1
|
Wang Y, Gao P, Wu Z, Jiang B, Wang Y, He Z, Zhao B, Tian X, Gao H, Cai L, Li W. Exploring the therapeutic potential of Chinese herbs on comorbid type 2 diabetes mellitus and Parkinson's disease: A mechanistic study. JOURNAL OF ETHNOPHARMACOLOGY 2025; 338:119095. [PMID: 39537117 DOI: 10.1016/j.jep.2024.119095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 10/12/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Type 2 diabetes mellitus (T2DM) and Parkinson's disease (PD) are chronic conditions that affect the aging population, with increasing prevalence globally. The rising prevalence of comorbidity between these conditions, driven by demographic shifts, severely impacts the quality of life of patients, posing a significant burden on healthcare resources. Chinese herbal medicine has been used to treat T2DM and PD for millennia. Pharmacological studies have demonstrated that medicinal herbs effectively lower blood glucose levels and exert neuroprotective effects, suggesting their potential as adjunctive therapy for concurrent management of T2DM and PD. AIM OF THE STUDY To elucidate the shared mechanisms underlying T2DM and PD, particularly focusing on the potential mechanisms by which medicinal herbs (including herbal formulas, single herbs, and active compounds) may treat these diseases, to provide valuable insights for developing therapeutics targeting comorbid T2DM and PD. MATERIALS AND METHODS Studies exploring the mechanisms underlying T2DM and PD, as well as the treatment of these conditions with medicinal herbs, were extracted from several electronic databases, including PubMed, Web of Science, Google Scholar, and China National Knowledge Infrastructure (CNKI). RESULTS Numerous studies have shown that inflammation, oxidative stress, insulin resistance, impaired autophagy, gut microbiota dysbiosis, and ferroptosis are shared mechanisms underlying T2DM and PD mediated through the NLRP3 inflammasome, NF-κB, MAPK, Keap1/Nrf2/ARE, PI3K/AKT, AMPK/SIRT1, and System XC--GSH-GPX4 signaling pathways. Thirty-four medicinal herbs, including 2 herbal formulas, 4 single herbs, and 28 active compounds, have been reported to potentially exert anti-T2DM and anti-PD effects by targeting these shared mechanisms. CONCLUSIONS Traditional Chinese medicine effectively combats T2DM and PD through shared pathological mechanisms, highlighting their potential for application in treating these comorbid conditions.
Collapse
Affiliation(s)
- Yan Wang
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China; Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Pengpeng Gao
- Department of Preventive Treatment, Ningxia Integrated Chinese and Western Medicine Hospital, Yinchuan, 750004, China
| | - Zicong Wu
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Bing Jiang
- Department of Integrated Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yanru Wang
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Zhaxicao He
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bing Zhao
- Clinical College of Chinese Medicine, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xinyun Tian
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Han Gao
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China
| | - Li Cai
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| | - Wentao Li
- Encephalopathy Department, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.
| |
Collapse
|
2
|
Zheng J, Zhang J, Han J, Zhao Z, Lin K. The effect of salidroside in promoting endogenous neural regeneration after cerebral ischemia/reperfusion involves notch signaling pathway and neurotrophic factors. BMC Complement Med Ther 2024; 24:293. [PMID: 39090706 PMCID: PMC11295647 DOI: 10.1186/s12906-024-04597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 07/19/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Salidroside is the major bioactive and pharmacological active substance in Rhodiola rosea L. It has been reported to have neuroprotective effects on cerebral ischemia/reperfusion (I/R). However, whether salidroside can enhance neural regeneration after cerebral I/R is still unknown. This study investigated the effects of salidroside on the endogenous neural regeneration after cerebral I/R and the related mechanism. METHODS Focal cerebral I/R was induced in rats by transient middle cerebral artery occlusion/reperfusion (MCAO/R). The rats were intraperitoneally treated salidroside once daily for 7 consecutive days. Neurobehavioral assessments were performed at 3 days and 7 days after the injury. TTC staining was performed to assess cerebral infarct volume. To evaluate the survival of neurons, immunohistochemical staining of Neuronal Nuclei (NeuN) in the ischemic hemisphere were conducted. Also, immunofluorescence double or triple staining of the biomarkers of proliferating neural progenitor cells in Subventricular Zone (SVZ) and striatum of the ischemia hemisphere were performed to investigate the neurogenesis. Furthermore, reverse transcription-polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA) were used to detect the expression of neurotrophic factors (NTFs) brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Expression of Notch1 and its target molecular Hes1 were also analyzed by western-blotting and RT-PCR. RESULTS Salidroside treatment ameliorated I/R induced neurobehavioral impairment, and reduced infarct volume. Salidroside also restored NeuN positive cells loss after I/R injury. Cerebral I/R injury significantly increased the expression of 5-Bromo-2'-Deoxyuridine (BrdU) and doublecotin (DCX), elevated the number of BrdU/Nestin/DCX triple-labeled cells in SVZ, and BrdU/Nestin/glial fibrillary acidic protein (GFAP) triple-labeled cells in striatum. Salidroside treatment further promoted the proliferation of BrdU/DCX labeled neuroblasts and BrdU/Nestin/GFAP labeled reactive astrocytes. Furthermore, salidroside elevated the mRNA expression and protein concentration of BDNF and NGF in ischemia periphery area, as well. Mechanistically, salidroside elevated Notch1/Hes1 mRNA expression in SVZ. The protein levels of them were also increased after salidroside administration. CONCLUSIONS Salidroside enhances the endogenous neural regeneration after cerebral I/R. The mechanism of the effect may involve the regulation of BDNF/NGF and Notch signaling pathway.
Collapse
Affiliation(s)
- Jiabing Zheng
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Chinese Medical Sciences, Fuzhou, Fujian Province, People's Republic of China
| | - Zhichang Zhao
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China
| | - Kan Lin
- Fujian Medical Universtity Union Hospital, Fuzhou, Fujian Province, People's Republic of China.
| |
Collapse
|
3
|
Lai W, Luo R, Tang Y, Yu Z, Zhou B, Yang Z, Brown J, Hong G. Salidroside directly activates HSC70, revealing a new role for HSC70 in BDNF signalling and neurogenesis after cerebral ischemia. Phytother Res 2024; 38:2619-2640. [PMID: 38488455 DOI: 10.1002/ptr.8178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/17/2024] [Accepted: 02/11/2024] [Indexed: 06/13/2024]
Abstract
Salidroside, a principal bioactive component of Rhodiola crenulata, is neuroprotective across a wide time window in stroke models. We investigated whether salidroside induced neurogenesis after cerebral ischemia and aimed to identify its primary molecular targets. Rats, subjected to transient 2 h of middle cerebral artery occlusion (MCAO), received intraperitoneal vehicle or salidroside ± intracerebroventricular HSC70 inhibitor VER155008 or TrkB inhibitor ANA-12 for up to 7 days. MRI, behavioural tests, immunofluorescent staining and western blotting measured effects of salidroside. Reverse virtual docking and enzymatic assays assessed interaction of salidroside with purified recombinant HSC70. Salidroside dose-dependently decreased cerebral infarct volumes and neurological deficits, with maximal effects by 50 mg/kg/day. This dose also improved performance in beam balance and Morris water maze tests. Salidroside significantly increased BrdU+/nestin+, BrdU+/DCX+, BrdU+/NeuN+, BrdU-/NeuN+ and BDNF+ cells in the peri-infarct cortex, with less effect in striatum and no significant effect in the subventricular zone. Salidroside was predicted to bind with HSC70. Salidroside dose-dependently increased HSC70 ATPase and HSC70-dependent luciferase activities, but it did not activate HSP70. HSC70 immunoreactivity concentrated in the peri-infarct cortex and was unchanged by salidroside. However, VER155008 prevented salidroside-dependent increases of neurogenesis, BrdU-/NeuN+ cells and BDNF+ cells in peri-infarct cortex. Salidroside also increased BDNF protein and p-TrkB/TrkB ratio in ischemic brain, changes prevented by VER155008 and ANA-12, respectively. Additionally, ANA-12 blocked salidroside-dependent neurogenesis and increased BrdU-/NeuN+ cells in the peri-infarct cortex. Salidroside directly activates HSC70, thereby stimulating neurogenesis and neuroprotection via BDNF/TrkB signalling after MCAO. Salidroside and similar activators of HSC70 might provide clinical therapies for ischemic stroke.
Collapse
Affiliation(s)
- Wenfang Lai
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Rui Luo
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Yuheng Tang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zhengshuang Yu
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Binbin Zhou
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Zelin Yang
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - John Brown
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Guizhu Hong
- College of Pharmacology, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| |
Collapse
|
4
|
Sun H, Yu W, Li H, Hu X, Wang X. Bioactive Components of Areca Nut: An Overview of Their Positive Impacts Targeting Different Organs. Nutrients 2024; 16:695. [PMID: 38474823 PMCID: PMC10935369 DOI: 10.3390/nu16050695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 02/19/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
Areca catechu L. is a widely cultivated tropical crop in Southeast Asia, and its fruit, areca nut, has been consumed as a traditional Chinese medicinal material for more than 10,000 years, although it has recently attracted widespread attention due to potential hazards. Areca nut holds a significant position in traditional medicine in many areas and ranks first among the four southern medicines in China. Numerous bioactive compounds have been identified in areca nuts, including alkaloids, polyphenols, polysaccharides, and fatty acids, which exhibit diverse bioactive functions, such as anti-bacterial, deworming, anti-viral, anti-oxidant, anti-inflammatory, and anti-tumor effects. Furthermore, they also display beneficial impacts targeting the nervous, digestive, and endocrine systems. This review summarizes the pharmacological functions and underlying mechanisms of the bioactive ingredients in areca nut. This helps to ascertain the beneficial components of areca nut, discover its medicinal potential, and guide the utilization of the areca nut.
Collapse
Affiliation(s)
- Huihui Sun
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
- Sanya Institute of China Agricultural University, Sanya 572025, China
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Wenzhen Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Hu Li
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing 100083, China;
| | - Xiaosong Hu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| | - Xiaofei Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; (H.S.); (W.Y.); (X.H.)
| |
Collapse
|
5
|
Zhu T, Liu H, Gao S, Jiang N, Chen S, Xie W. Effect of salidroside on neuroprotection and psychiatric sequelae during the COVID-19 pandemic: A review. Biomed Pharmacother 2024; 170:115999. [PMID: 38091637 DOI: 10.1016/j.biopha.2023.115999] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 01/10/2024] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected the mental health of individuals worldwide, and the risk of psychiatric sequelae and consequent mental disorders has increased among the general population, health care workers and patients with COVID-19. Achieving effective and widespread prevention of pandemic-related psychiatric sequelae to protect the mental health of the global population is a serious challenge. Salidroside, as a natural agent, has substantial pharmacological activity and health effects, exerts obvious neuroprotective effects, and may be effective in preventing and treating psychiatric sequelae and mental disorders resulting from stress stemming from the COVID-19 pandemic. Herein, we systematically summarise, analyse and discuss the therapeutic effects of salidroside in the prevention and treatment of psychiatric sequelae as well as its roles in preventing the progression of mental disorders, and fully clarify the potential of salidroside as a widely applicable agent for preventing mental disorders caused by stress; the mechanisms underlying the potential protective effects of salidroside are involved in the regulation of the oxidative stress, neuroinflammation, neural regeneration and cell apoptosis in the brain, the network homeostasis of neurotransmission, HPA axis and cholinergic system, and the improvement of synaptic plasticity. Notably, this review innovatively proposes that salidroside is a potential agent for treating stress-induced health issues during the COVID-19 pandemic and provides scientific evidence and a theoretical basis for the use of natural products to combat the current mental health crisis.
Collapse
Affiliation(s)
- Ting Zhu
- Institute of Neuroregeneration & Neurorehabilitation, Department of Pathophysiology, School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Hui Liu
- Guizhou Provincial Key Laboratory of Pharmaceutics & State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang 550004, Guizhou, China; Engineering Research Center for the Development and Application of Ethnic Medicine and TCM (Ministry of Education), Guizhou Medical University, Guiyang 550004, Guizhou, China
| | - Shiman Gao
- Department of Clinical Pharmacy, Women and Children's Hospital, Qingdao University, Qingdao 266034, China
| | - Ning Jiang
- Institute of Medicinal Plant Development, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100193, China.
| | - Shuai Chen
- School of Public Health, Wuhan University, Donghu Road No. 115, Wuchang District, Wuhan 430071, China.
| | - Weijie Xie
- Clinical Research Center for Mental Disorders, Shanghai Pudong New Area Mental Health Center, Tongji University School of Medicine, Shanghai 200122, China.
| |
Collapse
|
6
|
Bernatoniene J, Jakstas V, Kopustinskiene DM. Phenolic Compounds of Rhodiola rosea L. as the Potential Alternative Therapy in the Treatment of Chronic Diseases. Int J Mol Sci 2023; 24:12293. [PMID: 37569669 PMCID: PMC10418374 DOI: 10.3390/ijms241512293] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/23/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
The roots and rhizomes of Rhodiola rosea L. (Crassulaceae), which is widely growing in Northern Europe, North America, and Siberia, have been used since ancient times to alleviate stress, fatigue, and mental and physical disorders. Phenolic compounds: phenylpropanoids rosavin, rosarin, and rosin, tyrosol glucoside salidroside, and tyrosol, are responsible for the biological action of R. rosea, exerting antioxidant, immunomodulatory, anti-aging, anti-fatigue activities. R. rosea extract formulations are used as alternative remedies to enhance mental and cognitive functions and protect the central nervous system and heart during stress. Recent studies indicate that R. rosea may be used to treat diabetes, cancer, and a variety of cardiovascular and neurological disorders such as Alzheimer's and Parkinson's diseases. This paper reviews the beneficial effects of the extract of R. rosea, its key active components, and their possible use in the treatment of chronic diseases. R. rosea represents an excellent natural remedy to address situations involving decreased performance, such as fatigue and a sense of weakness, particularly in the context of chronic diseases. Given the significance of mitochondria in cellular energy metabolism and their vulnerability to reactive oxygen species, future research should prioritize investigating the potential effects of R. rosea main bioactive phenolic compounds on mitochondria, thus targeting cellular energy supply and countering oxidative stress-related effects.
Collapse
Affiliation(s)
- Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Valdas Jakstas
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
- Department of Pharmacognosy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu pr. 13, LT-50161 Kaunas, Lithuania; (J.B.); (V.J.)
| |
Collapse
|
7
|
Li L, Yao W. The Therapeutic Potential of Salidroside for Parkinson's Disease. PLANTA MEDICA 2023; 89:353-363. [PMID: 36130710 DOI: 10.1055/a-1948-3179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Parkinson's disease (PD), a neurological disorder, is characterized by the progressive loss of dopaminergic (DA) neurons in the substantia nigra. Its incidence increases with age. Salidroside, a phenolic compound extracted from Sedum roseum, reportedly has multiple biological and pharmacological activities in the nervous system. However, its effects on PD remain unclear. In this review, we summarize the effects of salidroside on PD with regard to DA metabolism, neuronal protection, and glial activation. In addition, we summarize the susceptibility genes and their underlying mechanisms related to antioxidation, inflammation, and autophagy by regulating mitochondrial function, ubiquitin, and multiple signaling pathways involving NF-κB, mTOR, and PI3K/Akt. Although recent studies were based on animal and cellular experiments, this review provides evidence for further clinical utilization of salidroside for PD.
Collapse
Affiliation(s)
- Li Li
- Department of Physiology, Hubei University of Chinese Medicine, Wuhan, China
| | - Wenlong Yao
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Nayak M, Das D, Pradhan J, Ahmed R, Laureano-Melo R, Dandapat J. Epigenetic signature in neural plasticity: the journey so far and journey ahead. Heliyon 2022; 8:e12292. [PMID: 36590572 PMCID: PMC9798197 DOI: 10.1016/j.heliyon.2022.e12292] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/31/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Neural plasticity is a remarkable characteristic of the brain which allows neurons to rewire their structure in response to internal and external stimuli. Many external stimuli collectively referred to as 'epigenetic factors' strongly influence structural and functional reorganization of the brain, thereby acting as a potential driver of neural plasticity. DNA methylation and demethylation, histone acetylation, and deacetylation are some of the frontline epigenetic mechanisms behind neural plasticity. Epigenetic signature molecules (mostly proteins) play a pivotal role in epigenetic reprogramming. Though neuro-epigenetics is an incredibly important field of emerging research, the critical role of signature proteins associated with epigenetic alteration and their involvement in neural plasticity needs further attention. This study gives an integrated and systematic overview of the current state of knowledge with a clear idea of types of neural plasticity and the context-dependent role of epigenetic signature molecules and their modulation by some natural bioactive compounds.
Collapse
Affiliation(s)
- Madhusmita Nayak
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India
| | - Diptimayee Das
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Faculty of Allied Health Science, Chettinad Academy of Research and Education, Chettinad Hospital and Research Institute, Chennai India
| | - Jyotsnarani Pradhan
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| | - R.G. Ahmed
- Division of Anatomy and Embryology, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Roberto Laureano-Melo
- Barra Mansa University Center, R. Ver. Pinho de Carvalho, 267, 27330-550, Barra Mansa, Rio de Janeiro, Brazil
| | - Jagneshwar Dandapat
- Post-Graduate Department of Biotechnology, Utkal University, Bhubaneswar 751004, Odisha, India,Centre of Excellence in Integrated Omics and Computational Biology, Utkal University, Bhubaneswar 751004, Odisha, India,Corresponding author.
| |
Collapse
|
9
|
Lu X, Sun C, Chen L, Feng Z, Gao H, Hu S, Dong M, Wang J, Zhou W, Ren N, Zhou H, Liu H. Stemness Maintenance and Massproduction of Neural Stem Cells on Poly L-Lactic Acid Nanofibrous Membrane Based on Piezoelectriceffect. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107236. [PMID: 35166031 DOI: 10.1002/smll.202107236] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/30/2021] [Indexed: 06/14/2023]
Abstract
Neural stem cells (NSCs) therapy is promising for treating neurodegenerative disorders and neural injuries. However, the limited in vitro expansion, spontaneous differentiation, and decrease in stemness obstruct the acquisition of high quantities of NSCs, restricting the clinical application of cell-based therapies and tissue engineering. This article reports a facile method of promoting NSCs expansion and maintaining stemness using wireless electrical stimulation triggered by piezoelectric nanomaterials. A nanofibrous membrane of poly L-lactic acid (PLLA) is prepared by electrostatic spinning, and the favorable piezoelectric property of PLLA facilitates the freeing of electrons after transformation. These self-powered electric signals generated by PLLA significantly enhance NSCs proliferation. Further, an undifferentiated cellular state is maintained in the NSCs cultured on the surfaces of PLLA nanofibers exposed to ultrasonic vibration. In addition, the neural differentiation potencies and functions of NSCs expanded by piezoelectric-driven localized electricity are not attenuated. Moreover, cell stemness can be maintained by wireless electric stimulation. Taken together, the electronic signals mediated by PLLA nanofibers facilitate NSCs proliferation. This efficient and simple strategy can maintain the stemness of NSCs during proliferation, which is essential for their clinical application, and opens up opportunities for the mass production of NSCs for use in cell therapy.
Collapse
Affiliation(s)
- Xiheng Lu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Chunhui Sun
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Lu Chen
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Zhichao Feng
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Haoyang Gao
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Shuang Hu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Mengwei Dong
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Jingang Wang
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Na Ren
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
| | - Hengxing Zhou
- Department of Orthopaedics, Shandong University Centre for Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, 250022, China
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
10
|
Chen B, An J, Guo YS, Tang J, Zhao JJ, Zhang R, Yang H. Tetramethylpyrazine induces the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway. Cell Biol Int 2021; 45:2429-2442. [PMID: 34374467 DOI: 10.1002/cbin.11687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 08/01/2021] [Accepted: 08/07/2021] [Indexed: 12/27/2022]
Abstract
Compelling evidences suggest that transplantation of bone marrow-derived mesenchymal stem cells (BM-MSCs) can be therapeutically effective for central nervous system (CNS) injuries and neurodegenerative diseases. The therapeutic effect of BM-MSCs mainly attributes to their differentiation into neuron-like cells which replace injured and degenerative neurons. Importantly, the neurotrophic factors released from BM-MSCs can also rescue injured and degenerative neurons, which plays a biologically pivotal role in enhancing neuroregeneration and neurological functional recovery. Tetramethylpyrazine (TMP), the main bioactive ingredient extracted from the traditional Chinese medicinal herb Chuanxiong, has been reported to promote the neuronal differentiation of BM-MSCs. This study aimed to investigate whether TMP regulates the release of neurotrophic factors from BM-MSCs. We examined the effect of TMP on brain-derived neurotrophic factor (BDNF) released from BM-MSCs and elucidated the underlying molecular mechanism. Our results demonstrated that TMP at concentrations of lower than 200 μM increased the release of BDNF in a dose-dependent manner. Furthermore, the effect of TMP on increasing the release of BDNF from BM-MSCs was blocked by inhibiting the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)/protein kinase B (AKT)/cAMP-response element binding protein (CREB) pathway. Therefore, we concluded that TMP could induce the release of BDNF from BM-MSCs through activation of the PI3K/AKT/CREB pathway, leading to the formation of neuroprotective and proneurogenic microenvironment. These findings suggest that TMP possesses novel therapeutic potential to promote neuroprotection and neurogenesis through improving the neurotrophic ability of BM-MSCs, which provides a promising nutritional prevention and treatment strategy for CNS injuries and neurodegenerative diseases via the transplantation of TMP-treated BM-MSCs.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Jing An
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Yun-Shan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Juan Tang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, China
| | - Jing-Jing Zhao
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Rui Zhang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| | - Hao Yang
- Translational Medicine Center, Honghui Hospital, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
11
|
Salidroside-pretreated mesenchymal stem cells contribute to neuroprotection in cerebral ischemic injury in vitro and in vivo. J Mol Histol 2021; 52:1145-1154. [PMID: 34570327 DOI: 10.1007/s10735-021-10022-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/23/2021] [Indexed: 01/19/2023]
Abstract
Mesenchymal stem cells (MSCs) are considered a promising tool for treating cerebral ischemic injury. However, their poor survival after transplantation limits their therapeutic effect and applications. Salidroside has been reported to exert potent cytoprotective and neuroprotective effects. This study aimed to investigate whether salidroside could improve MSC survival under hypoxic-ischemic conditions and, subsequently, alleviate cerebral ischemic injury in a rat model. MSCs were pretreated by salidroside under hypoxic-ischemic conditions. The cell proliferation, migratory capacity, and apoptosis were evaluated by means of Cell Counting Kit-8, transwell assay, and flow cytometry. MSCs pretreated with salidroside were transplanted into the rats subsequent to middle cerebral artery occlusion. The grip strength, 2,3,5-triphenyltetrazolium chloride, and hematoxylin-eosin staining were used to analyze the therapeutic efficiency and pathological changes. The mature neuron marker NeuN and astrocyte marker GFAP in the focal area were detected by immunofluorescence. These results indicated that salidroside promoted the proliferation, migration and reduced apoptosis of MSCs under hypoxic-ischemic conditions. In vivo experiments revealed that transplantation of salidroside-pretreated MSCs strengthened the therapeutic efficiency by enhancing neurogenesis and inhibiting neuroinflammation in the hippocampal CA1 area after ischemia. Our results suggest that pretreatment with salidroside could be an effective strategy to enhance the cell survival rate and the therapeutic effect of MSCs in treating cerebral ischemic injury.
Collapse
|
12
|
An J, Chen B, Tian D, Guo Y, Yan Y, Yang H. Regulation of Neurogenesis and Neuronal Differentiation by Natural Compounds. Curr Stem Cell Res Ther 2021; 17:756-771. [PMID: 34493197 DOI: 10.2174/1574888x16666210907141447] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/15/2021] [Accepted: 07/28/2021] [Indexed: 11/22/2022]
Abstract
Neuronal damage or degeneration is the main feature of neurological diseases. Regulation of neurogenesis and neuronal differentiation is important in developing therapies to promote neuronal regeneration or synaptic network reconstruction. Neurogenesis is a multistage process in which neurons are generated and integrated into existing neuronal circuits. Neuronal differentiation is extremely complex because it can occur in different cell types and can be caused by a variety of inducers. Recently, natural compounds that induce neurogenesis and neuronal differentiation have attracted extensive attention. In this paper, the potential neural induction effects of medicinal plant-derived natural compounds on neural stem/progenitor cells (NS/PCs), the cultured neuronal cells, and mesenchymal stem cells (MSCs) are reviewed. The natural compounds that are efficacious in inducing neurogenesis and neuronal differentiation include phenolic acids, polyphenols, flavonoids, glucosides, alkaloids, terpenoids, quinones, coumarins, and others. They exert neural induction effects by regulating signal factors and cell-specific genes involved in the process of neurogenesis and neuronal differentiation, including specific proteins (β-tubulin III, MAP-2, tau, nestin, neurofilaments, GFAP, GAP-43, NSE), related genes and proteins (STAT3, Hes1, Mash1, NeuroD1, notch, cyclin D1, SIRT1, reggie-1), transcription factors (CREB, Nkx-2.5, Ngn1), neurotrophins (BDNF, NGF, NT-3) and signaling pathways (JAK/STAT, Wnt/β-catenin, MAPK, PI3K/Akt, GSK-3β/β-catenin, Ca2+/CaMKII/ATF1, Nrf2/HO-1, BMP). The natural compounds with neural induction effects are of great value for neuronal regenerative medicine and provide promising prevention and treatment strategies for neurological diseases.
Collapse
Affiliation(s)
- Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Ding Tian
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yunshan Guo
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Yuzhu Yan
- Clinical Lab, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an. China
| |
Collapse
|
13
|
Salidroside: A review of its recent advances in synthetic pathways and pharmacological properties. Chem Biol Interact 2021; 339:109268. [PMID: 33617801 DOI: 10.1016/j.cbi.2020.109268] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022]
Abstract
Salidroside has been identified as one of the most potent compounds isolated from various Rhodiola plants, which have been used for a long time as adaptogens in traditional Chinese medicine. However, due to the severe growing environment of herbal medicine and large-scale excavation, the content of natural salidroside is extremely small. Most of the previous studies focused on herbal medicine, and there were few reviews on the synthesis of its main active ingredient salidroside. This paper presents different synthetic routes of salidroside to resolve the contradiction between supply and demand and lays the foundation for new drug research and development. Furthermore, emerging evidence indicates that salidroside, a promising environmentally-adapted drug with low toxicity and few side effects, possesses a wide spectrum of pharmacological properties, including activities on the cardiovascular system and central nervous system, anti-hypoxia, anti-fatigue and anti-aging activities, anticancer activity, anti-inflammatory activity, antioxidant activity, antivirus and immune stimulation activities, antidiabetic activity, anti-osteoporotic activity, and so on. Although the former researches have summarized the pharmacological effects of salidroside, focusing on the central nervous system, diabetes, and cancer, the overall pharmacological aspects of it have not been analyzed. This review highlights biological characteristics and mechanisms of action from 2009 to now as well as toxicological and pharmacokinetic data of the analyzed compound reported so far, with a view to providing a reference for further development and utilization of salidroside.
Collapse
|
14
|
Choudhary P, Gupta A, Singh S. Therapeutic Advancement in Neuronal Transdifferentiation of Mesenchymal Stromal Cells for Neurological Disorders. J Mol Neurosci 2020; 71:889-901. [PMID: 33047251 DOI: 10.1007/s12031-020-01714-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/16/2020] [Indexed: 12/12/2022]
Abstract
Neurodegenerative disorders have become the leading cause of chronic pain and death. Treatments available are not sufficient to help the patients as they only alleviate the symptoms and not the cause. In this regard, stem cells therapy has emerged as an upcoming option for the replacement of dead and damaged neurons. Stem cells, in general, are characterized as cells exhibiting potency properties, i.e., on being subjected to specific conditions they transform into cells of another lineage. Of all the types, mesenchymal stem cells (MSCs) are known for their pluripotent nature without the obstacle of ethical concern surrounding the procurement of other cell types. Although fibroblasts are quite similar to MSCs morphologically, certain markers like CD73, CD 90 are specific to MSCs, making both the cell types distinguishable from each other. This is implemented while procuring MSCs from a plethora of sources like umbilical cord blood, adipose tissue, bone marrow, etc. Among these, bone marrow MSCs are the most widely used type for neural regeneration. Neural regeneration is achieved via transdifferentiation. Several studies have either transplanted the stem cells into rodent models or have carried out transdifferentiation in vitro. The process involves a combination of growth factors, pre-treatment factors, and neuronal differentiation inducing mediums. The results obtained are characterized by neuron-like morphology, expression of markers, along with electrophysical activity in some. Recent attempts involve exploring biomaterials that may mimic the native ECM and therefore can be directly introduced at the site of interest. The review gives a brief description of MSCs, their sources and markers, and the different attempts that have been made towards achieving the goal of differentiating MSCs into neurons.
Collapse
Affiliation(s)
- Princy Choudhary
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Ayushi Gupta
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India
| | - Sangeeta Singh
- Applied Science Department, Indian Institute of Information Technology, Allahabad, UP, India.
| |
Collapse
|
15
|
Sakuma R, Takahashi A, Nakano-Doi A, Sawada R, Kamachi S, Beppu M, Takagi T, Yoshimura S, Matsuyama T, Nakagomi T. Comparative Characterization of Ischemia-Induced Brain Multipotent Stem Cells with Mesenchymal Stem Cells: Similarities and Differences. Stem Cells Dev 2018; 27:1322-1338. [PMID: 29999479 DOI: 10.1089/scd.2018.0075] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Mesenchymal stem cells (MSCs) are multipotent stem cells localized to the perivascular regions of various organs, including bone marrow (BM). While MSC transplantation represents a promising stem cell-based therapy for ischemic stroke, increasing evidence indicates that exogenously administered MSCs rarely accumulate in the injured central nervous system (CNS). Therefore, compared with MSCs, regionally derived brain multipotent stem cells may be a superior source to elicit regeneration of the CNS following ischemic injury. We previously identified ischemia-induced multipotent stem cells (iSCs) as likely originating from brain pericytes/perivascular cells (PCs) within poststroke regions. However, detailed characteristics of iSCs and their comparison with MSCs remains to be investigated. In the present study, we compared iSCs with BM-derived MSCs, with a focus on the stemness and neuron-generating activity of each cell type. From our results, stem and undifferentiated cell markers, including c-myc and Klf4, were found to be expressed in iSCs and BM-MSCs. In addition, both cell types exhibited the ability to differentiate into mesoderm lineages, including as osteoblasts, adipocytes, and chondrocytes. However, compared with BM-MSCs, high expression of neural stem cell markers, including nestin and Sox2, were found in iSCs. In addition, iSCs, but not BM-MSCs, formed neurosphere-like cell clusters that differentiated into functional neurons. These results demonstrate that iSCs are likely multipotent stem cells with the ability to differentiate into not only mesoderm, but also neural, lineages. Collectively, our novel findings suggest that locally induced iSCs may contribute to CNS repair by producing neuronal cells following ischemic stroke.
Collapse
Affiliation(s)
- Rika Sakuma
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan
| | - Ai Takahashi
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,2 Graduate School of Science and Technology, Kwansei Gakuin University , Sanda, Japan
| | - Akiko Nakano-Doi
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| | - Rikako Sawada
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,2 Graduate School of Science and Technology, Kwansei Gakuin University , Sanda, Japan
| | - Saeko Kamachi
- 3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| | - Mikiya Beppu
- 4 Department of Neurosurgery, Hyogo College of Medicine , Nishinomiya, Japan
| | - Toshinori Takagi
- 4 Department of Neurosurgery, Hyogo College of Medicine , Nishinomiya, Japan
| | - Shinichi Yoshimura
- 4 Department of Neurosurgery, Hyogo College of Medicine , Nishinomiya, Japan
| | - Tomohiro Matsuyama
- 3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| | - Takayuki Nakagomi
- 1 Institute for Advanced Medical Sciences , Hyogo College of Medicine, Nishinomiya, Japan .,3 Department of Therapeutic Progress in Brain Diseases, Hyogo College of Medicine , Nishinomiya, Japan
| |
Collapse
|
16
|
Kira T, Akahane M, Ouji-Sageshima N, Shimizu T, Onishi T, Omokawa S, Ito T, Tanaka Y. Osteogenesis of osteogenic matrix cell sheets preserved in culture medium in a rat model. Cell Transplant 2018; 27:1281-1288. [PMID: 30014739 PMCID: PMC6434472 DOI: 10.1177/0963689718786233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Osteogenic matrix cell sheets (OMCSs) are ideal for bone regeneration. Transportation of OMCSs may be necessary, during which their osteogenic ability must be maintained. Here, we evaluated different media and temperatures for OMCS preservation. Bone marrow stromal/stem cells (BMSCs) were obtained from Fischer rats and analyzed for stem cell markers by flow cytometry. OMCSs were prepared from BMSCs by treatment with dexamethasone and ascorbic acid phosphate. After OMCS collection, they were stored in minimum essential medium (MEM) or Hank’s balanced salt solution (HBSS) at 37, 22, or 4°C for 24 hours. Cell viability and cytotoxic effects in the preservation conditions were determined by adenosine triphosphate (ATP) contents and lactate dehydrogenase (LDH) release, respectively. Osteogenesis was assessed by subcutaneously implanting preserved OMCSs around β-tricalcium phosphate ceramic disks into syngeneic rats. Implants were evaluated by alkaline phosphatase (ALP) activities, osteocalcin contents, and histology. Mesenchymal stem cells comprised 51% of primary cultured BMSCs. ATP contents were significantly different in OMCSs stored in MEM or HBSS at 22°C and 4°C. LDH release was significantly different in OMCSs stored in HBSS at 22°C and 4°C. The highest LDH release was observed in OMCSs stored in HBSS at 37°C. ALP activities and osteocalcin contents were the lowest in implanted OMCSs stored in HBSS at 37°C at four weeks after subcutaneous implantation. There was a significant difference in the osteocalcin levels of implanted OMCSs stored in MEM at 37°C and HBSS at 4°C. Abundant bone tissue around and inside disks was found in histological sections of OMCSs stored in all preservation conditions except for MEM and HBSS at 37°C. Maintaining the osteogenic ability of OMCSs during transport is important, and preservation of OMCSs in MEM or HBSS at 4°C or 22°C is a simple and inexpensive method.
Collapse
Affiliation(s)
- Tsutomu Kira
- 1 Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan.,2 The Center for Rheumatic Diseases, Nara Medical University Hospital, Kashihara, Nara, Japan
| | - Manabu Akahane
- 3 Department of Public Health, Health Management and Policy, Nara Medical University Faculty of Medicine, Kashihara, Nara, Japan
| | | | - Takamasa Shimizu
- 1 Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Tadanobu Onishi
- 1 Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Shohei Omokawa
- 1 Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan.,5 Department of Hand Surgery, Nara Medical University, Kashihara, Nara, Japan
| | - Toshihiro Ito
- 4 Department of Immunology, Nara Medical University, Kashihara, Nara, Japan
| | - Yasuhito Tanaka
- 1 Department of Orthopedic Surgery, Nara Medical University, Kashihara, Nara, Japan.,2 The Center for Rheumatic Diseases, Nara Medical University Hospital, Kashihara, Nara, Japan
| |
Collapse
|
17
|
Zhong Z, Han J, Zhang J, Xiao Q, Hu J, Chen L. Pharmacological activities, mechanisms of action, and safety of salidroside in the central nervous system. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:1479-1489. [PMID: 29872270 PMCID: PMC5973445 DOI: 10.2147/dddt.s160776] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The primary objective of this review article was to summarize comprehensive information related to the neuropharmacological activity, mechanisms of action, toxicity, and safety of salidroside in medicine. A number of studies have revealed that salidroside exhibits neuroprotective activities, including anti-Alzheimer's disease, anti-Parkinson's disease, anti-Huntington's disease, anti-stroke, anti-depressive effects, and anti-traumatic brain injury; it is also useful for improving cognitive function, treating addiction, and preventing epilepsy. The mechanisms underlying the potential protective effects of salidroside involvement are the regulation of oxidative stress response, inflammation, apoptosis, hypothalamus-pituitary-adrenal axis, neurotransmission, neural regeneration, and the cholinergic system. Being free of side effects makes salidroside potentially attractive as a candidate drug for the treatment of neurological disorders. It is evident from the available published literature that salidroside has potential use as a beneficial therapeutic medicine with high efficacy and low toxicity to the central nervous system. However, the definite target protein molecules remain unclear, and clinical trials regarding this are currently insufficient; thus, guidance for further research on the molecular mechanisms and clinical applications of salidroside is urgent.
Collapse
Affiliation(s)
- Zhifeng Zhong
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Jing Han
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Jizhou Zhang
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Qing Xiao
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Juan Hu
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| | - Lidian Chen
- Institute of Materia Medica, Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China.,School of Rehabilitation Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou, Fujian, People's Republic of China
| |
Collapse
|
18
|
Influence of salidroside, a neuroactive compound of Rhodiola rosea L., on alcohol tolerance development in rats. HERBA POLONICA 2018. [DOI: 10.2478/hepo-2018-0002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Summary
Introduction: In recent years, the search for potential neuroprotective properties of salidroside and its ability to influence the activity of nervous system become the subject of intense studies of many research groups. None of these studies, however, include an attempt to determine the effect of salidroside on the course of alcohol tolerance in vivo.
Objective: The aim of this study was to investigate the ability of salidroside to inhibit the development of alcohol tolerance in rats, determining whether the effect of its action may occur in a dose-dependent manner, reducing both metabolic and central tolerance without affecting body temperature in control rats.
Methods: Male Wistar rats were injected daily with ethanol at a dose of 3 g/kg for 9 consecutive days to produce ethanol tolerance. Salidroside in two doses (4.5 mg/kg and 45 mg/kg b.w.) or vehiculum was administered orally. On the 1st, 3rd, 5th and 8th day a hypothermic effect of ethanol was measured, while the loss of righting reflex procedure was performed on the 2nd, 4th, 6th and 7th day. On the 9th day rats were treated with salidroside, sacrificed 1 h after ethanol injections and blood was collected for blood-ethanol concentration measurement.
Results: Salidroside at a dose of 45 mg/kg inhibited the development of tolerance to hypothermic and sedative effects of ethanol, whereas insignificant elevation of blood-ethanol concentration was observed. The dose of 4.5 mg/kg b.w. had minimal effect, only small inhibition of tolerance to hypothermic action was observed. Salidroside affected neither body mass growth nor body temperature in non-alcoholic (control) rats.
Conclusions: Results of the study indicate that salidroside at a dose of 45 mg/kg inhibited the development of tolerance to the hypothermic effect of ethanol. Observed inhibition of tolerance to the sedative effect of ethanol seems to be associated with salidroside influence on the central nervous system. A comprehensive explanation of the abovementioned observations requires further pharmacological and pharmacodynamic studies.
Collapse
|
19
|
Sangiovanni E, Brivio P, Dell'Agli M, Calabrese F. Botanicals as Modulators of Neuroplasticity: Focus on BDNF. Neural Plast 2017; 2017:5965371. [PMID: 29464125 PMCID: PMC5804326 DOI: 10.1155/2017/5965371] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 11/09/2017] [Accepted: 12/02/2017] [Indexed: 12/19/2022] Open
Abstract
The involvement of brain-derived neurotrophic factor (BDNF) in different central nervous system (CNS) diseases suggests that this neurotrophin may represent an interesting and reliable therapeutic target. Accordingly, the search for new compounds, also from natural sources, able to modulate BDNF has been increasingly explored. The present review considers the literature on the effects of botanicals on BDNF. Botanicals considered were Bacopa monnieri (L.) Pennell, Coffea arabica L., Crocus sativus L., Eleutherococcus senticosus Maxim., Camellia sinensis (L.) Kuntze (green tea), Ginkgo biloba L., Hypericum perforatum L., Olea europaea L. (olive oil), Panax ginseng C.A. Meyer, Rhodiola rosea L., Salvia miltiorrhiza Bunge, Vitis vinifera L., Withania somnifera (L.) Dunal, and Perilla frutescens (L.) Britton. The effect of the active principles responsible for the efficacy of the extracts is reviewed and discussed as well. The high number of articles published (more than one hundred manuscripts for 14 botanicals) supports the growing interest in the use of natural products as BDNF modulators. The studies reported strengthen the hypothesis that botanicals may be considered useful modulators of BDNF in CNS diseases, without high side effects. Further clinical studies are mandatory to confirm botanicals as preventive agents or as useful adjuvant to the pharmacological treatment.
Collapse
Affiliation(s)
- Enrico Sangiovanni
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Mario Dell'Agli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
20
|
Maadawi ZME. Conditioned Medium Derived from Salidroside-Pretreated Mesenchymal Stem Cell Culture Ameliorates Mouse Lipopolysaccharide-Induced Cerebral Neuroinflammation- Histological and Immunohistochemical Study. Int J Stem Cells 2017; 10:60-68. [PMID: 28446004 PMCID: PMC5488777 DOI: 10.15283/ijsc16055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2016] [Indexed: 12/18/2022] Open
Abstract
Background and Objectives Neuroinflammation is involved in the pathogenesis of neurodegenerative disorders. Conditioned medium (CM) derived from bone marrow mesenchymal stem cells (MSCs) revealed substantial benefits due to its rich content of trophic factors. Salidroside (Sal), extracted from Rhodiola rosea, is known for its anti-inflammatory and neuroprotective effects. This study was designed to investigate the effect of Sal pretreated CM (CM-Sal) derived from bone marrow MSCs in lipopolysaccharide (LPS) induced neuroinflammation. Material and Methods Fifty adult male mice were equally divided into 5 groups: Group I (Normal Control), Group II (LPS): single 0.8 mg/kg LPS intraperitoneally; Group III (LPS-DMEM), Group IV (LPS-CM) and Group V (LPS-CM-Sal): LPS was injected as group II followed, 24 hours later, by intranasal injection of 50 μl of filtered serum- free Dulbecco's Modified Eagle's medium (DMEM), CM or CM-Sal, respectively, twice daily for 4 days. Animals were sacrificed at day 6 and paraffin cerebral sections were subjected to Hematoxylin and Eosin staining and immunohistochemistry with caspase 3 (apoptosis), glial fibrillary acidic protein GFAP (astrocytes) and CD68 (active microglia) followed by quantitative morphometric study. Results Examination of LPS and LPS-DMEM groups revealed neuronal apoptosis with reactive astrogliosis and increased active microglia. LPS-CM and LPS-CM-Sal groups showed less apoptosis, less astrocytes and less active microglia. The regression in neuroinflammation was more evident in LPS-CM-Sal group and the difference was statistically significant compared to other groups. Conclusion CM-Sal derived from MSCs culture elicited significant histopathological improvement in LPS induced neuroinflammation which could be used as new therapeutic modality.
Collapse
Affiliation(s)
- Zeinab M El Maadawi
- Department of Histology and Cell Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
21
|
Lu Z, Lei D, Jiang T, Yang L, Zheng L, Zhao J. Nerve growth factor from Chinese cobra venom stimulates chondrogenic differentiation of mesenchymal stem cells. Cell Death Dis 2017; 8:e2801. [PMID: 28518137 PMCID: PMC5520725 DOI: 10.1038/cddis.2017.208] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Revised: 03/29/2017] [Accepted: 04/06/2017] [Indexed: 01/08/2023]
Abstract
Growth factors such as transforming growth factor beta1 (TGF-β1), have critical roles in the regulation of the chondrogenic differentiation of mesenchymal stem cells (MSCs), which promote cartilage repair. However, the clinical applications of the traditional growth factors are limited by their high cost, functional heterogeneity and unpredictable effects, such as cyst formation. It may be advantageous for cartilage regeneration to identify a low-cost substitute with greater chondral specificity and easy accessibility. As a neuropeptide, nerve growth factor (NGF) was involved in cartilage metabolism and NGF is hypothesized to mediate the chondrogenic differentiation of MSCs. We isolated NGF from Chinese cobra venom using a three-step procedure that we had improved upon from previous studies, and investigated the chondrogenic potential of NGF on bone marrow MSCs (BMSCs) both in vitro and in vivo. The results showed that NGF greatly upregulated the expression of cartilage-specific markers. When applied to cartilage repair for 4, 8 and 12 weeks, NGF-treated BMSCs have greater therapeutic effect than untreated BMSCs. Although inferior to TGF-β1 regarding its chondrogenic potential, NGF showed considerably lower expression of collagen type I, which is a fibrocartilage marker, and RUNX2, which is critical for terminal chondrocyte differentiation than TGF-β1, indicating its chondral specificity. Interestingly, NGF rarely induced BMSCs to differentiate into a neuronal phenotype, which may be due to the presence of other chondrogenic supplements. Furthermore, the underlying mechanism revealed that NGF-mediated chondrogenesis may be associated with the activation of PI3K/AKT and MAPK/ERK signaling pathways via the specific receptor of NGF, TrkA. In addition, NGF is easily accessed because of the abundance and low price of cobra venom, as well as the simplified methods for separation and purification. This study was the first to demonstrate the chondrogenic potential of NGF, which may provide a reference for cartilage regeneration in the clinic.
Collapse
Affiliation(s)
- Zhenhui Lu
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danqing Lei
- The Medical and Scientific Research Center, Guangxi Medical University, Nanning, China
| | - Tongmeng Jiang
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Lihui Yang
- School of Nursing, Guangxi Medical University, Nanning, China
| | - Li Zheng
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jinmin Zhao
- Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Collaborative Innovation Center for Biomedicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, China.,Department of Orthopaedics Trauma and Hand Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Song XQ, Su LN, Wei HP, Liu YH, Yin HF, Li JH, Zhu DX, Zhang AL. The effect of Id1gene silencing on the neural differentiation of MSCs. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1286234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Xiao-qing Song
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Li-ning Su
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Hui-ping Wei
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Ying-hui Liu
- Department of Agriculture Science, Agriculture and Forestry College of Hebei North University, Zhangjiakou, China
| | - Hai-feng Yin
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Ji-hong Li
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Deng-xiang Zhu
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| | - Ai-lan Zhang
- Department of Biology, Basic Medical College, Hebei North University, Zhangjiakou, China
| |
Collapse
|
23
|
Natural products against Alzheimer's disease: Pharmaco-therapeutics and biotechnological interventions. Biotechnol Adv 2016; 35:178-216. [PMID: 28043897 DOI: 10.1016/j.biotechadv.2016.12.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Revised: 12/19/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022]
Abstract
Alzheimer's disease (AD) is a severe, chronic and progressive neurodegenerative disease associated with memory and cognition impairment ultimately leading to death. It is the commonest reason of dementia in elderly populations mostly affecting beyond the age of 65. The pathogenesis is indicated by accumulation of the amyloid-beta (Aβ) plaques and neurofibrillary tangles (NFT) in brain tissues and hyperphosphorylation of tau protein in neurons. The main cause is considered to be the formation of reactive oxygen species (ROS) due to oxidative stress. The current treatment provides only symptomatic relief by offering temporary palliative therapy which declines the rate of cognitive impairment associated with AD. Inhibition of the enzyme acetylcholinesterase (AChE) is considered as one of the major therapeutic strategies offering only symptomatic relief and moderate disease-modifying effect. Other non-cholinergic therapeutic approaches include antioxidant and vitamin therapy, stem cell therapy, hormonal therapy, use of antihypertensive or lipid-lowering medications and selective phosphodiesterase (PDE) inhibitors, inhibition of β-secretase and γ-secretase and Aβ aggregation, inhibition of tau hyperphosphorylation and intracellular NFT, use of nonsteroidal anti-inflammatory drugs (NSAIDs), transition metal chelators, insulin resistance drugs, etanercept, brain-derived neurotrophic factor (BDNF) etc. Medicinal plants have been reported for possible anti-AD activity in a number of preclinical and clinical trials. Ethnobotany, being popular in China and in the Far East and possibly less emphasized in Europe, plays a substantial role in the discovery of anti-AD agents from botanicals. Chinese Material Medica (CMM) involving Chinese medicinal plants has been used traditionally in China in the treatment of AD. Ayurveda has already provided numerous lead compounds in drug discovery and many of these are also undergoing clinical investigations. A number of medicinal plants either in their crude forms or as isolated compounds have exhibited to reduce the pathological features associated with AD. In this present review, an attempt has been made to elucidate the molecular mode of action of various plant extracts, phytochemicals and traditional herbal formulations investigated against AD as reported in various preclinical and clinical tests. Herbal synergism often found in polyherbal formulations were found effective to combat disease heterogeneity as found in complex pathogenesis of AD. Finally a note has been added to describe biotechnological improvement, genetic and genomic resources and mathematical and statistical techniques for empirical model building associated with anti-AD plant secondary metabolites and their source botanicals.
Collapse
|
24
|
Tong ZB, Hogberg H, Kuo D, Sakamuru S, Xia M, Smirnova L, Hartung T, Gerhold D. Characterization of three human cell line models for high-throughput neuronal cytotoxicity screening. J Appl Toxicol 2016; 37:167-180. [PMID: 27143523 DOI: 10.1002/jat.3334] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 03/02/2016] [Accepted: 03/03/2016] [Indexed: 11/10/2022]
Abstract
More than 75 000 man-made chemicals contaminate the environment; many of these have not been tested for toxicities. These chemicals demand quantitative high-throughput screening assays to assess them for causative roles in neurotoxicities, including Parkinson's disease and other neurodegenerative disorders. To facilitate high throughput screening for cytotoxicity to neurons, three human neuronal cellular models were compared: SH-SY5Y neuroblastoma cells, LUHMES conditionally-immortalized dopaminergic neurons, and Neural Stem Cells (NSC) derived from human fetal brain. These three cell lines were evaluated for rapidity and degree of differentiation, and sensitivity to 32 known or candidate neurotoxicants. First, expression of neural differentiation genes was assayed during a 7-day differentiation period. Of the three cell lines, LUHMES showed the highest gene expression of neuronal markers after differentiation. Both in the undifferentiated state and after 7 days of neuronal differentiation, LUHMES cells exhibited greater cytotoxic sensitivity to most of 32 suspected or known neurotoxicants than SH-SY5Y or NSCs. LUHMES cells were also unique in being more susceptible to several compounds in the differentiating state than in the undifferentiated state; including known neurotoxicants colchicine, methyl-mercury (II), and vincristine. Gene expression results suggest that differentiating LUHMES cells may be susceptible to apoptosis because they express low levels of anti-apoptotic genes BCL2 and BIRC5/survivin, whereas SH-SY5Y cells may be resistant to apoptosis because they express high levels of BCL2, BIRC5/survivin, and BIRC3 genes. Thus, LUHMES cells exhibited favorable characteristics for neuro-cytotoxicity screening: rapid differentiation into neurons that exhibit high level expression neuronal marker genes, and marked sensitivity of LUHMES cells to known neurotoxicants. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Zhi-Bin Tong
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Helena Hogberg
- Centers for Alternatives to Animal Testing (CAAT) at Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, USA
| | - David Kuo
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Srilatha Sakamuru
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Menghang Xia
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| | - Lena Smirnova
- Centers for Alternatives to Animal Testing (CAAT) at Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, USA
| | - Thomas Hartung
- Centers for Alternatives to Animal Testing (CAAT) at Johns Hopkins Bloomberg School of Public Health, 615 N. Wolfe Street, Baltimore, MD, USA.,University of Konstanz, POB 600, Konstanz, Germany
| | - David Gerhold
- National Center for Advancing Translational Sciences (NCATS), National Institutes of Health, Rockville, MD, USA
| |
Collapse
|
25
|
Cerri S, Greco R, Levandis G, Ghezzi C, Mangione AS, Fuzzati-Armentero MT, Bonizzi A, Avanzini MA, Maccario R, Blandini F. Intracarotid Infusion of Mesenchymal Stem Cells in an Animal Model of Parkinson's Disease, Focusing on Cell Distribution and Neuroprotective and Behavioral Effects. Stem Cells Transl Med 2015. [PMID: 26198165 DOI: 10.5966/sctm.2015-0023] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
UNLABELLED Mesenchymal stem cells (MSCs) have been proposed as a potential therapeutic tool for Parkinson's disease (PD) and systemic administration of these cells has been tested in preclinical and clinical studies. However, no information on survival and actual capacity of MSCs to reach the brain has been provided. In this study, we evaluated homing of intraarterially infused rat MSCs (rMSCs) in the brain of rats bearing a 6-hydroxydopamine (6-OHDA)-induced lesion of the nigrostriatal tract, to establish whether the toxin-induced damage is sufficient to grant MSC passage across the blood-brain barrier (BBB) or if a transient BBB disruption is necessary. The rMSC distribution in peripheral organs and the effects of cell infusion on neurodegenerative process and motor deficits were also investigated. rMSCs were infused 14 days after 6-OHDA injection. A hyperosmolar solution of mannitol was used to transiently permeabilize the BBB. Behavioral impairment was assessed by adjusting step test and response to apomorphine. Animals were sacrificed 7 and 28 days after cell infusion. Our work shows that appreciable delivery of rMSCs to the brain of 6-OHDA-lesioned animals can be obtained only after mannitol pretreatment. A notable percentage of infused cells accumulated in peripheral organs. Infusion of rMSCs did not modify the progression of 6-OHDA-induced damage or the motor impairment at the stepping test, but induced progressive normalization of the pathological response (contralateral turning) to apomorphine administration. These findings suggest that many aspects should be further investigated before considering any translation of MSC systemic administration into the clinical setting for PD treatment. SIGNIFICANCE This study demonstrates that mesenchymal stem cells infused through the carotid artery do not efficiently cross the blood-brain barrier in rats with a Parkinson's disease-like degeneration of nigrostriatal neurons, unless a permeabilizing agent (e.g., mannitol) is used. The infusion did not reduce the neuronal damage and associated motor impairment, but abolished the motor abnormalities these animals typically show when challenged with a dopaminergic agonist. Therefore, although arterially infused mesenchymal stem cells did not show neurorestorative effects in this study's Parkinson's disease model, they appeared to normalize the pathological responsiveness of striatal neurons to dopaminergic stimulation. This capability should be further explored in future studies.
Collapse
Affiliation(s)
- Silvia Cerri
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rosaria Greco
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanna Levandis
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Cristina Ghezzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Antonina Stefania Mangione
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Marie-Therese Fuzzati-Armentero
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Arianna Bonizzi
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Maria Antonietta Avanzini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Rita Maccario
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Fabio Blandini
- Laboratory of Functional Neurochemistry, Center for Research in Neurodegenerative Diseases, and Laboratory of Neurophysiology of Integrative Autonomic Systems, "C. Mondino" National Neurological Institute, Pavia, Italy; Immunology and Transplantation Laboratory/Cell Factory/Pediatric Hematology/Oncology Department, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| |
Collapse
|
26
|
Zhao HB, Qi SN, Dong JZ, Ha XQ, Li XY, Zhang QW, Yang YS, Bai J, Zhao L. Salidroside induces neuronal differentiation of mouse mesenchymal stem cells through Notch and BMP signaling pathways. Food Chem Toxicol 2014; 71:60-7. [PMID: 24929042 DOI: 10.1016/j.fct.2014.05.031] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/19/2014] [Accepted: 05/30/2014] [Indexed: 01/27/2023]
Abstract
Salidroside (p-hydroxyphenethyl-β-D-glucoside, SAL), a phenylpropanoid glycoside isolated from a popular traditional Chinese medicinal plant Rhodiola rosea L., possesses multiple pharmacological actions. Previous study showed that SAL could induce rat mesenchymal stem cells (MSCs) to differentiate into dopaminergic neurons and induce mouse MSCs D1 to differentiate into neuronal cells. However, the mechanisms of SAL-induced neuronal differentiation of MSCs still need investigation. In this study, we observed the effects of SAL on neuronal differentiation of D1 cells and the possible involvement of Notch and BMP signaling pathways. SAL inhibited the proliferation, induced neuronal phenotypes, and upregulated the expressions of neuronal-specific marker molecules, such as neuronal enolase 2 (Eno2/NSE), microtubule-associated protein 2 (MAP2), and beta 3 class III tubulin (Tubb3/β-tubulin III) in D1 cells. SAL not only downregulated the expressions of Notch1 and hairy enhancer of split 1 (Drosophila) (Hes1) but also upregulated the expression of Smad1/5/8 and its phosphorylation (p-Smad 1/5/8). The neuronal differentiation effects of SAL on D1 cells were promoted by a Notch signaling antagonist, DAPT, but attenuated by a BMP signaling pathway antagonist, Noggin. Our findings suggest that SAL might be promising in inducing neuronal differentiation of mouse MSCs mediated by both Notch signaling pathway and BMP signaling pathway.
Collapse
Affiliation(s)
- Hong-Bin Zhao
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China.
| | - She-Ning Qi
- Department of Histology and Embryology, School of Basic Medicine, Lanzhou University, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou, Gansu 730000, China.
| | - Ju-Zi Dong
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| | - Xiao-Qin Ha
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| | - Xiao-Yun Li
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| | - Quan-Wei Zhang
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| | - Yin-Shu Yang
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| | - Jie Bai
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| | - Ling Zhao
- Institute of Orthopedics, General Hospital of Lanzhou Military Command of the PLA, Key Laboratory of Stem Cells and Gene Medicine of Gansu Province, Lanzhou, Gansu 730050, China
| |
Collapse
|