1
|
Mondal P, Udukalage D, Mohamed AA, Wong HPH, de Visser SP, Wijeratne GB. A Cytochrome P450 TxtE Model System with Mechanistic and Theoretical Evidence for a Heme Peroxynitrite Active Species. Angew Chem Int Ed Engl 2024; 63:e202409430. [PMID: 39088419 DOI: 10.1002/anie.202409430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 07/10/2024] [Accepted: 07/30/2024] [Indexed: 08/03/2024]
Abstract
The cytochrome P450 homolog, TxtE, efficiently catalyzes the direct and regioselective aromatic nitration of the indolyl moiety of L-tryptophan to 4-nitro-L-tryptophan, using nitric oxide (NO) and dioxygen (O2) as co-substrates. Pathways for such direct and selective nitration of heteroaromatic motifs present platforms for engineering new nitration biocatalysts for pharmacologically beneficial targets, among a medley of other pivotal industrial applications. Precise mechanistic details concerning this pathway are only weakly understood, albeit a heme iron(III)-peroxynitrite active species has been postulated. To shed light on this unique reaction landscape, we investigated the indole nitration pathway of a series of biomimetic ferric heme superoxide mimics, [(Por)FeIII(O2 -⋅)], in the presence of NO. Therein, our model systems gave rise to three distinct nitroindole products, including 4-nitroindole, the product analogous to that obtained with TxtE. Moreover, 15N and 18O isotope labeling studies, along with meticulously designed control experiments lend credence to a heme peroxynitrite active nitrating agent, drawing close similarities to the tryptophan nitration mechanism of TxtE. All organic and inorganic reaction components have been fully characterized using spectroscopic methods. Theoretical investigation into several mechanistic possibilities deem a unique indolyl radical based reaction pathway as the most energetically favorable, products of which, are in excellent agreement with experimental findings.
Collapse
Affiliation(s)
- Pritam Mondal
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, United States
- Current address: Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Punjab, 140306, India
| | - Dhilanka Udukalage
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, United States
| | - Abubaker A Mohamed
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Gayan B Wijeratne
- Department of Chemistry and Biochemistry, The University of Alabama, Tuscaloosa, AL 35487, United States
| |
Collapse
|
2
|
Taher M, Dubey KD, Mazumdar S. Computationally guided bioengineering of the active site, substrate access pathway, and water channels of thermostable cytochrome P450, CYP175A1, for catalyzing the alkane hydroxylation reaction. Chem Sci 2023; 14:14316-14326. [PMID: 38098704 PMCID: PMC10718072 DOI: 10.1039/d3sc02857g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/10/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding structure-function relationships in proteins is pivotal in their development as industrial biocatalysts. In this regard, rational engineering of protein active site access pathways and various tunnels and channels plays a central role in designing competent enzymes with high stability and enhanced efficiency. Here, we report the rational evolution of a thermostable cytochrome P450, CYP175A1, to catalyze the C-H activation reaction of longer-chain alkanes. A strategy combining computational tools with experiments has shown that the substrate scope and enzymatic activity can be enhanced by rational engineering of certain important channels such as the substrate entry and water channels along with the active site of the enzyme. The evolved enzymes showed an improved catalytic rate for hexadecane hydroxylation with high regioselectivity. The Q67L/Y68F mutation showed binding of the substrate in the active site, water channel mutation L80F/V220T showed improved catalytic activity through the peroxide shunt pathway and substrate entry channel mutation W269F/I270A showed better substrate accessibility to the active pocket. All-atom MD simulations provided the rationale for the inactivity of the wild-type CYP175A1 for hexadecane hydroxylation and predicted the above hot-spot residues to enhance the activity. The reaction mechanism was studied by QM/MM calculations for enzyme-substrate complexes and reaction intermediates. Detailed thermal and thermodynamic stability of all the mutants were analyzed and the results showed that the evolved enzymes were thermally stable. The present strategy showed promising results, and insights gained from this work can be applied to the general enzymatic system to expand substrate scope and improve catalytic activity.
Collapse
Affiliation(s)
- Mohd Taher
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence Delhi-NCR NH91, Tehsil Dadri Greater Noida Uttar Pradesh 201314 India
| | - Shyamalava Mazumdar
- Department of Chemical Sciences, Tata Institute of Fundamental Research Homi Bhabha Road, Colaba Mumbai 400005 India
| |
Collapse
|
3
|
Chen M, Petriti V, Mondal A, Jiang Y, Ding Y. Direct aromatic nitration by bacterial P450 enzymes. Methods Enzymol 2023; 693:307-337. [PMID: 37977734 PMCID: PMC10928822 DOI: 10.1016/bs.mie.2023.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Nitro aromatics have broad applications in industry, agriculture, and pharmaceutics. However, their industrial production is faced with many challenges including poor selectivity, heavy pollution and safety concerns. Nature provides multiple strategies for aromatic nitration, which opens the door for the development of green and efficient biocatalysts. Our group's efforts focused on a unique bacterial cytochrome P450 TxtE that originates from the biosynthetic pathway of phytotoxin thaxtomins, which can install a nitro group at C4 of l-Trp indole ring. TxtE is a Class I P450 and its reaction relies on a pair of redox partners ferredoxin and ferredoxin reductase for essential electron transfer. To develop TxtE as an efficient nitration biocatalyst, we created artificial self-sufficient P450 chimeras by fusing TxtE with the reductase domain of the bacterial P450BM3 (BM3R). We evaluated the catalytic performance of the chimeras with different lengths of the linker connecting TxtE and BM3R domains and identified one with a 14-amino-acid linker (TB14) to give the best activity. In addition, we demonstrated the broad substrate scope of the engineered biocatalyst by screening diverse l-Trp analogs. In this chapter, we provide a detailed procedure for the development of aromatic nitration biocatalysts, including the construction of P450 fusion chimeras, biochemical characterization, determination of catalytic parameters, and testing of enzyme-substrate scope. These protocols can be followed to engineer other P450 enzymes and illustrate the processes of biocatalytic development for the synthesis of nitro chemicals.
Collapse
Affiliation(s)
- Manyun Chen
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Vanisa Petriti
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Amit Mondal
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Yujia Jiang
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States
| | - Yousong Ding
- Department of Medicinal Chemistry, Center for Natural Products, Drug Discovery and Development, College of Pharmacy, University of Florida, Gainesville, FL, United States.
| |
Collapse
|
4
|
Jordan S, Li B, Traore E, Wu Y, Usai R, Liu A, Xie ZR, Wang Y. Structural and spectroscopic characterization of RufO indicates a new biological role in rufomycin biosynthesis. J Biol Chem 2023; 299:105049. [PMID: 37451485 PMCID: PMC10424215 DOI: 10.1016/j.jbc.2023.105049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Rufomycins constitute a class of cyclic heptapeptides isolated from actinomycetes. They are secondary metabolites that show promising treatment against Mycobacterium tuberculosis infections by inhibiting a novel drug target. Several nonproteinogenic amino acids are integrated into rufomycins, including a conserved 3-nitro-tyrosine. RufO, a cytochrome P450 (CYP)-like enzyme, was proposed to catalyze the formation of 3-nitro-tyrosine in the presence of O2 and NO. To define its biological function, the interaction between RufO and the proposed substrate tyrosine is investigated using various spectroscopic methods that are sensitive to the structural change of a heme center. However, a low- to high-spin state transition and a dramatic increase in the redox potential that are commonly found in CYPs upon ligand binding have not been observed. Furthermore, a 1.89-Å crystal structure of RufO shows that the enzyme has flexible surface regions, a wide-open substrate access tunnel, and the heme center is largely exposed to solvent. Comparison with a closely related nitrating CYP reveals a spacious and hydrophobic distal pocket in RufO, which is incapable of stabilizing a free amino acid. Molecular docking validates the experimental data and proposes a possible substrate. Collectively, our results disfavor tyrosine as the substrate of RufO and point to the possibility that the nitration occurs during or after the assembly of the peptides. This study indicates a new function of the unique nitrating enzyme and provides insights into the biosynthesis of nonribosomal peptides.
Collapse
Affiliation(s)
- Stephanie Jordan
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Bingnan Li
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Ephrahime Traore
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yifei Wu
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Remigio Usai
- Department of Chemistry, University of Georgia, Athens, Georgia, USA
| | - Aimin Liu
- Department of Chemistry, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Zhong-Ru Xie
- School of Electrical and Computer Engineering, University of Georgia, Athens, Georgia, USA
| | - Yifan Wang
- Department of Chemistry, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
5
|
Haduch A, Bromek E, Kuban W, Daniel WA. The Engagement of Cytochrome P450 Enzymes in Tryptophan Metabolism. Metabolites 2023; 13:metabo13050629. [PMID: 37233670 DOI: 10.3390/metabo13050629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/30/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
Tryptophan is metabolized along three main metabolic pathways, namely the kynurenine, serotonin and indole pathways. The majority of tryptophan is transformed via the kynurenine pathway, catalyzed by tryptophan-2,3-dioxygenase or indoleamine-2,3-dioxygenase, leading to neuroprotective kynurenic acid or neurotoxic quinolinic acid. Serotonin synthesized by tryptophan hydroxylase, and aromatic L-amino acid decarboxylase enters the metabolic cycle: serotonin → N-acetylserotonin → melatonin → 5-methoxytryptamine→serotonin. Recent studies indicate that serotonin can also be synthesized by cytochrome P450 (CYP), via the CYP2D6-mediated 5-methoxytryptamine O-demethylation, while melatonin is catabolized by CYP1A2, CYP1A1 and CYP1B1 via aromatic 6-hydroxylation and by CYP2C19 and CYP1A2 via O-demethylation. In gut microbes, tryptophan is metabolized to indole and indole derivatives. Some of those metabolites act as activators or inhibitors of the aryl hydrocarbon receptor, thus regulating the expression of CYP1 family enzymes, xenobiotic metabolism and tumorigenesis. The indole formed in this way is further oxidized to indoxyl and indigoid pigments by CYP2A6, CYP2C19 and CYP2E1. The products of gut-microbial tryptophan metabolism can also inhibit the steroid-hormone-synthesizing CYP11A1. In plants, CYP79B2 and CYP79B3 were found to catalyze N-hydroxylation of tryptophan to form indole-3-acetaldoxime while CYP83B1 was reported to form indole-3-acetaldoxime N-oxide in the biosynthetic pathway of indole glucosinolates, considered to be defense compounds and intermediates in the biosynthesis of phytohormones. Thus, cytochrome P450 is engaged in the metabolism of tryptophan and its indole derivatives in humans, animals, plants and microbes, producing biologically active metabolites which exert positive or negative actions on living organisms. Some tryptophan-derived metabolites may influence cytochrome P450 expression, affecting cellular homeostasis and xenobiotic metabolism.
Collapse
Affiliation(s)
- Anna Haduch
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Ewa Bromek
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Wojciech Kuban
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| | - Władysława Anna Daniel
- Department of Pharmacokinetics and Drug Metabolism, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland
| |
Collapse
|
6
|
Rajakumara E, Saniya D, Bajaj P, Rajeshwari R, Giri J, Davari MD. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis. Int J Mol Sci 2022; 24:ijms24010214. [PMID: 36613657 PMCID: PMC9820634 DOI: 10.3390/ijms24010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/25/2022] Open
Abstract
Cytochrome P450s are heme-containing enzymes capable of the oxidative transformation of a wide range of organic substrates. A protein scaffold that coordinates the heme iron, and the catalytic pocket residues, together, determine the reaction selectivity and regio- and stereo-selectivity of the P450 enzymes. Different substrates also affect the properties of P450s by binding to its catalytic pocket. Modulating the redox potential of the heme by substituting iron-coordinating residues changes the chemical reaction, the type of cofactor requirement, and the stereoselectivity of P450s. Around hundreds of P450s are experimentally characterized, therefore, a mechanistic understanding of the factors affecting their catalysis is increasingly vital in the age of synthetic biology and biotechnology. Engineering P450s can enable them to catalyze a variety of chemical reactions viz. oxygenation, peroxygenation, cyclopropanation, epoxidation, nitration, etc., to synthesize high-value chiral organic molecules with exceptionally high stereo- and regioselectivity and catalytic efficiency. This review will focus on recent studies of the mechanistic understandings of the modulation of heme redox potential in the engineered P450 variants, and the effect of small decoy molecules, dual function small molecules, and substrate mimetics on the type of chemical reaction and the catalytic cycle of the P450 enzymes.
Collapse
Affiliation(s)
- Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
- Correspondence: (E.R.); (M.D.D.)
| | - Dubey Saniya
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Priyanka Bajaj
- Department of Chemical Sciences, National Institute of Pharmaceutical Education and Research (NIPER), NH-44, Balanagar, Hyderabad 500037, India
| | - Rajanna Rajeshwari
- Department of Plant Pathology, College of Horticulture, University of Horticultural Sciences, Bagalkot Campus, GKVK, Bengaluru 560064, India
| | - Jyotsnendu Giri
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Kandi, Sangareddy 502284, India
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
- Correspondence: (E.R.); (M.D.D.)
| |
Collapse
|
7
|
Wang H, Wan N, Miao R, He C, Chen Y, Liu Z, Zheng Y. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022; 61:e202205790. [DOI: 10.1002/anie.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Hui‐Hui Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Run‐Ping Miao
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Cheng‐Li He
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University Zunyi China
| | - Zhi‐Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| | - Yu‐Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province College of Biotechnology and Bioengineering Zhejiang University of Technology Hangzhou 310014 China
| |
Collapse
|
8
|
Wang HH, Wan NW, Miao RP, He CL, Chen YZ, Liu ZQ, Zheng YG. Identification and Structure Analysis of an Unusual Halohydrin Dehalogenase for Highly Chemo‐, Regio‐ and Enantioselective Bio‐Nitration of Epoxides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hui-Hui Wang
- Zunyi Medical University School of Pharmacy CHINA
| | - Nan-Wei Wan
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Cheng-Li He
- Zunyi Medical University School of Pharmacy CHINA
| | | | - Zhi-Qiang Liu
- Zhejiang University of Technology College of Biotechnology and Bioengineering Chaowang Rd. 18# 3100114 Hangzhou CHINA
| | - Yu-Guo Zheng
- Zhejiang University of Technology College of Biotechnology and Bioengineering CHINA
| |
Collapse
|
9
|
Yan Y, Wu J, Hu G, Gao C, Guo L, Chen X, Liu L, Song W. Current state and future perspectives of cytochrome P450 enzymes for C–H and C=C oxygenation. Synth Syst Biotechnol 2022; 7:887-899. [PMID: 35601824 PMCID: PMC9112060 DOI: 10.1016/j.synbio.2022.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 01/11/2023] Open
Abstract
Cytochrome P450 enzymes (CYPs) catalyze a series of C–H and C=C oxygenation reactions, including hydroxylation, epoxidation, and ketonization. They are attractive biocatalysts because of their ability to selectively introduce oxygen into inert molecules under mild conditions. This review provides a comprehensive overview of the C–H and C=C oxygenation reactions catalyzed by CYPs and the various strategies for achieving higher selectivity and enzymatic activity. Furthermore, we discuss the application of C–H and C=C oxygenation catalyzed by CYPs to obtain the desired chemicals or pharmaceutical intermediates in practical production. The rapid development of protein engineering for CYPs provides excellent biocatalysts for selective C–H and C=C oxygenation reactions, thereby promoting the development of environmentally friendly and sustainable production processes.
Collapse
Affiliation(s)
- Yu Yan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liang Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, 214122, China
- Corresponding author.
| |
Collapse
|
10
|
Zhang L, Wang Q. Harnessing P450 Enzyme for Biotechnology and Synthetic Biology. Chembiochem 2021; 23:e202100439. [PMID: 34542923 DOI: 10.1002/cbic.202100439] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 09/18/2021] [Indexed: 12/29/2022]
Abstract
Cytochrome P450 enzymes (P450s, CYPs) catalyze the oxidative transformation of a wide range of organic substrates. Their functions are crucial to xenobiotic metabolism and steroid transformation in humans and other organisms. The enzymes are promising for synthetic biology applications but limited by several drawbacks including low turnover rates, poor stability, the dependance of expensive cofactors and redox partners, and the narrow substrate scope. To conquer these obstacles, emerging strategies including substrate engineering, usage of decoy and decoy-based small molecules auxiliaries, designing of artificial enzyme cascades and the incorporation of materials have been explored based on the unique properties of P450s. These strategies can be applied to a wide range of P450s and can be combined with protein engineering to improve the enzymatic activities. This minireview will focus on some recent developments of these strategies which have been used to leverage P450 catalysis. Remaining challenges and future opportunities will also be discussed.
Collapse
Affiliation(s)
- Libo Zhang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA.,Department of Chemistry, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Qian Wang
- Department of Chemistry and Biochemistry University of South Carolina, 631 Sumter Street, Columbia, SC 29208, USA
| |
Collapse
|
11
|
Saroay R, Roiban G, Alkhalaf LM, Challis GL. Expanding the Substrate Scope of Nitrating Cytochrome P450 TxtE by Active Site Engineering of a Reductase Fusion. Chembiochem 2021; 22:2262-2265. [PMID: 33851500 PMCID: PMC8359946 DOI: 10.1002/cbic.202100145] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Indexed: 12/11/2022]
Abstract
Aromatic nitration reactions are a cornerstone of organic chemistry, but are challenging to scale due to corrosive reagents and elevated temperatures. The cytochrome P450 TxtE nitrates the indole 4-position of l-tryptophan at room temperature using NO, O2 and NADPH, and has potential to be developed into a useful aromatic nitration biocatalyst. However, its narrow substrate scope (requiring both the α-amino acid and indole functionalities) have hindered this. Screening of an R59 mutant library of a TxtE-reductase fusion protein identified a variant (R59C) that nitrates tryptamine, which is not accepted by native TxtE. This variant exhibits a broader substrate scope than the wild type enzyme and is able to nitrate a range of tryptamine analogues, with significant alterations to the aromatic and aminoethyl moieties.
Collapse
Affiliation(s)
- Rakesh Saroay
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
| | - Gheorghe‐Doru Roiban
- Synthetic BiochemistryMedicinal Science & TechnologyGlaxoSmithKlineMedicines Research CentreGunnels Wood RoadStevenageSG1 2NYUK
| | | | - Gregory L. Challis
- Department of ChemistryUniversity of WarwickCoventryCV4 7ALUK
- Warwick Integrative Synthetic Biology CentreUniversity of WarwickCoventryCV4 7ALUK
- Department of Biochemistry and Molecular BiologyMonash UniversityClaytonVIC 3800Australia
- ARC Centre of Excellence for Innovations in Peptide and Protein ScienceMonash UniversityClaytonVIC 3800Australia
| |
Collapse
|