1
|
Gurav A, Revaiah PC, Tsai TY, Miyashita K, Tobe A, Oshima A, Sevestre E, Garg S, Aben JP, Reiber JHC, Morel MA, Lee CW, Koo BK, Biscaglia S, Collet C, Bourantas C, Escaned J, Onuma Y, Serruys PW. Coronary angiography: a review of the state of the art and the evolution of angiography in cardio therapeutics. Front Cardiovasc Med 2024; 11:1468888. [PMID: 39654943 PMCID: PMC11625592 DOI: 10.3389/fcvm.2024.1468888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/14/2024] [Indexed: 12/12/2024] Open
Abstract
Traditionally, coronary angiography was restricted to visual estimation of contrast-filled lumen in coronary obstructive diseases. Over the previous decades, considerable development has been made in quantitatively analyzing coronary angiography, significantly improving its accuracy and reproducibility. Notably, the integration of artificial intelligence (AI) and machine learning into quantitative coronary angiography (QCA) holds promise for further enhancing diagnostic accuracy and predictive capabilities. In addition, non-invasive fractional flow reserve (FFR) indices, including computed tomography-FFR, have emerged as valuable tools, offering precise physiological assessment of coronary artery disease without the need for invasive procedures. These innovations allow for a more comprehensive evaluation of disease severity and aid in guiding revascularization decisions. This review traces the development of QCA technologies over the years, highlighting key milestones and current advancements. It also explores prospects that could revolutionize the field, such as AI integration and improved imaging techniques. By addressing both historical context and future directions, the article underscores the ongoing evolution of QCA and its critical role in the accurate assessment and management of coronary artery diseases. Through continuous innovation, QCA is poised to remain at the forefront of cardiovascular diagnostics, offering clinicians invaluable tools for improving patient care.
Collapse
Affiliation(s)
- Aishwarya Gurav
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Pruthvi C. Revaiah
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Tsung-Ying Tsai
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Kotaro Miyashita
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Akihiro Tobe
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Asahi Oshima
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Emelyne Sevestre
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Scot Garg
- Department of Cardiology, Royal Blackburn Hospital, Blackburn, United Kingdom
| | | | - Johan H. C. Reiber
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
- Medis Medical Imaging Systems BV, Leiden, Netherlands
| | - Marie Angele Morel
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Cheol Whan Lee
- Division of Cardiology, Department of Internal Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Republic of Korea
| | - Simone Biscaglia
- Cardiology Unit, Azienda Ospedaliero Universitaria di Ferrara, Ferrara, Italy
| | - Carlos Collet
- Cardiovascular Center Aalst, OLV Clinic, Aalst, Belgium
| | - Christos Bourantas
- Department of Cardiology, Barts Heart Center, Barts Health NHS Trust, London, United Kingdom
- Cardiovascular Devices Hub, Centre for Cardiovascular Medicine and Devices, William Harvey Research Institute, Queen Mary University of London, London, United Kingdom
| | - Javier Escaned
- Hospital Clínico San Carlos IDISSC, Complutense University of Madrid and CIBER-CV, Madrid, Spain
| | - Yoshinobu Onuma
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| | - Patrick W. Serruys
- CORRIB Research Centre for Advanced Imaging and Core Laboratory, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Kim HW, Noh SC, Kim SH, Chu HW, Jung CH, Kang SH. Effective descriptor extraction strategies for correspondence matching in coronary angiography images. Sci Rep 2024; 14:18630. [PMID: 39128936 PMCID: PMC11317489 DOI: 10.1038/s41598-024-69153-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/01/2024] [Indexed: 08/13/2024] Open
Abstract
The importance of 3D reconstruction of coronary arteries using multiple coronary angiography (CAG) images has been increasingly recognized in the field of cardiovascular disease management. This process relies on the camera matrix's optimization, needing correspondence info for identical point positions across two images. Therefore, an automatic method for determining correspondence between two CAG images is highly desirable. Despite this need, there is a paucity of research focusing on image matching in the CAG images. Additionally, standard deep learning image matching techniques often degrade due to unique features and noise in CAG images. This study aims to fill this gap by applying a deep learning-based image matching method specifically tailored for the CAG images. We have improved the structure of our point detector and redesigned loss function to better handle sparse labeling and indistinct local features specific to CAG images. Our method include changes to training loss and introduction of a multi-head descriptor structure leading to an approximate 6% improvement. We anticipate that our work will provide valuable insights into adapting techniques from general domains to more specialized ones like medical imaging and serve as an improved benchmark for future endeavors in X-ray image-based correspondence matching.
Collapse
Affiliation(s)
| | | | - Sun-Hwa Kim
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Hyun-Wook Chu
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | | | - Si-Hyuck Kang
- Cardiovascular Center, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea.
- Department of Internal Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Koo BK, Lee JM, Hwang D, Park S, Shiono Y, Yonetsu T, Lee SH, Kawase Y, Ahn JM, Matsuo H, Shin ES, Hu X, Ding D, Fezzi S, Tu S, Low AF, Kubo T, Nam CW, Yong AS, Harding SA, Xu B, Hur SH, Choo GH, Tan HC, Mullasari A, Hsieh IC, Kakuta T, Akasaka T, Wang J, Tahk SJ, Fearon WF, Escaned J, Park SJ. Practical Application of Coronary Physiologic Assessment: Asia-Pacific Expert Consensus Document: Part 1. JACC. ASIA 2023; 3:689-706. [PMID: 38095005 PMCID: PMC10715899 DOI: 10.1016/j.jacasi.2023.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/13/2023] [Accepted: 07/08/2023] [Indexed: 12/30/2023]
Abstract
Coronary physiologic assessment is performed to measure coronary pressure, flow, and resistance or their surrogates to enable the selection of appropriate management strategy and its optimization for patients with coronary artery disease. The value of physiologic assessment is supported by a large body of evidence that has led to major recommendations in clinical practice guidelines. This expert consensus document aims to convey practical and balanced recommendations and future perspectives for coronary physiologic assessment for physicians and patients in the Asia-Pacific region based on updated information in the field that including both wire- and image-based physiologic assessment. This is Part 1 of the whole consensus document, which describes the general concept of coronary physiology, as well as practical information on the clinical application of physiologic indices and novel image-based physiologic assessment.
Collapse
Affiliation(s)
- Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Joo Myung Lee
- Division of Cardiology, Department of Internal Medicine, Heart Vascular Stroke Institute, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Doyeon Hwang
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Sungjoon Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea
| | - Yasutsugu Shiono
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Taishi Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, Tokyo, Japan
| | - Seung Hun Lee
- Department of Internal Medicine, Chonnam National University Hospital, Gwangju, Korea
| | - Yoshiaki Kawase
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Jung-Min Ahn
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hitoshi Matsuo
- Department of Cardiovascular Medicine, Gifu Heart Center, Gifu, Japan
| | - Eun-Seok Shin
- Department of Cardiology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Xinyang Hu
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Daixin Ding
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, National University of Ireland, University Road, Galway, Ireland
| | - Simone Fezzi
- The Lambe Institute for Translational Medicine, The Smart Sensors Lab and Curam, National University of Ireland, University Road, Galway, Ireland
- Division of Cardiology, Department of Medicine, University of Verona, Verona, Italy
| | - Shengxian Tu
- Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Adrian F. Low
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Takashi Kubo
- Department of Cardiology, Tokyo Medical University, Hachioji Medical Center, Tokyo, Japan
| | - Chang-Wook Nam
- Department of Internal Medicine and Cardiovascular Research Institute, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Andy S.C. Yong
- Department of Cardiology, Concord Hospital, University of Sydney, Sydney, Australia
| | - Scott A. Harding
- Department of Cardiology, Wellington Hospital, Wellington, New Zealand
| | - Bo Xu
- Department of Cardiology, National Clinical Research Center for Cardiovascular Diseases, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Seung-Ho Hur
- Department of Internal Medicine and Cardiovascular Research Institute, Keimyung University Dongsan Hospital, Daegu, Korea
| | - Gim Hooi Choo
- Department of Cardiology, Cardiac Vascular Sentral KL (CVSKL), Kuala Lumpur, Malaysia
| | - Huay Cheem Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore; National University Heart Centre, National University Health System, Singapore
| | - Ajit Mullasari
- Department of Cardiology, Madras Medical Mission, Chennai, India
| | - I-Chang Hsieh
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital at Linkou and Chang Gung University College of Medicine, Taoyuan, Taiwan
| | - Tsunekazu Kakuta
- Division of Cardiovascular Medicine, Tsuchiura Kyodo General Hospital, Ibaraki, Japan
| | - Takashi Akasaka
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Seung-Jea Tahk
- Department of Cardiology, Ajou University Medical Center, Suwon, Korea
| | - William F. Fearon
- Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Palo Alto, California, USA
| | - Javier Escaned
- Hospital Clinico San Carlos IDISSC, Complutense University of Madrid, Madrid, Spain
| | - Seung-Jung Park
- Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| |
Collapse
|
4
|
Poon EKW, Ono M, Wu X, Dijkstra J, Sato Y, Kutyna M, Torii R, Reiber JHC, Bourantas CV, Barlis P, El-Kurdi MS, Cox M, Virmani R, Onuma Y, Serruys PW. An optical coherence tomography and endothelial shear stress study of a novel bioresorbable bypass graft. Sci Rep 2023; 13:2941. [PMID: 36805474 PMCID: PMC9941467 DOI: 10.1038/s41598-023-29573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 02/07/2023] [Indexed: 02/22/2023] Open
Abstract
Endothelial shear stress (ESS) plays a key role in the clinical outcomes in native and stented segments; however, their implications in bypass grafts and especially in a synthetic biorestorative coronary artery bypass graft are yet unclear. This report aims to examine the interplay between ESS and the morphological alterations of a biorestorative coronary bypass graft in an animal model. Computational fluid dynamics (CFD) simulation derived from the fusion of angiography and optical coherence tomography (OCT) imaging was used to reconstruct data on the luminal anatomy of a bioresorbable coronary bypass graft with an endoluminal "flap" identified during OCT acquisition. The "flap" compromised the smooth lumen surface and considerably disturbed the local flow, leading to abnormally low ESS and high oscillatory shear stress (OSI) in the vicinity of the "flap". In the presence of the catheter, the flow is more stable (median OSI 0.02384 versus 0.02635, p < 0.0001; maximum OSI 0.4612 versus 0.4837). Conversely, OSI increased as the catheter was withdrawn which can potentially cause back-and-forth motions of the "flap", triggering tissue fatigue failure. CFD analysis in this report provided sophisticated physiological information that complements the anatomic assessment from imaging enabling a complete understanding of biorestorative graft pathophysiology.
Collapse
Affiliation(s)
- Eric K. W. Poon
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | - Masafumi Ono
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.7177.60000000084992262Department of Clinical and Experimental Cardiology, Amsterdam UMC, Heart Center, Amsterdam Cardiovascular Sciences, University of Amsterdam, Meibergdreef 9, Amsterdam, The Netherlands
| | - Xinlei Wu
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.417384.d0000 0004 1764 2632Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jouke Dijkstra
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Yu Sato
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Matthew Kutyna
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Ryo Torii
- grid.83440.3b0000000121901201Department of Mechanical Engineering, University College London, London, UK
| | - Johan H. C. Reiber
- grid.10419.3d0000000089452978Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Christos V. Bourantas
- grid.83440.3b0000000121901201Institute of Cardiovascular Science, University College London, London, UK ,grid.416353.60000 0000 9244 0345Department of Cardiology, Barts Heart Centre, London, UK
| | - Peter Barlis
- grid.1008.90000 0001 2179 088XDepartment of Medicine, St Vincent’s & Northern Hospitals, Melbourne Medical School, University of Melbourne, Victoria, Australia
| | | | - Martijn Cox
- Xeltis BV, De Lismortel 31, 5612AR Eindhoven, The Netherlands
| | - Renu Virmani
- grid.417701.40000 0004 0465 0326CVPath Institute, Inc, Gaithersburg, MD USA
| | - Yoshinobu Onuma
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland
| | - Patrick W. Serruys
- Department of Cardiology, University of Galway, University Road, Galway, H91 TK33 Ireland ,grid.6906.90000000092621349Emeritus Professor of Medicine, Erasmus University, Rotterdam, The Netherlands ,CÚRAM, SFI Research Centre for Medical Devices, Galway, H91 TK33 Ireland
| |
Collapse
|
5
|
Stegehuis V, Westra J, Boerhout C, Sejr-Hansen M, Eftekhari A, Mejía-Renteria H, Cambero-Madera M, Van Royen N, Matsuo H, Nakayama M, Siebes M, Christiansen EH, Van de Hoef T, Piek J. Three-Dimensional Angiographic Characteristics versus Functional Stenosis Severity in Fractional and Coronary Flow Reserve Discordance: A DEFINE FLOW Sub Study. Diagnostics (Basel) 2022; 12:1770. [PMID: 35885676 PMCID: PMC9323286 DOI: 10.3390/diagnostics12071770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/07/2022] [Accepted: 07/12/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Coronary angiography alone is insufficient to identify lesions associated with myocardial ischemia that may benefit from revascularization. Coronary physiology parameters may improve clinical decision making in addition to coronary angiography, but the association between 2D and 3D qualitative coronary angiography (QCA) and invasive pressure and flow measurements is yet to be elucidated. METHODS We associated invasive fractional flow reserve (FFR), coronary flow reserve (CFR) and coronary flow capacity (CFC) with 2D- and 3D-QCA in 430 intermediate lesions of 366 patients. RESULTS Overall, 2D-QCA analysis resulted in less severe stenosis severity compared with 3D-QCA analysis. FFR+/CFR- lesions had similar 3D-QCA characteristics as FFR+/CFR+ lesions. In contrast, vessels with FFR-/CFR+ discordance had 3D-QCA characteristics similar to those of vessels with concordant FFR-/CFR-. Contrarily, FFR+/CFR- lesions had CFC similar to that of as FFR-/CFR- lesions. CONCLUSIONS Non-flow-limiting lesions (FFR+/CFR-) have 3D-QCA characteristics similar to those of FFR+/CFR+, but the majority are not associated with inducible myocardial ischemia as determined by invasive CFC. FFR-/CFR+ lesions have 3D-QCA characteristics similar to those of FFR-/CFR- lesions but are more frequently associated with a moderately to severely reduced CFC, illustrating the angiographic-functional mismatch in discordant lesions.
Collapse
Affiliation(s)
- Valerie Stegehuis
- Amsterdam UMC—Location AMC, Department of Cardiology, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (V.S.); (C.B.); (T.V.d.H.)
| | - Jelmer Westra
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (J.W.); (M.S.-H.); (A.E.); (E.C.)
| | - Coen Boerhout
- Amsterdam UMC—Location AMC, Department of Cardiology, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (V.S.); (C.B.); (T.V.d.H.)
| | - Martin Sejr-Hansen
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (J.W.); (M.S.-H.); (A.E.); (E.C.)
| | - Ashkan Eftekhari
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (J.W.); (M.S.-H.); (A.E.); (E.C.)
| | - Hernan Mejía-Renteria
- Department of Cardiology, Hospital Clínico San Carlos IDISSC and Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | | | - Niels Van Royen
- Department of Cardiology, Radboud University Nijmegen, 6525 XZ Nijmegen, The Netherlands;
| | | | - Masafumi Nakayama
- Gifu Heart Center, Gifu 500-8384, Japan; (H.M.); (M.N.)
- Japan Toda Chuo General Hospital, Toda 335-0023, Japan
| | - Maria Siebes
- Amsterdam UMC—Location AMC, Department of Biomedical Engineering and Physics, 1105 AZ Amsterdam, The Netherlands;
| | - Evald Høj Christiansen
- Department of Cardiology, Aarhus University Hospital, Skejby, 8200 Aarhus, Denmark; (J.W.); (M.S.-H.); (A.E.); (E.C.)
| | - Tim Van de Hoef
- Amsterdam UMC—Location AMC, Department of Cardiology, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (V.S.); (C.B.); (T.V.d.H.)
| | - Jan Piek
- Amsterdam UMC—Location AMC, Department of Cardiology, University of Amsterdam, Heart Center, Amsterdam Cardiovascular Sciences, 1105 AZ Amsterdam, The Netherlands; (V.S.); (C.B.); (T.V.d.H.)
| |
Collapse
|
6
|
Wu X, Lunardi M, Elkoumy A, Huang J, Kan J, Chen S, Tu S. A novel angiography-based computational modelling for assessing the dynamic stress and quantitative fatigue fracture risk of the coronary stents immediately after implantation: Effects of stent materials, designs and target vessel motions. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2022. [DOI: 10.1016/j.medntd.2022.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Computerized technologies informing cardiac catheterization and guiding coronary intervention. Am Heart J 2021; 240:28-45. [PMID: 34077744 DOI: 10.1016/j.ahj.2021.05.017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/22/2021] [Indexed: 11/21/2022]
Abstract
Advances in image processing and computer hardware have enabled the development of user-friendly software which operate in real-time and can be used in the catheterization laboratory to facilitate percutaneous coronary intervention (PCI). The two dimensional-(2D) quantitative coronary angiography (QCA) systems that have traditionally been used to assess lesion severity have been replaced by 3D-QCA systems, enabling more reliable evaluation of vessel geometry and lesion dimensions. This also allows 3D reconstruction of coronary bifurcation anatomy and generation of models that can be processed by computational fluid dynamic techniques to reliably detect flow-limiting lesions. More recently, software has been introduced that has the capability of generating a digital silhouette of the coronary arteries superimposed onto X-ray angiography to facilitate wire crossing and stent placement, and potentially reduce contrast use. In parallel, methodologies have been developed that operate with an accessible interface and can process intravascular imaging data, reliably quantify lesion severity and co-register intravascular and X-ray angiographic data to comprehensively assess plaque distribution and guide PCI. The above advances are used in daily practice to improve procedural results and outcomes. This review aims to provide an overview of the developments in the field - it presents the computer-based technologies that have been designed to accurately assess lesion severity, summarizes the advantages and limitations of the systems introduced to co-register imaging data and discusses the potential value of the existing and emerging software in the catheterization laboratory.
Collapse
|
8
|
Algowhary M, Abdelmegid MAKF. Longitudinal stent elongation or shortening after deployment in the coronary arteries: which is dominant? Egypt Heart J 2021; 73:46. [PMID: 34002293 PMCID: PMC8128949 DOI: 10.1186/s43044-021-00170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 05/06/2021] [Indexed: 11/18/2022] Open
Abstract
Background Stent manufacturers always record stent shortening data while they do not record stent elongation data. The aim of this study is to identify both stent shortening and elongation occurring after deployment in the coronary arteries and know their percentage. Results The length of coronary stents was measured by intravascular ultrasound (IVUS) by (1) edge-to-edge (E-E) length, measured from the appearance of the first distal strut to the last proximal strut, and (2) area-to-area (A-A) length, measured from the first distal struts seen at more than one IVUS quadrant to the last proximal struts seen at more than one IVUS quadrant. Stent shortening was defined as both E-E and A-A lengths were shorter than the manufacturer box-stated length (shortened group). Stent elongation was defined as both E-E and A-A lengths were longer than the manufacturer box-stated length (elongated group), otherwise unchanged group. Consecutive 102 stents deployed in ischemic patients were included. Stent elongation was detected in 67.6% (69 stents), and shortening was detected in 15.7% (16 stents), while unchanged stents were detected in 16.7% (17 stents). Although the 3 groups had similar box-stated length and predicted foreshortened length, they had significantly different measurements by IVUS, p<0.001 for each comparison. Differences from box-stated length were 1.9±1.4mm, −1.4±0.4mm, and 0.4±0.3mm, respectively, p<0.001. The elongated group had significantly longer differences from the corresponding box-stated and predicted foreshortened lengths, while the shortened group had significantly shorter differences from the corresponding box-stated length and similar foreshortened length. By multinomial regression analysis, the plaque-media area and stent deployment pressure were the independent predictors of the stent length groups, p=0.015 and p=0.026, respectively. Conclusions Change in stent length is not only shortening—as mentioned in the manufacturer documents—but also stent elongation. Stent elongation is dominant, and the most important predictors of longitudinal stent changes are plaque-media area and stent deployment pressure.
Collapse
Affiliation(s)
- Magdy Algowhary
- Department of Cardiovascular Medicine, Assiut University Heart Hospital, Faculty of Medicine, Assiut University, Asyut, 71515, Egypt.
| | | |
Collapse
|
9
|
Kim Y, Bray JJH, Waterhouse B, Gall A, Connolly GM, Sammut E, Bruno VD, Tulloh R, Adlam D, Johnson TW. Quantitative evaluation and comparison of coronary artery characteristics by 3D coronary volume reconstruction. Sci Rep 2021; 11:1170. [PMID: 33441962 PMCID: PMC7806746 DOI: 10.1038/s41598-020-80928-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 12/17/2020] [Indexed: 12/18/2022] Open
Abstract
Non-atherosclerotic abnormalities of vessel calibre, aneurysm and ectasia, are challenging to quantify and are often overlooked in qualitative reporting. Utilising a novel 3-dimensional (3D) quantitative coronary angiography (QCA) application, we have evaluated the characteristics of normal, diabetic and aneurysmal or ectatic coronary arteries. We selected 131 individuals under 50 years-of-age, who had undergone coronary angiography for suspected myocardial ischaemia between 1st January 2011 and 31st December 2015, at the Bristol Heart Institute, Bristol, UK. This included 42 patients with angiographically normal coronary arteries, 36 diabetic patients with unobstructed coronaries, and 53 patients with abnormal coronary dilatation (aneurysm and ectasia). A total of 1105 coronary segments were analysed using QAngio XA 3D (Research Edition, Medis medical imaging systems, Leiden, The Netherlands). The combined volume of the major coronary arteries was significantly different between each group (1240 ± 476 mm3 diabetic group, 1646 ± 391 mm3 normal group, and 2072 ± 687 mm3 abnormal group). Moreover, the combined coronary artery volumes correlated with patient body surface area (r = 0.483, p < 0.01). Inter-observer variability was assessed and intraclass correlation coefficient of the total coronary artery volume demonstrated a low variability of 3D QCA (r = 0.996, p < 0.001). Dedicated 3D QCA facilitates reproducible coronary artery volume estimation and allows discrimination of normal and diseased vessels.
Collapse
Affiliation(s)
- Yongcheol Kim
- Division of Cardiology, Department of Internal Medicine, Yonsei University College of Medicine and Cardiovascular Center, Yongin Severance Hospital, Yongin, Republic of Korea.,Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | | | - Benjamin Waterhouse
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Alexander Gall
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK
| | - Georgia May Connolly
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK.,University of Bristol, Bristol, UK
| | - Eva Sammut
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK.,University of Bristol, Bristol, UK
| | - Vito Domenico Bruno
- University of Bristol Medical School - Translational Health Science, Bristol, UK
| | - Robert Tulloh
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK.,University of Bristol, Bristol, UK
| | - David Adlam
- Department of Cardiovascular Sciences, NIHR Leicester Biomedical Research Centre, Leicester, UK
| | - Thomas W Johnson
- Bristol Heart Institute, University Hospitals Bristol NHS Foundation Trust, Upper Maudlin Street, Bristol, BS2 8HW, UK.
| |
Collapse
|
10
|
Okamoto N, Vengrenyuk Y, Fuster V, Samady H, Yasumura K, Baber U, Barman N, Suleman J, Sweeny J, Krishnan P, Mehran R, Sharma SK, Narula J, Kini AS. Relationship between high shear stress and OCT-verified thin-cap fibroatheroma in patients with coronary artery disease. PLoS One 2020; 15:e0244015. [PMID: 33332434 PMCID: PMC7746187 DOI: 10.1371/journal.pone.0244015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022] Open
Abstract
High-risk coronary plaques have been considered predictive of adverse cardiac events. Both wall shear stress (WSS) in patients with hemodynamically significant lesions and optical coherence tomography (OCT) -verified thin-cap fibroatheroma (TCFA) are associated with plaque rupture, the most common underlying mechanism of acute coronary syndrome. The aim of the study was to test the hypothesis that invasive coronary angiography-based high WSS is associated with the presence of TCFA detected by OCT in obstructive lesions. From a prospective study of patients who underwent OCT examination for angiographically obstructive lesions (Yellow II), we selected patients who had two angiographic projections to create a 3-dimensional reconstruction model to allow assessment of WSS. The patients were divided into 2 groups according to the presence and absence of TCFA. Mean WSS was assessed in the whole lesion and in the proximal, middle and distal segments. Of 70 patients, TCFA was observed in 13 (19%) patients. WSS in the proximal segment (WSSproximal) (10.20 [5.01, 16.93Pa]) and the whole lesion (WSSlesion) (12.37 [6.36, 14.55Pa]) were significantly higher in lesions with TCFA compared to WSSproximal (5.84 [3.74, 8.29Pa], p = 0.02) and WSSlesion (6.95 [4.41, 11.60], p = 0.04) in lesions without TCFA. After multivariate analysis, WSSproximal was independently associated with the presence of TCFA (Odds ratio 1.105; 95%CI 1.007-1.213, p = 0.04). The optimal cutoff value of WSSproximal to predict TCFA was 6.79 Pa (AUC: 0.71; sensitivity: 0.77; specificity: 0.63 p = 0.02). Our results demonstrate that high WSS in the proximal segments of obstructive lesions is an independent predictor of OCT-verified TCFA.
Collapse
Affiliation(s)
- Naotaka Okamoto
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Yuliya Vengrenyuk
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Valentin Fuster
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Habib Samady
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA, United States of America
| | - Keisuke Yasumura
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Usman Baber
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Nitin Barman
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Javed Suleman
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Joseph Sweeny
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Prakash Krishnan
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Roxana Mehran
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Samin K. Sharma
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Jagat Narula
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
| | - Annapoorna S. Kini
- Division of Cardiology, Mount Sinai Hospital and Icahn School of Medicine at Mount Sinai, New York, NY, United States of America
- * E-mail:
| |
Collapse
|
11
|
Gijsen F, Katagiri Y, Barlis P, Bourantas C, Collet C, Coskun U, Daemen J, Dijkstra J, Edelman E, Evans P, van der Heiden K, Hose R, Koo BK, Krams R, Marsden A, Migliavacca F, Onuma Y, Ooi A, Poon E, Samady H, Stone P, Takahashi K, Tang D, Thondapu V, Tenekecioglu E, Timmins L, Torii R, Wentzel J, Serruys P. Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. Eur Heart J 2020; 40:3421-3433. [PMID: 31566246 PMCID: PMC6823616 DOI: 10.1093/eurheartj/ehz551] [Citation(s) in RCA: 191] [Impact Index Per Article: 38.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/09/2019] [Accepted: 09/23/2019] [Indexed: 01/09/2023] Open
Affiliation(s)
- Frank Gijsen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Yuki Katagiri
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Peter Barlis
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Cardiology, Northern Hospital, 185 Cooper Street, Epping, Australia.,St Vincent's Heart Centre, Building C, 41 Victoria Parade, Fitzroy, Australia
| | - Christos Bourantas
- Institute of Cardiovascular Sciences, University College of London, London, UK.,Department of Cardiology, Barts Heart Centre, London, UK.,School of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Carlos Collet
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Umit Coskun
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Joost Daemen
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Jouke Dijkstra
- LKEB-Division of Image Processing, Department of Radiology, Leiden University Medical Centre, Leiden, the Netherlands
| | - Elazer Edelman
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA.,Institute for Medical Engineering and Science, MIT, Cambridge, MA, USA
| | - Paul Evans
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK
| | - Kim van der Heiden
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Rod Hose
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, UK.,Department of Circulation and Imaging, NTNU, Trondheim, Norway
| | - Bon-Kwon Koo
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital, Seoul, Korea.,Institute of Aging, Seoul National University, Seoul, Korea
| | - Rob Krams
- School of Engineering and Materials Science Queen Mary University of London, London, UK
| | - Alison Marsden
- Departments of Bioengineering and Pediatrics, Institute of Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Francesco Migliavacca
- Laboratory of Biological Structure Mechanics (LaBS), Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Milan, Italy
| | - Yoshinobu Onuma
- Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Andrew Ooi
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Poon
- Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia
| | - Habib Samady
- Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Peter Stone
- Division of Cardiovascular Medicine, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kuniaki Takahashi
- Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, the Netherlands
| | - Dalin Tang
- Department of Mathematics, Southeast University, Nanjing, China; Mathematical Sciences Department, Worcester Polytechnic Institute, Worcester, MA, USA
| | - Vikas Thondapu
- Department of Medicine and Radiology, Melbourne Medical School, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, VIC, Australia.,Department of Mechanical Engineering, Melbourne School of Engineering, The University of Melbourne, Melbourne, VIC, Australia.,Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erhan Tenekecioglu
- Department of Interventional Cardiology, Thoraxcentre, Erasmus Medical Centre, Rotterdam, the Netherlands
| | - Lucas Timmins
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT.,Scientific Computing and Imaging Institute, University of Utah, Salt Lake City, UT
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, UK
| | - Jolanda Wentzel
- Department of Cardiology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Patrick Serruys
- Erasmus University Medical Center, Rotterdam, the Netherlands.,Imperial College London, London, UK.,Melbourne School of Engineering, University of Melbourne, Melbourne, Australia
| |
Collapse
|
12
|
Babakhani H, Sadeghipour P, Tashakori Beheshti A, Ghasemi M, Moosavi J, Sadeghian M, Salesi M, Zahedmehr A, Shafe O, Shakerian F, Mohebbi B, Alemzadeh-Ansari MJ, Firouzi A, Geraiely B, Abdi S. Diagnostic accuracy of two-dimensional coronary angiographic-derived fractional flow reserve-Preliminary results. Catheter Cardiovasc Interv 2020; 97:E484-E494. [PMID: 32716124 DOI: 10.1002/ccd.29150] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2020] [Revised: 04/01/2020] [Accepted: 07/03/2020] [Indexed: 11/05/2022]
Abstract
AIM Noninvasive fractional flow reserve (NiFFR) is an emerging method for evaluating the functional significance of a coronary lesion during diagnostic coronary angiography (CAG). The method relies on the computational flow dynamics and the three-dimensional (3D) reconstruction of the vessel extracted from CAG. In the present study, we sought to evaluate the diagnostic performance and applicability of 2D-based NiFFR. METHODS In this prospective observational study, we evaluated 2D-based NiFFR in 279 candidates for invasive CAG and invasive fractional flow reserve (FFR). NiFFR was calculated via two methods: variable NiFFR, in which the contrast transport time was extracted from the angiographic view, and fixed NiFFR, in which a prespecified frame count was applied. RESULTS The final analysis was performed on 245 patients (250 lesions). Variable NiFFR had an area under the receiver operating characteristic curve of 81.5%, an accuracy of 80.0%, a sensitivity of 82.2%, a specificity of 82.2%, a negative predictive value of 91.4%, and a positive predictive value of 63.6%. The mean difference between FFR and NiFFR was -0.0244 ±.0616 (p ≤.0001). A pressure wire-free hybrid strategy was possible in 68.8% of our population with variable NiFFR. CONCLUSIONS Our 2D-based NiFFR yielded results comparable to those derived from 3D-based software. Our findings should; however, be confirmed in larger trials.
Collapse
Affiliation(s)
- Hamid Babakhani
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran.,Energy Conversion Department, Faculty of Mechanical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Parham Sadeghipour
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Tashakori Beheshti
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Massoud Ghasemi
- Department of Cardiology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Jamal Moosavi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohamad Sadeghian
- Department of Cardiology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahmood Salesi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Omid Shafe
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Farshad Shakerian
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Bahram Mohebbi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Alemzadeh-Ansari
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ata Firouzi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Geraiely
- Department of Cardiology, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Seifollah Abdi
- Cardiovascular Intervention Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
13
|
Safi H, Bourantas CV, Ramasamy A, Zanchin T, Bär S, Tufaro V, Jin C, Torii R, Karagiannis A, Reiber JHC, Mathur A, Onuma Y, Windecker S, Lansky A, Maehara A, Serruys PW, Stone P, Baumbach A, Stone GW, Räber L. Predictive value of the QFR in detecting vulnerable plaques in non-flow limiting lesions: a combined analysis of the PROSPECT and IBIS-4 study. Int J Cardiovasc Imaging 2020; 36:993-1002. [PMID: 32152810 DOI: 10.1007/s10554-020-01805-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 02/22/2020] [Indexed: 01/07/2023]
Abstract
Studies have shown that the quantitative flow ratio (QFR), recently introduced to assess lesion severity from coronary angiography, provides useful prognostic information; however the additive value of this technique over intravascular imaging in detecting lesions that are likely to cause events is yet unclear. We analysed data acquired in the PROSPECT and IBIS-4 studies, in particular the baseline virtual histology-intravascular ultrasound (VH-IVUS) and angiographic data from 17 non-culprit lesions with a presumable vulnerable phenotype (i.e., thin or thick cap fibroatheroma) that caused major adverse cardiac events or required revascularization (MACE) at 5-year follow-up and from a group of 78 vulnerable plaques that remained quiescent. The segments studied by VH-IVUS were identified in coronary angiography and the QFR was estimated. The additive value of 3-dimensional quantitative coronary angiography (3D-QCA) and of the QFR in predicting MACE at 5 year follow-up beyond plaque characteristics was examined. It was found that MACE lesions had a greater plaque burden (PB) and smaller minimum lumen area (MLA) on VH-IVUS, a longer length and a smaller minimum lumen diameter (MLD) on 3D-QCA and a lower QFR compared with lesions that remained quiescent. By univariate analysis MLA, PB, MLD, lesion length on 3D-QCA and QFR were predictors of MACE. In multivariate analysis a low but normal QFR (> 0.80 to < 0.97) was the only independent prediction of MACE (HR 3.53, 95% CI 1.16-10.75; P = 0.027). In non-flow limiting lesions with a vulnerable phenotype, QFR may provide additional prognostic information beyond plaque morphology for predicting MACE throughout 5 years.
Collapse
Affiliation(s)
- Hannah Safi
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | - Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK. .,Institute of Cardiovascular Sciences, University College London, London, UK. .,William Harvey Research Institute, Queen Mary University London, London, UK.
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,William Harvey Research Institute, Queen Mary University London, London, UK
| | - Thomas Zanchin
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Sarah Bär
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Vincenzo Tufaro
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Chongying Jin
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Department of Cardiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Alexios Karagiannis
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | | | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,William Harvey Research Institute, Queen Mary University London, London, UK
| | - Yoshinubo Onuma
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Alexandra Lansky
- Institute of Cardiovascular Sciences, University College London, London, UK.,Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Akiko Maehara
- Department of Cardiology, Columbia University Medical Center and the Cardiovascular Research Foundation, New York, NY, USA
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, London, UK
| | - Peter Stone
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,William Harvey Research Institute, Queen Mary University London, London, UK
| | - Gregg W Stone
- Department of Cardiology, Columbia University Medical Center and the Cardiovascular Research Foundation, New York, NY, USA
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
14
|
Bourantas CV, Zanchin T, Torii R, Serruys PW, Karagiannis A, Ramasamy A, Safi H, Coskun AU, Koning G, Onuma Y, Zanchin C, Krams R, Mathur A, Baumbach A, Mintz G, Windecker S, Lansky A, Maehara A, Stone PH, Raber L, Stone GW. Shear Stress Estimated by Quantitative Coronary Angiography Predicts Plaques Prone to Progress and Cause Events. JACC Cardiovasc Imaging 2020; 13:2206-2219. [PMID: 32417338 DOI: 10.1016/j.jcmg.2020.02.028] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 02/05/2020] [Accepted: 02/14/2020] [Indexed: 10/24/2022]
Abstract
OBJECTIVES This study examined the value of endothelial shear stress (ESS) estimated in 3-dimensional quantitative coronary angiography (3D-QCA) models in detecting plaques that are likely to progress and cause events. BACKGROUND Cumulative evidence has shown that plaque characteristics and ESS derived from intravascular ultrasound (IVUS)-based reconstructions enable prediction of lesions that will cause cardiovascular events. However, the prognostic value of ESS estimated by 3D-QCA in nonflow limiting lesions is yet unclear. METHODS This study analyzed baseline virtual histology (VH)-IVUS and angiographic data from 28 lipid-rich lesions (i.e., fibroatheromas) that caused major adverse cardiovascular events or required revascularization (MACE-R) at 5-year follow-up and 119 lipid-rich plaques from a control group that remained quiescent. The segments studied by VH-IVUS at baseline were reconstructed using 3D-QCA software. In the obtained geometries, blood flow simulation was performed, and the pressure gradient across the lipid-rich plaque and the mean ESS values in 3-mm segments were estimated. The additive value of these hemodynamic indexes in predicting MACE-R beyond plaque characteristics was examined. RESULTS MACE-R lesions were longer, had smaller minimum lumen area, increased plaque burden (PB), were exposed to higher ESS, and exhibited a higher pressure gradient. In multivariable analysis, PB (hazard ratio: 1.08; p = 0.004) and the maximum 3-mm ESS value (hazard ratio: 1.11; p = 0.001) were independent predictors of MACE-R. Lesions exposed to high ESS (>4.95 Pa) with a high-risk anatomy (minimal lumen area <4 mm2 and PB >70%) had a higher MACE-R rate (53.8%) than those with a low-risk anatomy exposed to high ESS (31.6%) or those exposed to low ESS who had high- (20.0%) or low-risk anatomy (7.1%; p < 0.001). CONCLUSIONS In the present study, 3D-QCA-derived local hemodynamic variables provided useful prognostic information, and, in combination with lesion anatomy, enabled more accurate identification of MACE-R lesions.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS, London, United Kingdom; Institute of Cardiovascular Sciences, University College London, London, United Kingdom; Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom.
| | - Thomas Zanchin
- Department of Cardiology, Barts Heart Centre, Barts Health NHS, London, United Kingdom; Department of Cardiology, Bern University Hospital, Bern, Switzerland; Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, United Kingdom
| | - Patrick W Serruys
- Faculty of Medicine, National Heart & Lung Institute, Imperial College London, United Kingdom
| | - Alexios Karagiannis
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Anantharaman Ramasamy
- Department of Cardiology, Barts Heart Centre, Barts Health NHS, London, United Kingdom; Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Hannah Safi
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom
| | - Ahmet Umit Coskun
- Mechanical and Industrial Engineering, Northeastern University, Boston, Massachusetts
| | - Gerhard Koning
- Medis medical imaging systems bv, Leiden, the Netherlands
| | - Yoshinobu Onuma
- Department of Interventional Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Christian Zanchin
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Rob Krams
- Department of Molecular Bioengineering Engineering and Material Sciences, Queen Mary University London, London, United Kingdom
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS, London, United Kingdom; Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Andreas Baumbach
- Department of Cardiology, Barts Heart Centre, Barts Health NHS, London, United Kingdom; Centre for Cardiovascular Medicine and Device Innovation, Queen Mary University London, London, United Kingdom
| | - Gary Mintz
- Department of Cardiology, Columbia University Medical Center and the Cardiovascular Research Foundation, New York, New York
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Alexandra Lansky
- Institute of Cardiovascular Sciences, University College London, London, United Kingdom; Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| | - Akiko Maehara
- Department of Cardiology, Columbia University Medical Center and the Cardiovascular Research Foundation, New York, New York
| | - Peter H Stone
- Cardiovascular Division, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Lorenz Raber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Gregg W Stone
- Division of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut
| |
Collapse
|
15
|
Li B, Luo YR, Tian F, Chen YD, Tian JW, Ding Y, Zhu M, Li JW, Zhang YQ, Shi WM. Sitagliptin attenuates the progression of coronary atherosclerosis in patients with coronary disease and type 2 diabetes. Atherosclerosis 2020; 300:10-18. [PMID: 32247073 DOI: 10.1016/j.atherosclerosis.2020.03.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/01/2020] [Accepted: 03/18/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS Type 2 diabetes mellitus (T2DM) is a well-recognized independent risk factor for ASCVD, the aim of this study was to investigate the effects of a dipeptidyl peptidase-4 inhibitor, sitagliptin, on prevention of progression of coronary atherosclerosis assessed by three-dimensional quantitative coronary angiography (3D-QCA) in T2DM patients with coronary artery disease (CAD). METHODS This was a prospective, randomized, double-center, open-label, blinded end point, controlled 18-month study in patients with CAD and T2DM. A total of 149 patients, who had at least 1 atherosclerotic plaque with 20%-80% luminal narrowing in a coronary artery, and had not undergone intervention during a clinically indicated coronary angiography or percutaneous coronary intervention, were randomized to sitagliptin group (n = 74) or control group (n = 75). Atherosclerosis progression was measured by repeat 3D-QCA examination in 88 patients at study completion. The primary outcome was changes in percent atheroma volume (PAV) from baseline to study completion measured by 3D-QCA. Secondary outcomes included change in 3D-QCA-derived total atheroma volume (TAV) and late lumen loss (LLL). RESULTS The primary outcome of PAV increased of 1.69% (95%CL, -0.8%-4.2%) with sitagliptin and 5.12% (95%CL, 3.49%-6.74%) with the conventional treatment (p = 0.023). The secondary outcome of change in TAV in patients treated with sitagliptin increased of 6.45 mm3 (95%CL,-2.46 to 6.36 mm3) and 9.45 mm3 (95%CL,-4.52 to 10.14 mm3) with conventional treatment (p = 0.023), however, no significant difference between groups was observed (p = 0.175). Patients treated with sitagliptin had similar LLL as compared with conventional antidiabetics (-0.06, 95%CL, -0.22 to 0.03 vs. -0.08, -0.23 to -0.03 mm, p = 0.689). CONCLUSIONS In patients with type 2 diabetes and coronary artery disease, treatment with sitagliptin resulted in a significantly lower rate of progression of coronary atherosclerosis compared with conventional treatment.
Collapse
Affiliation(s)
- Bo Li
- Department of Cardiology, Chinese Hainan Hospital of PLA General Hospital, Sanya, Hainan Province, China
| | - Yan-Rong Luo
- Department of Radiation Oncology, Chinese PLA General Hospital, Beijing, China
| | - Feng Tian
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Yun-Dai Chen
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China.
| | - Jin-Wen Tian
- Department of Cardiology, Chinese Hainan Hospital of PLA General Hospital, Sanya, Hainan Province, China
| | - Yu Ding
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Mei Zhu
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Jing-Wei Li
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Ying-Qian Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | - Wei-Ming Shi
- Department of Cardiology, Fukang Hospital of T.C.M, Fukang, Xinjiang Province, China
| |
Collapse
|
16
|
Bourantas CV, Ramasamy A, Karagiannis A, Sakellarios A, Zanchin T, Yamaji K, Ueki Y, Shen X, Fotiadis DI, Michalis LK, Mathur A, Serruys PW, Garcia-Garcia HM, Koskinas K, Torii R, Windecker S, Räber L. Angiographic derived endothelial shear stress: a new predictor of atherosclerotic disease progression. Eur Heart J Cardiovasc Imaging 2019; 20:314-322. [PMID: 30020435 DOI: 10.1093/ehjci/jey091] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 06/19/2018] [Indexed: 12/16/2022] Open
Abstract
AIMS To examine the efficacy of angiography derived endothelial shear stress (ESS) in predicting atherosclerotic disease progression. METHODS AND RESULTS Thirty-five patients admitted with ST-elevation myocardial infarction that had three-vessel intravascular ultrasound (IVUS) immediately after revascularization and at 13 months follow-up were included. Three dimensional (3D) reconstruction of the non-culprit vessels were performed using (i) quantitative coronary angiography (QCA) and (ii) methodology involving fusion of IVUS and biplane angiography. In both models, blood flow simulation was performed and the minimum predominant ESS was estimated in 3 mm segments. Baseline plaque characteristics and ESS were used to identify predictors of atherosclerotic disease progression defied as plaque area increase and lumen reduction at follow-up. Fifty-four vessels were included in the final analysis. A moderate correlation was noted between ESS estimated in the 3D QCA and the IVUS-derived models (r = 0.588, P < 0.001); 3D QCA accurately identified segments exposed to low (<1 Pa) ESS in the IVUS-based reconstructions (AUC: 0.793, P < 0.001). Low 3D QCA-derived ESS (<1.75 Pa) was associated with an increase in plaque area, burden, and necrotic core at follow-up. In multivariate analysis, low ESS estimated either in 3D QCA [odds ratio (OR): 2.07, 95% confidence interval (CI): 1.17-3.67; P = 0.012) or in IVUS (<1 Pa; OR: 2.23, 95% CI: 1.23-4.03; P = 0.008) models, and plaque burden were independent predictors of atherosclerotic disease progression; 3D QCA and IVUS-derived models had a similar accuracy in predicting disease progression (AUC: 0.826 vs. 0.827, P = 0.907). CONCLUSIONS 3D QCA-derived ESS can predict disease progression. Further research is required to examine its value in detecting vulnerable plaques.
Collapse
Affiliation(s)
- Christos V Bourantas
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK.,Institute of Cardiovascular Sciences, University College London, London, UK
| | | | - Alexios Karagiannis
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Antonis Sakellarios
- CTU Bern, Institute of Social and Preventive Medicine, Bern University, Bern, Switzerland
| | - Thomas Zanchin
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Kyohei Yamaji
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Yasushi Ueki
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Xiaohui Shen
- Department of Mechanical Engineering, University College London, London, UK
| | - Dimitrios I Fotiadis
- Department of Materials Science and Engineering, University of Ioannina, Ioannina, Greece
| | - Lampros K Michalis
- 2nd Department of Cardiology, Medical School, University of Ioannina, Ioannina, Greece
| | - Anthony Mathur
- Department of Cardiology, Barts Heart Centre, Barts Health NHS Trust, London, UK
| | - Patrick W Serruys
- International Centre for Circulatory Health, NHLI, Imperial College London, London, UK
| | - Hector M Garcia-Garcia
- Section of Interventional Cardiology, MedStar Washington Hospital Center, Washington, DC, USA
| | | | - Ryo Torii
- Department of Mechanical Engineering, University College London, London, UK
| | - Stephan Windecker
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Lorenz Räber
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
17
|
Zasada W, Slezak M, Pociask E, Malinowski KP, Proniewska K, Buszman P, Milewski K, Granada JF, Kaluza GL. In vivo comparison of key quantitative parameters measured with 3D peripheral angiography, 2D peripheral quantitative angiography and intravascular ultrasound. Int J Cardiovasc Imaging 2019; 35:215-223. [PMID: 30796556 DOI: 10.1007/s10554-019-01529-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/05/2019] [Indexed: 12/11/2022]
Abstract
The aim of this study was to compare the measures of luminal stenosis between the two-dimensional (2D) and three-dimensional (3D) Quantitative Vessel Analysis (QVA) generated by CAAS QVA software and intravascular ultrasound (IVUS). Invasive contrast angiography is considered gold standard for diagnostic imaging and intervention in both coronary and peripheral arterial disease. However, it is based on 2D images depicting complicated 3D arterial anatomy. To overcome these limitations, 3D QVA has been developed to bridge the gap between 2D QVA and endovascular imaging. Thirty porcine femoral angiograms (common, profunda and superficial) with matching intravascular ultrasound (IVUS) pullbacks featuring variable degree of stenosis were analysed by 2D QVA, 3D QVA and quantitative IVUS. All 3 modalities provided similar data regarding the length of the investigated segment. Median lumen diameter was nearly identical in IVUS (4.69 mm) and in 3D QVA (4.76 mm) but quite a bit lower in 2D QVA (4.47 mm, Kruskal-Wallis test p = 0.1648). Lumen area measured in 2D QVA was lower than in IVUS and in 3D QVA. Lumen areas rendered by IVUS and 3D QVA were similar. Bland-Altman plots showed that the lowest differences were observed between IVUS and 3D QVA. IVUS and 3D QVA results were consistently higher than 2D QVA. 3D QVA is a useful surrogate of IVUS for precise luminal morphology measurements of peripheral arteries, rendering results that are much closer to IVUS than 2D QVA can provide.
Collapse
Affiliation(s)
- Wojciech Zasada
- 2nd Department of Cardiology, University Hospital in Krakow, Krakow, Poland.
- KCRI, Miechowska 5b, 30-055, Krakow, Poland.
| | | | | | - Krzysztof Piotr Malinowski
- KCRI, Miechowska 5b, 30-055, Krakow, Poland
- Institute of Public Health, Faculty of Health Science, Jagiellonian University Medical College, Krakow, Poland
| | - Klaudia Proniewska
- KCRI, Miechowska 5b, 30-055, Krakow, Poland
- Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Krakow, Poland
| | - Piotr Buszman
- Center for Cardiovascular Research and Development American Heart of Poland, Kostkowice, Poland
- Andrzej Frycz Modrzewski Krakow University, Krakow, Poland
| | - Krzysztof Milewski
- Center for Cardiovascular Research and Development American Heart of Poland, Kostkowice, Poland
- The Jerzy Kukuczka Academy of Physical Education, Katowice, Poland
| | | | | |
Collapse
|
18
|
Cesaro A, Gragnano F, Di Girolamo D, Moscarella E, Diana V, Pariggiano I, Alfieri A, Perrotta R, Golino P, Cesaro F, Mercone G, Campo G, Calabrò P. Functional assessment of coronary stenosis: an overview of available techniques. Is quantitative flow ratio a step to the future? Expert Rev Cardiovasc Ther 2018; 16:951-962. [DOI: 10.1080/14779072.2018.1540303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Arturo Cesaro
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Felice Gragnano
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Domenico Di Girolamo
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
| | - Elisabetta Moscarella
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Vincenzo Diana
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Ivana Pariggiano
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Alfonso Alfieri
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
| | - Rocco Perrotta
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
| | - Pasquale Golino
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
| | - Francesco Cesaro
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
| | - Giuseppe Mercone
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
| | - Gianluca Campo
- Cardiovascular Institute, Azienda Ospedaliero-Universitaria di Ferrara, Cona, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Italy
| | - Paolo Calabrò
- Division of Clinical Cardiology, A.O.R.N. Sant’Anna e San Sebastiano, Caserta, Italy
- Division of Cardiology, Department of Translational Medical Sciences, University of Campania “Luigi Vanvitelli”, Naples, Italy
| |
Collapse
|
19
|
Kumar A, Hung OY, Piccinelli M, Eshtehardi P, Corban MT, Sternheim D, Yang B, Lefieux A, Molony DS, Thompson EW, Zeng W, Bouchi Y, Gupta S, Hosseini H, Raad M, Ko YA, Liu C, McDaniel MC, Gogas BD, Douglas JS, Quyyumi AA, Giddens DP, Veneziani A, Samady H. Low Coronary Wall Shear Stress Is Associated With Severe Endothelial Dysfunction in Patients With Nonobstructive Coronary Artery Disease. JACC Cardiovasc Interv 2018; 11:2072-2080. [PMID: 30268874 PMCID: PMC6217963 DOI: 10.1016/j.jcin.2018.07.004] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 10/28/2022]
Abstract
OBJECTIVES This study investigated the relationship between low wall shear stress (WSS) and severe endothelial dysfunction (EDFx). BACKGROUND Local hemodynamic forces such as WSS play an important role in atherogenesis through their effect on endothelial cells. The study hypothesized that low WSS independently predicts severe EDFx in patients with coronary artery disease (CAD). METHODS Forty-four patients with CAD underwent coronary angiography, fractional flow reserve, and endothelial function testing. Segments with >10% vasoconstriction after acetylcholine (Ach) infusion were defined as having severe EDFx. WSS, calculated using 3-dimensional angiography, velocity measurements, and computational fluid dynamics, was defined as low (<1 Pa), intermediate (1 to 2.5 Pa), or high (>2.5 Pa). RESULTS Median age was 52 years, 73% were women. Mean fractional flow reserve was 0.94 ± 0.06. In 4,510 coronary segments, median WSS was 3.67 Pa. A total of 24% had severe EDFx. A higher proportion of segments with low WSS had severe EDFx (71%) compared with intermediate WSS (22%) or high WSS (23%) (p < 0.001). Segments with low WSS demonstrated greater vasoconstriction in response to Ach than did intermediate or high WSS segments (-10.7% vs. -2.5% vs. +1.3%, respectively; p < 0.001). In a multivariable logistic regression analysis, female sex (odds ratio [OR]: 2.44; p = 0.04), diabetes (OR: 5.01; p = 0.007), and low WSS (OR: 9.14; p < 0.001) were independent predictors of severe EDFx. CONCLUSIONS In patients with nonobstructive CAD, segments with low WSS demonstrated more vasoconstriction in response to Ach than did intermediate or high WSS segments. Low WSS was independently associated with severe EDFx.
Collapse
Affiliation(s)
- Arnav Kumar
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Olivia Y Hung
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Marina Piccinelli
- Department of Radiology, Emory University School of Medicine, Atlanta, Georgia
| | - Parham Eshtehardi
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Michel T Corban
- Department of Cardiovascular Diseases, Mayo Clinic College of Medicine and Science, Rochester, Minnesota
| | - David Sternheim
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Boyi Yang
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia
| | - Adrien Lefieux
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia; Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia
| | - David S Molony
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Elizabeth W Thompson
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Wenjie Zeng
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yasir Bouchi
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Sonu Gupta
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Hossein Hosseini
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Mohamad Raad
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, Georgia
| | - Chang Liu
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Michael C McDaniel
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Bill D Gogas
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - John S Douglas
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Arshed A Quyyumi
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Don P Giddens
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Alessandro Veneziani
- Department of Mathematics and Computer Science, Emory University, Atlanta, Georgia
| | - Habib Samady
- Andreas Gruentzig Cardiovascular Center, Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
20
|
High Coronary Shear Stress in Patients With Coronary Artery Disease Predicts Myocardial Infarction. J Am Coll Cardiol 2018; 72:1926-1935. [DOI: 10.1016/j.jacc.2018.07.075] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 07/10/2018] [Accepted: 07/16/2018] [Indexed: 01/09/2023]
|
21
|
Zhang BC, Tu SX, Karanasos A, van Geuns RJ, de Jaegere P, Zijlstra F, Regar E. Association of stent-induced changes in coronary geometry with late stent failure: Insights from three-dimensional quantitative coronary angiographic analysis. Catheter Cardiovasc Interv 2018; 92:1040-1048. [PMID: 29399998 DOI: 10.1002/ccd.27520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Revised: 12/31/2017] [Accepted: 01/06/2018] [Indexed: 11/12/2022]
Abstract
BACKGROUND The relationship between vessel angulation and large changes in vessel geometry after stent implantation and the occurrence of stent failure still remains unclear. We sought to investigate the association of the change in the coronary bending angle after stenting and the risk for late stent failure by three-dimensional quantitative coronary angiography (3D QCA). METHODS The bending angle in coronary lesions that presented with late stent failure and those without stent failure was computed during the cardiac cycle, before and after stenting using a recently developed 3D QCA software. RESULTS A total of 40 lesions with stent failure (cases) were successfully matched to 47 lesions without stent failure (controls).The mean duration to follow-up coronary angiography was 1,011 days in cases and 1,109 days in the control group (P = 0.14). In stent failure, the systolic bending angle after stenting was smaller (14.45° [12.18, 17.68] versus 18.20° [14.00, 20.30], P = 0.01), while the stent-induced change in systolic bending angle was significantly larger (4.15° [1.13, 7.20] versus 1.80° [-1.90, 4.40], P = 0.004). Multivariable logistic regression analysis suggested that systolic bending angle after stenting (odds ratio: 0.88; 95% CI: 0.79-0.99; P = 0.03), and decrease in systolic bending angle after stenting (odds ratio: 1.13; 95% CI: 1.02-1.26; P = 0.03) were predictors of stent failure. CONCLUSIONS Our study suggests that a change in the natural tortuous course of the coronaries by stent implantation with the decrease in coronary bending angle is a potentially major contributor in stent failure.
Collapse
Affiliation(s)
- Bu Chun Zhang
- Department of Cardiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, People's Republic of China.,Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sheng Xian Tu
- Med-X Research Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Antonios Karanasos
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands.,Department of Cardiology, Hippokration Hospital, Athens, Greece
| | - Robert-Jan van Geuns
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter de Jaegere
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Felix Zijlstra
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Evelyn Regar
- Department of Cardiology, Thoraxcenter, Erasmus Medical Center, Rotterdam, The Netherlands.,University Hospital of Zurich, Heart Center, Zurich, Switzerland
| |
Collapse
|
22
|
Collet C, Onuma Y, Cavalcante R, Grundeken M, Généreux P, Popma J, Costa R, Stankovic G, Tu S, Reiber JHC, Aben JP, Lassen JF, Louvard Y, Lansky A, Serruys PW. Quantitative angiography methods for bifurcation lesions: a consensus statement update from the European Bifurcation Club. EUROINTERVENTION 2017; 13:115-123. [PMID: 28067200 DOI: 10.4244/eij-d-16-00932] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Bifurcation lesions represent one of the most challenging lesion subsets in interventional cardiology. The European Bifurcation Club (EBC) is an academic consortium whose goal has been to assess and recommend the appropriate strategies to manage bifurcation lesions. The quantitative coronary angiography (QCA) methods for the evaluation of bifurcation lesions have been subject to extensive research. Single-vessel QCA has been shown to be inaccurate for the assessment of bifurcation lesion dimensions. For this reason, dedicated bifurcation software has been developed and validated. These software packages apply the principles of fractal geometry to address the "step-down" in the bifurcation and to estimate vessel diameter accurately. This consensus update provides recommendations on the QCA analysis and reporting of bifurcation lesions based on the most recent scientific evidence from in vitro and in vivo studies and delineates future advances in the field of QCA dedicated bifurcation analysis.
Collapse
Affiliation(s)
- Carlos Collet
- Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Intravascular hemodynamics and coronary artery disease: New insights and clinical implications. Hellenic J Cardiol 2016; 57:389-400. [PMID: 27894949 DOI: 10.1016/j.hjc.2016.11.019] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 07/26/2016] [Indexed: 11/23/2022] Open
Abstract
Intracoronary hemodynamics play a pivotal role in the initiation and progression of the atherosclerotic process. Low pro-inflammatory endothelial shear stress impacts vascular physiology and leads to the occurrence of coronary artery disease and its implications.
Collapse
|
24
|
Comparison of angiographic and IVUS derived coronary geometric reconstructions for evaluation of the association of hemodynamics with coronary artery disease progression. Int J Cardiovasc Imaging 2016; 32:1327-1336. [PMID: 27229349 DOI: 10.1007/s10554-016-0918-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Abstract
Wall shear stress (WSS) has been investigated as a prognostic marker for the prospective identification of rapidly progressing coronary artery disease (CAD) and atherosclerotic lesions likely to gain high-risk (vulnerable) characteristics. The goal of this study was to compare biplane angiographic vs. intravascular ultrasound (IVUS) derived reconstructed coronary geometries to evaluate agreement in geometry, computed WSS, and association of WSS and CAD progression. Baseline and 6-month follow-up angiographic and IVUS imaging data were collected in patients with non-obstructive CAD (n = 5). Three-dimensional (3D) reconstructions of the coronary arteries were generated with each technique, and patient-specific computational fluid dynamics models were constructed to compute baseline WSS values. Geometric comparisons were evaluated in arterial segments (n = 9), and hemodynamic data were evaluated in circumferential sections (n = 468). CAD progression was quantified from serial IVUS imaging data (n = 277), and included virtual-histology IVUS (VH-IVUS) derived changes in plaque composition. There was no significant difference in reconstructed coronary segment lengths and cross-sectional areas (CSA), however, IVUS derived geometries exhibited a significantly larger left main CSA than the angiographic reconstructions. Computed absolute time-averaged WSS (TAWSSABS) values were significantly greater in the IVUS derived geometries, however, evaluations of relative TAWSS (TAWSSREL) values revealed improved agreement and differences within defined zones of equivalence. Associations between VH-IVUS defined CAD progression and angiographic or IVUS derived WSS exhibited poor agreement when examining TAWSSABS data, but improved when evaluating the association with TAWSSREL data. We present data from a small cohort of patients highlighting strong agreement between angiographic and IVUS derived coronary geometries, however, limited agreement is observed between computed WSS values and associations of WSS with CAD progression.
Collapse
|
25
|
Chung WY, Choi BJ, Lim SH, Matsuo Y, Lennon RJ, Gulati R, Sandhu GS, Holmes DR, Rihal CS, Lerman A. Three dimensional quantitative coronary angiography can detect reliably ischemic coronary lesions based on fractional flow reserve. J Korean Med Sci 2015; 30:716-24. [PMID: 26028923 PMCID: PMC4444471 DOI: 10.3346/jkms.2015.30.6.716] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 01/28/2015] [Indexed: 12/25/2022] Open
Abstract
Conventional coronary angiography (CAG) has limitations in evaluating lesions producing ischemia. Three dimensional quantitative coronary angiography (3D-QCA) shows reconstructed images of CAG using computer based algorithm, the Cardio-op B system (Paieon Medical, Rosh Ha'ayin, Israel). The aim of this study was to evaluate whether 3D-QCA can reliably predict ischemia assessed by myocardial fractional flow reserve (FFR) < 0.80. 3D-QCA images were reconstructed from CAG which also were evaluated with FFR to assess ischemia. Minimal luminal diameter (MLD), percent diameter stenosis (%DS), minimal luminal area (MLA), and percent area stenosis (%AS) were obtained. The results of 3D-QCA and FFR were compared. A total of 266 patients was enrolled for the present study. FFR for all lesions ranged from 0.57 to 1.00 (0.85 ± 0.09). Measurement of MLD, %DS, MLA, and %AS all were significantly correlated with FFR (r = 0.569, 0609, 0.569, 0.670, respectively, all P < 0.001). In lesions with MLA < 4.0 mm(2), %AS of more than 65.5% had a 80% sensitivity and a 83% specificity to predict FFR < 0.80 (area under curve, AUC was 0.878). 3D-QCA can reliably predict coronary lesions producing ischemia and may be used to guide therapeutic approach for coronary artery disease.
Collapse
Affiliation(s)
- Woo-Young Chung
- Devision of Cardiology, Department of Internal Medicine, Boramae Medical Center, Seoul National University, College of Medicine, Seoul, Korea
| | - Byoung-Joo Choi
- Department of Cardiology, Ajou University School of Medicine, Suwon, Korea
| | - Seong-Hoon Lim
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Dankook University, Cheonan, Korea
| | - Yoshiki Matsuo
- Department of Cardiovascular Medicine, Wakayama Medical University, Wakayama, Japan
| | - Ryan J Lennon
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | - Rajiv Gulati
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | | | - David R Holmes
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| | | | - Amir Lerman
- Division of Cardiovascular Disease, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
26
|
Toutouzas K, Chatzizisis YS, Riga M, Giannopoulos A, Antoniadis AP, Tu S, Fujino Y, Mitsouras D, Doulaverakis C, Tsampoulatidis I, Koutkias VG, Bouki K, Li Y, Chouvarda I, Cheimariotis G, Maglaveras N, Kompatsiaris I, Nakamura S, Reiber JHC, Rybicki F, Karvounis H, Stefanadis C, Tousoulis D, Giannoglou GD. Accurate and reproducible reconstruction of coronary arteries and endothelial shear stress calculation using 3D OCT: comparative study to 3D IVUS and 3D QCA. Atherosclerosis 2015; 240:510-9. [PMID: 25932791 DOI: 10.1016/j.atherosclerosis.2015.04.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/15/2015] [Accepted: 04/06/2015] [Indexed: 11/29/2022]
Abstract
BACKGROUND Geometrically-correct 3D OCT is a new imaging modality with the potential to investigate the association of local hemodynamic microenvironment with OCT-derived high-risk features. We aimed to describe the methodology of 3D OCT and investigate the accuracy, inter- and intra-observer agreement of 3D OCT in reconstructing coronary arteries and calculating ESS, using 3D IVUS and 3D QCA as references. METHODS-RESULTS 35 coronary artery segments derived from 30 patients were reconstructed in 3D space using 3D OCT. 3D OCT was validated against 3D IVUS and 3D QCA. The agreement in artery reconstruction among 3D OCT, 3D IVUS and 3D QCA was assessed in 3-mm-long subsegments using lumen morphometry and ESS parameters. The inter- and intra-observer agreement of 3D OCT, 3D IVUS and 3D QCA were assessed in a representative sample of 61 subsegments (n = 5 arteries). The data processing times for each reconstruction methodology were also calculated. There was a very high agreement between 3D OCT vs. 3D IVUS and 3D OCT vs. 3D QCA in terms of total reconstructed artery length and volume, as well as in terms of segmental morphometric and ESS metrics with mean differences close to zero and narrow limits of agreement (Bland-Altman analysis). 3D OCT exhibited excellent inter- and intra-observer agreement. The analysis time with 3D OCT was significantly lower compared to 3D IVUS. CONCLUSIONS Geometrically-correct 3D OCT is a feasible, accurate and reproducible 3D reconstruction technique that can perform reliable ESS calculations in coronary arteries.
Collapse
Affiliation(s)
- Konstantinos Toutouzas
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Yiannis S Chatzizisis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece.
| | - Maria Riga
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Andreas Giannopoulos
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Antonios P Antoniadis
- Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands; Biomedical Instrument Institute, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yusuke Fujino
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Dimitrios Mitsouras
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Charalampos Doulaverakis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Tsampoulatidis
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Vassilis G Koutkias
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Konstantina Bouki
- Second Department of Cardiology, General Hospital of Nikaia, Piraeus, Greece
| | - Yingguang Li
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Ioanna Chouvarda
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Grigorios Cheimariotis
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Nicos Maglaveras
- Laboratory of Medical Informatics, Aristotle University Medical School, Thessaloniki, Greece; Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Ioannis Kompatsiaris
- Information Technologies Institute, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Sunao Nakamura
- Department of Cardiology, New Tokyo Hospital, Chiba, Japan
| | - Johan H C Reiber
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Frank Rybicki
- Applied Imaging Science Laboratory, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Haralambos Karvounis
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Christodoulos Stefanadis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - Dimitris Tousoulis
- First Department of Cardiology, Hippokration Hospital, Athens University Medical School, Athens, Greece
| | - George D Giannoglou
- First Department of Cardiology, AHEPA University Hospital, Aristotle University Medical School, Thessaloniki, Greece
| |
Collapse
|
27
|
Co-registration of optical coherence tomography and X-ray angiography in percutaneous coronary intervention. The Does Optical Coherence Tomography Optimize Revascularization (DOCTOR) fusion study. Int J Cardiol 2015; 182:272-8. [DOI: 10.1016/j.ijcard.2014.12.088] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 12/08/2014] [Accepted: 12/25/2014] [Indexed: 11/23/2022]
|
28
|
Toth G, Hamilos M, Pyxaras S, Mangiacapra F, Nelis O, De Vroey F, Di Serafino L, Muller O, Van Mieghem C, Wyffels E, Heyndrickx GR, Bartunek J, Vanderheyden M, Barbato E, Wijns W, De Bruyne B. Evolving concepts of angiogram: fractional flow reserve discordances in 4000 coronary stenoses. Eur Heart J 2014; 35:2831-8. [DOI: 10.1093/eurheartj/ehu094] [Citation(s) in RCA: 211] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Han Y, Jing J, Tu S, Tian F, Xue H, Chen W, Chen J, Reiber JHC, Chen Y. ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis. Int J Cardiovasc Imaging 2014; 30:253-61. [PMID: 24420418 DOI: 10.1007/s10554-013-0354-z] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/23/2013] [Indexed: 01/14/2023]
Abstract
The previously study found, using a mouse model, that acute myocardial infarction accelerated atherosclerosis. This study assessed whether ST elevation myocardial infarction (STEMI) accelerates the progression of non-culprit coronary lesion (NCCL) in patients who underwent percutaneous coronary interventions (PCI). Four hundred and forty-nine patients who underwent successful PCI with stents and follow-up coronary angiography in a single center were enrolled. The NCCL progression was assessed using three-dimensional quantitative coronary angiography and was defined as ≥10 % diameter reduction of a preexisting stenosis ≥50, ≥30 % diameter reduction of a stenosis <50 %, development of a new stenosis ≥30 % in a previously normal segment, or progression to total occlusion. The patients were classified into two groups according to whether the progression existed or not. The median age of patients was 58.4 years. The mean angiographic follow-up period was 12.3 months, 134 (29.8 %) patients had NCCL progression. Multivariate Cox regression analysis (step-wise) showed that STEMI was the only independent determinant of NCCL progression. Compared to the other coronary artery disease group, the crude hazard ratio (HR) of NCCL progression for the STEMI group was 3.20 (95 % CI 2.27-4.50; p < 0.001), and the association remained significantly after adjustment for age, sex, BMI, SBP, DBP, serum lipids, fasting blood glucose, peak monocyte count, smoking, drinking, hypertension, diabetes mellitus and lesion characteristics of NCCL (adjusted HR 3.56, 95 % CI 2.41-5.27; p < 0.001). The ST elevation acute myocardial infarction accelerates non-culprit coronary lesion atherosclerosis.
Collapse
Affiliation(s)
- Yunfeng Han
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Pantos I, Katritsis D. Fractional Flow Reserve Derived from Coronary Imaging and Computational Fluid Dynamics. Interv Cardiol 2014; 9:145-150. [PMID: 29588793 DOI: 10.15420/icr.2014.9.3.145] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The assessment of functional severity of atherosclerotic stenoses in patients with coronary artery disease by invasive fractional flow reserve (FFR) measurement requires coronary artery cannulation, advancement of a wire and intravenous adenosine infusion with inherent procedure-related risk and costs. Coronary computed tomographic angiography (CCTA) and rotational coronary angiography (RA) have been recently used in conjunction with computational fluid dynamics (CFD) and image-based modelling for the determination of FFR without the need for additional imaging, modification of acquisition protocols or administration of medication. FFR derived from CCTA was demonstrated as superior to measures of CCTA stenosis severity for determination of lesion-specific ischaemia. Estimation of FFR from RA images and CFD provides a less invasive alternative to conventional FFR measurement while estimated values are in agreement with measured values. These new, combined anatomic-functional assessments have the potential to simplify the noninvasive diagnosis of coronary artery disease with a single study to identify patients with ischaemia-causing stenosis who may benefit from revascularisation.
Collapse
Affiliation(s)
- Ioannis Pantos
- Athens Euroclinic, Athens, Greece.,University of Athens, Greece
| | | |
Collapse
|
31
|
Reiber JHC, Tu S, Tuinenburg JC, Koning G, Janssen JP, Dijkstra J. QCA, IVUS and OCT in interventional cardiology in 2011. Cardiovasc Diagn Ther 2013; 1:57-70. [PMID: 24282685 DOI: 10.3978/j.issn.2223-3652.2011.09.03] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 09/24/2011] [Indexed: 12/21/2022]
Abstract
Over the past 30 years, quantitative coronary arteriography (QCA) has been used extensively as an objective and reproducible tool in clinical research to assess changes in vessel dimensions as a result of interventions, but also as a tool to provide evidence to the interventionalist prior to and after an intervention and at follow-up when necessary. With the increasing complexities of bifurcation stenting, corresponding analytical tools for bifurcation analysis have been developed with extensive reporting schemes. Although intravascular ultrasound (IVUS) has been around for a long time as well, more recent radiofrequency analysis provides additional information about the vessel wall composition; likewise optical coherence tomography (OCT) provides detailed information about the positions of the stent struts and the quality of the stent placement. Combining the information from the X-ray lumenogram and the intravascular imaging devices is mentally a challenging task for the interventionalist. To support the registration of these intravascular images with the X-ray images, 3D QCA has been developed and registered with the IVUS or OCT images, so that at every position along the vessel of interest the luminal data and the vessel wall data by IVUS or the stent strut data by OCT can be combined. From the 3D QCA the selection of the optimal angiographic views can also be facilitated. It is the intention of this overview paper to provide an extensive description of the techniques that we have developed and validated over the past 30 years.
Collapse
Affiliation(s)
- Johan H C Reiber
- Division of Image Processing (LKEB), Department of Radiology, Leiden University Medical Center (LUMC), Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
32
|
Spoon DB, Rubinshtein R, Psaltis PJ, Sandhu GS, Lennon R, Rihal CS, Lerman A. Comparison between three-dimensional angiographic reconstruction and intravascular ultrasound: Imaging of the left main coronary artery. Catheter Cardiovasc Interv 2013; 81:1156-61. [DOI: 10.1002/ccd.24733] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2012] [Accepted: 10/24/2012] [Indexed: 11/08/2022]
Affiliation(s)
- Daniel B. Spoon
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester; Minnesota
| | | | - Peter J. Psaltis
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester; Minnesota
| | - Gupreet S. Sandhu
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester; Minnesota
| | | | | | - Amir Lerman
- Division of Cardiovascular Diseases; Mayo Clinic; Rochester; Minnesota
| |
Collapse
|
33
|
Dattilo PB, Chen SYJ, Carroll JD, Messenger JC. 3D fluoroscopy-based imaging in the cardiovascular catheterization laboratory: past, present and future. Interv Cardiol 2013. [DOI: 10.2217/ica.12.84] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
34
|
Tu S, Xu L, Ligthart J, Xu B, Witberg K, Sun Z, Koning G, Reiber JHC, Regar E. In vivo comparison of arterial lumen dimensions assessed by co-registered three-dimensional (3D) quantitative coronary angiography, intravascular ultrasound and optical coherence tomography. Int J Cardiovasc Imaging 2012; 28:1315-27. [PMID: 22261998 PMCID: PMC3463784 DOI: 10.1007/s10554-012-0016-6] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 12/18/2022]
Abstract
This study sought to compare lumen dimensions as assessed by 3D quantitative coronary angiography (QCA) and by intravascular ultrasound (IVUS) or optical coherence tomography (OCT), and to assess the association of the discrepancy with vessel curvature. Coronary lumen dimensions often show discrepancies when assessed by X-ray angiography and by IVUS or OCT. One source of error concerns a possible mismatch in the selection of corresponding regions for the comparison. Therefore, we developed a novel, real-time co-registration approach to guarantee the point-to-point correspondence between the X-ray, IVUS and OCT images. A total of 74 patients with indication for cardiac catheterization were retrospectively included. Lumen morphometry was performed by 3D QCA and IVUS or OCT. For quantitative analysis, a novel, dedicated approach for co-registration and lumen detection was employed allowing for assessment of lumen size at multiple positions along the vessel. Vessel curvature was automatically calculated from the 3D arterial vessel centerline. Comparison of 3D QCA and IVUS was performed in 519 distinct positions in 40 vessels. Correlations were r = 0.761, r = 0.790, and r = 0.799 for short diameter (SD), long diameter (LD), and area, respectively. Lumen sizes were larger by IVUS (P < 0.001): SD, 2.51 ± 0.58 mm versus 2.34 ± 0.56 mm; LD, 3.02 ± 0.62 mm versus 2.63 ± 0.58 mm; Area, 6.29 ± 2.77 mm2 versus 5.08 ± 2.34 mm2. Comparison of 3D QCA and OCT was performed in 541 distinct positions in 40 vessels. Correlations were r = 0.880, r = 0.881, and r = 0.897 for SD, LD, and area, respectively. Lumen sizes were larger by OCT (P < 0.001): SD, 2.70 ± 0.65 mm versus 2.57 ± 0.61 mm; LD, 3.11 ± 0.72 mm versus 2.80 ± 0.62 mm; Area 7.01 ± 3.28 mm2 versus 5.93 ± 2.66 mm2. The vessel-based discrepancy between 3D QCA and IVUS or OCT long diameters increased with increasing vessel curvature. In conclusion, our comparison of co-registered 3D QCA and invasive imaging data suggests a bias towards larger lumen dimensions by IVUS and by OCT, which was more pronounced in larger and tortuous vessels.
Collapse
Affiliation(s)
- Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Tu S, Hao P, Koning G, Wei X, Song X, Chen A, Reiber JHC. In vivo assessment of optimal viewing angles from X-ray coronary angiography. EUROINTERVENTION 2011; 7:112-20. [PMID: 21550911 DOI: 10.4244/eijv7i1a19] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
AIMS To propose and validate a novel approach to determine the optimal angiographic viewing angles for a selected coronary (target) segment from X-ray coronary angiography, without the need to reconstruct the entire coronary tree in three-dimensions (3D), such that subsequent interventions are carried out from the best view. METHODS AND RESULTS The approach starts with standard quantitative coronary angiography (QCA) of the target vessel in two angiographic views. Next, the target vessel is reconstructed in 3D, and in a very simple and intuitive manner, the possible overlap of the target vessel and other vessel segments can be assessed, resulting in the best view with minimum foreshortening and overlap. A retrospective study including 67 patients was set up for the validation. The overlap prediction result was compared with the true overlap on the available angiographic views (TEST views). The foreshortening for the views proposed by the new approach software viewing angle (SVA) and the views used during the stent deployment software viewing angle (EVA) were compared. Two experienced interventional cardiologists visually evaluated the success of SVA with respect to EVA. The evaluation results were graded into five values ranging from -2 to 2. The overlap prediction algorithm successfully predicted the overlap condition for all 235 TEST views. EVA was associated with more foreshortening than SVA (8.9% ± 8.2% vs. 1.6% ± 1.5%, p<0.001). The average evaluated point for the success of SVA was 0.94 ± 0.80 (p <0.001), indicating that the evaluators were in favor of the optimal views determined by the proposed approach versus the views used during the actual intervention. CONCLUSIONS The proposed approach is able to accurately and quickly determine the optimal viewing angles for the online support of coronary interventions.
Collapse
Affiliation(s)
- Shengxian Tu
- Department of Radiology, Leiden University Medical Center, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
36
|
Tu S, Holm NR, Koning G, Maeng M, Reiber JHC. The impact of acquisition angle differences on three-dimensional quantitative coronary angiography. Catheter Cardiovasc Interv 2011; 78:214-22. [PMID: 21766427 DOI: 10.1002/ccd.23047] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Revised: 02/01/2011] [Accepted: 02/13/2011] [Indexed: 11/10/2022]
Abstract
BACKGROUND Three-dimensional (3D) quantitative coronary angiography (QCA) requires two angiographic views to restore vessel dimensions. This study investigated the impact of acquisition angle differences (AADs) of the two angiographic views on the assessed dimensions by 3D QCA. METHODS X-ray angiograms of an assembled brass phantom with different types of straight lesions were recorded at multiple angiographic projections. The projections were randomly matched as pairs and 3D QCA was performed in those pairs with AAD larger than 25°. The lesion length and diameter stenosis in three different lesions, a circular concentric severe lesion (A), a circular concentric moderate lesion (B), and a circular eccentric moderate lesion (C), were measured by 3D QCA. The acquisition protocol was repeated for a silicone bifurcation phantom, and the bifurcation angles and bifurcation core volume were measured by 3D QCA. The measurements were compared with the true dimensions if applicable and their correlation with AAD was studied. RESULTS 50 matched pairs of angiographic views were analyzed for the brass phantom. The average value of AAD was 48.0 ± 14.1°. The percent diameter stenosis was slightly overestimated by 3D QCA for all lesions: A (error 1.2 ± 0.9%, P < 0.001); B (error 0.6 ± 0.5%, P < 0.001); C (error 1.1 ± 0.6%, P < 0.001). The correlation of the measurements with AAD was only significant for lesion A (R(2) = 0.151, P = 0.005). The lesion length was slightly overestimated by 3D QCA for lesion A (error 0.06 ± 0.18 mm, P = 0.026), but well assessed for lesion B (error -0.00 ± 0.16 mm, P = 0.950) and lesion C (error -0.01 ± 0.18 mm, P = 0.585). The correlation of the measurements with AAD was not significant for any lesion. Forty matched pairs of angiographic views were analyzed for the bifurcation phantom. The average value of AAD was 49.1 ± 15.4°. 3D QCA slightly overestimated the proximal angle (error 0.4 ± 1.1°, P = 0.046) and the distal angle (error 1.5 ± 1.3°, P < 0.001). The correlation with AAD was only significant for the distal angle (R(2) = 0.256, P = 0.001). The correlation of bifurcation core volume measurements with AAD was not significant (P = 0.750). Of the two aforementioned measurements with significant correlation with AAD, the errors tended to increase as AAD became larger. CONCLUSIONS 3D QCA can be used to reliably assess vessel dimensions and bifurcation angles. Increasing the AAD of the two angiographic views does not increase accuracy and precision of 3D QCA for circular lesions or bifurcation dimensions.
Collapse
Affiliation(s)
- Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
37
|
Tuinenburg JC, Koning G, Rareş A, Janssen JP, Lansky AJ, Reiber JHC. Dedicated bifurcation analysis: basic principles. Int J Cardiovasc Imaging 2011; 27:167-74. [PMID: 21327913 PMCID: PMC3078323 DOI: 10.1007/s10554-010-9795-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Accepted: 12/30/2010] [Indexed: 11/25/2022]
Abstract
Over the last several years significant interest has arisen in bifurcation stenting, in particular stimulated by the European Bifurcation Club. Traditional straight vessel analysis by QCA does not satisfy the requirements for such complex morphologies anymore. To come up with practical solutions, we have developed two models, a Y-shape and a T-shape model, suitable for bifurcation QCA analysis depending on the specific anatomy of the coronary bifurcation. The principles of these models are described in this paper, as well as the results of validation studies carried out on clinical materials. It can be concluded that the accuracy, precision and applicability of these new bifurcation analyses are conform the general guidelines that have been set many years ago for conventional QCA-analyses.
Collapse
Affiliation(s)
- Joan C Tuinenburg
- Division of Image Processing, LKEB, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|
38
|
Tu S, Holm NR, Koning G, Huang Z, Reiber JHC. Fusion of 3D QCA and IVUS/OCT. Int J Cardiovasc Imaging 2011; 27:197-207. [PMID: 21264684 PMCID: PMC3078305 DOI: 10.1007/s10554-011-9809-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Accepted: 01/13/2011] [Indexed: 11/30/2022]
Abstract
The combination/fusion of quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS)/optical coherence tomography (OCT) depends to a great extend on the co-registration of X-ray angiography (XA) and IVUS/OCT. In this work a new and robust three-dimensional (3D) segmentation and registration approach is presented and validated. The approach starts with standard QCA of the vessel of interest in the two angiographic views (either biplane or two monoplane views). Next, the vessel of interest is reconstructed in 3D and registered with the corresponding IVUS/OCT pullback series by a distance mapping algorithm. The accuracy of the registration was retrospectively evaluated on 12 silicone phantoms with coronary stents implanted, and on 24 patients who underwent both coronary angiography and IVUS examinations of the left anterior descending artery. Stent borders or sidebranches were used as markers for the validation. While the most proximal marker was set as the baseline position for the distance mapping algorithm, the subsequent markers were used to evaluate the registration error. The correlation between the registration error and the distance from the evaluated marker to the baseline position was analyzed. The XA-IVUS registration error for the 12 phantoms was 0.03 ± 0.32 mm (P = 0.75). One OCT pullback series was excluded from the phantom study, since it did not cover the distal stent border. The XA-OCT registration error for the remaining 11 phantoms was 0.05 ± 0.25 mm (P = 0.49). For the in vivo validation, two patients were excluded due to insufficient image quality for the analysis. In total 78 sidebranches were identified from the remaining 22 patients and the registration error was evaluated on 56 markers. The registration error was 0.03 ± 0.45 mm (P = 0.67). The error was not correlated to the distance between the evaluated marker and the baseline position (P = 0.73). In conclusion, the new XA-IVUS/OCT co-registration approach is a straightforward and reliable solution to combine X-ray angiography and IVUS/OCT imaging for the assessment of the extent of coronary artery disease. It provides the interventional cardiologist with detailed information about vessel size and plaque size at every position along the vessel of interest, making this a suitable tool during the actual intervention.
Collapse
Affiliation(s)
- Shengxian Tu
- Division of Image Processing, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, 2300 RC Leiden, The Netherlands.
| | | | | | | | | |
Collapse
|
39
|
Holm NR, Højdahl H, Lassen JF, Thuesen L, Maeng M. Quantitative coronary analysis in the Nordic Bifurcation studies. Int J Cardiovasc Imaging 2010; 27:175-80. [DOI: 10.1007/s10554-010-9715-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2010] [Accepted: 09/20/2010] [Indexed: 10/19/2022]
|