1
|
Barkaoui S, Elboughdiri N, Ghernaout D, Benguerba Y. Well-defined tricobalt tetraoxide's critical morphology effect on the structure-reactivity relationship. RSC Adv 2024; 14:21745-21762. [PMID: 38979473 PMCID: PMC11229484 DOI: 10.1039/d4ra02971b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/15/2024] [Indexed: 07/10/2024] Open
Abstract
This review focuses on exploring the intricate relationship between the catalyst particle size and shape on a nanoscale level and how it affects the performance of reactions. Drawing from decades of research, valuable insights have been gained. Intentionally shaping catalyst particles makes exposing a more significant percentage of reactive facets possible, enabling the control of overactive sites. In this study, the effectiveness of Co3O4 nanoparticles (NPs) with nanometric size as a catalyst is examined, with a particular emphasis on the coordination patterns between oxygen and cobalt atoms on the surface of these NPs. Investigating the correlation between the structure and reactivity of the exposed NPs reveals that the form of Co3O4 with nanometric size can be modified to tune its catalytic capabilities finely. Morphology-dependent nanocatalysis is often attributed to the advantageous exposure of reactive crystal facets accumulating numerous active sites. However, experimental evidences highlight the importance of considering the reorganization of NPs throughout their actions and the potential synergistic effects between nearby reactive and less-active aspects. Despite the significant role played by the atomic structure of Co3O4 NPs with nanometric size, limited attention has been given to this aspect due to challenges in high-resolution characterizations. To bridge this gap, this review strongly advocates for a comprehensive understanding of the relationship between the structure and reactivity through real-time observation of individual NPs during the operation. Proposed techniques enable the assessment of dimensions, configuration, and interfacial arrangement, along with the monitoring of structural alterations caused by fluctuating temperature and gaseous conditions. Integrating this live data with spectroscopic methods commonly employed in studying inactive catalysts holds the potential for an enhanced understanding of the fundamental active sites and the dynamic behavior exhibited in catalytic settings.
Collapse
Affiliation(s)
- Sami Barkaoui
- Laboratoire Matériaux Traitement et Analyse, National Research Institute of Physical and Chemical Analysis, Technological Pole Sidi Thabet 2020 Sidi Thabet Tunisia
| | - Noureddine Elboughdiri
- Chemical Engineering Process Department, National School of Engineering Gabes, University of Gabes Gabes 6011 Tunisia
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
| | - Djamel Ghernaout
- Chemical Engineering Department, College of Engineering, University of Ha'il PO Box 2440 Ha'il 81441 Saudi Arabia
- Chemical Engineering Department, Faculty of Engineering, University of Blida PO Box 270 Blida 09000 Algeria
| | - Yacine Benguerba
- Laboratoire de Biopharmacie et Pharmacotechnie (LBPT), Université Ferhat ABBAS Sétif-1 Sétif Algeria
| |
Collapse
|
2
|
Liu Z, Shimada H. Visualization of the structural transformation of NiO/YSZ/BZY nanocomposite particles using in situ gas environmental transmission electron microscopy. NANOSCALE 2024; 16:1890-1896. [PMID: 38167724 DOI: 10.1039/d3nr04525k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
This study focused on investigating the dynamic structural transformations of spherical NiO/YSZ/BZY triple-phase nanocomposite particles, commonly employed for cermet anodes, during the hydrogen reduction reaction. We utilized both spherical aberration (Cs) corrected transmission electron microscopy (TEM) and high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) observation modes under a controlled gaseous environment. The environmental gas pressure was set to 1 atm (760 Torr), mirroring real-world conditions. To elucidate pre- and post-hydrogen reduction compositional alterations, we conducted elemental mapping using energy-dispersive X-ray spectroscopy (EDS). Our findings indicated that NiO nanoparticles underwent reduction to Ni particles upon heat treatments in an environment containing H2 gas. Significantly, this reduction of NiO led to the migration of Ni along the external surface of each composite particle, ultimately resulting in the agglomeration at the interparticle spaces among the three NiO/YSZ/BZY nanocomposite particles.
Collapse
Affiliation(s)
- Zheng Liu
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| | - Hiroyuki Shimada
- Innovative Functional Materials Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 4-205 Sakurazaka, Moriyama-ku, Nagoya, Aichi, 463-8560, Japan.
| |
Collapse
|
3
|
Tang M, de Jongh PE, de Jong KP. In Situ Transmission Electron Microscopy to Study the Location and Distribution Effect of Pt on the Reduction of Co 3 O 4 -SiO 2. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304683. [PMID: 37649200 DOI: 10.1002/smll.202304683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/10/2023] [Indexed: 09/01/2023]
Abstract
The addition of Pt generally promotes the reduction of Co3 O4 in supported catalysts, which further improves their activity and selectivity. However, due to the limited spatial resolution, how Pt and its location and distribution affect the reduction of Co3 O4 remains unclear. Using ex situ and in situ ambient pressure scanning transmission electron microscopy, combined with temperature-programmed reduction, the reduction of silica-supported Co3 O4 without Pt and with different location and distribution of Pt is studied. Shrinkage of Co3 O4 nanoparticles is directly observed during their reduction, and Pt greatly lowers the reduction temperature. For the first time, the initial reduction of Co3 O4 with and without Pt is studied at the nanoscale. The initial reduction of Co3 O4 changes from surface to interface between Co3 O4 and SiO2 . Small Pt nanoparticles located at the interface between Co3 O4 and SiO2 promote the reduction of Co3 O4 by the detachment of Co3 O4 /CoO from SiO2 . After reduction, the Pt and part of the Co form an alloy with Pt well dispersed. This study for the first time unravels the effects of Pt location and distribution on the reduction of Co3 O4 nanoparticles, and helps to design cobalt-based catalysts with efficient use of Pt as a reduction promoter.
Collapse
Affiliation(s)
- Min Tang
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Petra E de Jongh
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| | - Krijn P de Jong
- Materials Chemistry and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, 3584 CG, The Netherlands
| |
Collapse
|
4
|
Ma C, Yun Y, Zhang T, Suo H, Yan L, Shen X, Li Y, Yang Y. Insight into the Structural Evolution of the Cobalt Oxides Nanoparticles upon Reduction Process: An
In Situ
Transmission Electron Microscopy Study. ChemCatChem 2021. [DOI: 10.1002/cctc.202100983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Chenwei Ma
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yifeng Yun
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Tianfu Zhang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Haiyun Suo
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Lai Yan
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Xianfeng Shen
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- University of Chinese Academy of Sciences Beijing 100049 PR China
| | - Yongwang Li
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| | - Yong Yang
- State Key Laboratory of Coal Conversion Institute of Coal Chemistry Chinese Academy of Sciences Taiyuan 030001 PR China
- National Energy Center for Coal to Liquids Synfuels China Co., Ltd. Huairou District Beijing 101400 PR China
| |
Collapse
|
5
|
Gao Z, Zhao D, Cheng Q, Zhao D, Yang Y, Tian Y, Ding T, Song S, Guo L, Li X. Mesoporous SiO
2
‐Encapsulated Nano‐Co
3
O
4
Catalyst for Efficient CO Oxidation. ChemCatChem 2021. [DOI: 10.1002/cctc.202100602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zhongnan Gao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Dongyue Zhao
- State Key Laboratory of Catalytic Material and Reaction Engineering Research Institute of Petroleum Processing Sinopec Beijing 100083 P. R. China
| | - Qingpeng Cheng
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Dejian Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Yuexi Yang
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Ye Tian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Tong Ding
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Song Song
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
| | - Lihong Guo
- School of Chemistry and Chemical Engineering Henan University of Technology Zhengzhou 450001 P. R. China
| | - Xingang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) State Key Laboratory of Chemical Engineering Tianjin Key Laboratory of Applied Catalysis Science and Engineering School of Chemical Engineering and Technology Tianjin University Tianjin 300072 P. R. China
- Chemistry and Chemical Engineering Guangdong Laboratory Shantou 515031 P. R. China
- School of Chemical and Biological Engineering Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| |
Collapse
|
6
|
Zhong L, Barreau M, Caps V, Papaefthimiou V, Haevecker M, Teschner D, Baaziz W, Borfecchia E, Braglia L, Zafeiratos S. Improving the Catalytic Performance of Cobalt for CO Preferential Oxidation by Stabilizing the Active Phase through Vanadium Promotion. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05482] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Liping Zhong
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS − Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Mathias Barreau
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS − Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Valérie Caps
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS − Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Vasiliki Papaefthimiou
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS − Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| | - Michael Haevecker
- Max-Planck-Institut für Chemische Energiekonversion (MPI-CEC), Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Detre Teschner
- Max-Planck-Institut für Chemische Energiekonversion (MPI-CEC), Stiftstrasse 34-36, D-45470 Mülheim a.d. Ruhr, Germany
- Fritz-Haber-Institut der Max-Planck-Gesellschaft, Faradayweg 4-6, D-14195 Berlin, Germany
| | - Walid Baaziz
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504 CNRS − Université de Strasbourg, 23 rue du Loess BP 43, 67034 Strasbourg cedex
2, France
| | - Elisa Borfecchia
- Department of Chemistry, INSTM Reference Center and NIS Centers, University of Torino, Via P. Giuria 7, 10125 Torino, Italy
| | - Luca Braglia
- CNR-IOM, TASC Laboratory, S.S. 14 km 163.5, 34149 Trieste, Italy
| | - Spyridon Zafeiratos
- Institut de Chimie et Procédés pour l’Energie, l’Environnement et la Santé (ICPEES), ECPM, UMR 7515 CNRS − Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg Cedex 02, France
| |
Collapse
|
7
|
Chen X, van Gog H, van Huis MA. Transformation of Co 3O 4 nanoparticles to CoO monitored by in situ TEM and predicted ferromagnetism at the Co 3O 4/CoO interface from first principles. JOURNAL OF MATERIALS CHEMISTRY. C 2021; 9:5662-5675. [PMID: 33996095 PMCID: PMC8101414 DOI: 10.1039/d0tc05727d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Nanoparticles of Co3O4 and CoO are of paramount importance because of their chemical properties propelling their applications in catalysis and battery materials, and because of their intriguing magnetic properties. Here we elucidate the transformation of Co3O4 nanoparticles to CoO into nanoscale detail by in situ heating in the transmission electron microscope (TEM), and we decipher the energetics and magnetic properties of the Co3O4/CoO interface from first principles calculations. The transformation was found to start at a temperature of 350 °C, and full conversion of all particles was achieved after heating to 400 °C for 10 minutes. The transformation progressed from the surface to the center of the nanoparticles under the formation of dislocations, while the two phases maintained a cube-on-cube orientation relationship. Various possibilities for magnetic ordering were considered in the density functional theory (DFT) calculations and a favorable Co3O4/CoO {100}/{100} interface energy of 0.38 J m-2 is predicted for the lowest-energy ordering. Remarkably, the DFT calculations revealed a substantial net ferromagnetic moment originating from the interface between the two antiferromagnetic compounds, amounting to approximately 13.9 μ B nm-2. The transformation was reproduced ex situ when heating at a temperature of 400 °C in a high vacuum chamber.
Collapse
Affiliation(s)
- Xiaodan Chen
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University Princetonplein 5 3584 CC Utrecht The Netherlands
| | - Heleen van Gog
- Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology Leeghwaterstraat 39 2628 CB Delft The Netherlands
| | - Marijn A van Huis
- Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University Princetonplein 5 3584 CC Utrecht The Netherlands
| |
Collapse
|
8
|
Straß‐Eifert A, Sheppard TL, Damsgaard CD, Grunwaldt J, Güttel R. Stability of Cobalt Particles In and Outside HZSM‐5 under CO Hydrogenation Conditions Studied by
ex situ
and
in situ
Electron Microscopy. ChemCatChem 2021. [DOI: 10.1002/cctc.202001533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Angela Straß‐Eifert
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian D. Damsgaard
- DTU Nanolab and DTU Physics Technical University of Denmark Fysikvej – Building 307 2800 Kongens Lyngby Denmark
| | - Jan‐Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry Karlsruhe Institute of Technology Engesserstr. 20 76131 Karlsruhe Germany
- Institute of Catalysis Research and Technology Karlsruhe Institute of Technology Hermann-von-Helmholtz Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Robert Güttel
- Institute of Chemical Engineering Ulm University Albert-Einstein-Allee 11 89081 Ulm Germany
| |
Collapse
|
9
|
Shen W. Morphology-dependent nanocatalysis: tricobalt tetraoxide. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-020-04344-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
10
|
Boyes ED, LaGrow AP, Ward MR, Martin TE, Gai PL. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190605. [PMID: 33100164 PMCID: PMC7661277 DOI: 10.1098/rsta.2019.0605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Progress is reported in analytical in situ environmental scanning transmission electron microscopy (ESTEM) for visualizing and analysing in real-time dynamic gas-solid catalyst reactions at the single-atom level under controlled reaction conditions of gas environment and temperature. The recent development of the ESTEM advances the capability of the established ETEM with the detection of fundamental single atoms, and the associated atomic structure of selected solid-state heterogeneous catalysts, in catalytic reactions in their working state. The new data provide improved understanding of dynamic atomic processes and reaction mechanisms, in activity and deactivation, at the fundamental level; and in the chemistry underpinning important technological processes. The benefits of atomic resolution-E(S)TEM to science and technology include new knowledge leading to improved technological processes, reductions in energy requirements and better management of environmental waste. This article is part of a discussion meeting issue 'Dynamic in situ microscopy relating structure and function'.
Collapse
Affiliation(s)
- Edward D. Boyes
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Electronic Engineering, University of York, York YO10 5DD, UK
- e-mail:
| | - Alec P. LaGrow
- International Iberian Nanotechnology Laboratory, Braga 4715-330, Portugal
| | - Michael R. Ward
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Thomas E. Martin
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
| | - Pratibha L. Gai
- The York Nanocentre, University of York, York YO10 5DD, UK
- Department of Physics, University of York, York YO10 5DD, UK
- Department of Chemistry, University of York, York YO10 5DD, UK
- e-mail:
| |
Collapse
|
11
|
Dembélé K, Bahri M, Hirlimann C, Moldovan S, Berliet A, Maury S, Gay A, Ersen O. Operando
Electron Microscopy Study of Cobalt‐based Fischer‐Tropsch Nanocatalysts. ChemCatChem 2020. [DOI: 10.1002/cctc.202001074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Kassiogé Dembélé
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Mounib Bahri
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Charles Hirlimann
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Simona Moldovan
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
| | - Adrien Berliet
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Sylvie Maury
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Anne‐Sophie Gay
- IFP Énergies Nouvelles Rond-point de l'échangeur de Solaize 69360 Solaize France
| | - Ovidiu Ersen
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) UMR 7504 CNRS – Université de Strasbourg 23 rue du Lœss BP 43, 67034 Strasbourg cedex 2 France
- Institut Universitaire de France (IUF) 1 Rue Descartes Paris 75231 France
| |
Collapse
|
12
|
Li Z, Ji S, Liu Y, Cao X, Tian S, Chen Y, Niu Z, Li Y. Well-Defined Materials for Heterogeneous Catalysis: From Nanoparticles to Isolated Single-Atom Sites. Chem Rev 2019; 120:623-682. [PMID: 31868347 DOI: 10.1021/acs.chemrev.9b00311] [Citation(s) in RCA: 479] [Impact Index Per Article: 79.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The use of well-defined materials in heterogeneous catalysis will open up numerous new opportunities for the development of advanced catalysts to address the global challenges in energy and the environment. This review surveys the roles of nanoparticles and isolated single atom sites in catalytic reactions. In the second section, the effects of size, shape, and metal-support interactions are discussed for nanostructured catalysts. Case studies are summarized to illustrate the dynamics of structure evolution of well-defined nanoparticles under certain reaction conditions. In the third section, we review the syntheses and catalytic applications of isolated single atomic sites anchored on different types of supports. In the final part, we conclude by highlighting the challenges and opportunities of well-defined materials for catalyst development and gaining a fundamental understanding of their active sites.
Collapse
Affiliation(s)
- Zhi Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shufang Ji
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yiwei Liu
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Xing Cao
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Shubo Tian
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Yuanjun Chen
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| | - Zhiqiang Niu
- Department of Chemical Engineering , Tsinghua University , Beijing 100084 , China
| | - Yadong Li
- Department of Chemistry , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
13
|
Mitchell RW, Lloyd DC, van de Water LGA, Ellis PR, Metcalfe KA, Sibbald C, Davies LH, Enache DI, Kelly GJ, Boyes ED, Gai PL. Effect of Pretreatment Method on the Nanostructure and Performance of Supported Co Catalysts in Fischer–Tropsch Synthesis. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02320] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | | | - Leon G. A. van de Water
- Johnson Matthey Technology Centre, Belasis Avenue, Stockton-on-Tees, Billingham TS23 1LH, U.K
| | - Peter R. Ellis
- Johnson Matthey Technology Centre, Blounts Court, Sonning Common RG4 9NH, U.K
| | - Kirsty A. Metcalfe
- Johnson Matthey, Belasis Avenue, Stockton-on-Tees, Billingham TS23 1LH, U.K
| | - Connor Sibbald
- Johnson Matthey, Belasis Avenue, Stockton-on-Tees, Billingham TS23 1LH, U.K
| | - Laura H. Davies
- Johnson Matthey, Belasis Avenue, Stockton-on-Tees, Billingham TS23 1LH, U.K
| | - Dan I. Enache
- Johnson Matthey, Belasis Avenue, Stockton-on-Tees, Billingham TS23 1LH, U.K
| | - Gordon J. Kelly
- Johnson Matthey, Belasis Avenue, Stockton-on-Tees, Billingham TS23 1LH, U.K
| | | | | |
Collapse
|
14
|
Cheng Q, Tian Y, Lyu S, Zhao N, Ma K, Ding T, Jiang Z, Wang L, Zhang J, Zheng L, Gao F, Dong L, Tsubaki N, Li X. Confined small-sized cobalt catalysts stimulate carbon-chain growth reversely by modifying ASF law of Fischer-Tropsch synthesis. Nat Commun 2018; 9:3250. [PMID: 30108226 PMCID: PMC6092428 DOI: 10.1038/s41467-018-05755-8] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 07/24/2018] [Indexed: 11/21/2022] Open
Abstract
Fischer–Tropsch synthesis (FTS) is a promising technology to convert syngas derived from non-petroleum-based resources to valuable chemicals or fuels. Selectively producing target products will bring great economic benefits, but unfortunately it is theoretically limited by Anderson–Schulz–Flory (ASF) law. Herein, we synthesize size-uniformed cobalt nanocrystals embedded into mesoporous SiO2 supports, which is likely the structure of water-melon seeds inside pulps. We successfully tune the selectivity of products from diesel-range hydrocarbons (66.2%) to gasoline-range hydrocarbons (62.4%) by controlling the crystallite sizes of confined cobalt from 7.2 to 11.4 nm, and modify the ASF law. Generally, larger Co crystallites increase carbon-chain growth, producing heavier hydrocarbons. But here, we interestingly observe a reverse phenomenon: the uniformly small-sized cobalt crystallites can strongly adsorb active C* species, and the confined structure will inhibit aggregation of cobalt crystallites and escape of reaction intermediates in FTS, inducing the higher selectivity towards heavier hydrocarbons. Fischer–Tropsch synthesis (FTS) is theoretically limited by Anderson–Schulz–Flory (ASF) law. Here, the authors successfully tune the selectivity of products from diesel-range hydrocarbons to gasoline-range hydrocarbons in FTS by controlling the crystallite sizes of confined cobalt, and modify the ASF law.
Collapse
Affiliation(s)
- Qingpeng Cheng
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Ye Tian
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Shuaishuai Lyu
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Na Zhao
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Kui Ma
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Tong Ding
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China
| | - Zheng Jiang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Lihua Wang
- Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, 201800, Shanghai, China
| | - Jing Zhang
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, 100049, Beijing, China
| | - Fei Gao
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, 21009, Nanjing, China
| | - Lin Dong
- Jiangsu Key Laboratory of Vehicle Emissions Control, Center of Modern Analysis, Nanjing University, 21009, Nanjing, China
| | - Noritatsu Tsubaki
- Department of Applied Chemistry, School of Engineering, University of Toyama, Gofuku 3190, Toyama, 930-8555, Japan.
| | - Xingang Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin Key Laboratory of Applied Catalysis Science and Technology, School of Chemical Engineering and Technology, Tianjin University, 300072, Tianjin, China.
| |
Collapse
|
15
|
Song S, Wang D, Di L, Wang C, Dai W, Wu G, Guan N, Li L. Robust cobalt oxide catalysts for controllable hydrogenation of carboxylic acids to alcohols. CHINESE JOURNAL OF CATALYSIS 2018. [DOI: 10.1016/s1872-2067(17)63003-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Visualizing atomic-scale redox dynamics in vanadium oxide-based catalysts. Nat Commun 2017; 8:305. [PMID: 28824163 PMCID: PMC5563508 DOI: 10.1038/s41467-017-00385-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 06/24/2017] [Indexed: 11/22/2022] Open
Abstract
Surface redox processes involving oxygen atom exchange are fundamental in catalytic reactions mediated by metal oxides. These processes are often difficult to uncover due to changes in the surface stoichiometry and atomic arrangement. Here we employ high-resolution transmission electron microscopy to study vanadium oxide supported on titanium dioxide, which is of relevance as a catalyst in, e.g., nitrogen oxide emission abatement for environmental protection. The observations reveal a reversible transformation of the vanadium oxide surface between an ordered and disordered state, concomitant with a reversible change in the vanadium oxidation state, when alternating between oxidizing and reducing conditions. The transformation depends on the anatase titanium dioxide surface termination and the vanadium oxide layer thickness, suggesting that the properties of vanadium oxide are sensitive to the supporting oxide. These atomic-resolution observations offer a basis for rationalizing previous reports on shape-sensitive catalytic properties. Redox processes in metal oxide surfaces can exhibit structure sensitivities which are difficult to uncover. Here, the authors use atomic-resolution imaging to demonstrate facet dependent alterations in the surfaces of supported vanadium oxide upon reduction and oxidation.
Collapse
|
17
|
Ward MR, Theobald B, Sharman J, Boyes ED, Gai PL. Direct observations of dynamic PtCo interactions in fuel cell catalyst precursors at the atomic level using E(S)TEM. J Microsc 2017; 269:143-150. [PMID: 28682468 DOI: 10.1111/jmi.12600] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 05/16/2017] [Accepted: 06/13/2017] [Indexed: 11/30/2022]
Abstract
Reduction reactions in practical bimetallic platinum-cobalt electrode catalyst precursors containing platinum, cobalt and cobalt oxides in hydrogen at 200, 450 and 700 °C for 6 h have been studied in situ using an aberration corrected environmental (scanning) transmission electron microscope (AC E(S)TEM). Little difference was observed in reduction at 200 °C but during and after reduction at 450 °C, small nanoparticles less than 3 nm in diameter with tetragonal PtCo structures were observed and limited Pt3 Co ordering could be seen on the surfaces of larger nanoparticles. During and after reduction at 700 °C, fully ordered Pt3 Co and PtCo nanoparticles larger than 4 nm were produced and the average nanoparticle size almost trebled relative to the fresh precursor. After reduction at 450 and 700 °C, most nanoparticles were disordered platinum/cobalt alloys with fcc structure. After reduction at 700 °C many of the smallest nanoparticles disappeared suggesting Ostwald ripening had occurred. Mechanisms concerning the thermal transformation of mixed cobalt and platinum species are discussed, offering new insights into the creation of bimetallic platinum-cobalt nanoparticles in fuel cell catalysts.
Collapse
Affiliation(s)
- M R Ward
- York Nanocentre, Department of Physics, University of York, Heslington, York, UK
| | - B Theobald
- Johnson Matthey Technology Centre, Sonning Common, Reading, UK
| | - J Sharman
- Johnson Matthey Technology Centre, Sonning Common, Reading, UK
| | - E D Boyes
- York Nanocentre, Department of Physics, University of York, Heslington, York, UK.,York Nanocentre, Department of Electronics, University of York, Heslington, York, UK
| | - P L Gai
- York Nanocentre, Department of Physics, University of York, Heslington, York, UK.,York Nanocentre, Department of Chemistry, University of York, Heslington, York, UK
| |
Collapse
|
18
|
Oxidation behavior of cobalt nanoparticles studied by in situ environmental transmission electron microscopy. Sci Bull (Beijing) 2017; 62:775-778. [PMID: 36659273 DOI: 10.1016/j.scib.2017.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 04/28/2017] [Accepted: 05/02/2017] [Indexed: 01/21/2023]
Abstract
The dynamics of oxidation of cobalt nanoparticles were directly revealed by in situ environmental transmission electron microscopy. Firstly, cobalt nanoparticles were oxidized to polycrystalline cobalt monoxide, then to polycrystalline tricobalt tetroxide, in the presence of oxygen with a low partial pressure. Numerous cavities (or voids) were formed during the oxidation, owing to the Kirkendall effect. Analysis of the oxides growth suggested that the oxidation of cobalt nanoparticles followed a parabolic rate law, which was consistent with diffusion-limited kinetics. In situ transmission electron microscopy allowed potential atomic oxidation pathways to be considered. The outward diffusion of cobalt atoms inside the oxide layer controlled the oxidation, and formed the hollow structure. Irradiation by the electron beam, which destroyed the sealing effect of graphite layer coated on the cobalt surface and resulted in fast oxidation rate, played an important role in activating and promoting the oxidations. These findings further our understanding on the microscopic kinetics of metal nanocrystal oxidation and knowledge of energetic electrons promoting oxidation reaction.
Collapse
|
19
|
The effect of ruthenium promotion of the Co/δ-Al2O3 catalyst on the hydrogen reduction kinetics of cobalt. REACTION KINETICS MECHANISMS AND CATALYSIS 2017. [DOI: 10.1007/s11144-016-1118-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
20
|
Lukashuk L, Föttinger K, Kolar E, Rameshan C, Teschner D, Hävecker M, Knop-Gericke A, Yigit N, Li H, McDermott E, Stöger-Pollach M, Rupprechter G. Operando XAS and NAP-XPS studies of preferential CO oxidation on Co3O4 and CeO2-Co3O4 catalysts. J Catal 2016. [DOI: 10.1016/j.jcat.2016.09.002] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
21
|
Liu L, Concepción P, Corma A. Non-noble metal catalysts for hydrogenation: A facile method for preparing Co nanoparticles covered with thin layered carbon. J Catal 2016. [DOI: 10.1016/j.jcat.2016.04.006] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Zhou Y, Li Y, Shen W. Shape Engineering of Oxide Nanoparticles for Heterogeneous Catalysis. Chem Asian J 2016; 11:1470-88. [DOI: 10.1002/asia.201600115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Yan Zhou
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Yong Li
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| | - Wenjie Shen
- State Key Laboratory of Catalysis; Dalian Institute of Chemical Physics; Chinese Academy of Sciences; Dalian 116023 China
| |
Collapse
|
23
|
Ji G, Smart S, Bhatia SK, Diniz da Costa JC. Improved pore connectivity by the reduction of cobalt oxide silica membranes. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.09.065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Han HL, Melaet G, Alayoglu S, Somorjai GA. In Situ Microscopy and Spectroscopy Applied to Surfaces at Work. ChemCatChem 2015. [DOI: 10.1002/cctc.201500642] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hui-Ling Han
- Materials Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720 USA
| | - Gérôme Melaet
- Materials Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720 USA
| | - Selim Alayoglu
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720-8176 USA
| | - Gabor A. Somorjai
- Chemical Sciences Division; Lawrence Berkeley National Laboratory; 1 Cyclotron Road Berkeley CA 94720-8176 USA
- College of Chemistry; University of California at Berkeley; 420 Latimer Hall Berkeley CA 94720-1460 USA
| |
Collapse
|
25
|
Takeda S, Kuwauchi Y, Yoshida H. Environmental transmission electron microscopy for catalyst materials using a spherical aberration corrector. Ultramicroscopy 2015; 151:178-190. [DOI: 10.1016/j.ultramic.2014.11.017] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 11/13/2014] [Accepted: 11/15/2014] [Indexed: 11/29/2022]
|
26
|
Su DS, Zhang B, Schlögl R. Electron microscopy of solid catalysts--transforming from a challenge to a toolbox. Chem Rev 2015; 115:2818-82. [PMID: 25826447 DOI: 10.1021/cr500084c] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Dang Sheng Su
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China.,‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| | - Bingsen Zhang
- †Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang 110016, China
| | - Robert Schlögl
- ‡Department of Inorganic Chemistry, Fritz Haber Institute of the Max Planck Society, Faradayweg 4-6, 14195 Berlin, Germany
| |
Collapse
|
27
|
Helveg S, Kisielowski C, Jinschek J, Specht P, Yuan G, Frei H. Observing gas-catalyst dynamics at atomic resolution and single-atom sensitivity. Micron 2015; 68:176-185. [DOI: 10.1016/j.micron.2014.07.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/20/2022]
|
28
|
Yoshida H, Omote H, Takeda S. Oxidation and reduction processes of platinum nanoparticles observed at the atomic scale by environmental transmission electron microscopy. NANOSCALE 2014; 6:13113-13118. [PMID: 25248870 DOI: 10.1039/c4nr04352a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Oxidation and reduction of the surfaces of Pt nanoparticles were in situ examined in reactive gases (O2, CO and H2O vapor) by aberration-corrected environmental transmission electron microscopy. Atomic layers of Pt oxides were gradually formed on the surface of Pt nanoparticles at room temperature in O2. The surface Pt oxides were reduced to Pt promptly in both vacuum and gas including CO. We showed that H2O vapor suppressed the surface oxidation. The processes found in this study were induced by gases that were most likely activated by electron irradiation. The observation results provide atomistic insight into the oxidation and reduction process of the surface of Pt nanoparticles that is exposed to activated gases.
Collapse
Affiliation(s)
- Hideto Yoshida
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.
| | | | | |
Collapse
|
29
|
Saib AM, Gauché JL, Weststrate CJ, Gibson P, Boshoff JH, Moodley DJ. Fundamental Science of Cobalt Catalyst Oxidation and Reduction Applied to the Development of a Commercial Fischer–Tropsch Regeneration Process. Ind Eng Chem Res 2013. [DOI: 10.1021/ie4027346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Abdool M. Saib
- Sasol Technology (Pty) Ltd., P.O. Box
1, Sasolburg 1947, South Africa
| | - Jean L. Gauché
- Sasol Technology (Pty) Ltd., P.O. Box
1, Sasolburg 1947, South Africa
| | - Cornelis J. Weststrate
- Sasol Technology Netherlands B.V., Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Philip Gibson
- Sasol Technology (Pty) Ltd., P.O. Box
1, Sasolburg 1947, South Africa
| | - Jan H. Boshoff
- Sasol Technology (Pty) Ltd., P.O. Box
1, Sasolburg 1947, South Africa
| | - Denzil J. Moodley
- Sasol Technology (Pty) Ltd., P.O. Box
1, Sasolburg 1947, South Africa
| |
Collapse
|