1
|
Liang A, Zhao W, Lv T, Zhu Z, Haotian R, Zhang J, Xie B, Yi Y, Hao Z, Sun L, Luo A. Advances in novel biosensors in biomedical applications. Talanta 2024; 280:126709. [PMID: 39151317 DOI: 10.1016/j.talanta.2024.126709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 07/09/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Biosensors, devices capable of detecting biomolecules or bioactive substances, have recently become one of the important tools in the fields of bioanalysis and medical diagnostics. A biosensor is an analytical system composed of biosensitive elements and signal-processing elements used to detect various biological and chemical substances. Biomimetic elements are key to biosensor technology and are the components in a sensor that are responsible for identifying the target analyte. The construction methods and working principles of biosensors based on synthetic biomimetic elements, such as DNAzyme, molecular imprinted polymers and aptamers, and their updated applications in biomedical analysis are summarised. Finally, the technical bottlenecks and future development prospects for biomedical analysis are summarised and discussed.
Collapse
Affiliation(s)
- Axin Liang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Weidong Zhao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Tianjian Lv
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ziyu Zhu
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Ruilin Haotian
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiangjiang Zhang
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Yue Yi
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Zikai Hao
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Liquan Sun
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biotherapy, The Ministry of Industry and Information Technology, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| |
Collapse
|
2
|
Liu X, Yuan W, Xiao H. Recent progress on DNAzyme-based biosensors for pathogen detection. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4917-4937. [PMID: 38984495 DOI: 10.1039/d4ay00934g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Pathogens endanger food safety, agricultural productivity, and human health. Those pathogens are spread through direct/indirect contact, airborne transmission and food/waterborne transmission, and some cause severe health consequences. As the population grows and global connections intensify, the transmission of infectious diseases expands. Traditional detection methods for pathogens still have some shortcomings, such as time-consuming procedures and high operational costs. To fulfil the demands for simple and effective detection, numerous biosensors have been developed. DNAzyme, a unique DNA structure with catalytic activity, is gradually being applied in the field of pathogen detection owing to its ease of preparation and use. In this review, we concentrated on the two main types of DNAzyme, hemin/G-quadruplex DNAzyme (HGD) and RNA-cleaving DNAzyme (RCD), explaining their research progress in pathogen detection. Furthermore, we introduced two additional novel DNAzymes, CLICK 17 DNAzyme and Supernova DNAzyme, which showed promising potential in pathogen detection. Finally, we summarize the strengths and weaknesses of these four DNAzymes and offer feasible recommendations for the development of biosensors.
Collapse
Affiliation(s)
- Xingxing Liu
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Wenxu Yuan
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| | - Heng Xiao
- Laboratory of Viral Pathogenesis & Infection Prevention and Control (Jinan University), Ministry of Education, Guangzhou, 510632, China.
- Department of Immunology and Microbiology, College of Life Science and Technology, Jinan University, Guangzhou, Guangdong, 510632, P. R. China
| |
Collapse
|
3
|
Liu Y, Shi Y, Wang S, Liu S, Shang M, Zhao B, Liu H, Yang C, Wang F, Kwok CK, Wang H. Hook-Like DNAzyme-Activated Autocatalytic Biosensor for the Universal Detection of Pathogenic Bacteria. Anal Chem 2024; 96:11951-11958. [PMID: 38990770 DOI: 10.1021/acs.analchem.4c01757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
DNAzyme-based assays have found extensive utility in pathogenic bacteria detection but often suffer from limited sensitivity and specificity. The integration of a signal amplification strategy could address this challenge, while the existing combination methods require extensive modification to accommodate various DNAzymes, limiting the wide-spectrum bacteria detection. We introduced a novel hook-like DNAzyme-activated autocatalytic nucleic acid circuit for universal pathogenic bacteria detection. The hook-like connector DNA was employed to seamlessly integrate the recognition element DNAzyme with the isothermal enzyme-free autocatalytic hybridization chain reaction and catalytic hairpin assembly for robust exponential signal amplification. This innovative autocatalytic circuit substantially amplifies the output signals from the DNAzyme recognition module, effectively overcoming DNAzyme's inherent sensitivity constraints in pathogen identification. The biosensor exhibits a strong linear response within a range of 1.5 × 103 to 3.7 × 107 CFU/mL, achieving a detection limit of 1.3 × 103 CFU/mL. Noted that the sensor's adaptability as a universal detection platform is established by simply modifying the hook-like connector module, enabling the detection of various pathogenic bacteria of considerable public health importance reported by the World Health Organization, including Escherichia coli, Staphylococcus aureus, Klebsiella pneumoniae, and Salmonella typhimurium. Additionally, the specificity of DNAzyme in bacterial detection is markedly improved due to the signal amplification process of the autocatalytic circuit. This hook-like DNAzyme-activated autocatalytic platform presents a versatile, sensitive, and specific approach for pathogenic bacteria detection, promising to significantly expand the applications of DNAzyme in bacteria detection.
Collapse
Affiliation(s)
- Yaqi Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Yulong Shi
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Siyuan Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Sijia Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Min Shang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Bingyue Zhao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Hanghang Liu
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Changying Yang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei 430000, China
| | - Chun Kit Kwok
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon Tong ,Hong Kong SAR 999077, China
| | - Huimin Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Yichang, Hubei 443002, China
| |
Collapse
|
4
|
Ali M, Nair P, Capretta A, Brennan JD. In-vitro Clinical Diagnostics using RNA-Cleaving DNAzymes. Chembiochem 2024; 25:e202400085. [PMID: 38574237 DOI: 10.1002/cbic.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/06/2024]
Abstract
Over the last three decades, significant advancements have been made in the development of biosensors and bioassays that use RNA-cleaving DNAzymes (RCDs) as molecular recognition elements. While early examples of RCDs were primarily responsive to metal ions, the past decade has seen numerous RCDs reported for more clinically relevant targets such as bacteria, cancer cells, small metabolites, and protein biomarkers. Over the past 5 years several RCD-based biosensors have also been evaluated using either spiked biological matrixes or patient samples, including blood, serum, saliva, nasal mucus, sputum, urine, and faeces, which is a critical step toward regulatory approval and commercialization of such sensors. In this review, an overview of the methods used to generate RCDs and the properties of key RCDs that have been utilized for in vitro testing is first provided. Examples of RCD-based assays and sensors that have been used to test either spiked biological samples or patient samples are then presented, highlighting assay performance in different biological matrixes. A summary of current prospects and challenges for development of in vitro diagnostic tests incorporating RCDs and an overview of future directions of the field is also provided.
Collapse
Affiliation(s)
- Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, and, Firestone Institute of Respiratory Health at St. Joseph's Health Care, Hamilton, ON, L8N 4A6, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
5
|
Li X, Chang Y, Wu Y, Liu M. A DNAzymes-in-droplets assay for Burkholderia gladioli pathovar cocovenenans with single-bacterium sensitivity. Chem Sci 2024; 15:2996-3002. [PMID: 38404397 PMCID: PMC10882462 DOI: 10.1039/d3sc05874c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/15/2024] [Indexed: 02/27/2024] Open
Abstract
Foodborne pathogens pose a serious risk to human health, and the simple and rapid detection of such bacteria in complex food matrices remains challenging. Herein, we present the selection and characterization of a novel RNA-cleaving fluorogenic DNAzyme, named RFD-BC1, with exceptional specificity for Burkholderia gladioli pv. cocovenenans (B. cocovenenans), a pathogen strongly associated with fatal food poisoning cases. RFD-BC1 was activated by a protein secreted specifically by whole viable B. cocovenenans and displayed an optimum pH distinct from the selection pH, with a rate constant of approximately 0.01 min-1 at pH 5.0. Leveraging this newly discovered DNAzyme, we developed a novel system, termed DNAzymes-in-droplets (DID), that integrates droplet microfluidics to achieve the rapid and selective detection of live B. cocovenenans with single-cell sensitivity. We believe that the approach described herein holds promise for combating specific bacterial pathogens in food samples, offering significant potential for broader applications in food safety and public health.
Collapse
Affiliation(s)
- Xiaoqian Li
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory Dalian 116024 China
| |
Collapse
|
6
|
Wu Y, Chang D, Chang Y, Zhang Q, Liu Y, Brennan JD, Li Y, Liu M. Nucleic Acid Enzyme-Activated CRISPR-Cas12a With Circular CRISPR RNA for Biosensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303007. [PMID: 37294164 DOI: 10.1002/smll.202303007] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/01/2023] [Indexed: 06/10/2023]
Abstract
clustered regularly interspaced short palindromic repeats (CRISPR)-Cas systems are increasingly used in biosensor development. However, directly translating recognition events for non-nucleic acid targets by CRISPR into effective measurable signals represents an important ongoing challenge. Herein, it is hypothesized and confirmed that CRISPR RNAs (crRNAs) in a circular topology efficiently render Cas12a incapable of both site-specific double-stranded DNA cutting and nonspecific single-stranded DNA trans cleavage. Importantly, it is shown that nucleic acid enzymes (NAzymes) with RNA-cleaving activity can linearize the circular crRNAs, activating CRISPR-Cas12a functions. Using ligand-responsive ribozymes and DNAzymes as molecular recognition elements, it is demonstrated that target-triggered linearization of circular crRNAs offers great versatility for biosensing. This strategy is termed as "NAzyme-Activated CRISPR-Cas12a with Circular CRISPR RNA (NA3C)." Use of NA3C for clinical evaluation of urinary tract infections using an Escherichia coli-responsive RNA-cleaving DNAzyme to test 40 patient urine samples, providing a diagnostic sensitivity of 100% and specificity of 90%, is further demonstrated.
Collapse
Affiliation(s)
- Yunping Wu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| | - Qiang Zhang
- School of Bioengineering, Dalian University of Technology, Dalian, 116024, China
| | - Yi Liu
- Department of Neurology, Dalian Municipal Central Hospital, Affiliated Hospital of Dalian Medical University, Dalian, 116033, China
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4O3, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario, L8S4K1, Canada
| | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian POCT Laboratory, Dalian, 116024, China
| |
Collapse
|
7
|
Ali MM, Mukherjee M, Radford K, Patel Z, Capretta A, Nair P, Brennan JD. A Rapid Sputum-based Lateral Flow Assay for Airway Eosinophilia using an RNA-cleaving DNAzyme Selected for Eosinophil Peroxidase. Angew Chem Int Ed Engl 2023; 62:e202307451. [PMID: 37477970 DOI: 10.1002/anie.202307451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 07/22/2023]
Abstract
The first protein-binding allosteric RNA-cleaving DNAzyme (RCD) obtained by direct in vitro selection against eosinophil peroxidase (EPX), a validated marker for airway eosinophilia, is described. The RCD has nanomolar affinity for EPX, shows high selectivity against related peroxidases and other eosinophil proteins, and is resistant to degradation by mammalian nucleases. An optimized RCD was used to develop both fluorescence and lateral flow assays, which were evaluated using 38 minimally processed patient sputum samples (23 non-eosinophilic, 15 eosinophilic), producing a clinical sensitivity of 100 % and specificity of 96 %. This RCD-based lateral flow assay should allow for rapid evaluation of airway eosinophilia as an aid for guiding asthma therapy.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | - Manali Mukherjee
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Katherine Radford
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Zil Patel
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| | - Parameswaran Nair
- Division of Respirology, McMaster University, Firestone Institute of Respiratory Health at St. Joseph's Health Care, L8N 4A6, Hamilton, ON, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, L8S 4K1, Hamilton, ON, Canada
| |
Collapse
|
8
|
Feng Q, Zakaria S, Morrison D, Tram K, Gu J, Salena BJ, Li Y. A Fluorogenic DNAzyme for A Thermally Stable Protein Biomarker from Fusobacterium nucleatum, a Human Bacterial Pathogen. Angew Chem Int Ed Engl 2023; 62:e202306272. [PMID: 37404195 DOI: 10.1002/anie.202306272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/06/2023]
Abstract
Fusobacterium nucleatum has been correlated to many poor human conditions including oral infections, adverse pregnancies and cancer, and thus molecular tools capable of detecting this human pathogen can be used to develop diagnostic tests for them. Using a new selection method targeting thermally stable proteins without a counter-selection step, we derived an fluorogenic RNA-cleaving DNAzyme, named RFD-FN1, that can be activated by a thermally stable protein target that is unique to F. nucleatum subspecies. High thermal stability of protein targets is a very desirable attribute for DNAzyme-based biosensing directly with biological samples because nucleases found inherently in these samples can be heat-inactivated. We further demonstrate that RFD-FN1 can function as a fluorescent sensor in both human saliva and human stool samples. The discovery of RFD-FN1 paired with a highly thermal stable protein target presents opportunities for developing simpler diagnostic tests for this important pathogen.
Collapse
Affiliation(s)
- Qian Feng
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Sandy Zakaria
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Devon Morrison
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Kha Tram
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Jim Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Bruno J Salena
- Department of Medicine, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4 K1, Canada
| |
Collapse
|
9
|
Miao Q, Ding W, Bao X, Wang S, Lin Q, Xu Y, Lu J, Lyu M, Wang S. An efficient DNAzyme for the fluorescence detection of Vibrio cholerae. Food Sci Nutr 2023; 11:3235-3245. [PMID: 37324923 PMCID: PMC10261802 DOI: 10.1002/fsn3.3304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 02/18/2023] [Accepted: 02/24/2023] [Indexed: 03/14/2023] Open
Abstract
Vibrio cholerae (Vc) causes cholera disease. Vc contamination is widely found in water and aquatic products, and therefore is a serious food safety concern, especially for the seafood industry. In this paper, we attempted the rapid detection of V. cholerae. Nine rounds of in vitro selection using an unmodified DNA library were successfully performed to find specific DNAzymes of Vc. Their activity was evaluated based on a fluorescence assay and gel electrophoresis. Finally, a DNAzyme (named DVc1) with good activity and specificity with a detection limit of 7.2 × 103 CFU/mL of Vc was selected. A simple biosensor was constructed by immobilizing DVc1 and its substrate in shallow circular wells of a 96-well plate using pullulan polysaccharide and trehalose. When the crude extracellular mixture of Vc was added to the detection wells, the fluorescent signal was observed within 20 min. The sensor effectively detected Vc in aquatic products indicating its simplicity and efficiency. This sensitive DNAzyme sensor can be a rapid onsite Vc detection tool.
Collapse
Affiliation(s)
- Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Wen Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Xiuli Bao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Siyuan Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Qianru Lin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Yingying Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
| |
Collapse
|
10
|
Pandey R, Lu Y, McConnell EM, Osman E, Scott A, Gu J, Hoare T, Soleymani L, Li Y. Electrochemical DNAzyme-based biosensors for disease diagnosis. Biosens Bioelectron 2023; 224:114983. [PMID: 36640547 DOI: 10.1016/j.bios.2022.114983] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 01/01/2023]
Abstract
DNAzyme-based electrochemical biosensors provide exceptional analytical sensitivity and high target recognition specificity for disease diagnosis. This review provides a critical perspective on the fundamental and applied impact of incorporating DNAzymes in the field of electrochemical biosensing. Specifically, we highlight recent advances in creating DNAzyme-based electrochemical biosensors for diagnosing infectious diseases, cancer and regulatory diseases. We also develop an understanding of challenges around translating the research in the field of DNAzyme-based electrochemical biosensors from labs to clinics, followed by a discussion on different strategies that can be applied to enhance the performance of the currently existing technologies to create truly point-of-care electrochemical DNAzyme biosensors.
Collapse
Affiliation(s)
- Richa Pandey
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biomedical Engineering, University of Calgary, Calgary, Alberta, T2N 1N4, Canada.
| | - Yang Lu
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Enas Osman
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Alexander Scott
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Jimmy Gu
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Todd Hoare
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Chemical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada
| | - Leyla Soleymani
- Department of Engineering Physics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Michael G. DeGroot Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| | - Yingfu Li
- School of Biomedical Engineering, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, L8S 4K1, Canada; Michael G. DeGroot Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.
| |
Collapse
|
11
|
Discovery and translation of functional nucleic acids for clinically diagnosing infectious diseases: Opportunities and challenges. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Tian X, Hu J, Wei T, Ding W, Miao Q, Ning Z, Fan S, Wu H, Lu J, Lyu M, Wang S. Fast and sensitive graphene oxide-DNAzyme-based biosensor for Vibrio alginolyticus detection. JOURNAL OF FISH DISEASES 2022; 45:687-697. [PMID: 35176196 DOI: 10.1111/jfd.13594] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
DNAzymes have been widely and effectively used for the detection of pathogenic bacteria, which pose a serious public health threat. However, the rapid and cost-effective detection of such bacteria remains a major challenge. In this study, we successfully selected Vibrio alginolyticus-specific DNAzymes. The activity of the candidates was assessed via fluorescence intensity and gel electrophoresis. The DNAzyme DT1 had a detection limit of 31 CFU/ml for V. alginolyticus and exhibited high specificity. Graphene oxide (GO) was used to develop a DNAzyme-based fluorescent sensor for the detection of V. alginolyticus, which significantly improved detection performance and shortened the reaction time as little as 10 s. The proposed method was then validated using crab, shrimp, fish, clam, and oyster samples. This study thus provides a new method for the rapid and sensitive detection of V. alginolyticus.
Collapse
Affiliation(s)
- Xueqing Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jinfei Hu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Tong Wei
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Wen Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Qingzhen Miao
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Zhe Ning
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shihui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Hangjie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine Biotechnology, Jiangsu Ocean University, Lianyungang, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, China
| |
Collapse
|
13
|
Huang Z, Wang X, Wu Z, Jiang JH. Recent Advances on DNAzyme-Based Sensing. Chem Asian J 2022; 17:e202101414. [PMID: 35156764 DOI: 10.1002/asia.202101414] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/09/2022] [Indexed: 11/08/2022]
Abstract
DNAzymes are functional nucleic acid with catalytic activity. Owing to the high sensitivity, excellent programmability, and flexible obtainment through in vitro selection, RNA-cleaving DNAzymes have attracted increasing interest in developing DNAzyme-based sensors. In this review, we summarize the recent advances on DNAzyme-based sensing applications. We initially conclude two general strategies to expand the library of DNAzymes, in vitro selection to discover new DNAzymes towards different targets of interest and chemical modifications to endue the existing DNAzymes with new function or properties. We then discuss the recent applications of DNAzyme-based sensors for the detection of a variety of important biomolecules both in vitro and in vivo . Finally, perspectives on the challenges and future directions in the development of DNAzyme-based sensors are provided.
Collapse
Affiliation(s)
- Zhimei Huang
- Hunan University, College of Chemistry and Chemical Engineering, CHINA
| | - Xiangnan Wang
- Hunan University of Technology and Business, College of Science, CHINA
| | - Zhenkun Wu
- Hunan University, State Key Laboratory of Chemeo/Bio-Sensing and Chemometrics and College of Chemistry and Chemical Engineering, South of Lushan Road, 410082, Changsha, CHINA
| | - Jian-Hui Jiang
- Hunan University, State Key Laboratory of Chemo/Bio-Sensing and Chemometrics; College of Chemistry and Chemical Engineering, CHINA
| |
Collapse
|
14
|
Ali MM, Silva R, White D, Mohammadi S, Li Y, Capretta A, Brennan JD. A Lateral Flow Test for
Staphylococcus aureus
in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- M. Monsur Ali
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Ryan Silva
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Dawn White
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Saeed Mohammadi
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Alfredo Capretta
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - John D. Brennan
- Biointerfaces Institute McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
15
|
Ali MM, Silva R, White D, Mohammadi S, Li Y, Capretta A, Brennan JD. A Lateral Flow Test for Staphylococcus aureus in Nasal Mucus Using a New DNAzyme as the Recognition Element. Angew Chem Int Ed Engl 2021; 61:e202112346. [PMID: 34816559 DOI: 10.1002/anie.202112346] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Indexed: 12/14/2022]
Abstract
Detection of pathogenic bacteria in complex biological matrices remains a major challenge. Herein, we report the selection and optimization of a new DNAzyme for Staphylococcus aureus (SA) and the use of the DNAzyme to develop a simple lateral flow device (LFD) for detection of SA in nasal mucus. The DNAzyme was generated by in vitro selection using a crude extra/intracellular mixture derived from SA, which could be used directly for simple solution or paper-based fluorescence assays for SA. The DNAzyme was further modified to produce a DNA cleavage fragment that acted as a bridging element to bind DNA-modified gold nanoparticles to the test line of a LFD, producing a simple colorimetric dipstick test. The LFD was evaluated with nasal mucus samples spiked with SA, and demonstrated that SA detection was possible in minutes with minimal sample processing.
Collapse
Affiliation(s)
- M Monsur Ali
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Ryan Silva
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Dawn White
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Saeed Mohammadi
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - Alfredo Capretta
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| | - John D Brennan
- Biointerfaces Institute, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4K1, Canada
| |
Collapse
|
16
|
Sande MG, Rodrigues JL, Ferreira D, Silva CJ, Rodrigues LR. Novel Biorecognition Elements against Pathogens in the Design of State-of-the-Art Diagnostics. BIOSENSORS 2021; 11:bios11110418. [PMID: 34821636 PMCID: PMC8615483 DOI: 10.3390/bios11110418] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
Infectious agents, especially bacteria and viruses, account for a vast number of hospitalisations and mortality worldwide. Providing effective and timely diagnostics for the multiplicity of infectious diseases is challenging. Conventional diagnostic solutions, although technologically advanced, are highly complex and often inaccessible in resource-limited settings. An alternative strategy involves convenient rapid diagnostics which can be easily administered at the point-of-care (POC) and at low cost without sacrificing reliability. Biosensors and other rapid POC diagnostic tools which require biorecognition elements to precisely identify the causative pathogen are being developed. The effectiveness of these devices is highly dependent on their biorecognition capabilities. Naturally occurring biorecognition elements include antibodies, bacteriophages and enzymes. Recently, modified molecules such as DNAzymes, peptide nucleic acids and molecules which suffer a selective screening like aptamers and peptides are gaining interest for their biorecognition capabilities and other advantages over purely natural ones, such as robustness and lower production costs. Antimicrobials with a broad-spectrum activity against pathogens, such as antibiotics, are also used in dual diagnostic and therapeutic strategies. Other successful pathogen identification strategies use chemical ligands, molecularly imprinted polymers and Clustered Regularly Interspaced Short Palindromic Repeats-associated nuclease. Herein, the latest developments regarding biorecognition elements and strategies to use them in the design of new biosensors for pathogens detection are reviewed.
Collapse
Affiliation(s)
- Maria G. Sande
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Joana L. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Débora Ferreira
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
| | - Carla J. Silva
- CENTI—Center for Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal;
- CITEVE—Technological Center for the Textile and Clothing Industries of Portugal, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Ligia R. Rodrigues
- CEB—Centre of Biological Engineering, Campus de Gualtar, Universidade do Minho, 4710-057 Braga, Portugal; (M.G.S.); (J.L.R.); (D.F.)
- Correspondence: ; Tel.: +351-253601978
| |
Collapse
|
17
|
DEOXYRIBOZYMES IN DETECTION OF PATHOGENIC BACTERIA. BIOTECHNOLOGIA ACTA 2021. [DOI: 10.15407/biotech14.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aim. The purpose of the review was to analyze the use of DNAzyme biosensors for the detection of pathogens. In the recent years, deoxyribozymes (DNAzymes) have a significant impact as biosensors in diverse fields, from detection of metal ions in the environment to theranostic applications and detection of microorganisms. Although routinely used sophisticated instrumental methods are available to detect pathogenic bacterial contamination, they involve time-consuming, complicated sample pre-treatment and expensive instruments. As an alternative, pathogen-specific DNAzymes have demonstrated a series of advantages: a non-destructive rapid analysis technique with in situ and real-time detection of bacteria with high sensitivity and selectivity. A wide range of pathogen-specific DNAzymes has been developed using colorimetric and fluorescence-based detections for pathogenic bacterial contamination in various samples. The current review summarizes the in vitro selection of pathogen-specific DNAzymes, various strategies utilized in the sensor designs, and their potential use in theranostic applications.
Collapse
|
18
|
Khan S, Burciu B, Filipe CDM, Li Y, Dellinger K, Didar TF. DNAzyme-Based Biosensors: Immobilization Strategies, Applications, and Future Prospective. ACS NANO 2021; 15:13943-13969. [PMID: 34524790 DOI: 10.1021/acsnano.1c04327] [Citation(s) in RCA: 104] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Since their discovery almost three decades ago, DNAzymes have been used extensively in biosensing. Depending on the type of DNAzyme being used, these functional oligonucleotides can act as molecular recognition elements within biosensors, offering high specificity to their target analyte, or as reporters capable of transducing a detectable signal. Several parameters need to be considered when designing a DNAzyme-based biosensor. In particular, given that many of these biosensors immobilize DNAzymes onto a sensing surface, selecting an appropriate immobilization strategy is vital. Suboptimal immobilization can result in both DNAzyme detachment and poor accessibility toward the target, leading to low sensing accuracy and sensitivity. Various approaches have been employed for DNAzyme immobilization within biosensors, ranging from amine and thiol-based covalent attachment to non-covalent strategies involving biotin-streptavidin interactions, DNA hybridization, electrostatic interactions, and physical entrapment. While the properties of each strategy inform its applicability within a proposed sensor, the selection of an appropriate strategy is largely dependent on the desired application. This is especially true given the diverse use of DNAzyme-based biosensors for the detection of pathogens, metal ions, and clinical biomarkers. In an effort to make the development of such sensors easier to navigate, this paper provides a comprehensive review of existing immobilization strategies, with a focus on their respective advantages, drawbacks, and optimal conditions for use. Next, common applications of existing DNAzyme-based biosensors are discussed. Last, emerging and future trends in the development of DNAzyme-based biosensors are discussed, and gaps in existing research worthy of exploration are identified.
Collapse
Affiliation(s)
- Shadman Khan
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
| | - Brenda Burciu
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4K1, Canada
| | - Kristen Dellinger
- Department of Nanoengineering, Joint School of Nanoscience and Nanoengineering, North Carolina A&T State University, 2907 East Gate City Boulevard, Greensboro, North Carolina 27401, United States
| | - Tohid F Didar
- School of Biomedical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L8, Canada
- Department of Mechanical Engineering, McMaster University, 1280 Main Street West, Hamilton, Ontario L8S 4L7, Canada
| |
Collapse
|
19
|
Chang D, Zakaria S, Esmaeili Samani S, Chang Y, Filipe CDM, Soleymani L, Brennan JD, Liu M, Li Y. Functional Nucleic Acids for Pathogenic Bacteria Detection. Acc Chem Res 2021; 54:3540-3549. [PMID: 34478272 DOI: 10.1021/acs.accounts.1c00355] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogens have long presented a significant threat to human lives, and hence the rapid detection of infectious pathogens is vital for improving human health. Current detection methods lack the means to detect infectious pathogens in a simple, rapid, and reliable manner at the time and point of need. Functional nucleic acids (FNAs) have the potential to overcome these limitations by acting as key components for point-of-care (POC) biosensors due to their distinctive advantages that include high binding affinities and specificities, excellent chemical stability, ease of synthesis and modification, and compatibility with a variety of signal-amplification and signal-transduction mechanisms.This Account summarizes the work completed in our groups toward developing FNA-based biosensors for detecting bacteria. In vitro selection has led to the isolation of many RNA-cleaving fluorogenic DNAzymes (RFDs) and DNA aptamers that can recognize infectious pathogens, including Escherichia coli, Clostridium difficile, Helicobacter pylori, and Legionella pneumophila. In most cases, a "many-against-many" approach was employed using a DNA library against a crude cellular mixture of an infectious pathogen containing diverse biomarkers as the target to isolate RFDs, with combined counter and positive selections ensuring high specificity toward the desired target. This procedure allows for the isolation of pathogen-specific FNAs without first identifying a suitable biomarker. Multiple target-specific DNA aptamers, including anti-glutamate dehydrogenase (GDH) circular aptamers, anti-degraded toxin B aptamers, and anti-RNase HII aptamers, have also been isolated for the detection of bacteria such as Clostridium difficile. The isolated FNAs have been integrated into fluorescent, colorimetric, and electrochemical biosensors using various signal transduction mechanisms. Both simple-to-use paper-based analytical devices and hand-held electrical devices with integrated FNAs have been developed for POC applications. In addition, signal-amplification strategies, including DNA catenane enabled rolling circle amplification (RCA), DNAzyme feedback RCA, and an all-DNA amplification system using a four-way junction and catalytic hairpin assembly (CHA), have been designed and applied to these systems to further increase their detection sensitivity. The use of these FNA-based biosensors to detect pathogens directly in clinical samples, such as urine, blood, and stool, has now been demonstrated with an outstanding sensitivity of as low as 10 cells per milliliter, highlighting the tremendous potential of using FNA-based sensors in clinical applications. We further describe strategies to overcome the challenges of using FNA-based biosensors in clinical applications, including strategies to improve the stability of FNAs in biological samples and prevent their nonspecific degradation from nucleases and strategies to deal with issues such as signal loss caused by nonspecific binding and biofouling. Finally, the remaining roadblocks for employing FNA-based biosensors in clinical applications are discussed.
Collapse
Affiliation(s)
| | | | | | - Yangyang Chang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | | | | | | | - Meng Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | | |
Collapse
|
20
|
RNA-cleaving DNAzymes as a diagnostic and therapeutic agent against antimicrobial resistant bacteria. Curr Genet 2021; 68:27-38. [PMID: 34505182 DOI: 10.1007/s00294-021-01212-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 08/12/2021] [Accepted: 09/02/2021] [Indexed: 10/20/2022]
Abstract
The development of nucleic-acid-based antimicrobials such as RNA-cleaving DNAzyme (RCD), a short catalytically active nucleic acid, is a promising alternative to the current antibiotics. The current rapid spread of antimicrobial resistance (AMR) in bacteria renders some antibiotics useless against bacterial infection, thus creating the need for alternative antimicrobials such as DNAzymes. This review summarizes recent advances in the use of RCD as a diagnostic and therapeutic agent against AMR. Firstly, the recent diagnostic application of RCD for the detection of bacterial cells and the associated resistant gene(s) is discussed. The next section summarises the therapeutic application of RCD in AMR bacterial infections which includes direct targeting of the resistant genes and indirect targeting of AMR-associated genes. Finally, this review extends the discussion to challenges of utilizing RCD in real-life applications, and the potential of combining both diagnostic and therapeutic applications of RCD into a single agent as a theranostic agent.
Collapse
|
21
|
Abstract
This article provides a comprehensive review of biosensing with DNAzymes, providing an overview of different sensing applications while highlighting major progress and seminal contributions to the field of portable biosensor devices and point-of-care diagnostics. Specifically, the field of functional nucleic acids is introduced, with a specific focus on DNAzymes. The incorporation of DNAzymes into bioassays is then described, followed by a detailed overview of recent advances in the development of in vivo sensing platforms and portable sensors incorporating DNAzymes for molecular recognition. Finally, a critical perspective on the field, and a summary of where DNAzyme-based devices may make the biggest impact are provided.
Collapse
Affiliation(s)
- Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| | | | | | | | | | | |
Collapse
|
22
|
Qin M, Ma X, Fan S, Wu H, Yan W, Tian X, Lu J, Lyu M, Wang S. Rapid detection of Pseudomonas aeruginosa using a DNAzyme-based sensor. Food Sci Nutr 2021; 9:3873-3884. [PMID: 34262744 PMCID: PMC8269565 DOI: 10.1002/fsn3.2367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 05/15/2021] [Accepted: 05/17/2021] [Indexed: 11/22/2022] Open
Abstract
In the present study, a DNAzyme was screened in vitro through the use of a DNA library and crude extracellular mixture (CEM) of Pseudomonas aeruginosa. Following eight rounds of selection, a DNAzyme termed PAE-1 was obtained, which displayed high rates of cleavage with strong specificity. A fluorescent biosensor was designed for the detection of P. aeruginosa in combination with the DNAzyme. A detection limit as low as 1.2 cfu/ml was observed. Using proteases and filtration, it was determined that the target was a protein with a molecular weight of 10 kDa-50 kDa. The DNAzyme was combined with a polystyrene board to construct a simple indicator plate sensor which produced a color that identified the target within 10 min. The results were reliable when tap water and food samples were tested. The present study provides a novel experimental strategy for the development of sensors based on a DNAzyme to rapidly detect P. aeruginosa in the field.
Collapse
Affiliation(s)
- Mingcan Qin
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Xiaoyi Ma
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Shihui Fan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Hangjie Wu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Wanli Yan
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Xiaopeng Tian
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Jing Lu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment/Jiangsu Key Laboratory of Marine BiotechnologyJiangsu Ocean UniversityLianyungangChina
- Co‐Innovation Center of Jiangsu Marine Bio‐industry TechnologyJiangsu Ocean UniversityLianyungangChina
- Jiangsu Marine Resources Development Research InstituteLianyungangChina
| |
Collapse
|
23
|
Ma X, wang C, Qin M, Tian X, Fan S, Zu H, Lyu M, Wang S. Rapid detection of Aeromonas hydrophila with a DNAzyme-based sensor. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Cozma I, McConnell EM, Brennan JD, Li Y. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens Bioelectron 2021; 177:112972. [DOI: 10.1016/j.bios.2021.112972] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
|
25
|
Rothenbroker M, McConnell EM, Gu J, Urbanus ML, Samani SE, Ensminger AW, Filipe CDM, Li Y. Selection and Characterization of an RNA‐Cleaving DNAzyme Activated by
Legionella pneumophila. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012444] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Meghan Rothenbroker
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Erin M. McConnell
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Jimmy Gu
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | | | | | | | | | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
26
|
Selection and applications of functional nucleic acids for infectious disease detection and prevention. Anal Bioanal Chem 2021; 413:4563-4579. [PMID: 33506341 PMCID: PMC7840224 DOI: 10.1007/s00216-020-03124-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 11/30/2020] [Accepted: 12/14/2020] [Indexed: 02/07/2023]
Abstract
Infectious diseases caused by pathogenic microorganisms such as viruses and bacteria pose a great threat to human health. Although a significant progress has been obtained in the diagnosis and prevention of infectious diseases, it still remains challenging to develop rapid and cost-effective detection approaches and overcome the side effects of therapeutic agents and pathogen resistance. Functional nucleic acids (FNAs), especially the most widely used aptamers and DNAzymes, hold the advantages of high stability and flexible design, which make them ideal molecular recognition tools for bacteria and viruses, as well as potential therapeutic drugs for infectious diseases. This review summarizes important advances in the selection and detection of bacterial- and virus-associated FNAs, along with their potential prevention ability of infectious disease in recent years. Finally, the challenges and future development directions are concluded.
Collapse
|
27
|
Ponce-Salvatierra A, Boccaletto P, Bujnicki JM. DNAmoreDB, a database of DNAzymes. Nucleic Acids Res 2021; 49:D76-D81. [PMID: 33053178 PMCID: PMC7778931 DOI: 10.1093/nar/gkaa867] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 01/08/2023] Open
Abstract
Deoxyribozymes, DNA enzymes or simply DNAzymes are single-stranded oligo-deoxyribonucleotide molecules that, like proteins and ribozymes, possess the ability to perform catalysis. Although DNAzymes have not yet been found in living organisms, they have been isolated in the laboratory through in vitro selection. The selected DNAzyme sequences have the ability to catalyze a broad range of chemical reactions, utilizing DNA, RNA, peptides or small organic compounds as substrates. DNAmoreDB is a comprehensive database resource for DNAzymes that collects and organizes the following types of information: sequences, conditions of the selection procedure, catalyzed reactions, kinetic parameters, substrates, cofactors, structural information whenever available, and literature references. Currently, DNAmoreDB contains information about DNAzymes that catalyze 20 different reactions. We included a submission form for new data, a REST-based API system that allows users to retrieve the database contents in a machine-readable format, and keyword and BLASTN search features. The database is publicly available at https://www.genesilico.pl/DNAmoreDB/.
Collapse
Affiliation(s)
- Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Pietro Boccaletto
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, PL-02-109 Warsaw, Poland.,Bioinformatics Laboratory, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, PL-61-614 Poznan, Poland
| |
Collapse
|
28
|
Rothenbroker M, McConnell EM, Gu J, Urbanus ML, Samani SE, Ensminger AW, Filipe CDM, Li Y. Selection and Characterization of an RNA‐Cleaving DNAzyme Activated by
Legionella pneumophila. Angew Chem Int Ed Engl 2021; 60:4782-4788. [DOI: 10.1002/anie.202012444] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Meghan Rothenbroker
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Erin M. McConnell
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | - Jimmy Gu
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| | | | | | | | | | - Yingfu Li
- Michael G. DeGroote Institute for Infectious Disease Research Department of Biochemistry and Biomedical Sciences McMaster University 1280 Main Street West Hamilton ON L8S 4K1 Canada
| |
Collapse
|
29
|
Huang PJ, Liu J. In vitro Selection of Chemically Modified DNAzymes. ChemistryOpen 2020; 9:1046-1059. [PMID: 33101831 PMCID: PMC7570446 DOI: 10.1002/open.202000134] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
DNAzymes are in vitro selected DNA oligonucleotides with catalytic activities. RNA cleavage is one of the most extensively studied DNAzyme reactions. To expand the chemical functionality of DNA, various chemical modifications have been made during and after selection. In this review, we summarize examples of RNA-cleaving DNAzymes and focus on those modifications introduced during in vitro selection. By incorporating various modified nucleotides via polymerase chain reaction (PCR) or primer extension, a few DNAzymes were obtained that can be specifically activated by metal ions such as Zn2+ and Hg2+. In addition, some modifications were introduced to mimic RNase A that can cleave RNA substrates in the absence of divalent metal ions. In addition, single modifications at the fixed regions of DNA libraries, especially at the cleavage junctions, have been tested, and examples of DNAzymes with phosphorothioate and histidine-glycine modified tertiary amine were successfully obtained specific for Cu2+, Cd2+, Zn2+, and Ni2+. Labeling fluorophore/quencher pair right next to the cleavage junction was also used to obtain signaling DNAzymes for detecting various metal ions and cells. Furthermore, we reviewed work on the cleavage of 2'-5' linked RNA and L-RNA substrates. Finally, applications of these modified DNAzymes as biosensors, RNases, and biochemical probes are briefly described with a few future research opportunities outlined at the end.
Collapse
Affiliation(s)
- Po‐Jung Jimmy Huang
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooOntario, N2L 3G1Canada
| |
Collapse
|
30
|
McConnell EM, Morrison D, Rey Rincon MA, Salena BJ, Li Y. Selection and applications of synthetic functional DNAs for bacterial detection. Trends Analyt Chem 2020. [DOI: 10.1016/j.trac.2019.115785] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
31
|
|
32
|
Liu R, McConnell EM, Li J, Li Y. Advances in functional nucleic acid based paper sensors. J Mater Chem B 2020; 8:3213-3230. [DOI: 10.1039/c9tb02584g] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
This article provides an extensive review of paper-based sensors that utilize functional nucleic acids, particularly DNA aptamers and DNAzymes, as recognition elements.
Collapse
Affiliation(s)
- Rudi Liu
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Erin M. McConnell
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Jiuxing Li
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences
- McMaster University
- Hamilton
- Canada
| |
Collapse
|
33
|
Samani SE, Chang D, McConnell EM, Rothenbroker M, Filipe CDM, Li Y. Highly Sensitive RNA-Cleaving DNAzyme Sensors from Surface-to-Surface Product Enrichment. Chembiochem 2019; 21:632-637. [PMID: 31544309 DOI: 10.1002/cbic.201900575] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Indexed: 12/13/2022]
Abstract
The engineering of easy-to-use biosensors with ultra-low detection sensitivity remains a major challenge. Herein, we report a simple approach for creating such sensors through the use of an RNA-cleaving DNAzyme (RcD) and a strategy designed to concentrate its cleavage product significantly. The assay uses micron-sized beads loaded with a target-responsive RcD and a paper strip containing a microzone covered with a DNA oligonucleotide capable of capturing the cleavage product of the RcD through Watson-Crick hybridization. Placing the beads and the paper strip in a target-containing test sample allows the bead-bound RcD molecules to undergo target-induced RNA cleavage, releasing a DNA fragment that is captured by the paper strip. This strategy, though simple, is very effective in achieving high levels of detection sensitivity, being able to enrich the concentration of the cleavage product by three orders of magnitude. It is also compatible with both fluorescence-based and colorimetric reporting mechanisms. This work provides a simple platform for developing ultrasensitive biosensors that take advantage of the widely available RcDs as molecular recognition elements.
Collapse
Affiliation(s)
- Sahar Esmaeili Samani
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Dingran Chang
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Erin M McConnell
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Meghan Rothenbroker
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Carlos D M Filipe
- Department of Chemical Engineering, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| | - Yingfu Li
- Department of Biochemistry and Biomedical Sciences, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada
| |
Collapse
|
34
|
Gu L, Yan W, Wu H, Fan S, Ren W, Wang S, Lyu M, Liu J. Selection of DNAzymes for Sensing Aquatic Bacteria: Vibrio Anguillarum. Anal Chem 2019; 91:7887-7893. [DOI: 10.1021/acs.analchem.9b01707] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
| | | | | | | | - Wei Ren
- Key Laboratory of Marine Biology, Nanjing Agricultural University, Nanjing, Jiangsu 210000, P. R. China
| | | | | | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
35
|
Giovannini G, Gubala V, Hall AJ. ‘Off–on’ switchable fluorescent probe for prompt and cost-efficient detection of bacteria. NEW J CHEM 2019. [DOI: 10.1039/c9nj03110c] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The rapid and straightforward detection of bacteria in food and human samples is becoming important, particularly in view of the development of point-of-care devices and lab-on-a-chip tools for prevention and treatment of bacterial infections.
Collapse
Affiliation(s)
- Giorgia Giovannini
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| | - Vladimir Gubala
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| | - Andrew J. Hall
- Medway School of Pharmacy
- University of Kent
- Central Avenue
- Chatham Maritime
- Kent
| |
Collapse
|