than 50 years since KS was first identified in E. coli, the complex mechanism of KSs continues to be unravelled, including recent understanding of gating motifs, KS-ACP interactions, substrate recognition and delivery, and roles in unsaturated fatty acid biosynthesis. In this review, we summarize the latest studies, primarily conducted through structural biology and molecular probe design, that shed light on the emerging enzymology of standalone elongating KSs.
Collapse
Affiliation(s)
- Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Ziran Jiang
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego 9500 Gilman Drive La Jolla CA 92093-0358 USA
| |
Collapse
|
11
|
Misaki Y, Nindita Y, Fujita K, Fauzi AA, Arakawa K. Overexpression of SRO_3163, a homolog of Streptomyces antibiotic regulatory protein, induces the production of novel cyclohexene-containing enamide in Streptomyces rochei. Biosci Biotechnol Biochem 2022; 86:177-184. [PMID: 34849547 DOI: 10.1093/bbb/zbab206] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 11/24/2021] [Indexed: 11/13/2022]
Abstract
Streptomyces antibiotic regulatory proteins (SARPs) are well characterized as transcriptional activators for secondary metabolites in Streptomyces species. Streptomyces rochei 7434AN4 harbors 15 SARP genes, among which 3 were located on a giant linear plasmid pSLA2-L and others were on the chromosome. Some SARP genes were cloned into an integrative thiostrepton-inducible vector pIJ8600, and their recombinants were cultivated. The recombinant of SARP gene, SRO_3163, accumulated a UV-active compound YM3163-A, which was not detected in the parent strain and other SARP recombinants. Its molecular formula was established to be C8H11NO. Extensive NMR analysis revealed that YM3163-A is a novel enamide, 2-(cyclohex-2-en-1-ylidene)acetamide, and its structure was confirmed by chemical synthesis including Horner-Wadsworth-Emmons reaction and ammonolysis.
Collapse
Affiliation(s)
- Yuya Misaki
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Yosi Nindita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kota Fujita
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Amirudin Akhmad Fauzi
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenji Arakawa
- Unit of Biotechnology, Division of Biological and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
12
|
Matsui N, Kawakami S, Hamamoto D, Nohara S, Sunada R, Panbangred W, Igarashi Y, Nihira T, Kitani S. Activation of cryptic milbemycin A 4 production in Streptomyces sp. BB47 by the introduction of a functional bldA gene. J GEN APPL MICROBIOL 2021; 67:240-247. [PMID: 34511540 DOI: 10.2323/jgam.2021.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Streptomycetes are characterized by their ability to produce structurally diverse compounds as secondary metabolites and by their complex developmental life cycle, which includes aerial mycelium formation and sporulation. The production of secondary metabolites is growth-stage dependent, and generally coincides with morphological development on a solid culture. Streptomyces sp. BB47 produces several types of bioactive compounds and displays a bald phenotype that is devoid of an aerial mycelium and spores. Here, we demonstrated by genome analysis and gene complementation experiments that the bald phenotype arises from the bldA gene, which is predicted to encode the Leu-tRNAUUA molecule. Unlike the wild-type strain producing jomthonic acid A (1) and antarlide A (2), the strain complemented with a functional bldA gene newly produced milbemycin (3). The chemical structure of compound 3 was elucidated on the basis of various spectroscopic analyses, and was identified as milbemycin A4, which is an insecticidal/acaricidal antibiotic. These results indicate that genetic manipulation of genes involved in morphological development in streptomycetes is a valuable way to activate cryptic biosynthetic pathways.
Collapse
Affiliation(s)
- Nana Matsui
- International Center for Biotechnology, Osaka University
| | | | - Dai Hamamoto
- International Center for Biotechnology, Osaka University
| | - Sayuri Nohara
- International Center for Biotechnology, Osaka University
| | - Reina Sunada
- International Center for Biotechnology, Osaka University
| | | | | | - Takuya Nihira
- International Center for Biotechnology, Osaka University.,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University
| |
Collapse
|
13
|
Yang J, Song Y, Tang MC, Li M, Deng J, Wong NK, Ju J. Genome-Directed Discovery of Tetrahydroisoquinolines from Deep-Sea Derived Streptomyces niveus SCSIO 3406. J Org Chem 2021; 86:11107-11116. [PMID: 33770435 DOI: 10.1021/acs.joc.1c00123] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A genome-directed discovery strategy to identify new tetrahydroisoquinolines (THIQs) was applied to deep-sea derived Streptomyces niveus SCSIO 3406; 11 THIQs were found representing three THIQ classes. Known aclidinomycins A (1) and B (2) were isolated along with nine new compounds, aclidinomycins C-K (3-11). The structures were elucidated using extensive spectroscopic analyses and single-crystal X-ray diffraction methods. The core skeleton of compounds 6-9 contains a fused tetrahydropyran (THP) as an integral part of a distinct type of 6/6/6/6/5/5 polycyclic motif. This is the first report of such a system. Beyond their discovery, we also report here a proposed biosynthetic route to these interesting natural products as well as a preliminary survey of their antimicrobial activities.
Collapse
Affiliation(s)
- Jiafan Yang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Yongxiang Song
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| | - Man-Cheng Tang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingzhe Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- Department of Applied Chemistry, College of Materials and Energy, South China Agricultural University, Guangzhou 510642, China
| | - Junwei Deng
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Nai-Kei Wong
- Department of Pharmacology, Shantou University Medical College, Shantou 515041, China
| | - Jianhua Ju
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, RNAM Center for Marine Microbiology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 West Xingang Road, Guangzhou 510301, China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119, Haibin Road, Nansha District, Guangzhou 511458, China
| |
Collapse
|
14
|
Lee WC, Choi S, Jang A, Yeon J, Hwang E, Kim Y. Structural basis of the complementary activity of two ketosynthases in aryl polyene biosynthesis. Sci Rep 2021; 11:16340. [PMID: 34381152 PMCID: PMC8358021 DOI: 10.1038/s41598-021-95890-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 08/02/2021] [Indexed: 12/26/2022] Open
Abstract
Aryl polyenes (APE) are one of the most widespread secondary metabolites among gram-negative bacteria. In Acinetobacter baumannii, strains belonging to the virulent global clone 2 (GC2) mostly contain APE biosynthesis genes; its relevance in elevated pathogenicity is of great interest. APE biosynthesis gene clusters harbor two ketosynthases (KSs): the heterodimeric KS-chain length factor complex, ApeO-ApeC, and the homodimeric ketoacyl-acyl carrier protein synthase I (FabB)-like KS, ApeR. The role of the two KSs in APE biosynthesis is unclear. We determined the crystal structures of the two KSs from a pathogenic A. baumannii strain. ApeO-ApeC and ApeR have similar cavity volumes; however, ApeR has a narrow cavity near the entrance. In vitro assay based on the absorption characteristics of polyene species indicated the generation of fully elongated polyene with only ApeO-ApeC, probably because of the funnel shaped active site cavity. However, adding ApeR to the reaction increases the throughput of APE biosynthesis. Mutagenesis at Tyr135 in the active site cavity of ApeR reduces the activity significantly, which suggests that the stacking of the aryl group between Tyr135 and Phe202 is important for substrate recognition. Therefore, the two KSs function complementarily in the generation of APE to enhance its production.
Collapse
Affiliation(s)
- Woo Cheol Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Sungjae Choi
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Ahjin Jang
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Jiwon Yeon
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea
| | - Eunha Hwang
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Ochang, 28119, Chungcheongbuk-do, South Korea
| | - Yangmee Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, 05029, South Korea.
| |
Collapse
|
15
|
Messiha HL, Payne KAP, Scrutton NS, Leys D. A Biological Route to Conjugated Alkenes: Microbial Production of Hepta-1,3,5-triene. ACS Synth Biol 2021; 10:228-235. [PMID: 33535752 DOI: 10.1021/acssynbio.0c00464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Conjugated alkenes such as dienes and polyenes have a range of applications as pharmaceutical agents and valuable building blocks in the polymer industry. Development of a renewable route to these compounds provides an alternative to fossil fuel derived production. The enzyme family of the UbiD decarboxylases offers substantial scope for alkene production, readily converting poly unsaturated acids. However, biochemical pathways producing the required substrates are poorly characterized, and UbiD-application has hitherto been limited to biological styrene production. Herein, we present a proof-of-principle study for microbial production of polyenes using a bioinspired strategy employing a polyketide synthase (PKS) in combination with a UbiD-enzyme. Deconstructing a bacterial iterative type II PKS enabled repurposing the broad-spectrum antibiotic andrimid biosynthesis pathway to access the metabolic intermediate 2,4,6-octatrienoic acid, a valuable chemical for material and pharmaceutical industry. Combination with the fungal ferulic acid decarboxylase (Fdc1) led to a biocatalytic cascade-type reaction for the production of hepta-1,3,5-triene in vivo. Our approach provides a novel route to generate unsaturated hydrocarbons and related chemicals and provides a blue-print for future development and application.
Collapse
Affiliation(s)
- Hanan L. Messiha
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Karl A. P. Payne
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Future Biomanufacturing Research Hub (Future BRH), Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - Nigel S. Scrutton
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Future Biomanufacturing Research Hub (Future BRH), Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| | - David Leys
- Manchester Institute of Biotechnology, Department of Chemistry, School of Natural Sciences, Faculty of Science and Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
16
|
Desert Environments Facilitate Unique Evolution of Biosynthetic Potential in Streptomyces. Molecules 2021; 26:molecules26030588. [PMID: 33499369 PMCID: PMC7865587 DOI: 10.3390/molecules26030588] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/15/2021] [Accepted: 01/19/2021] [Indexed: 12/19/2022] Open
Abstract
Searching for new bioactive metabolites from the bacterial genus Streptomyces is a challenging task. Combined genomic tools and metabolomic screening of Streptomyces spp. native to extreme environments could be a promising strategy to discover novel compounds. While Streptomyces of desertic origin have been proposed as a source of new metabolites, their genome mining, phylogenetic analysis, and metabolite profiles to date are scarcely documented. Here, we hypothesized that Streptomyces species of desert environments have evolved with unique biosynthetic potential. To test this, along with an extensive characterization of biosynthetic potential of a desert isolate Streptomyces sp. SAJ15, we profiled phylogenetic relationships among the closest and previously reported Streptomyces of desert origin. Results revealed that Streptomyces strains of desert origin are closer to each other and relatively distinct from Streptomyces of other environments. The draft genome of strain SAJ15 was 8.2 Mb in size, which had 6972 predicted genes including 3097 genes encoding hypothetical proteins. Successive genome mining and phylogenetic analysis revealed the presence of putative novel biosynthetic gene clusters (BGCs) with low incidence in another Streptomyces. In addition, high-resolution metabolite profiling indicated the production of arylpolyene, terpenoid, and macrolide compounds in an optimized medium by strain SAJ15. The relative abundance of different BGCs in arid Streptomyces differed from the non-arid counterparts. Collectively, the results suggested a distinct evolution of desert Streptomyces with a unique biosynthetic potential.
Collapse
|
17
|
Pham VTT, Nguyen HT, Nguyen CT, Choi YS, Dhakal D, Kim TS, Jung HJ, Yamaguchi T, Sohng JK. Identification and enhancing production of a novel macrolide compound in engineered Streptomyces peucetius. RSC Adv 2021; 11:3168-3173. [PMID: 35424263 PMCID: PMC8693821 DOI: 10.1039/d0ra06099b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/25/2020] [Indexed: 12/21/2022] Open
Abstract
Streptomyces peucetius produces doxorubicin and daunorubicin, which are important anticancer drugs. In this study, we activate peucemycin, a new antibacterial compound, using an OSMAC strategy. In general, bioactive compounds are produced in a higher amount at room temperature; however, in this study, we have demonstrated that a bioactive novel compound was successfully activated at a low temperature (18 °C) in S. peucetius DM07. Through LC-MS/MS, IR spectroscopy, and NMR analysis, we identified the structure of this compound as a γ-pyrone macrolide. This compound was found to be novel, thus named peucemycin. It is an unusual 14-membered macrocyclic γ-pyrone ring with cyclization. Also, peucemycin exhibits potential antibacterial activity and a suppressive effect on the viability of various cancer cell lines. Activation of peucemycin in S. peucetius DM07 by the OSMAC strategy.![]()
Collapse
Affiliation(s)
- Van Thuy Thi Pham
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Hue Thi Nguyen
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Chung Thanh Nguyen
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Ye Seul Choi
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Dipesh Dhakal
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Tae-Su Kim
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Hye Jin Jung
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea .,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Tokutaro Yamaguchi
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| | - Jae Kyung Sohng
- Department of Life Science and Biochemical Engineering, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea .,Department of Pharmaceutical Engineering and Biotechnology, SunMoon University 70 Sunmoon-ro 221, Tangjeong-myeon Asan-si Chungnam 31460 Republic of Korea
| |
Collapse
|
18
|
Seo M, Du D, Katsuyama Y, Katsuta R, Yajima A, Nukada T, Ohnishi Y, Ishigami K. Enantioselective synthesis and stereochemical determination of the highly reduced polyketide ishigamide. Biosci Biotechnol Biochem 2021; 85:148-153. [PMID: 33577653 DOI: 10.1093/bbb/zbaa023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 08/24/2020] [Indexed: 11/12/2022]
Abstract
Ishigamide was isolated as a metabolite of a recombinant strain of Streptomyces sp. MSC090213JE08 and its unsaturated fatty acid moiety has been confirmed in vitro to be synthesized by a type II PKS. Biosynthesis of such a highly reduced polyketide by a type II PKS is worthy of note. However, absolute configuration of ishigamide remained unknown. (R)-Ishigamide was synthesized enantioselectively employing Stille coupling and Wittig reaction between three units, vinyl iodide, stannyldienal, and Wittig salt. Stereochemistry of natural ishigamide was determined to be R by chiral HPLC analysis comparing with the synthesized standard.
Collapse
Affiliation(s)
- Mitsuki Seo
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ryo Katsuta
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Arata Yajima
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Tomoo Nukada
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo, Japan.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Ken Ishigami
- Department of Chemistry for Life Sciences and Agriculture, Tokyo University of Agriculture, Setagaya-ku, Tokyo, Japan
| |
Collapse
|
19
|
Lee N, Hwang S, Kim J, Cho S, Palsson B, Cho BK. Mini review: Genome mining approaches for the identification of secondary metabolite biosynthetic gene clusters in Streptomyces. Comput Struct Biotechnol J 2020; 18:1548-1556. [PMID: 32637051 PMCID: PMC7327026 DOI: 10.1016/j.csbj.2020.06.024] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 01/04/2023] Open
Abstract
Streptomyces are a large and valuable resource of bioactive and complex secondary metabolites, many of which have important clinical applications. With the advances in high throughput genome sequencing methods, various in silico genome mining strategies have been developed and applied to the mapping of the Streptomyces genome. These studies have revealed that Streptomyces possess an even more significant number of uncharacterized silent secondary metabolite biosynthetic gene clusters (smBGCs) than previously estimated. Linking smBGCs to their encoded products has played a critical role in the discovery of novel secondary metabolites, as well as, knowledge-based engineering of smBGCs to produce altered products. In this mini review, we discuss recent progress in Streptomyces genome sequencing and the application of genome mining approaches to identify and characterize smBGCs. Furthermore, we discuss several challenges that need to be overcome to accelerate the genome mining process and ultimately support the discovery of novel bioactive compounds.
Collapse
Affiliation(s)
- Namil Lee
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Soonkyu Hwang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Suhyung Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Bernhard Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Innovative Biomaterials Research Center, KI for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
- Intelligent Synthetic Biology Center, Daejeon 34141, Republic of Korea
| |
Collapse
|
20
|
Structural basis for selectivity in a highly reducing type II polyketide synthase. Nat Chem Biol 2020; 16:776-782. [PMID: 32367018 DOI: 10.1038/s41589-020-0530-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 03/27/2020] [Indexed: 01/18/2023]
Abstract
In type II polyketide synthases (PKSs), the ketosynthase-chain length factor (KS-CLF) complex catalyzes polyketide chain elongation with the acyl carrier protein (ACP). Highly reducing type II PKSs, represented by IgaPKS, produce polyene structures instead of the well-known aromatic skeletons. Here, we report the crystal structures of the Iga11-Iga12 (KS-CLF) heterodimer and the covalently cross-linked Iga10=Iga11-Iga12 (ACP=KS-CLF) tripartite complex. The latter structure revealed the molecular basis of the interaction between Iga10 and Iga11-Iga12, which differs from that between the ACP and KS of Escherichia coli fatty acid synthase. Furthermore, the reaction pocket structure and site-directed mutagenesis revealed that the negative charge of Asp 113 of Iga11 prevents further condensation using a β-ketoacyl product as a substrate, which distinguishes IgaPKS from typical type II PKSs. This work will facilitate the future rational design of PKSs.
Collapse
|
21
|
Chu L, Huang J, Muhammad M, Deng Z, Gao J. Genome mining as a biotechnological tool for the discovery of novel marine natural products. Crit Rev Biotechnol 2020; 40:571-589. [PMID: 32308042 DOI: 10.1080/07388551.2020.1751056] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compared to terrestrial environments, the oceans harbor a variety of environments, creating higher biodiversity, which gives marine natural products a high occurrence of significant biology and novel chemistry. However, traditional bioassay-guided isolation and purification strategies are severely limiting the discovery of additional novel natural products from the ocean. With an increasing number of marine microorganisms being sequenced, genome mining is gradually becoming a powerful tool to retrieve novel marine natural products. In this review, we have summarized genome mining approaches used to analyze key enzymes of biosynthetic pathways and predict the chemical structure of new gene clusters by introducing successful stories that used genome mining strategy to identify new marine-derived compounds. Furthermore, we also put forward challenges for genome mining techniques and their proposed solutions. The detailed analysis of the genome mining strategy will help researchers to understand this novel technique and its application. With the development of a genome sequence, genome mining strategies will be applied more widely, which will drive rapid development in the field of marine natural product development.
Collapse
Affiliation(s)
- Leixia Chu
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jinping Huang
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mustafa Muhammad
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Laboratory on Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Jiangtao Gao
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Mindrebo JT, Patel A, Kim WE, Davis TD, Chen A, Bartholow TG, La Clair JJ, McCammon JA, Noel JP, Burkart MD. Gating mechanism of elongating β-ketoacyl-ACP synthases. Nat Commun 2020; 11:1727. [PMID: 32265440 PMCID: PMC7138838 DOI: 10.1038/s41467-020-15455-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 03/06/2020] [Indexed: 12/20/2022] Open
Abstract
Carbon-carbon bond forming reactions are essential transformations in natural product biosynthesis. During de novo fatty acid and polyketide biosynthesis, β-ketoacyl-acyl carrier protein (ACP) synthases (KS), catalyze this process via a decarboxylative Claisen-like condensation reaction. KSs must recognize multiple chemically distinct ACPs and choreograph a ping-pong mechanism, often in an iterative fashion. Here, we report crystal structures of substrate mimetic bearing ACPs in complex with the elongating KSs from Escherichia coli, FabF and FabB, in order to better understand the stereochemical features governing substrate discrimination by KSs. Complemented by molecular dynamics (MD) simulations and mutagenesis studies, these structures reveal conformational states accessed during KS catalysis. These data taken together support a gating mechanism that regulates acyl-ACP binding and substrate delivery to the KS active site. Two active site loops undergo large conformational excursions during this dynamic gating mechanism and are likely evolutionarily conserved features in elongating KSs.
Collapse
Affiliation(s)
- Jeffrey T Mindrebo
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - Ashay Patel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Woojoo E Kim
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Tony D Davis
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Aochiu Chen
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - Thomas G Bartholow
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA
| | - James J La Clair
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA
| | - J Andrew McCammon
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.,Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA
| | - Joseph P Noel
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA. .,Jack H. Skirball Center for Chemical Biology and Proteomics, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA. .,Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, CA, 92037, USA.
| | - Michael D Burkart
- Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA, 92093-0358, USA.
| |
Collapse
|
23
|
Krause J, Handayani I, Blin K, Kulik A, Mast Y. Disclosing the Potential of the SARP-Type Regulator PapR2 for the Activation of Antibiotic Gene Clusters in Streptomycetes. Front Microbiol 2020; 11:225. [PMID: 32132989 PMCID: PMC7040171 DOI: 10.3389/fmicb.2020.00225] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 01/30/2020] [Indexed: 12/11/2022] Open
Abstract
Streptomyces antibiotic regulatory protein (SARP) family regulators are well-known activators of antibiotic biosynthesis in streptomycetes. The respective genes occur in various types of antibiotic gene clusters encoding, e.g., for polyketides, ribosomally and non-ribosomally synthesized peptides, or β-lactam antibiotics. We found that overexpression of the SARP-type regulator gene papR2 from Streptomyces pristinaespiralis in Streptomyces lividans leads to the activation of the silent undecylprodigiosin (Red) gene cluster. The activation happens upon the inducing function of PapR2, which takes over the regulatory role of RedD, the latter of which is the intrinsic SARP regulator of Red biosynthesis in S. lividans. Due to the broad abundance of SARP genes in different antibiotic gene clusters of various actinomycetes and the uniform activating principle of the encoded regulators, we suggest that this type of regulator is especially well suited to be used as an initiator of antibiotic biosynthesis in actinomycetes. Here, we report on a SARP-guided strategy to activate antibiotic gene clusters. As a proof of principle, we present the PapR2-driven activation of the amicetin/plicacetin gene cluster in the novel Indonesian strain isolate Streptomyces sp. SHP22-7.
Collapse
Affiliation(s)
- Janina Krause
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Ira Handayani
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
- Research Center for Biotechnology, Indonesian Institute of Sciences (LIPI), Cibinong, Indonesia
| | - Kai Blin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Andreas Kulik
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
| | - Yvonne Mast
- Department of Microbiology/Biotechnology, Interfaculty Institute of Microbiology and Infection Medicine, Faculty of Science, University of Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), Partner Site Tübingen, Tübingen, Germany
- Department of Bioresources for Bioeconomy and Health Research, Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
- Department of Microbiology, Technical University Braunschweig, Braunschweig, Germany
| |
Collapse
|
24
|
Exploration of cryptic organic photosensitive compound as Zincphyrin IV in Streptomyces venezuelae ATCC 15439. Appl Microbiol Biotechnol 2019; 104:713-724. [PMID: 31820068 DOI: 10.1007/s00253-019-10262-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 11/07/2019] [Accepted: 11/19/2019] [Indexed: 12/30/2022]
Abstract
Zincphyrin IV is a potential organic photosensitizer which is of significant interest for applications in biomedicine, materials science, agriculture (as insecticide), and chemistry. Most studies on Zincphyrin are focused on Zincphyrin III while biosynthesis and application of Zincphyrin IV is comparatively less explored. In this study, we explored Zincphyrin IV production in Streptomyces venezuelae ATCC 15439 through combination of morphology engineering and "One strain many compounds" approach. The morphology engineering followed by change in culture medium led to activation of cryptic Zincphyrin IV biosynthetic pathway in S. venezuelae with subsequent detection of Zincphyrin IV. Morphology engineering applied in S. venezuelae increased the biomass from 7.17 to 10.5 mg/mL after 48 h of culture. Moreover, morphology of engineered strain examined by SEM showed reduced branching and fragmentation of mycelia. The distinct change in color of culture broth visually demonstrated the activation of the cryptic biosynthetic pathway in S. venezuelae. The production of Zincphyrin IV was found to be initiated after overexpression ssgA, resulting in the increase in titer from 4.21 to 7.54 μg/mL. Furthermore, Zincphyrin IV demonstrated photodynamic antibacterial activity against Bacillus subtilis and photodynamic anticancer activity against human ovarian carcinoma cell lines.
Collapse
|
25
|
The ADEP Biosynthetic Gene Cluster in Streptomyces hawaiiensis NRRL 15010 Reveals an Accessory clpP Gene as a Novel Antibiotic Resistance Factor. Appl Environ Microbiol 2019; 85:AEM.01292-19. [PMID: 31399403 DOI: 10.1128/aem.01292-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/02/2019] [Indexed: 02/06/2023] Open
Abstract
The increasing threat posed by multiresistant bacterial pathogens necessitates the discovery of novel antibacterials with unprecedented modes of action. ADEP1, a natural compound produced by Streptomyces hawaiiensis NRRL 15010, is the prototype for a new class of acyldepsipeptide (ADEP) antibiotics. ADEP antibiotics deregulate the proteolytic core ClpP of the bacterial caseinolytic protease, thereby exhibiting potent antibacterial activity against Gram-positive bacteria, including multiresistant pathogens. ADEP1 and derivatives, here collectively called ADEP, have been previously investigated for their antibiotic potency against different species, structure-activity relationship, and mechanism of action; however, knowledge on the biosynthesis of the natural compound and producer self-resistance have remained elusive. In this study, we identified and analyzed the ADEP biosynthetic gene cluster in S. hawaiiensis NRRL 15010, which comprises two NRPSs, genes necessary for the biosynthesis of (4S,2R)-4-methylproline, and a type II polyketide synthase (PKS) for the assembly of highly reduced polyenes. While no resistance factor could be identified within the gene cluster itself, we discovered an additional clpP homologous gene (named clpP ADEP) located further downstream of the biosynthetic genes, separated from the biosynthetic gene cluster by several transposable elements. Heterologous expression of ClpPADEP in three ADEP-sensitive Streptomyces species proved its role in conferring ADEP resistance, thereby revealing a novel type of antibiotic resistance determinant.IMPORTANCE Antibiotic acyldepsipeptides (ADEPs) represent a promising new class of potent antibiotics and, at the same time, are valuable tools to study the molecular functioning of their target, ClpP, the proteolytic core of the bacterial caseinolytic protease. Here, we present a straightforward purification procedure for ADEP1 that yields substantial amounts of the pure compound in a time- and cost-efficient manner, which is a prerequisite to conveniently study the antimicrobial effects of ADEP and the operating mode of bacterial ClpP machineries in diverse bacteria. Identification and characterization of the ADEP biosynthetic gene cluster in Streptomyces hawaiiensis NRRL 15010 enables future bioinformatics screenings for similar gene clusters and/or subclusters to find novel natural compounds with specific substructures. Most strikingly, we identified a cluster-associated clpP homolog (named clpP ADEP) as an ADEP resistance gene. ClpPADEP constitutes a novel bacterial resistance factor that alone is necessary and sufficient to confer high-level ADEP resistance to Streptomyces across species.
Collapse
|
26
|
Katsuyama Y. Mining novel biosynthetic machineries of secondary metabolites from actinobacteria. Biosci Biotechnol Biochem 2019; 83:1606-1615. [DOI: 10.1080/09168451.2019.1606700] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
ABSTRACT
Secondary metabolites produced by actinobacteria have diverse structures and important biological activities, making them a useful source of drug development. Diversity of the secondary metabolites indicates that the actinobacteria exploit various chemical reactions to construct a structural diversity. Thus, studying the biosynthetic machinery of these metabolites should result in discovery of various enzymes catalyzing interesting and useful reactions. This review summarizes our recent studies on the biosynthesis of secondary metabolites from actinobacteria, including the biosynthesis of nonproteinogenic amino acids used as building blocks of nonribosomal peptides, the type II polyketide synthase catalyzing polyene scaffold, the nitrous acid biosynthetic pathway involved in secondary metabolite biosynthesis and unique cytochrome P450 catalyzing nitrene transfer. These findings expand the knowledge of secondary metabolite biosynthesis machinery and provide useful tools for future bioengineering.
Collapse
Affiliation(s)
- Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Bunkyo-ku, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Bunkyo-ku, Japan
| |
Collapse
|
27
|
Jahanshah G, Yan Q, Gerhardt H, Pataj Z, Lämmerhofer M, Pianet I, Josten M, Sahl HG, Silby MW, Loper JE, Gross H. Discovery of the Cyclic Lipopeptide Gacamide A by Genome Mining and Repair of the Defective GacA Regulator in Pseudomonas fluorescens Pf0-1. JOURNAL OF NATURAL PRODUCTS 2019; 82:301-308. [PMID: 30666877 DOI: 10.1021/acs.jnatprod.8b00747] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Genome mining of the Gram-negative bacterium Pseudomonas fluorescens Pf0-1 showed that the strain possesses a silent NRPS-based biosynthetic gene cluster encoding a new lipopeptide; its activation required the repair of the global regulator system. In this paper, we describe the genomics-driven discovery and characterization of the associated secondary metabolite gacamide A, a lipodepsipeptide that forms a new family of Pseudomonas lipopeptides. The compound has a moderate, narrow-spectrum antibiotic activity and facilitates bacterial surface motility.
Collapse
Affiliation(s)
- Gahzaleh Jahanshah
- Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , 72076 Tübingen , Germany
- German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| | - Qing Yan
- Department of Botany and Plant Pathology , Oregon State University , Corvallis , Oregon 97331 , United States
| | - Heike Gerhardt
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis , University of Tübingen , 72076 Tübingen , Germany
- UMR 5060, IRAMAT-CRP2A, Esplanade des Antilles , F-33600 Pessac , France
| | - Zoltán Pataj
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis , University of Tübingen , 72076 Tübingen , Germany
- UMR 5060, IRAMAT-CRP2A, Esplanade des Antilles , F-33600 Pessac , France
| | - Michael Lämmerhofer
- Pharmaceutical Institute, Department of Pharmaceutical Analysis and Bioanalysis , University of Tübingen , 72076 Tübingen , Germany
- UMR 5060, IRAMAT-CRP2A, Esplanade des Antilles , F-33600 Pessac , France
| | - Isabelle Pianet
- CESAMO-ISM, UMR 5255, CNRS , Université Bordeaux I , 351 Cours de la Libération , F-33405 Talence , France
| | - Michaele Josten
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit , University of Bonn , 53115 Bonn , Germany
- German Centre for Infection Research (DZIF) , partner site Bonn-Cologne , 53115 Bonn , Germany
| | - Hans-Georg Sahl
- Institute for Medical Microbiology, Immunology and Parasitology (IMMIP), Pharmaceutical Microbiology Unit , University of Bonn , 53115 Bonn , Germany
- German Centre for Infection Research (DZIF) , partner site Bonn-Cologne , 53115 Bonn , Germany
| | - Mark W Silby
- Department of Biology , University of Massachusetts Dartmouth , North Dartmouth , Massachusetts 02747 , United States
| | - Joyce E Loper
- Department of Botany and Plant Pathology , Oregon State University , Corvallis , Oregon 97331 , United States
- Agricultural Research Service , U.S. Department of Agriculture , Corvallis , Oregon 97331 , United States
| | - Harald Gross
- Pharmaceutical Institute, Department of Pharmaceutical Biology , University of Tübingen , 72076 Tübingen , Germany
- German Centre for Infection Research (DZIF) , partner site Tübingen , 72076 Tübingen , Germany
| |
Collapse
|
28
|
Ozaki T, Sugiyama R, Shimomura M, Nishimura S, Asamizu S, Katsuyama Y, Kakeya H, Onaka H. Identification of the common biosynthetic gene cluster for both antimicrobial streptoaminals and antifungal 5-alkyl-1,2,3,4-tetrahydroquinolines. Org Biomol Chem 2019; 17:2370-2378. [DOI: 10.1039/c8ob02846j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The new subfamily of type II PKS gene cluster is responsible for biosynthesis of structurally distinct streptoaminals (STAMs) and 5-alkyl-1,2,3,4-tetrahydroquinolines (5aTHQs).
Collapse
Affiliation(s)
- Taro Ozaki
- Department of Biotechnology
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Ryosuke Sugiyama
- Department of System Chemotherapy and Molecular Sciences
- Division of Bioinformatics and Chemical Genomics Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Morito Shimomura
- Department of Biotechnology
- The University of Tokyo
- Bunkyo-ku
- Japan
| | - Shinichi Nishimura
- Department of System Chemotherapy and Molecular Sciences
- Division of Bioinformatics and Chemical Genomics Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Shumpei Asamizu
- Department of Biotechnology
- The University of Tokyo
- Bunkyo-ku
- Japan
- Collaborative Research Institute for Innovative Microbiology
| | - Yohei Katsuyama
- Department of Biotechnology
- The University of Tokyo
- Bunkyo-ku
- Japan
- Collaborative Research Institute for Innovative Microbiology
| | - Hideaki Kakeya
- Department of System Chemotherapy and Molecular Sciences
- Division of Bioinformatics and Chemical Genomics Graduate School of Pharmaceutical Sciences
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Hiroyasu Onaka
- Department of Biotechnology
- The University of Tokyo
- Bunkyo-ku
- Japan
- Collaborative Research Institute for Innovative Microbiology
| |
Collapse
|
29
|
Daniel-Ivad M, Pimentel-Elardo S, Nodwell JR. Control of Specialized Metabolism by Signaling and Transcriptional Regulation: Opportunities for New Platforms for Drug Discovery? Annu Rev Microbiol 2018; 72:25-48. [PMID: 29799791 DOI: 10.1146/annurev-micro-022618-042458] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Specialized metabolites are bacterially produced small molecules that have an extraordinary diversity of important biological activities. They are useful as biochemical probes of living systems, and they have been adapted for use as drugs for human afflictions ranging from infectious diseases to cancer. The biosynthetic genes for these molecules are controlled by a dense network of regulatory mechanisms: Cell-cell signaling and nutrient sensing are conspicuous features of this network. While many components of these mechanisms have been identified, important questions about their biological roles remain shrouded in mystery. In addition to identifying new molecules and solving their mechanisms of action (a central preoccupation in this field), we suggest that addressing questions of quorum sensing versus diffusion sensing and identifying the dominant nutritional and environmental cues for specialized metabolism are important directions for research.
Collapse
Affiliation(s)
- M Daniel-Ivad
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - S Pimentel-Elardo
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| | - J R Nodwell
- Department of Biochemistry, University of Toronto, Ontario M5G 1M1, Canada;
| |
Collapse
|
30
|
Choi SS, Katsuyama Y, Bai L, Deng Z, Ohnishi Y, Kim ES. Genome engineering for microbial natural product discovery. Curr Opin Microbiol 2018; 45:53-60. [PMID: 29510374 DOI: 10.1016/j.mib.2018.02.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/14/2018] [Accepted: 02/14/2018] [Indexed: 11/16/2022]
Abstract
The discovery and development of microbial natural products (MNPs) have played pivotal roles in the fields of human medicine and its related biotechnology sectors over the past several decades. The post-genomic era has witnessed the development of microbial genome mining approaches to isolate previously unsuspected MNP biosynthetic gene clusters (BGCs) hidden in the genome, followed by various BGC awakening techniques to visualize compound production. Additional microbial genome engineering techniques have allowed higher MNP production titers, which could complement a traditional culture-based MNP chasing approach. Here, we describe recent developments in the MNP research paradigm, including microbial genome mining, NP BGC activation, and NP overproducing cell factory design.
Collapse
Affiliation(s)
- Si-Sun Choi
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Linquan Bai
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, China
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Japan
| | - Eung-Soo Kim
- Department of Biological Engineering, Inha University, Incheon, Republic of Korea.
| |
Collapse
|
31
|
Du D, Katsuyama Y, Shin-ya K, Ohnishi Y. Reconstitution of a Type II Polyketide Synthase that Catalyzes Polyene Formation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201709636] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7, Aomi Koto-ku Tokyo 135-0064 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
32
|
Du D, Katsuyama Y, Shin-ya K, Ohnishi Y. Reconstitution of a Type II Polyketide Synthase that Catalyzes Polyene Formation. Angew Chem Int Ed Engl 2018; 57:1954-1957. [DOI: 10.1002/anie.201709636] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 12/11/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Danyao Du
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| | - Kazuo Shin-ya
- National Institute of Advanced Industrial Science and Technology (AIST); 2-4-7, Aomi Koto-ku Tokyo 135-0064 Japan
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences; The University of Tokyo; 1-1-1 Yayoi Bunkyo-ku Tokyo 113-8657 Japan
| |
Collapse
|
33
|
Pait IGU, Kitani S, Roslan FW, Ulanova D, Arai M, Ikeda H, Nihira T. Discovery of a new diol-containing polyketide by heterologous expression of a silent biosynthetic gene cluster from Streptomyces lavendulae FRI-5. J Ind Microbiol Biotechnol 2017; 45:77-87. [PMID: 29255990 DOI: 10.1007/s10295-017-1997-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 12/09/2017] [Indexed: 11/29/2022]
Abstract
The genome of streptomycetes has the ability to produce many novel and potentially useful bioactive compounds, but most of which are not produced under standard laboratory cultivation conditions and are referred to as silent/cryptic secondary metabolites. Streptomyces lavendulae FRI-5 produces several types of bioactive compounds. However, this strain may also have the potential to biosynthesize more useful secondary metabolites. Here, we activated a silent biosynthetic gene cluster of an uncharacterized compound from S. lavendulae FRI-5 using heterologous expression. The engineered strain carrying the silent gene cluster produced compound 5, which was undetectable in the culture broth of S. lavendulae FRI-5. Using various spectroscopic analyses, we elucidated the chemical structure of compound 5 (named lavendiol) as a new diol-containing polyketide. The proposed assembly line of lavendiol shows a unique biosynthetic mechanism for polyketide compounds. The results of this study suggest the possibility of discovering more silent useful compounds from streptomycetes by genome mining and heterologous expression.
Collapse
Affiliation(s)
- Ivy Grace Umadhay Pait
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shigeru Kitani
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Farah Wahidah Roslan
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Dana Ulanova
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.,Department of Marine Resource Science, Faculty of Agriculture and Marine Science, Kochi University, 200 Otsu, Monobe, Nankoku, Kochi, 783-8502, Japan
| | - Masayoshi Arai
- Graduate School of Pharmaceutical Sciences, Osaka University, 1-6 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Haruo Ikeda
- Kitasato Institute for Life Sciences, Kitasato University, 1-15-1 Kitasato, Sagamihara, Kanagawa, 252-0373, Japan
| | - Takuya Nihira
- International Center for Biotechnology, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan. .,MU-OU Collaborative Research Center for Bioscience and Biotechnology, Faculty of Science, Mahidol University, Rama VI Rd, Bangkok, 10400, Thailand.
| |
Collapse
|
34
|
Takano H, Matsui Y, Nomura J, Fujimoto M, Katsumata N, Koyama T, Mizuno I, Amano S, Shiratori-Takano H, Komatsu M, Ikeda H, Ueda K. High production of a class III lantipeptide AmfS in Streptomyces griseus. Biosci Biotechnol Biochem 2017; 81:153-164. [DOI: 10.1080/09168451.2016.1238297] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Abstract
AmfS, a class III lantipeptide serves as a morphogen in Streptomyces griseus. Here, we constructed a high production system of AmfS in S. griseus. We isolated S. griseus Grd1 strain defective in glucose repression of aerial mycelium formation and found it suitable for the overproduction of AmfS. Two expression vectors carrying the strong and constitutive ermE2 promoter were constructed using a multicopy number plasmid, pIJ702. The use of the Grd1 strain combined with the expression vectors enabled high production of AmfS by S. griseus into its culture broth. The expression system was also effective for the generation of abundant AmfS derived from Streptomyces avermitilis. In addition, site-directed mutagenesis revealed the amino acid residues essential for the morphogen activity of AmfS. These results indicate that the constructed system enables efficient production of class III lantipeptides by Streptomyces.
Collapse
Affiliation(s)
- Hideaki Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Yuhei Matsui
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Junpei Nomura
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Masahiro Fujimoto
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Naoto Katsumata
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Takafumi Koyama
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Isamu Mizuno
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Shoichi Amano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Hatsumi Shiratori-Takano
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| | - Mamoru Komatsu
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Japan
| | - Haruo Ikeda
- Laboratory of Microbial Engineering, Kitasato Institute for Life Sciences, Kitasato University, Sagamihara, Japan
| | - Kenji Ueda
- Life Science Research Center, College of Bioresource Sciences, Nihon University, Fujisawa, Japan
| |
Collapse
|